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1  INTRODUCTION 

 

 

 The Department of Homeland Security (DHS) Regional Resiliency Assessment Program 

(RRAP) project Casco Bay, Maine, Climate Change Adaptation was initiated in 2013. The 

project’s foundation is a stakeholder-driven assessment of community and infrastructure 

vulnerabilities that includes development of adaptation data and methodologies. 

 

 This report is one of the supporting documents produced for identifying resources, 

primarily climate model output, to assist in impact assessment modeling and in developing 

adaptation strategies for the local communities. It is expected to provide the necessary 

background for obtaining datasets that support this effort. Although it is not designed to be a 

how-to manual, we hope to provide sufficient information that could be used to plan a detailed 

impact assessment for infrastructure, hydrological, and ecological systems.  

 

 National and international organizations have created a number of documents that 

provide information for developing impacts, assessing vulnerability, and assisting decision 

makers. The goal of these documents is to assist in choosing the right set of tools, datasets, and 

models for framing climate change impacts for further consideration. Although many such 

assessments are geared toward global impacts and policymakers (e.g., Intergovernmental Panel 

on Climate Change [IPCC] assessment reports), there has been an increased focus on regional-

scale impacts and datasets. The IPCC Fifth Assessment Report has an extended discussion on 

regional-scale climate change and its impacts (Hewitson et al. 2014; Revi et al. 2014). Separate 

reports on regional-scale impacts have been generated by the World Meteorological 

Organization (WMO) and IPCC (Watson et al. 1998; Giorgi et al. 2001; Adams et al., 2013). 

 

 The U.S. Global Change Research Program (USGCRP) has undertaken the responsibility 

of performing regional-scale assessments of climate change across the United States and a third 

report from this process was released in 2014 (Melillo et al. 2014). Efforts to produce guiding 

sub-regional-scale documents and reports at the level of states and cities has been a focus in 

recent years, and several such reports have been produced (Hayhoe et al. 2008; Wuebbles et al. 

2010). Application of these assessments to impact and adaptation has been inconsistent. The 

primary demand for this type of research has come from the hydrological and ecological 

communities. A few case studies and study criteria for applying climate model projections to 

impact and assessment studies have been developed by organizations such as the World Bank 

(Girvetz et al. 2012), United Nations Environment Program (UNEP), and the United Nations 

Food and Agriculture Organization (FAO) on global scale. Regional and sub-regional-scale 

process are under development.  

 

 The focus of this document is to provide sufficient background information on applying 

primarily downscaled climate model output for impact assessment and adaptation studies for the 

state of Maine.  
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2  CLIMATE CHANGE IMPACTS 

 

 

 Climate change affects every aspect of the earth and the activities of humans. This 

document addresses specific problems that are primarily concerned with planning/building and 

maintaining critical infrastructure. Some of these key sectors, expected problems faced by them 

due to climate change, and their expected data needs are discussed below. 

 

 This report addresses the Energy, Transportation, and Water sectors. Each of these 

sectors has different climate change risk profiles that are related to their planning horizons, their 

demand and distribution needs, and the geographical location of the infrastructure maintaining 

these services. 

 

 

2.1  Energy 

 

 Climate change impacts on the energy sector include changes in demand, grid resilience 

under increased demand, effects of severe weather events (hurricanes, snow storms, and ice 

storms) on infrastructure, the nexus between availability of water for certain power producing 

activities and energy production (DOE 2013), and the resilience of power grid infrastructure 

under changing climatic conditions. Each of these impacts requires a different set of climate data 

products. The evaluation of changes in demand requires climate model projections of number of 

heating degree days (HDDs)/cooling degree days (CDDs) and the consequent demand for 

cooling or heating (Deschênes and Greenstone 2011; Franco and Stanstad 2006; Isaac and van 

Vuuran 2009; Jaglom et al. 2014). The second primary data need for evaluating power sector 

impacts is the possible changes in extreme events (e.g., heatwaves, floods, and droughts; DOE 

2013). The availability, quality, and temperature of water can have significant impacts on power 

generation from thermoelectric, hydroelectric, and biofuel production (DOE 2014).  

