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A model of annular linear induction
pumps

Yoichi Momozaki

Part-I: Electro-Magneto-Dynamic part

To model an annular linear induction pump, we assume a pump within which a periodic,
traveling electrical current wave along the axis of the pump exists (Figure 1 and Figure 2). This
is same as to treat the pump as an infinitely long pump.
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Figure 1. Schematic of an annular linear induction pump.

The traveling current wave flowing in the azimuthal direction, Iy (pink line shown in Figure 3)
produces a traveling magnetic flux in the core, @, (blue line in Figure 3) from Ampere’s law.
Note that the current itself flows in the azimuthal direction, however the wave travels along the
axial direction. An associated traveling magnetic field in the pump duct, B, ., (green line in
Figure 3) follows the traveling magnetic flux in the core from Gauss's law for magnetism. The
magnetic field in the pump duct is in the radial direction, but the wave is traveling along the
axial direction. This traveling magnetic flux in the core, &, also induces an induction current
wave around the center core, Ig;,q from Faraday’s law of induction. Resulting Lorentz force
thrusts the electrically conductive fluid in the pump. The traveling current wave is the sum of
an externally applied periodic, traveling current sheet (or wave), lg,, (orange line in Figure 3)

1



generated by distributed coils along the pump (see Figure 4) and the induction current wave in
the pump, Igiq.- Although the electrically conductive media in the pump is a fluid, the media in
the pump is treated as a solid and no fluid dynamic considerations are incorporated in this
model.

Flow direction

Figure 2. Traveling current wave and magnetic flux in the core.

When powered by a three phase power supply, each coil in the distributed coils receives
AC power separated by 60 degrees, thus forming one complete cycle with 6 coils (see Figure 4
and Figure 5). The 7th coil is the identical coil as the 1st coil in the next cycle. Note that it is
possible to group multiple adjacent coils and connect them to the same phase. The number of
coils in a group connected to the same phase in the same pole is N, In this case, the
required number of coils to complete the cycle is the number of coils in a group times six
(= 6 X Npppp). It should be noted that the induction current is not in phase with either the
applied current (this is shown later in this report) or the traveling electrical current wave.
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Figure 3. Schematic of various traveling waves in the pump.

Typical coil connection with 3 phase power supply

A
B
C
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Figure 4. Schematic of distributed coils and their connections to 3 phase power supply.

Using this method, various parameters per each wavelength (or 2 x poles) of the waves
may be calculated and by adding the thrust per pole up to the total number of the poles in the
pump, the total pump pressure head developed by the pump with a finite length may be
approximated without solving a complex system of temporal-spatial differential equations.
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Figure 5. Phase relationship of the coil connection with 3 phase power.

The present work explains how the magnetic field and the induced current are obtained
when the distributed coils are powered by a 3 phase power supply. From the magnetic field
and the induced current, the thrust and the induction losses in the pump can be calculated to
estimate the pump performance.

Defining traveling current waves
The applied traveling current wave may be expressed as:

Ileap (t,z) = I,eappkexpi(_wt + kz), [1]

where I’gappk is the peak value of the linear density of the applied traveling current wave,

= _ 2 _ 2 i i — Lo i
w = 2nfg, = T v, k = T where [, is the pole pitch (I, = Npore where Ly, is the pump

length, Npoe is the number of poles), vs is the synchronous velocity of the current wave. We
used expi(6) = cosf + isinf where i is the imaginary unit. Note that the current is flowing in
the azimuthal direction (6 direction) in the coils surrounding the core and the wave is traveling
along the pump (z direction).

Knowing that the induced current is periodic, the linear current density, I'ginq(t, 2)
induced in the working fluid may be assumed as:

I'gina(t, 2) = I'gingprexpi(—wt + kz + ¢), [2]

where I'eindpk is the peak value of the induced linear current density and ¢ is the phase
difference between the applied current and the induced current. Note that the current is
flowing in the azimuthal direction (8 direction) in the pump annular duct and the wave is
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traveling along the pump (z direction). Also note that I'ginqpk and ¢ are unknown constants
and are to be determined. In addition to I'g;,4, there are induction currents in the duct walls
and other components where the changing magnetic field exists. These induction currents,
which do not flow in the working fluid and do not contribute for pumping, may be expressed as:

Al'gina(t, 2) = Al'gipgprexpi(—wt + kz + ¢), (3]

The total traveling current wave in the pump, I'g¢0((t, 2) is the sum of the induced
current wave and the applied current wave so that:

I'geot(t, 2) = I'gina(t, 2) + Al'gina(t, 2) + I'gap(t, 2), [4]

which can be rewritten as:

I'gtot(t, 2) = I'gappk[B(1 + Ay)expi(—wt + kz + ¢) + expi(—wt + kz)], [5]
Irg; Al'gin ,
where 8 = —0indpk ng A, = —219% \hich are unknowns due to I'gindpk and Al'gingpk. Note
1"gappk I"gindpk

that using B, the I'ging and Al'g;,q may be expressed in terms of I'gyp i as:

I'gind(t, 2) = I'gapprBexpi(—wt + kz + ¢), [6]
and

I'gina(t, 2) + Al'ging(t, 2) = I'gapprBeexpi(—wt + kz + ¢), [7]
where B. = B(1 + A,,). The total traveling current wave (eq. [5]) can be further calculated as:

I'gtot(t, 2) = I'gappk[Bccosp + 1 + feisinglexpi(—wt + kz)

= I’eappk\/(ﬁccosd) + 1)2 + (B.sing)?expi(—wt + kz + ), (8]
where:
— Bcsing
Y = arctan (—Bccos¢+1)' [9]

and I'geotpk is Now defined as:

Iletotpk = Ileappk\/(ﬂccosq5 + 1)2 + (ﬁcSin¢)2r [10]

so that:

Igot (£, 2) = I'grorprexpi(—wt + kz + ). [11]



Relating the applied current to the distributed coil system and the applied

traveling current wave
Note in a real ALIP, the magnetomotive force due to the total applied current per pole,

Ipaptpp is sin(8) + sin (0 + gn) + sin (9 + gn) for0 <0 < gn times the total current flowing
through the coil that is the peak current, Iy,ppk times the number of turns, Ni,ps times the

number of coils per phase per pole, Ny, (see Figure 6). By taking average, lg,ptpp May be

expressed as:

Ioaptpp = loappk f§” [sin(®) + sin (6 +37) +sin (6 + )| do / (5 7)

X Nturns X Npppp

6
= ;Ieappk X Niurns X Npppp- [12]

Also the magnetomotive force due to the applied traveling current wave per pole is calculated

as:
_ (lop pr _ 2lpp
Ieaptpp - fo Ieade - TI BOappk- [13]
T 21
6 6+ — g
3 6 + 3
Actual current wave /\ /\ /\
produced by the coils FeivBsa i
\ I VAL
ALY A\
/,,' ‘~\\
U \
/,/ ~\\
- '\ 3 phase power & L

Ideal applied current wave

Figure 6. Relationship of the current wave and the applied current wave produced by the
distributed coil system.

By equating above 2 equations, the peak applied current density to the coil, I'gappk can be
calculated from the peak applied current to the coil, Ig,ppk as:

3N N,
! _ turns!Vpppp
1 Bappk — Ieappk- [14]

lpp



In fact above conversion (actual current to linear current density) is valid for all traveling
current waves.

Also the magnetomotive force due to the total traveling current wave per pole is
calculated as:

l 21
— (oo pr _ 2lpp
Igtotpp = fo I'grordz = . Igtotpk- [15]

Magnetic flux in the core and magnetic field strength in the gap
The magnetic flux in the center core, &, is in the same phase with I’y as to think of
coils wrapping around the core. The magnetic flux in the core may be expressed as:

P = Dcpi expi(—wt + kz + 1), [16]

Note that from the continuity of the magnetic flux,

0®,
Bra = - : d [17]

laave 0z ’
where [,,,. is the average circumference of the air gap (center line of the flow path annulus),

see Figure 7.

B, =— ;d%pkki expi(—wt + kz + )

laave

= l;d)cpkkexpi (—wt +kz+y+ % + n), [18]

aave

where we used iexpi(0) = expi (6 + g) and —expi(6) = expi(0 + ).
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Figure 7. Relationship between the magnetic flux in the core and radial magnetic field strength.