 

 

2.2  Transportation 

 

 The transportation sector is primarily concerned with its infrastructure’s resilience to 

climate change and to the impacts of extreme events. Projections of changes in sea level rise, 

precipitation during different times of the year, changes to thaw and freeze cycles, changes in the 

intensity of precipitation, and changes in number of days with higher/colder temperatures are all 

required for assessment of infrastructure reliability. Changes in the frequency, location, and 

intensity of extreme events are additional significant inputs to the assessment of the 

transportation sector’s resilience to climate change (NRC 2008; Melillo et al. 2014).  

 

 

2.3  Water/Wastewater 

 

 Climate change impacts on the hydrological cycle and water resources have been the 

focus of a number of studies (IPCC 2014, Melillo et al. 2014). One of the most widely 

recognized changes in climate is the change in precipitation, and changes in its patterns, 
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intensity, and frequency. The primary variables for conducting assessments of the water sector 

include precipitation-related variables, changes in surface temperature, landuse/landcover 

changes, and changes to water demand.  
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3  ANALYSIS PATH 

 

 

 Analyzing the impacts due to climate change, analyzing the vulnerability of a 

sector/region/system to the impacts, and developing an adaptation strategy involves many steps 

with varying demands on data, models, and resources. A scenario analysis is often the first step 

to developing possible impacts due to climate change, followed by analysis of impacts and 

vulnerability and development of adaptation planning options (Figure 1).  

 

 

 

FIGURE 1  Possible Path for 

Implementing Climate Impacts 

Assessment and Adaptation Planning 

(A preliminary assessment that 

develops potential impact scenarios 

to assess the importance of climate 

change for a given impact sector/ 

facility would lead to further detailed 

analysis. Vulnerability and impact 

analysis of the infrastructure/sector 

will require further climate model 

inputs and analysis tools and data 

resources.) 
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3.1  SCENARIO ANALYSIS 

 

 A first step in assessing climate change impacts is performing a scenario analysis. 

Developing scenarios of future probabilities for impact sectors such as hydrology (Wilby and 

Harris 2005) and ecological sustainability (Bohensky et al. 2011) are examples of this approach. 

In this type of analysis, climate change scenarios provide one of several sets of inputs for 

projecting a possible future and are useful for assessing the significance of climate factors as 

compared to other factors that may have a bigger influence on the future scenarios. For example, 

the impacts of population changes may be bigger than or equal to those due to climate change 

(Vorosmarty et al. 2000). Scenario-building exercises can be quite involved (Hulme et al. 1999; 

Winkler et al. 2011) and can be conducted at a regional level, for example, at the level of a 

watershed. Scenario analysis is a suitable approach when the overall system-scale uncertainties 

are significant and uncontrollable (Peterson et al. 2003). An example of this type of analysis is 

that of Bohensky et al. (2011), which discusses potential damage to the greater barrier reef under 

changing climate conditions in relation to other socioeconomic changes at regional scale in 

Australia. Uncertainty plays a key role in developing the socioeconomic scenarios for the future, 

as well as the climate change drivers. The analysis leads to a set of probable future scenarios that 

could then be used for future planning. Scenario approaches are best suited for analyses when the 

uncertainties are significant and the expectation of reducing them is limited (Peterson et al. 

2003). Figure 2 follows the discussion in Hulme et al. (1999).  

 

 

3.2  IMPACTS AND VULNERABILITY 

 

 The IPCC defines climate impact as the effects on human and natural systems due to 

extreme weather, climate events, and climate change. The vulnerability of a system is defined as 

the predisposition of the system to be adversely affected. Therefore, vulnerability is correlated 

with the capacity to cope with and adapt to the impacts. Climate change impact assessments 

proceed by first identifying the problem or sector on which to focus. The problem identification 

should lead to the selection of a geographical region and a time horizon over which the impacts 

need to be assessed. The primary inputs to climate impact assessments are the projections of 

climate change and their associated uncertainties. Projections generated using climate models 

have several uncertainties. The left column in Figure 3 lists three primary uncertainties: 

(1) scenario uncertainty, (2) model uncertainty, and (3) internal variability. Projections created 

by climate models include all of these uncertainties. Climate models are used to produce 

projections under varying greenhouse gas (GHG) forcing scenarios developed by a community 

of independent scientists (van Vuuren et al. 2011). The model-generated outputs for the analysis 

time slice are bias corrected1 and if necessary downscaled2 to the appropriate spatial location and   

                                                 
1  Bias correction—in assessments of climate impacts, a general practice to account for the differences between 

models and observations is to calculate the difference between a model and observations using historical records, 

applying this correction to projections of the future by that particular model.  

2  Downscaling—the process of disaggregating global climate model projections that have coarse spatial resolution 

to smaller spatial scales using historical observational data (statistical downscaling) or using a model that has 

similar physics as the global model at a higher spatial resolution and over a smaller domain, such as the size of a 

country or a continent (dynamic downscaling). 
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FIGURE 2  Scenario Analysis (Combined with a sector 

model, socioeconomic scenarios lead to the development 

of various scenarios that can be used to estimate impact. 

Climate change with either extrapolated changes from 

past climate data or future projections generated from 

climate models is added to the analysis to evaluate the 

impact of climate change on a sector.) 

 

 

resolution and used as inputs to a sector model for developing the impact analysis. We discuss 

each of the items in Section 3.2.3. 

 

 

3.2.1  GHG Scenarios 

 

 Projection of climate change as a result of increased GHGs on the earth system first 

requires estimates of concentrations or emissions of GHGs in the future. The GHGs of concern 

are produced primarily as a result of the use of fossil fuels by industry, transport and power 

generation. In scenario development, the use of fossil fuels is linked to economic activity in a 

part of the world, population density of that region, and other socioeconomic factors. Developing 

emission estimates for the future thus requires projections of population dynamics, economic  
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FIGURE 3  Pathway for In-Depth Impact, Adaptation, and Vulnerability (IAV) 

Analysis (This requires additional input from climate models, uncertainties in 

projections, sector models, and socioeconomic models to perform the analysis.) 

 

 

development, transportation demand, and transportation modes to develop estimates of fossil fuel 

use by various sectors of the economy in a particular region. An international community of 

scientists addressed this task by developing a number of scenarios that describe development 

pathways for various parts of the world for the next several decades through the end of the 21st 

century. These scenarios are then used in a model that integrates socioeconomic data and simple 

representation of climate to capture the feedbacks between economic decisions and climate 

change to develop GHG emission profiles. These models are known as integrated assessment 

models, and they vary in complexity from very simple (e.g., Dynamic Integrated Climate-

Economy Model [DICE]) to very detailed (Model for Energy Supply Strategy Alternatives and 

their General Environmental Impact (MESSAGE); Global Change Assessment Model (GCAM), 

etc.). For the current IPCC assessment, a total of 70 such scenarios were developed. Climate 

models in general do not simulate all 70 scenarios, but include a representative selection of a 

family of scenarios that lead to approximately similar levels of GHG emissions at the end of the 
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21st century. Four of the most widely used of these scenarios, referred to as the Representative 

Concentration Pathways (RCPs), are shown in Figure 4.  

 

 

 

FIGURE 4  Concentration of CO2 (in parts per million, ppm), 

the Primary Anthropogenic GHG from 2000 to 2100, for Four 

Scenarios Commonly Used as the GHG Driver by Climate 

Models (The model output from these four scenarios is adjusted 

for bias, downscaled, and then used as input for impact 

assessments. The four pathways are RCP 8.5 [orange, solid line], 

RCP 6.0 [red, dashed line], RCP 2.6 [green, long-dashed line], 

and RCP 4.5 [black, dotted line]. The number at the end of each 

of these pathway designations refers to the amount of heating 

per square meter estimated by the end of the century when 

these GHG concentrations are used in a climate model.) 

 

 

3.2.2  Climate Models 

 

 Climate models, developed in the early 1970s, use physical principals to represent the 

atmosphere at a global scale. They have been continually improved over the past four decades. 

The latest versions of the models are designed to represent the atmosphere, ocean, and the 

biosphere together and are referred to as earth system models (ESMs). These complex models 

represent hundreds of physical, chemical, and biological phenomena that occur at all times 

around the globe and determine the physical, chemical, and biological state of the atmosphere, 

ocean, and biosphere. The most recent evaluation of these global climate models (GCMs) 

included 40 different models (Flato et al. 2013). The evaluation concluded that these models can 

predict the change in surface temperature over the recent past with high confidence. The current 

generation of models have improved surface temperature predictions and small improvements of 

precipitation prediction, compared to the previous generation of models. These models operate at 

a spatial grid resolution between 100 km2 and 300 km2. The physical processes represented in 
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these models are continuously improved by the respective model development teams. One of the 

major goals of the new model development is to obtain a higher spatial resolution. It is expected 

that in 5 to 10 years, GCMs with spatial resolutions of 25 km2 or finer will be available 

(ACME 2014).  