The peak value of the magnetic field strength, By,,i, may be defined as:

Bra = Brapkexpi (—a)t thz+ P+ + n), [19]
where:
1 =«
Brapk = —— — D cpk, OF 20
rapk Laave Lpp cpk [ ]

1
Pepk = ;Brapk “Laave * lpp- [21]

Relating the magnetic field and magnetic flux with the traveling current wave
using a magnetic circuit model

We consider an infinitesimal magnetic circuit shown in Figure 8. We assume p in iron
core is that u > pu, such that the magnetic reluctance in the iron structures (stator core and
center core) is neglected. The magnetic reluctance in the air gap may be expressed as, see
Figure 8:

dR = 1 (teleavedsy [22]

Ta'Ce2

where Carter coefficient, C., is used to include the effects of slot structures in the stator cores.
The radial magnetic flux is obtained as:

(pp(z) = Bra(2)Laavedz. [23]



The magnetomotive force is:
mmf(z) = I' g0 (t, 2)dz. [24]

Following change of the magnetomotive force occurs along the magnetic circuit from 1 to 4
(Figure 8):

0+, (Z—%dz) dR + mmf(z) — @, (Z+%dz) dR = 0. [25]

By substituting each term in the above equation, the equation becomes:

é [Brapkexpi (—wt +kz+Y+ % + n)] dZTal;ﬁ = I'etotpkexpi(—wt + kz + )dz, [26]
0
then:
kB, pkexpi(—wt + kz + 1) Taﬂﬁ = I'grorprexpi(—wt + kz + 1), [27]
0
and finally,
TTT4"C,
Iletotpk = Brapk Ho'lpapl:jve laave = Brakamalaave- (28]
where:
R — TTa'Ce2 : 29
ma ﬂo'lpplaave [ ]
is the magnetic reluctance of the air gap.
Now both Byapi and @, can be expressed in terms of I'geopi as:
Brapx = ———1' [30]
rapk — Rmalaave Ototpk-
Pope = —— 21" 31
ok = 7 L etotpk- [31]



\ / , Circumference: |,

Figure 8. Schematic showing the magnetic circuit per pole-pair within the pump.
Calculating the induced current waves

Induced current in the working fluid

Since the magnetic flux in the core is changing with time, it induces an induction current
in the annular duct that surrounds the core. From Faraday’s law of induction the induced
current density in the pump duct may be expressed as:

Egina(t, z) = —D%qbc(t, z), so that [32]
Joina(t, z) = —l:—ie%d)c(t, z), [33]

where Eginq is the electromotive force, o; is the conductivity of the fluid in the duct, which is
. D . . o . . .
assumed constant in the pump and o0 is the material derivative as the fluid is moving relative to

the pump. Also I, is the average circumference of the working fluid in the annular duct that
the induced current needs to travel. Since an infinitesimal current in the duct flowing in the
circumferential direction is expressed as dlg = I'gdz = Jg1;dz where t¢ is the thickness of the
working fluid in the annular duct, which is assumed constant over the pump, finally I'g;,q4 may
be obtained from the equation above as:

(2 +vp2) (. 2). [34]

1fof

I'gina(t,2) = —7
fave

Performing the material derivative and introducing Av = vs — vf, w — vsk = kAv give:
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Ileind = ot kAUld)C [35]

lfave

Substituting &, from eq. [16] yields:

Ileind = mkAvtbcpkiexpi(—a)t +kz + l,l)), [36]

lfave

and with eq. [21]:

I'gina = %laa"eAvBrapkexpi (—wt +kz+yY+ g) [37]

Induced current in the duct walls and other components

The induced current in the duct walls, Al'g;,,q may be expressed as (similar step as eq.
[34] and eq. [35]):
TwOw 0D

lwave at

AI,eind = -

where the subscript “w” denotes the values for the duct walls. There may be more
components in the air gap where the induced current exist. The contribution s from these
components may be summed and represented by the duct walls. Note that since the walls do
not have relative movement to the pump, regular temporal derivative instead of material
derivative is taken. Performing temporal derivative gives:

] _ TwOw .
Al gind — _l kalCDC

wave

= WiI,Gindl [39]
lave
where w; = i—wi—wlf—ﬁ, so that:
f Of twave
l .
Ileind + AI,eind = (1 + Wi) Tf‘;ffﬂAvBrapkeXpl (—a)t +kz+ 1p + g) [40]
ave

Determining unknowns
Substitute eq. [7] and B,k from eq. [30] into eq. [40]:

' gappkBcexpi(—wt + kz + ¢)
l
=(1+4+w) %%m% kAvI'gtotpkexpi (—wt +kz+y+ %) [41]

Substituting I'gorpk from eq. [10] yields:

Ileappkﬁcexpi(_wt +kz+ @)

11 :
=1+ Wi)%ﬁ_ma% kAvI’eappk\/(Bccosd) + 1)% + (B.sing)?

X expi (—wt +kz+y+ g) [42]

11



Comparing LHS and RHS of above equation and substituting ¢y = arctan (%) from eq. [9],

following relationships can be obtained from the equation above:

Be = (1+w) 22 L2 feAv [(Bcosp + D2 + (Besing)?, [43]

Y =¢ -~ and [44]
B sing _ o

B cosp+1 = tan (¢ 2)' [45]

Calculating tan (d) — g) above gives the following relationship:

Bcl(sing)? + (cos¢)?] = . = —cosé. [46]

Substituting cos¢p = —p. into eq. [43] gives:

1 1
fe= (1+w) 22 L2 ey [1- 52, [47)

which can be solved for g, while noting that RHS of eq. [43] is positive so that:

a

B = WL (48]
where
a=(1+w)LE 1 Ayp. [49]
lfave Rma

With B. = —cosg, it follows that:

sing = + /1 - BCZ, [50]

and because of the relationship between I'ginq + Al ging and I'gior, We take the positive sign,
see Figure 9.

12



lging + Alging

Figure 9. Schematic showing the relationship between the applied, induced, and total currents
for the positive sign case and the negative sign case. When negative is taken (Iging + Alging in
the 3rd quadrant at ¢_ indicated by an dashed arrow), the total current, Iy (indicated by
another dashed arrow, the sum of Igi,q + Alging and Ip,p) is in the 4th quadrant whereas i_ is in
the 2nd quadrant from eq. [44], becoming out of 180°.

Therefore:

tang = —\/?ﬁcz L

B o

Then it follows that:

¢ = —arctan (%), [52]

T
where; <¢p<=m.

As a summary, now we can calculate the magnetic field strength in the annular gap (eq. [19])
and the induced current in the working fluid (eq. [37]) from the applied current as:

Bra = Brapkexpi (—wt + kz — arctan (é) + n), [53]

I'ging = %AvBrapkexpi (—wt + kz — arctan (é)) [54]

fave

13



where (from eq. [30], eq. [10], and eq. [48]):

1 1 ’
Brapk N Rmalaave \/ml Bappk/ and [55]
a=(1+w)LE 1 Ayp. [56]
ltave Rma

Also note that from eq. [6], eq. [54], and eq. [55]:

__ TfOf 1 1
ﬁ N lfave Av RmaV1+a?’ [57]

and substituting eq. [48] and eq. [49] above gives:

B =i be [58]
Therefore by definition:

Ay, = W;. [59]
Calculating the developed pressure per pole

The developed pressure due to Lorentz force is given as:

ap
— = Jina X B. [60]
Note the direction of the force in the pump (Z—IZJ < 0 gives positive pumping, see Figure 2). The

induced current density in the working fluid, Jging can be calculated from I'g;,q (€9. [54]) as:
Joind = %Av&apkexpi(—wt + kz + ¢). [61]

The magnetic field strength that the working fluid experiences may be assumed the same as the
magnetic field strength in the gap that is (from eq. [19], note the phase and the sign):

Bra = —Braprexpi(—wt + kz + ¢). [62]

Note that the negative sign appearing in eq. [62] makes the pumping positive and physically
consistent. The induced current density in the working fluid is in the azimuthal direction and
the magnetic field is in the radial direction so that they are perpendicular to each other.
Replacing expi(—wt + kz + ¢) with cos(—wt + kz + ¢) for the real notation, the developed
pressure per pole can be calculated as:

ap
dz

1
=l
APpp = f lep dz

—2lop

14



1
1 =l

= aflaaiAvBrapkz f_zl?::p [cos(—wt + kz + ¢)]*dz
2

fave

_ 1 laave 2
= 5 lopor 2 AvB o’ [63]

Substituting eq. [55] above gives:

laave 1 2 1 ! 2
BBy = 2 Lopor 22 A ) == sappic [64]

lfave Rmalaave/ 1+a?