 

 

3.2.3  Uncertainties 

 

 As discussed in Section 3.2, climate model projections have three primary types of 

uncertainties: (1) scenario uncertainties, (2) model uncertainties, and (3) internal variability. 

Figure 5 shows that if the sum of all uncertainties is one, the fraction contributed by the scenario 

uncertainty is the largest toward the end of the century. The model internal variability causes the 

highest uncertainty at times closest to the present and the model uncertainty remains constant or 

slowly decreases throughout the entire projection period.  

 

 

 

FIGURE 5  Nominal Representation of Climate Model Uncertainties in 

Projected Surface Air Temperature (Hawkins and Sutton 2009) 
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3.2.3.1  Scenario Uncertainty 

 

 As discussed in Section 3.2.1, GHG emission scenarios are generated for different 

socioeconomic scenarios. For consistency, the emissions are scaled to known emissions from the 

present and recent past. Therefore, near-term uncertainty from these emissions is not significant 

and does not contribute significantly to model projections of climate change close to present day. 

However, the assumptions of the scenarios used to generate these emissions diverge from each 

other regarding fossil fuel use, technology, and other socioeconomic factors. As a result, the 

estimated emissions for each of these scenarios start diverging from each other after a few 

decades, and the divergence is significant by the end of the century. Climate modelers addressed 

this uncertainty by modeling a select number of emission scenarios that provide a reasonable 

coverage of the emission uncertainty at the end of the century. Most available model output is for 

the four scenarios shown in Figure 3. The impact assessments use output from each of these 

models to cover the range of scenario uncertainty. 

 

 

3.2.3.2  Model Uncertainty 

 

 Climate models represent many of the physical, chemical, and biological processes that 

make up the earth system and its interactions with incoming solar radiation. The models use 

fundamental principles of physics, chemistry, and ecology to represent known processes. 

However, there are a number of phenomena that occur at spatial scales below those that are 

resolved in the current generation of climate models, for example, the formation of clouds. 

Several types of clouds are formed by physical processes that occur at very small spatial scales 

(hundreds of meters to kilometers), which are below the 100-km threshold of many current-

generation climate models. These unresolved processes are represented in models using a 

parametric approach. This introduces uncertainty, because the parametric models are only as 

good as the available observations that form the basis for developing the parameterizations. As 

we gather more intensive observations of such processes, the models representing them are 

constantly improved. This is expected to reduce model uncertainty.  

 

 At the present time, the model uncertainty for use in impact assessments can be 

represented in two ways: (1) generating a physical ensemble simulation with a single model to 

provide an uncertainty estimate for that model or (2) using results from multiple models that 

most likely have different parametric representations of a physical process. Although the former 

output may be more desirable for understanding the uncertainty in each model, this type of 

model is fairly expensive to produce, because the parameter range of each parametric model and 

the number of parametric models in a typical climate model can be fairly large. It is likely that 

the information from the latter will be more readily available to a user interested in impact 

assessments. As discussed in section 3.2.2, approximately 40 models were used in the most 

recent IPCC assessments and could be used to explore model uncertainty for impact assessments. 

However, most users pick a few models that are representative of the range of model responses 

to GHG emissions. The selection of models for this purpose is discussed further in Section 5.  
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3.2.4  Internal Variability 

 

 Near-term climate projections are dominated by the internal variability of the models 

(Hawkins and Sutton 2009; Deser et al. 2012). GCMs are based on numerical equations and 

require the description of the initial state of the atmosphere, ocean, and biosphere to start the 

model calculations. The equations that describe the various interconnected process in the earth 

system give rise to slightly different climate projections as the simulation progresses when 

slightly different initial conditions are used in the same model. An ensemble of model 

simulations with small changes in initial conditions could give rise to differences in projected 

surface temperature at a given location for up to 30 years from the start of the simulations 

(Deser et al. 2012). This internal variability tends to be higher as the geographical location over 

which this analysis is performed gets smaller. As shown in Figure 5, internal variability is a 

dominant factor in the first few years from the start of the simulation and decreases or becomes 

less important as the time of integration increases. Another way to understand this would be to 

think of this as day-to-day and year-to-year noise produced within the atmospheric system that 

will be higher when we look at small spatial scales (e.g., city) compared to a region (e.g., state 

scale).  