Tf0| 1
where @ = (1 + wy) L —Av.
ltave Rma

Calculating the power input per pole
The total power input to the working fluid per pole, Wg,, is the sum of the thermal

power and the kinetic power due to the induction. The thermal power input is actually Joule
heating and volumetric Joule heating, w''’g, is given as:

oo __ ]emdz

of
The volumetric kinetic power, w'" ¢ is given as:

nr dp
fKE = 7, Vr- [66]

The volumetric total power input is:

] in ] in
w''e = ea: + vy == fi JoinaBraVs- [67]

Substituting eq. [61] and eq. [62] into the above equation gives:

W' = gAv? (ljm) Bea? + o;Av ( ) B.o2vs

fave

6AVB., (LHE‘J) [(Lan) v, + ltave—laave vf]’ [68]

ltave lfave lfave

and noting that 22 lave ~ 1 g0 that Have—laave o 0, which gives:

ltave fave

IIZ

2
W' = ohvBe? (2222) [69]

fave

that is:

IR

244 laave) dp dP
w — ) —7D — 7, 70
f ( dz S dz s [ ]

lfave

15



meaning that the total power input to the working fluid is the product of the pressure and the
synchronous velocity (whereas the pumping power is the product of the pressure and the fluid
velocity). Also note that:

2

"o~ 2p 2V _Joma" 1
w e = ogAveB, = - 71
f f: ra a, o $’ [ ]

where s = ? that is slip, meaning that the effective load of the working fluid can be viewed as
S

R
an electrical resistive load of?f where Ry is the actual resistive load of the working fluid

calculated from the properties of the fluid and the geometry of the annular duct that contains
the fluid.

The total power input to the working fluid per pole is then given as:

Us
Wfpp = APpr ;, [72]
or from eq. [69]:

1 laave |2
Wepp = > lppot (%) AVBrapszflfavevs- [73]

fave

Since the pump components that experience the changing magnetic field (in this work,
represented by the duct walls) are not moving with the working fluid, by following the similar
steps described above, the power input to the duct walls per pole, W;,,, may be given as:

laave

1 2
Wpr = 2 lppo-w ( ) vsBrakaTwlwavevs- [74]

lwave

. . ! . lave
This corresponds to the power input to the duct walls due to Al'g;,4. With w; = i—wi—wlf—ﬁ,
f Of lwave

the sum of the induction losses is therefore given as:

1 laave 2
Wepp + Warpp = (1 + W) 2 Lop0r (222)” AvBrapi® Tltavevs = (1 + W) Wiy, [75]

lfave

Comparing with R. Riidenberg’s and R. S. Baker’s work

Baker derived a similar expression for a flat linear induction pump (FLIP), Ref. [1], based
on Riudenberg’s prior work (Ref. [2]). The total force produced by the pump, F given by Eq. [91]
in Baker’s work with notations used in our work becomes:

l A
()
pp
A

1 2 )
(4purAvop)? + (%+—)
lpp

F= %TafAvBmz/lszole [76]

where T is the duct height and A is the width of the duct since this is for the FLIP with a duct
with a rectangular cross section. The resistivity of the working fluid is replaced with the
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reciprocal of the conductivity of the working fluid. B, is the peak magnetic field produced only
by the applied current. We believe that Baker’s egs. [90] and [91] contain an error such that
4uAl is missing in the denominator of the RHS. For the zero fluid velocity case, the equivalent
equations are given as eq. [70] and eq. [71] in Baker’s work, which correctly contain 4uA (or [
that is 4uA, see eq. [46] in his work). Or check eq. [27] on pg. 297 of the prior work by
Riidenberg (Ref [2]), which is the same equation as eq. [70] of Baker’s.

By dividing by the duct cross sectional area, At and removing the number of poles from
the equation above, the developed pressure per pole is expressed as:

(2)

APy, = = g;AvB,2A — B [77]
4 (4;17\Awf)2+(%+ﬁ)
Note that Baker’s work was performed using CGS (Gaussian units system). Converting this
equation in Sl unit system (4mu — ) gives:
Ipp . A
_+_
APy = 5 01AVB,, " ( - l*;") — |, (78]
(%}\A‘Uo'f) +(%+E)
or rewriting the above equation respect to Bmz,
I 2 (lp, A\
2 ZAPpp 2[(?0)\A170'f) +<T+E> ]
Bm - 2 ’ [79]
O'flppAU 1+<L)
lpp

which is Riidenberg equation (Ref. [3]). Note that in Ref. [3], to use Riidenberg equation in an
ALIP, the width of the duct, A for a rectangular duct had been replaced with the equivalent duct

. A . . .
width for an annular duct, T—a where A, is the cross sectional area of the annular duct. We will

a

show it later, but this replacement to adapt Ridenberg equation to the ALIP configuration is
not sufficient. Rearranging eq. [78] yields:

()
(”—ﬁAvaflpp)2+<(lpr)2+1>

Now we adapt the above equation to an ALIP geometry. Note that the FLIP has a

ARy,

1 l
=1 oAVB, %A 22 [80]

rectangular duct and it has a cosine distribution over the width of the duct, whereas an ALIP has
an annular duct that has no ends in its circumference direction so that it has a uniform
distribution along the circumference direction. In Baker’s work on pg. 20, between eq. [67] and
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eg. [68], it was shown that the cosine distribution resulted in %A factor in the equation above,

whereas for the ALIP case with same width of the duct (width of the FLIP = circumference of the
ALIP) it should be:

2
f_ZA 1dy = 1, [81]
2

so the factor %/1 in eq. [80] is replaced with A that yields:

tpp)* )
AP, =1 (< 2) - BV
(%Avaflpp) +((lpr) +1>

pp = 3 [82]

lopoiAvBy,”

l . . . . .
Also for the ALIP geometry, % — 0 since the duct has no ends in the circumference direction,

which gives:

— 1 1 2
ARy, = lim lpr—m > lopoeAvBy,

1 2 1

= -1, 0fAvB,* | ————— ). [83]
PR <1+(”—7T°Awflpp)2)

Using the relationship given by eq. [30] of the present work, B,, may be expressed with the

peak applied linear current density, I'g,ppi in the same way as:

B, = —

Rma laave

Ileappkl [84]

so that:

1 1 2 1 2
AP, ==l oAV I . [85]
pp = , 'pp°f (Rmalaave) (1 +(”—,T° AWflpp)z> 8appk

The above expression is the equivalent of eq. [64] of the present work but derived from Baker’s
works. Eq. [64] of the present work is expressed as:

1 1 2 (Maave 1 , 2
APpp = —lppO'fAU 7 I fappk - [86]
2 Rmalaave ltave 1+[(1+w- Tf laave, 1 -ﬂAvafl ]
1 Ta lfave CCZ Vs pp
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By comparing eq. [85] and eq. [86], it is clear that the present work includes the effects due to
the difference between the air gap dimensions and the dimensions of the gap that is occupied
by the fluid. Also the effects of the slots in the stator cores to the air gap are included by Carter
coefficient, C.,. The effect of the induction losses in the duct is also included by w;. Baker’s
expression appears to assume that the air gap dimensions and the dimensions of the gap that is
occupied by the fluid are the same. Also it will not be able to include the effects of the slots in
the stator cores and the induction losses in the duct walls, but otherwise the expression is the
same as the present work, which further strengthen the validity of the current work.
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Part-II: Electrical part

We assume a pump within which a periodic, traveling electrical current wave along the
axis of the pump exists. In the part-1 of the present work, the EMD aspect of the model was
discussed. Although the model requires 3 phase alternating current as a major input parameter,
normally a 3 phase system provides prescribed 3 phase voltage (Figure 1). For a delta
connected ALIP, it is typically the line-to-line voltage. To obtain the required 3 phase current
from the prescribed 3 phase voltage source, an electrical circuit analysis is needed, which is
described in this part-Il of the present work.