 

 

3.2.5  Bias Correction 

 

 A critical step in using climate model projections for impacts assessments is the 

correction for model bias. Bias corrections are usually applied when assessing hydrological 

impacts. The model bias is defined as the difference, when averaged over several years, between 

a chosen set of observations and calculated values from a model at the appropriate spatial scale. 

The choice of time period over which the average bias estimate is generated is constrained by the 

availability of observations, and a 30-year band covering the most recent historical period is 

used. Figure 6 is an example of this process. The left side shows monthly average precipitation 

from observations over a model grid cell in Portland, Maine (orange, solid line); the green, 

dashed line represents the averaged model precipitation over the same region, averaged over the 

spring months, for 30 years. The figure on the right is another example of the model−observation 

difference, as a distribution of bias over the same 30-year period in the Great Plains (GP) region 

in the form of a box plot. Each of the colored boxes represents a different model simulation for 

the 30 years separated into the four seasons.  

 

 

3.2.6  Downscaling 

 

 All climate projections originate with coupled atmosphere-ocean GCMs. These models 

are driven by scenarios of future concentrations of GHG and other radiatively active substances; 

they generate projected changes in atmospheric, oceanic, and surface climate variables at scales 

typically ranging from 100 to 300 km. Because these spatial scales are typically insufficient for 

accurate simulation of regional conditions, generating climate projections at a regional level 

requires some method of downscaling, generally either based on an RCM (dynamic 

downscaling) or empirical methods based on empirical approaches that use climate model 

outputs and climate observations (statistical downscaling). 
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FIGURE 6  Process for Estimating Model Bias (The left panel shows the average 

precipitation in spring over a single model grid cell [Portland, Maine] in millimeters 

from observations and model simulations. The right panel shows the bias estimated 

from three model simulations over the four seasons as a box plot for the GP region. The 

error bars denote the annual distribution of bias at the 10th and 90th percentiles.) 

 

 

 Statistical downscaling can be relatively inexpensive, compared to the use of RCMs, 

when applied to just a few locations or with simple techniques. The statistical downscaling 

technique generally does not add any new information compared to the host climate model and is 

suitable for generating quick assessments. Statistical downscaling represents the process of 

obtaining fine grid output from coarse grid output by using statistical fits for current climate 

observations. This method can be tuned to obtain finer resolution output for targeted variables 

and for selected locations. The ease of use of this method, and its flexibility, has led to a wide 

variety of applications for assessing impacts of climate change (e.g., Kattenberg et al. 1996; 

Hewitson and Crane 1996; Giorgi et al. 2001; Wilby et al. 2004, and references therein). 

Approaches encompass a range of statistical techniques, from simple linear regression 

(e.g., Wilby et al. 2000) to more complex applications based on weather generators (Wilks and 

Wilby 1999), canonical correlation analysis (e.g., von Storch et al. 1993), or neural networks 

(e.g., Crane and Hewitson 1998). These methods have been successfully used for generating 

regional climate assessments for various governmental agencies and national reports. Figure 7 

shows statistically downscaled results for the upper Mississippi catchment region produced using 

the Community Climate System Model (CCSM3.0) model used in the Coupled Model 

Intercomparison Project (CMIP3) assessment. Two time periods, 2021–2030 and 2051–2060, 

were used to perform statistical downscaling using approximately 130 weather stations in this 

region. Percent changes in precipitation for these two decades, compared to historical averages 

from observations, are presented in Figure 7.  
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FIGURE 7  Statistical Downscaling of Precipitation for the Upper Mississippi Basin 

from a GCM (Franklin et al. 2010) (The host climate output is from CCSM3.0 

simulations for the A1B scenario generated for the IPCC AR-4 and archived at the 

Earth System Grid [ESG] website.)  

 

 

 Dynamical downscaling by RCMs generally refers to the use of limited area climate 

models that are forced at the boundaries using results from a host GCM (Giorgi and Mearns 

1991; McGregor 1997; Giorgi and Mearns 1999; Wang et al. 2004; Liang 2005). These models 

were primarily developed by adapting mesoscale meteorological forecasting models to climate 

simulations. As a result, they have a full description of the land surface process, detailed cloud 

physics, and radiative transfer schemes (Giorgi et al. 2012). The higher spatial resolution of 

RCMs, as compared to GCMs, generally improves the ability to simulate climate, especially for 

fields such as precipitation that have high spatial variability. For example, some studies show 

that the higher RCM resolution yields better monsoon precipitation forecasts and interannual 

variability (Mo et al. 2005) and precipitation intensity (Roads et al. 2003). Thus, RCMs can be 

used effectively to produce a more accurate forecast at regional scales in many instances. These 

models have been used widely in applications that require regional resolutions, and in particular 

where there is a need for higher resolution climate projection for estimating hydrological 

vulnerabilities (Kenton et al. 2012; Chan et al. 2014, Mejia et al. 2012, Mearns et al. 2015).  

 

 Figure 8 illustrates a flowchart showing the process for creating a dynamic downscaled 

product. The process starts by using the chosen RCM to perform a simulation over a time slice 

that has sufficient observational data to estimate bias in model calculations. The model requires 

three-dimensional preconditions for initialization and boundary conditions that will be regularly 

updated during the model simulation. Because the model only covers a fraction of the globe, the 

boundary conditions provide the inflow from regions outside the model domain into the model. 

These inputs are regularly updated so that the model experiences the same large-scale  
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12.01 - 16.00

16.01 - 20.00
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FIGURE 8  Dynamic Downscaling Process  

 

 

phenomena observed. These historical model simulations are used to estimate the model bias. 

Observational datasets include observations from weather stations maintained by the National 

Weather Service, and further processed to generate daily, monthly and seasonal average 

observation files. The Precipitation-Elevation Regressions on Independent Slopes Model 

(PRISM) data is one such example. The next step involves selecting a future time slice over 

which to employ the RCM. Typically, RCMs are not used to simulate from present to 2100 as 

one continuous simulation; at present, this tends be computationally unfeasible at spatial 

resolutions lower than 50 km. Therefore, time slices of 10 years or more distributed around mid-

21st century and the end of the 21st century are typically chosen for generating the projection 

simulations. The input fields for these model runs are obtained from pre-existing global-scale 

simulations that are archived in repositories, such as CMIP5. These input conditions can be 

adjusted for estimated bias, as described in Section 3.2.5, before input to an RCM or after the 

simulation results are obtained. One critical consideration for generating the downscaled model 

results is the choice of the GHG emission scenario for which the GCM results are available. The 

choice is made to meet the needs of the analysis and to match the number of such simulations 

that can be performed with available resources. 
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4  CLIMATOLOGY OF MAINE 

 

 

 Here we discuss the climatology of Maine based on observational datasets of the recent 

past and model simulations. This discussion aims to provide context for evaluating climate 

change around mid-century and end of the century for Maine. We use datasets and model 

simulations from 1980 to 2009 to discuss the baseline climatology. A more general description 

of the northeast climate is provided in Kotamarthi et al. (2016). As noted in Kotamarthi et al. 

(2016), in general the GCMs participating in the CMIP5 models have a small dry bias over this 

region during winter and small wet bias during the summer (Sheffield et al. 2013). The surface 

temperature shows a small bias toward warmer temperatures in both winter and summer. Below, 

we discuss the results from regional-scale models, selected GCMs, and observations for the state 

of Maine.  

 

 Figure 9 shows the 30-year average precipitation in both summer and winter months. The 

data is from PRISM developed by Daly et al. (1994, 1997, 2008). The PRISM values, which are 

corrected for systematic elevation effects on precipitation climatology, provide observation-

based temperature and precipitation on a grid mesh of 1/8° latitude × 1/8° longitude that covers 

the continental U.S. (CONUS). The precipitation data includes both solid (e.g., snow) and liquid 

(e.g., rainfall) precipitation. Precipitation in winter months is mostly snow, which averages 2.5–

3 mm/day over southern Maine and 2–2.5 mm/day over northwestern Maine. There is more 

precipitation in summer months than in winter, 2.5–3.5 mm/day over most of Maine, and more 

than 3.5 mm/day over northwestern Maine. 

 

 

 Winter Summer 

   

FIGURE 9  Observed 30-year (1980–2009) Average Daily Precipitation 

(mm/day) in Maine in Winter and Summer 
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 Figure 10 presents the 30-year average near-surface air temperature in summer and 

winter months. In the winter, the temperature is lower than minus 10°C (~15°F) for northern 

Maine and minus 6°C (~21°F) for southern Maine. In the summer, the daily average temperature 

is 15–17°C (~60°F) for northern Maine and 18–19°C (65°F) for southern Maine. 