Typical coil connection with 3 phase power supply

A
B
C

C, C G C G C G

*C,=C;

Figure 1. Schematic of distributed coils and their connections to 3 phase power supply.

The part-Il of the present work explains how the applied current and voltage to the coil
system in the pump is obtained when the distributed coils are powered by a 3 phase power
supply. Using the calculated applied current and the voltage, the pump parameters can be
calculated with the part-I of the present work.
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Equivalent circuit
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Figure 2. Schematic of an equivalent electrical circuit of ALIP and the red arrows indicate flow of
power.

An equivalent circuit for an ALIP is developed and is schematically shown in Figure 2.
The coils in the pump surround the center core as a primary coil and the working fluid in the
annular duct as well as the duct itself also surround the center core as a secondary one-turn coil.
This may be viewed as a transformer. The applied voltage to a coil is Vp,c and the induced
voltage across the coil is Vi,q. The coil has reactance, X,,;; due to the leakage flux in the coil (the
magnetic flux generated by the coils that does not link with the working fluid and duct walls)
and resistance, Ry,., for example see Ref. [4]. These values are calculated from the coil
properties and the coil configuration. The coil requires primary current, Iy, to supply
Iging + Alging to the secondary (the working fluid and the duct) in addition to current for the
core losses, Ioss- Icl0ss COrresponds to the power dissipated in the core and other structures,
Wieoss- ITotot IS the magnetizing current. In the secondary, Iginq corresponds to the power input
to the working fluid, W; and Alg;,4 corresponds to the power dissipated in the duct walls, }; W,.
Because the working fluid and the duct completely surround the center core, we assume that
there is negligible leakage flux in the secondary side (the working fluid and the duct), which is
equivalent of having a pure resistive load on the secondary.
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Phasor
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Figure 3. Phasor indicating various currents.

From the part-I of the present work (Figure 9 of the part-I), a phasor is drawn in Figure 3.
Since there is no reactance in the secondary, the secondary current (= Ig;q + Alging) is €xactly
90° behind the core flux, @. at 1. Note that the current waves are moving at expi(—wt + kz)
and in this schematic, the clockwise direction is the direction of the rotation. In the part-I, the
relationship between Iging + Alging, Ipror, and Ip,p Was derived assuming no core losses.
However in a real ALIP, there are some core losses and the primary (coil) needs to provide
additional current shown as Ij,ss. The actual coil current, Igapact is the vector sum of Ig,, and
Ioss- The current in the primary side to supply lging + Alging iS locoil-

Figure 4 shows the voltage relationship in another phasor. The induced EMF in the coil

is Vinq that is at 90° to the core flux, @.. There are additional voltage drops in the coil
associated with Xp,; and Ry,;;. They are proportional to the actual coil current, Ig,p,cc While

lgapactXpri is at 90° 10 Igapact and IgapactRpri is in phase with lgapacc by definition.
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Figure 4. Phasor indicating various voltages.
Calculating the values for various electrical parameters

From eq. [72] of the part-I of the present work, the power to the working fluid per pole
is given as:

Vs
Wepp = ARp0Q ;'

[1]
or eq. [73] of the part-I:
Wipp = 5 Lppoy (llf—)2 AVBrapi*TelaveVs. 2]
Also using eq. [75] of the part-I, the power to the various components per pole is:
Wepp + 2x Wapp = Wepp + Woypp = (1 + W) Wy,
= (14 w) Loy (llf)2 AVB i Tl aye Vs 3]

We assume such that the core loss per pole, Wysspp N€€ds to be separately specified as an
input.
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There are 6 X Ny, coils that are needed to complete a cycle, which consists of 2 poles.
Each pole contains 3 X Ny, coils. Therefore the amount of power each coil needs to deliver

can be calculated from the various power per pole as:

W § = WClOSSpp+Wfpp+ZXWpr [4]
co1 *
3Npppp

. .. 1 .
For an AC system, the electrical input, W is givenas W = > pklpk Where Vi is the peak value

of the applied voltage and I,y is the peak value of the current in phase with the voltage. The
amount of the current in phase with the voltage, V4 that the coil needs may be divided into
two parts as Igcoj and I oss, S€€ Figure 3 so that:

Wfpp +Xx prp

19coi1pk = 3Npppr%Vindpk’ and [5]
w

Iclosspk = W; [6]

where:

do, , w

Vind = — (—NtumS E) = —Nourns P pkeXpi (—wt +kz+yY+ E)' (7]

so that:
Vindpk = Nourns@WPcpks (8]

from Lenz’s law. Note that the minus sign in eq. [7] for V;,4 is to counteract against the EMF
induced by Lentz’s law. Note that eq. [6] may also be written as:

2
1 laave) 2
1+wj)zl a( AvB T¢l v
( 1)2 ppof lfave rapk ‘flfaveVs

1
3Npppp >3V indpk

IHcoilpk = , (9]

and substituting eq. [20] of the part-I yields:

1 l 2 2
pp aave 3
14+wj)l O'( ) A‘U( ) [ Tel
T ( i) ppof Ifave laave'l cpktfifave

IHcoilpk = 3% Nearms*Nopppp [10]
From eq. [14] with eq. [28], both from the part-, Ig¢opx Maybe obtained as:
_ Brakamalaavelpp
Ietotpk - 3thumstpppp; [11]
or using eq. [20] of the part-I, the above expression can be rewritten with @ as:
_ TP cpkRma
Ietotpk - 3><Ntumstpppp- [12]
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Note that Igcoi1pk May be expressed as:

1 1 2 2
%(1+Wi)lpp¢7f( ?f:::) AV( ) PepkTrlrave

”‘Dckama

laave'lpp

Igcoilpk = Tototpk

= al @totpk

where a is from eq. [49] of the part-I.

[13]

The angle between I, and Ig,p is P or ¢ — % so the angle between lg,, and Iy is

Y- % The angle between Ig,p,cc and lgoi is given as § = — % — AB; (note that with this

definition, £ < 0 and A@; < 0). Therefore the following relationship can be established (see

Figure 3):
§ = —tan (),
and:
86, = -y +7,
and also:
Igapactpk = \/ (Ipcoilpk + Iclosspk)2 + Tototpi-
Finally:

Igapact = IGapactpkeXpi(_wt +kz + AB;).

From Figure 4 and Figure 5, it follows that:

2 . 2
Veapactpk = \/(Vindpkcosf + Ieapactkapri) + (VindkaIH‘f - Ieapactkapri) .

Note that Vi,gpksing < 0. Also

VindpkSiné —IgapactpkXpri
tan(é + AG,) = —=2 PRt Pl
VindpkCOS¢+IgapactpkRpri

(note that with this definition, A8, < 0) so that:

A@. = arctan (Vindkainf_Ieapactkapri) f
, = —

Vindpk€0s€+lgapactpkRpri
Finally:
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Veapact = Veapactpkexpi(—wt + kz + A91 + f + AHZ) [21]

The real power input per coil is:

1
Pcoilre = 2 VGapactkaGapactkaOS(f + Aez)- [22]

IHapactXpri

Figure 5. Relationship between Vjnq and Vgapact-

Now we know the voltage, Vgapacr and the current, Ig,p,c that each coil needs to be
provided and the line-to-line voltage and the phase and the line currents can be calculated
depending on how the coils are wired together.
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Coil wiring configuration

N,

pppp = 2

11

05

06

09

03

Figure 6. An example of coil wiring diagram.

Each coil can be wired in any way as long as its relative phase relationship to the other
coils is correctly maintained. In this section, we consider a typical wiring scheme as an example,
see Figure 6. The figure shows a typical case with a 3 phase power supply. For a complete cycle

(2 poles), the required number of coils is 6 X N, In this example, N = 2 and the coils

ppPP* pppp
that are in the same pole and the same phase (that are also physically next to each other) are in
parallel (for example, coils #1 and #2). But the coils that are in the different phases are
connected in series (for example, coils #1 and #3). Each group of coils between 2 phases per
cycle contains 2X Ny, coils or 4 coils in this example. 2 coils (one in the first pole and
another in the second pole) are connected in series and Ny, coils are in parallel. The groups

. . . . Npol
of the 2X Ny, coils are connected in series. The number of groups between 2 phases is %.