 

 

 Winter Summer 

  

FIGURE 10  Observed 30-year (1980–2009) Average Temperature 

(°C) in Maine in Winter and Summer. 

 

 

4.1  FREQUENCIES OF EXTREME EVENTS IN HISTORICAL DATASETS 

 

 The climatology of extreme temperature and precipitation events is discussed below. 

Figure 11 shows the number of wet days, defined as days when precipitation was heavier than 10 

(left panel) and 20 mm (right panel) per day (~0.5 to 0.8 inches of rainfall). In general, there are 

more heavy precipitation days in southern Maine than in northern Maine. For example, there are 

25–35 days with more than 10 mm of precipitation over all of Maine, but more than 35 days in 

some locations in southwestern and southeastern Maine. There are only 5–10 days with more 

than 20 mm of precipitation in northern Maine and 10–15 days in southern Maine. 

 

 Figure 12 shows dry days, defined as the days with less than 0.1 mm of precipitation 

(trace amounts of rainfall). In general, there are more days with less than 0.1 mm precipitation in 

southern Maine than in northern Maine. Compared with Figure 10, this indicates that in southern 

Maine, it is often either dry or raining/snowing heavily at a rate greater than 10 mm per day. In 

contrast, in northern Maine there are more moderate precipitation days (drizzle) than very dry 

(<0.1 mm) or very wet (>10 mm) days.  
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 Number of days > 10 mm Number of day > 20 mm 

 

FIGURE 11  Observed Number of Days in a Year (30-year average) 

with Daily Precipitation Exceeding 10 mm (left) and 20 mm (right) 

 

 
Number of Days < 0.1 mm 

 

FIGURE 12  Observed Number of Days in a 

Year (30-year average) with Daily 

Precipitation Less than 0.1 mm 
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 Figure 13 shows the average number of hot and very hot days in a year, defined as days 

with a maximum temperature higher than 27°C (80°F) (left panel) and 29°C (85°F) (right panel). 

The data comes from North American Regional Reanalysis (NARR), and indicates daily 

temperature at a spatial resolution of 32 km. In general, days with a temperature higher than 

29°C (85°F) are rare, but days with a temperature higher than 27°C (80°F) are more common. 

For example, there are only 1–2 days per year with a temperature higher than 29°C (85°F) over 

northern Maine, while there are 4–8 days per year with a temperature higher than 27°C (80°F). 

In southern Maine, there are only 2–4 days per year with a temperature higher than 29°C (85°F), 

while there can be 10 to 20 days with a temperature higher than 27°C (80°F). 

 

 

 

FIGURE 13  Observed Number of Days in a Year (30-year average) with 

Daily Maximum Temperature Higher than 27°C (80°F) (left) and 29°C 

(85°F) (right) 

 

 

 Figure 14 shows freezing days and extremely cold days, defined by number of days with 

minimum temperatures below 0°C (32°F) (left panel) and lower than -18°C (0°F) (right panel). 

There are 150 days each year with a temperature lower than 0°C (32°F) and more than 28 days 

with temperature lower than -18°C (0°F) over northern Maine; this corresponds to about 5 

months and 1 month per year, respectively.   
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FIGURE 14  Observed Number of Days in a Year (30-year average) with 

Daily Maximum Temperature Lower than 0°C (32°F) (left) and -18°C 

(0°F) (right) 

 

 

4.2  OBSERVED CHANGE IN CLIMATE OVER THE PAST 30 YEARS  

 

 We performed a preliminary analysis using observational data to identify trends or lack 

of trends in surface temperature and precipitation for Maine in general and Portland in particular. 

Figure 15 shows the variability of annual mean precipitation, summer precipitation, and winter 

precipitation. The blue line represents the average for Maine, and the red line represents the 

location approximate to Portland. The dashed lines indicate the 30-year trend of the annual 

variations, and the equations describe the trend line. While there is important annual variability 

of the precipitation, there are also increases for both summer and winter precipitation, especially 

winter precipitation, which shows an increase of 1.6 mm per year over Portland. 

 

 The annual variability of annual mean, summer, and winter temperature is shown in 

Figure 16. 