The final line-to-line voltage is:

N
_ poles _
ViL=2X > Veapact = NpolesVGapactf [23]

and the phase current is:
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I, = N,

ppppleapact- [24]

p
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Part-1III Transport effects (End effects)

In the part-lll of the present work, a simple 1-D model (pump axial dimension) of an ALIP
is developed and the end effect is analytically calculated based on the work described in the
part-l and part-Il.

Modeling the ALIP in 1-D

In this model, an r — 8 — z coordinate is employed. The pump axis is set as the z axis
(Figure 1). The varying applied current, Ip,,(t, z) is applied to the coils surrounding the annular
duct and the core. The length of the pump is L, so that there are 2 boundaries, one at

1 1 . .
zZ = _ELP and another at z = ELP' The applied current is assumed to have only 8 component.

In the core, an axial magnetic flux, @.(t, z) is produced by the applied current (and resulting
induced current). The magnetic flux is assumed to have only z component. The magnetic flux
in the core then induces the induced current, Ig;,q(t, ) in the working fluid in the annular duct.
The induced current is also assumed to have only 8 component. Because of the spatial
variation of the magnetic flux in the core, the radial magnetic field strength, B.,(t, z) exists in
the annular duct region. Although the radial magnetic field changes with r, assuming the
thickness of the annular duct is small compared with the ID or OD of the duct, we may assume
that B.,(t, z) is only a function of time and axial location.

Pump (core & coils)

Flow direction

1 1
_ELP ELP

Pump duct
Working fluid

Figure 1. Schematic of the pump model.
The applied traveling current wave may be expressed as, see eq. [1] of part-I:
I'gap(t, z) = I'gapprexpi(—wt + kz). [1]

The total traveling current wave in the pump, I'g¢((t, 2) is the sum of the induced current
waves and the applied current wave, see eq. [4] of part-I:
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I'gor(t, 2) = I'gina(t, 2) + Al'ging(t, 2) + I'gap(t, 2), [2]
From the continuity of the magnetic flux (see eq. [17] of the part-I),

1 0o,
laave 0z’

Brg = — (3]

where [ ,yc is the average circumference of the air gap. From Ampere’s law:

0B,
oz

Zk I’l'k]ek = 'uX]etot = [4]

Since there are several different components (represented by k, for example, in this work we
assumed that the annular air gap consists of the following 3 components: air gap, working fluid,
and the duct walls) in the annular air gap, the overall effect from the circumferential current
flowing in each component may be added as shown in the above equation. In the equation
above, py is the permeability of and Jyy is the circumferential current density in each
component. Also an infinitesimal current in the air gap flowing in the circumferential direction
is expressed as dlg = I'gdz = Jgi Tz where Ty is the thickness of the component in the air
gap, which are assumed constant over the pump. By introducing a subscript x to represent the
summed quantity of all the components in the gap, the equation above can be rewritten as:

Ty 0Bra

IIBtot = u_ P (5]

We will discuss how to set uy and 7, later. Substituting eq.[2] and eq. [3] into eq. [5] gives:

Tx BZdJC

Uxlaave 02 2

= Ileind + AIleind + Ileap' [6]

Also from eq. [34] and eq. [39] of the part-I, the induced current waves can be expressed as:

’ ’ d a
I'gina + Al'ging = —(1 +w;) % (5 + vy 5) P [7]
Substituting eq. [7] into eq. [6] gives:
T 0% D24y, 2) :
Exlaave 927 a (1 + WI) ltave \Ot + vf 0z (I)C +1 Oap [8]
o = W Iw lave Vs §
where: w; = o —w (see the part-I).
Also from Figure 3 of the part-IlI:
Ieap = Ipcoil + lotot- (9]

With eq. [14] of the part-I, the applied current may be converted to the linear current density of
the applied current as:
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3N N,
Ileap = % (Iecoil + Ietot); [10]

and substituting eq. [10] and eq. [12] both from the part-ll into the above equation gives:

1

I'gap = —
%P = 1
lpp laave 2 T ’ [ 2
o = (1 + wpl,por (lfave) Av (m D piTelfave€Xpi (—a)t +thkz+y— 5) , [11]
AP o Rmaexpi(—wt + kz + )
Introducing:

2

1/2
_ 1 lpp ) laave 2 ( T )2 2
r= o X [(—n a1+ Wl)lppaf(lfave) Av - Teltave | + (MR )

= = TRma(1 + a®)/2, [12]
lpp

I'g,p can be expressed as:
I'gap = I'Pcprexpi(—wt + kz). [13]

Note that Dpk in the above equation is the constant, independent of time, t and space, z as
defined by eq. [16] in the part-l, in which the infinitely long pump was discussed. In this part
(part-ll1), the magnetic flux in the center core itself, @, is not assumed as a simple periodic
function of t and z to include the end effects so that @, # @y expi(—wt + kz + ).

Eq. [8] can now be rearranged as:

0Pc _ 1 lfave Tx %o, 0P, 1 lfave

o prexpi(—wt + kz). [14]

at  1+w; 7¢0f Uylaave 022 f oz 1+wj tf0f

By introducing:

—_1 lave Tx
- 1+wj T¢0¢ ﬂxlaave’ [15]
N = Uf, [16]
_ 1 lfave
4= 1+wj Trog F(pcpk’ [17]

eq. [14] becomes a second order partial differential equation (PDE) for the magnetic flux,
®.(t, z) as:

0. _ . 0%, L
at =D 822 N 9z

+ Aexpi(—wt + kz), [18]
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which is mathematically same as a convection-diffusion equation with a periodic source term.

Note that for the regions outside the pump where no applied current exist, A = 0 (I'g,p, = 0).

Solving the differential equation

By following the standard method to solve a PDE (such as Ref. 5), we assume that the

magnetic flux in the center core has a form of:

D (t,2) = Pepy(2)expi(—wt).

Substituting above equation into eq. [18] converts the PDE into an ordinary differential
equation (ODE) for &,,(2) as:

d*Perz N P2y

D dz? 0z

+ wid,, = —Aexpi(kz).
First we obtain the homogeneous solution for the above ODE. The homogeneous ODE is:

dz‘pczzh 0Pcazh
- N

D dz? 0z

+ wiPeyyp = 0.
The characteristic equation is:
Dy? — Ny + wi = 0.

The solutions are given as:

_ N+VN2-4Dwi
X - 2D ’
or:
_ N+(P-0QD)
X - 2D ’
so that:
(P — Qi)?> = N? — 4Dwi,
which gives:

P? —Q%? =N? >0, and
PQ = 2Dw > 0.
By solving the above equations for P and Q, it follows that:

_ PO gy No(PoQD

1 2D 2D

where:
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[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
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1/2
P=+ (—“ N4+4(2D“’)2+N2> , [29]

2

. 5 172
0=+ (s/N +4(22Da)) N ) . [30]

By inspecting these solutions, it is apparent that either positive or negative sign of eq. [29] and
eg. [30] does not change the characteristics of eq. [28] (the solution requires that both need to
be with the same sign from eq. [27] and P > Q from eq. [26]). So we take the positive sign:

1/2
p= (x/N4+4(22Dw)2+N2) ' 31]
N*+4(2Dw)2—N? 172
Q = (LHHCR) 32)
The homogeneous solution is:
P20 (2) = ca1exp(¥12) + c22exp(x22). [33]
Now we obtain the non-homogeneous solution for the ODE. The non-homogeneous ODE is:
d2¢c zZn 0Pcazn . .
D dz; — 622 + Wid oy, = —Aexpi(kz). [34]
A solution of the form of:
®Peaan = Kexpi(kz), [35]
is assumed (Ref. 5). Substituting eq. [35] into eq. [34] yields:
K[Dk? + (kN — w)i] = 4, [36]
so the non-homogeneous solution is given as:
Dcozn = Kexpi(kz), [37]
where:
__ A[Dk*+(kN-w)i]
T (Dk2)2+(kN-w)?’ [38]
The solution for @,, is then given as:
De22(2) = c21xp(X12) + co2exp(x22) + Kexpi(kz), [39]
and @, is:
Dep(t,2) = [cr1exp(x12) + cp2exp(x22) + Kexpi(kz)]expi(—wt), [40]
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where:

_ N+(P-Qi)
1~ 2D ’ [41]
N—(P-Qi
X2 =" [42]
K = A[Dk?+(kN-w)i] [43]

"~ (Dk2)2+(kN-w)?’

and c,; and c,, are the constants of integration to be determined from the boundary conditions.

For outside the pump, 4 = 0. Also the magnetic structures do not exist outside the
pump and we may assume that:

1. The relative effects of duct walls to the working fluid diminish, since the relative
volume of the working fluid is larger than that of the duct wall outside the pump:

W < 1, [44]

2. The air gap and the fluid thickness are considered equal, since all the volume
inside the duct is occupied by the working fluid:

T = Ty, [45]

3. Similarly, the circumference of the air gap and that of the fluid thickness are
considered equal:

lfave = laavef [46]
so that:

Do = [47]

- ’
uyot

also depending on the cross sectional area of the duct outside the pump, the velocity of the
working fluid outside the pump may be different from that inside the pump duct so that:

N, = vy, (48]
where subscript o indicates outside the pump. Now the PDE becomes:

0%c _ D ?d. 0P,
at 0 9z2 0 9z’

[49]

and a solution with a periodic boundary condition prescribed at z = —le forz < —le is given
2 2
as (Ref. 6):

D4 (t,2) = ciexp {( Yo 4 i) (z + %Lp) +i [—a)t - zQDO (Z + %Lp)]}

2D, 2D, o
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= c,exp {)(01 (z + %Lp)} expi(—wt), [50]

where:
1/2
/N04+4(2D0w)2+N02
PO = ’ [51]
2
1/2
/N04+4(2D0w)2—1v02
Qo = - : [52]
No+(Po=Qo)
Xor = =0, [53]
which satisfies a periodic boundary condition of c;expi(—wt) at z = —%Lp.

Another solution with a periodic boundary condition prescribed at z = %Lp forz > %Lp is

given as:
Pea(t2) = caop (g =) (2 =5 p) it +55 (2 =51 )
= csexp {xoz (2 5 Lp ) expi(-w0), [54]
where:
Koo = "o [55]

which satisfies a periodic boundary condition of c;expi(—wt) at z = %Lp.

Now we have:

®.4(t,z) = ciexp {)(01 (Z + %Lp)} expi(—wt), [56]
P, (t,2) = [c1exp(X12) + c226xp(x22) + Kexpi(kz)]expi(—wt), [57]
Pe3(6,2) = csexp {Xo2 (7 = 3 L) expi(—wt), (58]
a 1 ]

5, Pai (t,z) = c1x,,exp {){01 (Z + ELP)} expi(—wt), [59]

a L .
a(DCz(t, z) = [c21)(1exp()(12) + czz)(zexp()(zz) + Kklexpl(kz)]expl(—wt), [60]

ad 1 ,
o5, Pe3 (t,z) = c3x,,exp {){02 (z - }Lp)} expi(—wt), [61]
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and &, (t,z) and @, (t, z), and %d)cl(t, z) and %d)cz (t,z) connect at z = —%Lp and @, (t, z)

F) a .
and @.5(t, z), and aqﬁcz(t, z) and £¢C3(t, z) connectat z = %Lp with 4 unknowns, ¢y, ¢4, €22,

and c;. The continuities of the spatial derivative of the magnetic flux is in fact the continuity of
the radial magnetic flux density at the boundaries. The relationships are given as:

@1 (6,3 Lp) = Pez (6.~ 5Lp), [62]
Ve (t51p) = Pes (851p) [63]
S0 (o-) =200 o-b0) -
o) 2o (el -

By solving these 4 equations, 4 unknowns, c;, ¢4, €25, and c5 are determined as:

(Xoz2=X2) o1~ Ii)exp|3Lp (x2—kD) |~ (o1~ X2) oz —kD)exp| —3Lp (x2—ki)]

1= (XQZ_Xl)(Xol_XZ)exp[_%Lp(XZ_Xl)]_()(oz_XZ)(XOI_Xl)eXpELp(XZ_Xl)] [66]

0y = (x01—xl)(xoz—ki)exp[—1§LP<xl—ki)]—<xoz—xo<x01—ki)exp[§1Lp<x1—ki>] (67]
(on_Xl)(Xol_XZ)eXp[_ELp(XZ _Xl)]_(XOZ_XZ)(Xol_Xl)eXp[ELp(XZ _Xl)]

€1 = Cy1€Xp (— %Lp)(l) + ¢y exp (— %Lp)(z) + Kexpi (— %ka), [68]

C3 = Cy1€Xp G Lp)(l) + ¢y exp G Lp)(z) + Kexpi G ka). [69]

From the magnetic flux, @, the radial magnetic fields strength, B, can be obtained from eq. [3],
the induced current density in the working fluid, Jg can also be obtained from eq. [4]. By
substituting the expression for B, in B and that of Jq in j;,q of eq. [60] of the part-I, an

expression for the developed pressure gradient, % may be obtained. The, using the first

relationship shown in eq. [63] of the part-I, the developed pressure can be calculated by
numerically integrating the developed pressure gradient.

Infinitely long pump case
For the infinitely long pump case, @.; and @3 do not exist. For &, to exist,
limLp_)oo b, = Dy, F 00, which requires both ¢,; and ¢;, to be zero. As a result:

Dy (t, z) = Kexpi(—wt + kz). [70]

By substituting eq. [38], this can be calculated as:

Bpoy = expi (—wt + kz — arctan [kgl;w])

A
J(Dk2)24+(kN—-w)?
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2 -
= Mexpi (—a)t + kz + arctan [w kZN]) [71]
w—kN)2 Dk
1+(=7)
Note that:
2
Dk? = L lave T (l) _ kAvHy Ty 1 [72]
1+wj Tfor Uylaave \Ipp a Uy Ta Cer’
w— kN = w — vik = kAv, [73]
so that:
—kN Uy Ta
S = Ca e [74]
and:
I HxTa
—_ 1 ¢ HoTx 12 . MX Ta
DPeroo = Rmafﬁl 0appkeXPi (—wt + kz + arctan [Ccz wn? ) [75]
1+(CC2M;_;0[)
From eq. [16] of the part-I:
P = Dcpi expi(—wt + kz + 1), [76]

and substitute eq. [31], eq. [9], eq. [10], and eq. [48], all from the part-l into the above

equation:
_ 1 by 1 ' .
&, = R Vs I’ gapprexpi(—wt + kz + arctan[a]), [77]

which is the equivalent expression for @. from the part-l. By comparing the eq. [75] and eq.
[77] above, it is clear that the method developed in the part-lll to include the transport effects
is consistent with the result from the part-I of the present work, which is only valid for the

infinitely long pump case. Also in order to correctly reflect the effects represented by C,, %z—a
0 ‘x

(that is due to presence of multiple components in the air gap discussed earlier), uy, = py and
Ty = ConT,.
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Part-1V Calculation procedures
In the part-IV of the present work, procedures to design an ALIP and to calculate its
performance using the model described in the part-1 through part-Ill is explained.

Design calculation procedure

Input parameters
Net developed pressure: AP,

Nominal flow rate: Q
vy

" . V.
Nominal slip: s = =—
Vs

Pump length: L,
Duct OD: ODy4
Duct wall thickness (outside) : t4o
Duct wall thickness (inside) : tq;
Gap between duct OD and stator ID: t4st
Gap between core OD and core containment ID : ...
Core allowable magnetic flux density: Bepax
Stator allowable magnetic flux density: Bsymax
Core loss: Wjoss
Number of poles: Npgjes
Number of coils per pole per phase: Ny,
Drive frequency: fg,
Line-to-line voltage:
Number of layers of winding in a coil: N¢oijjayer

Coil allowable current density: J.oiimax
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Calculating various major parameters

1. Pole pitch: I, = NL—p
poles
2. Wave number: k = i
3. Angular velocity: w = 2mfy,
Synchronous velocity: vy = % Make sure it does not come too close to the
maximum sodium velocity allowed.
5. Fluid velocity: vy = (1 — s)v;
6. Slip velocity: Av = vy — vy

Determining the duct and air gap dimensions

7. Flow passage area: Af = vg
f
8. Duct ID: IDd = ODd — thO

0. Core containment OD: OD.. = /IDd2 - 4%

10. Core containment ID: ID.. = OD.. — 2tq;
11. Core OD: OD, = ID.. — 2t¢cc
12.  Stator ID: IDg = ODq4 + 2tgst

13. Fluid thickness: 7 = ID4 — 0D,
IDg+0D¢c
2
15. Average fluid circumference: l¢,y. = 7 df
16. Air gap thickness: T, = IDg — OD.
IDgt—0D;
2
18. Average air gap circumference: ,,ye = md,

14.  Average fluid diameter: d¢ =

17. Average air gap diameter: d, =

19. Effective duct wall parameters: Ty, oy, Lyave

!
20.  Duct wall factor: w; = 2wt Is - part | eq. [39]
Tf 0f lyave Av
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Figure 1. ALIP schematic image showing various parameters.
Determining the fluid dynamic pressure loss
21. Reynolds number: Re
22. Friction factor
23. Friction loss
24, Contraction loss
25. Expansion loss
26. Fluid dynamic pressure loss: APjyss
Determining the actual applied voltage
27. Actual applied voltage per coil: Voapact = NVL Part-11, eq. [23]
poles
28. Peak value for the actual applied voltage per coil: Vgapactpk = \/iveapact
Adjustment in the developed pressure
29. Assign net developed pressure: AP, gev
29.1. Gross developed pressure: AP = AP gev + APjgss
29.2. Developed pressure per pole: AP, = _Aar
poles
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Calculating the peak magnetic field strength in the air gap and flux in the core

[2a
29.3. Peak radial magnetic flux density: By px = %;f@‘i Part-1, eq. [63]
pp2f aave

l
29.4. Peak magnetic flux in the center core: @, = % laave Brapk Part-1,
eq. [21]

Determining the core dimensions

. Pcpk
29.5. Core cross sectional area: A, = —=

cmax

29.6. Core ID: ID, = /ODC2 - 4% Make sure the value exists, if not, stop

calculation. Suggest increasing the pump duct diameter.

Determining the stator dimensions
29.7. Assign the initial stator tooth ratio: Wiy, " = 0.5
29.7.1. Check if stator tooth is not saturated: Brapi < Wiooth™ X Bstmax?
If saturated, increase the tooth ratio until it is OK. If wioomn™ >

Wrooth mays STOP Calculation. Suggest increasing the pump length.

. . l
29.7.2. Stator tooth width: Wigoth = Wigoth™ X —2
3Npppp

29.7.3. Stator slot width: wgo¢ = — Weooth

Npppp

Calculating the magnetic reluctance of the air gap
29.7.4. Carter constant: C.q
29.7.5. Carter coefficient: C.,

T4 Ce2

29.7.6. Magnetic reluctance of the air gap: R, = Part-1, eq. [29]

Ho'lpplaave

Calculating various electrical parameters
Tror 1

29.7.7. Factor: a = (1 + Wi)l R—Av Part-l, eq. [49]
fave J*ma

29.7.8. Factor: B, = ﬁ Part-I, eq. [48]
29.7.9. Phase angle: ¢ = —arctan (i) Part-1, eq. [52]
29.7.10. Phase angle: ¢ = ¢ —~ Part-l, eq. [44]
29.7.11. Conductor width: Wegpq = —20t

Ncoillayer
29.7.12. Assign the initial core loss per pole: Wjosspp = 0

29.7.12.1. Assign the initial peak value for the induced voltage per

coil: Vindpk = Veapactpk
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Calculating the coil parameters
29.7.12.1.1.

29.7.12.1.2.

29.7.12.1.3.

29.7.12.1.4.

29.7.12.1.5.

29.7.12.1.6.

29.7.12.1.7.

29.7.12.1.8.

29.7.12.1.9.

29.7.12.1.10.
29.7.12.1.11.

29.7.12.1.12.

29.7.12.1.13.

29.7.12.1.14.

29.7.12.2.
29.7.12.3.

29.7.12.4.

29.7.12.5.
29.7.12.6.

. Vindpk
Number of turns per coil: Nyyrps = ———  Part-ll, eq. [8]
cpk
Wl
Current: I =—"2PP  part-ll, eq. [6
closspk 1
3Npppp*3Vindpk

2
1 laave 2
(1+Wi)§lpp‘7f( ltave AVBrapk“TflfaveVs

Current: Igcoilpk = Part-Il
: pk 1, ’
3Npppp*3Vindpk
eq. [9]
BrapkRmal l
Current: Ipgorpk = om0 Part-ll, eq. [11]
3XNyurnsXNpppp

Phase angle: § = —tan (19“’—“’1‘) Part-11, eq.

19coi1pk+1closspk
[14]
Phase angle: A8, =& — ¢ +§ Part-11, eq. [15]

2
. — 2
Current: Ieapactpk = \/(Iecoilpk + Iclosspk) + Igtotpk

Part-1l, eq. [16]

. Ipapactpk
Conductor cross sectional area: Scopg = ———
Jcoilmax
. s
Conductor height: hogpg = —=224
Wcond

Coil resistance from the geometry: Ry,

Coil reactance from the geometry: X,

Vindkainf_Ieapactkapri) i

Phase angle: A8, = arctan(
Vindpk€0s§+lgapactpkRpri

Part-1l, eq. [20]
Back-calculate the peak value for the induced voltage per
coil: Vingpk from Voapactpk ~ Part-ll, eq. [18]
Check if Vi, gpk is converged. If not, go back to step
29.7.12.1.1

Slot opening area: Ssiot = Scond Nturns
Sslot

Wslot

Slot opening height: hqor =

@
Stator height: hy; = Bik X —— + hgiot

stmax  T/Dst
Calculate the core loss per pole: Wiosspp = f (Weloss)

Check if Wejosspp is converged. If not, go back to step
29.7.12.1.1

Calculating the overall pump size
29.7.13. Overall pump diameter:
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Calculating the overall pump efficiency

. 1
29.7.14. Power per coil: Pegiire = 3 Voapactpkloapactpk€0s(§ + A8,)
29.7.15. Total power input: By, = 3Np5p5NpolesPeoilre
29.7.16. Efficiency: 7, = “-02
Pp
29.7.17. Check if Np is maximum. If maximum, go to 29.8, if not, modify
the stator tooth ratio: Wiyotn ™
29.7.18. Check if wigotn ™ is in the good range (ex: 0.25-0.75). If OK, go back
to step 29.7.1, if not, go to 29.8.
29.8. Total phase current: I, = Iea‘i/a_;tpk Npppp Part-l, eq. [24].
29.9. Phase angle: & + Af,.

Calculating the end effect

29.10. Coefficient: I' = lirr?%ma(l + a?)V/? Part-lll, eq. [12].
1%
29.11.  Coefficient: D = ——ave_Tx Part-Ill, eq. [15].
1+w;i trof Uylaave

29.12. Coefficient: N = v, Part-lll, eq. [16].

. e . _ 1 e _
29.13. Coefficient: A = Trw o0 ro.y, Part-1ll, eq. [17].

1/2
29.14.  Coefficient: P = (_W ) , Part-Ill, eq. [31].
. 5 1/2

29.15. Coefficient: Q = (—‘NH(ZZD(”)N> Part-lll, eq. [32].
29.16.  Coefficient: y, = "% Ppart-Ill, eq. [28].
29.17.  Coefficient: y, = ”‘(;D‘Q‘) Part-Ill, eq. [28].

. . . A[DK2+(kN-w)i] )
29.18. Coefficient: K = DRI+ (kN—0)? Part-lll, eq. [38].
29.19. Constants: ¢;, ¢4, €35, and c3: Part-1ll, egs. [66]-[69]
29.20. Axial magnetic flux distribution: @,
29.21. Radial magnetic flux distribution: B, Part-lll, eq. [3]
29.22. Circumferential induced current density distribution: Jo  Part-lll, eq. [4]
29.23. Developed pressure gradient: Z—i Part-1, eq. [60]
29.24, New gross developed pressure including the end effect: APgge,  From

numerical integration ofi—i
29.25. Update the net developed pressure: AP, gey = APggey — APjgss
29.26. Check if AR, = AP, q4ev is achieved. If not, AP gey = APpgev +
(AP, — AP, 4ey) and go back to step 29.1.
30. End of calculation.
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Performance calculation procedure

Input parameters
Nominal flow rate: Q

Pump length: L,
Duct OD: OD4
Duct wall thickness (outside) : t40
Duct wall thickness (inside) : t4;
Gap between duct OD and stator ID: t4gt
Gap between core OD and core containment ID : t...
Core allowable magnetic flux density: B.yax
Stator allowable magnetic flux density: Bgimax
Core loss: Weoss
Number of poles: Nygjes
Number of coils per pole per phase: Ny,
Drive frequency: fg,
Line-to-line voltage: 1},
Number of layers of winding in a coil: Negijjayer
Coil allowable current density: J.oilmax

Calculating various major parameters

L

1. Pole pitch: 1, = —2
P pp Npoles

2. Wave number: k = ll

pp
Angular velocity: w = 2mfy,

Synchronous velocity: vg = % Make sure it does not come too close to the

maximum sodium velocity allowed.
5. Flow passage area: A; = %(IDdZ — 0D?%)

6. Fluid velocity: vy = AQ
f
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7. Slip velocity: Av = vy — vy

Calculate the duct and air gap dimensions
8. Duct ID: ID4 = ODq — 2t40
9. Core containment OD: OD.. Given
10. Core containment ID: ID.. = OD.. — 2tq;
11. Core OD: OD; = ID.. — 2tccc
12. Stator ID: IDgy = ODq4 + 2t4st

13. Fluid thickness: ¢ = ID4 — OD,

14. Average fluid diameter: d; = %

15. Average fluid circumference: l¢,y. = 7 df

16.  Air gap thickness: 7, = IDg; — OD,

17. Average air gap diameter: d, = @

18. Average air gap circumference: ,,ye = md,
19. Effective duct wall parameters: Ty, oy Lyave

!
20.  Duct wall factor: w; = 2wt 7s  part | eq. [39]
Tf 0f lyave Av

Ac
T

21. CorelD:ID,= [OD.* —4

Calculate the stator dimensions

!
22.  Stator tooth width: Wigoth = Wiooth™ X =20
3Npppp
1
23.  Stator slot width: wg ot = —22— — Wigoth
3Npppp
. . s
24.  Slot opening height: hg o = WS]"t
slot
@
25.  Stator height: hgy = —25 L hgor

2
Bstmax m1Dst

Calculate the coil parameters

26.  Conductor width: Wegpg = —22t—
Ncoillayer
. S
27.  Conductor height: hggnq = -2
Wcond
28. Coil resistance from the geometry: R

29. Coil reactance from the geometry: X,
30.  Core loss per pole: Weosspp = f (Weioss)

Calculate the fluid dynamic pressure loss
31. Reynolds number: Re
32. Friction factor
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33. Friction loss

34. Contraction loss
35. Expansion loss
36. Fluid dynamic pressure loss: AP}y

Calculate some parameters
37. Carter constant: C4

38. Carter coefficient: C,,

39. Magnetic reluctance of the air gap: R, = TtaCer Part-1, eq. [29]

Ho® lpp laave
Tror 1

40. Factor: a = (1 + wj;)

Av Part-1, eq. [49]

ltave Rma

41. Factor: B. = ﬁ Part-l, eq. [48]

42. Phase angle: ¢ = —arctan (i) Part-1, eq. [52]
43. Phase angle: ¢y = ¢ —% Part-1, eq. [44]
44, Actual applied voltage per coil: Voapact = NVL Part-11, eq. [23]
poles
45. Peak value for the actual applied voltage per coil: Vgapactpk = \/EVGapact

Determine the electrical parameters

46. Assign the initial peak value for the induced voltage per coil: Vi,qpk = Voapactpk
Vin
46.1. Peak magnetic flux in the center core: @, = ﬁ Part-1l, eq. [8]
turns
46.2. Peak radial magnetic flux density: By = %lid)cpk Part-l, eq. [20]
aave lpp
@
46.3. Check if stator is not saturated: 7/ Dg; (hst — hsior) > 7 Pk |f saturated,
stmax
stop calculation.
46.4. Check if stator tooth is not saturated: Brapik < Wiooth™ X Bstmax If
saturated, stop calculation.
D
46.5. Check if core is not saturated: A, > — Rl
cmax
Determine the actual developed pressure
46.6. Developed pressure per pole: AP, = = lppcffl"‘a—"eAvBrapk2 Part-1, eq. [63]
2 ltave
46.7. Gross developed pressure: AP = Ny AP,
46.8. Net developed pressure: AP, = AP — AP

w
46.9. Current: Igjosspk = Sl Part-ll, eq. [6]

1
3Npppp*3Vindpk

2
1 l 2
1+w;)>lypo ( aave) AvB Telfavel
( 1)2 ppof lfave rapk lflfavels

46.10. Current: Igcoilpk = Part-Il, eq. [9]

1
3Npppp*3Vindpk
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B Rmal l
46.11.  Current: Igporpy = oo PP Part-Il, eq. [11]
3XNturns XNpppp

46.12. Phase angle: § = —tan (19“’—“’1‘) Part-1l, eq. [14]

Iecoilpk"'lclosspk
46.13. Phase angle: A8, =& — ¢ +g Part-Il, eq. [15]

2
46.14. Current: Ieapactpk = \/(Iecoilpk + Iclosspk) + Ietotpkz
[16]

Vindkainf_IGapactkapri

46.15. Phase angle: A8, = arctan(
Vindpk€0S§+lgapactpkRpri

[20]

) — & Part-ll, eq.

46.16. Back-calculate the peak value for the induced voltage per coil: Vi, gpk

from Vgapactpk Part-Il, eq. [18]

46.17. Check if Vipgpk is converged. If not, go back to step 46.1

Calculating the overall pump size
47. Overall pump diameter:

Calculating the overall pump efficiency
. 1
48.  Power per coil: Peoiire = Voapactpkloapactpk€0s(§ + A85)

49.  Total power input: P, = 3N,p55NpolesPeoilre

Ieapactpk N.

50. Total phase current: I, = Part-1l, eq. [24].

NG pppp
51. Phase angle: & + Af,.
- APLQ
52. Efficiency: n, =
Y:p Py

Calculating the end effect
53.  Coefficient: ' = lirrﬂema(l + a?)V/? Part-lll, eq. [12].
pp

54, Coefficient: D = —tave _ Tx Part-1ll, eq. [15].

1+wj 10t Uylaave

55. Coefficient: N = v, Part-lll, eq. [16].

56. Coefficient: A = %Wll;::; roy, Part-1ll, eq. [17].
— 1/2
57. Coefficient: P = (N4+4(+MZ+NZ) , Part-1ll, eq. [31].

58. Coefficient: Q =

. 5 2 1/2
(L) g, e 321

59. Coefficient: y; = W Part-1ll, eq. [28].
60.  Coefficient: y, = =22 Part-Ill, eq. [28].

2 PRy
61.  Coefficient: K = Ak +(N-w)i]

DI+ (kN —a0)? Part-lll, eq. [38].
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62.
63.
64.
65.
66.

67.

68.
69.

Constants: ¢y, €31, €33, and c3: Part-Ill, eqs. [66]-[69]

Axial magnetic flux distribution: @,

Radial magnetic flux distribution: B, Part-lll, eq. [3]
Circumferential induced current density distribution: Jo  Part-lll, eq. [4]

Developed pressure gradient: Z—i Part-1, eq. [60]
Gross developed pressure including the end effect: APgge, From numerical
integration ofd—P
dz
Net developed pressure: AP, = APgqey — APjgss
End of calculation.
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