 

  



 

20 

 

 

 

FIGURE 15  Observed Annual Variability of 30-year Annual Mean 

Precipitation, Summer Precipitation, and Winter Precipitation over 

Maine and the City of Portland  
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FIGURE 16  Observed Annual Variability of 30-year Annual Mean 

Temperature, Summer Temperature, and Winter Temperature over 

Maine and the City of Portland  
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5  CLIMATE MODELS AND MAINE 

 

 

 In order to understand the model projections and put them in context for decision making, 

it is critical to evaluate the performance of models in predicting the recent observational record. 

Here we discuss the model biases from global- and regional-scale models, and then we discuss 

projected changes for Maine based on these models for the middle of the century and the end of 

the century.  

 

 

5.1  GCM MODELS AND THEIR BIAS FOR MAINE BASED ON HISTORICAL 

DATA (1980–2010) 

 

 Figure 17 shows the bias in surface temperature of GCMs when compared to the 

observational record from 1980 to 2010. We have compared two GCMs. One of the GCMs is the 

Community Climate System Model, version 4 (CCSM4), developed by the National Center for 

Atmospheric Research, United States (Gent et al. 2011). The spatial resolution of CCSM4 is 

1.25 × 0.94 in longitude and latitude, respectively. The other GCM is the Geophysical Fluid 

Dynamics Laboratory Earth System Model with Generalized Ocean Layer Dynamics component 

(GFDL-ESM2G) developed by NOAA/Geophysical Fluid Dynamics Laboratory, United States 

(Donner et al. 2011). The spatial resolution of GFDL-ESM2G is 2.5 × 2.0 in longitude and 

latitude, respectively. There are about 9 grid points for CCSM4 and fewer than 4 grid points for 

GFDL over the state of Maine. In general, the CCSM4 overestimates both winter and summer 

temperature, while GFDL underestimates them.   

 

 A similar analysis showing the calculated bias in precipitation of two GCMs—CCSM4 

and GFDL—is shown in Figure 18. In both winter and summer, the bias of CCSM4 is around 

4 mm/day and the GFDL shows larger bias (wet bias).  
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FIGURE 17  Calculated Bias of Global-model-simulated Surface 

Temperature (°C) (The figures on the left show the average for 

winter months [DJF: December, January, and February] and the 

right show the average for summer months [JJA: June, July, and 

August]. The top panels present the results from the CCSM4 model 

and the bottom panels present those from the GFDL model.) 
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FIGURE 18  Calculated Bias of Global-model-simulated 

Precipitation (mm/day) (The figures on the left show the average for 

winter months [DJF: December, January, and February] and the 

right show the average for summer months [JJA: June, July, and 

August]. The top panels present the results from the CCSM4 model 

and the bottom panels present those from the GFDL model.) 

 

 

5.2  PROJECTED CHANGES FROM GLOBAL MODELS FOR THE REST OF THE 

CENTURY FOR MAINE 

 

 Figure 19 shows changes in temperature in the summer and winter as projected by the 

CCSM4 and GFDL models. Generally, both models project a warming in the mid-21st century 

under RCP8.5. In addition, both models project a weaker warming in summer and a stronger 

warming in winter. However, the GFDL model projects a stronger warming in winter than 

CCSM4 does.  
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FIGURE 19  Global-model-projected Temperature (°C) Change in 

Summer (right) and Winter (left) of mid-21st Century (2045–2054) 

under RCP8.5 (The top panels show results from CCSM4, and the 

bottom panels show results from the GFDL model.) 

 

 

 Figure 20 shows the change in precipitation in winter and summer, as projected by 

CCSM4 and GFDL. CCSM4 projects a strong increase of precipitation (30–40%) by the 

mid-21st century under RCP8.5. However, the GFDL model projects a very weak change in 

winter precipitation. Both models show weak changes in summer precipitation. 
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FIGURE 20  Global-model-projected Precipitation (mm/day) Change in 

Summer (right) and Winter (left) of mid-21st Century (2045–2054) 

under RCP8.5 (The top panels show results from CCSM4, and the 

bottom panels show results from the GFDL model.) 

 

 

5.3  HISTORICAL PROJECTIONS OF MAINE CLIMATE USING REGIONAL 

SCALE MODEL 

 

 We investigated four sets of dynamical downscaling results from the WRF model. Two 

sets of the downscaling apply CCSM4 model output as boundary conditions (labelled 

WRF_CCSM4), and the other two sets of downscaling apply GFDL model output as boundary 

conditions (labelled as WRF_GFDL). The model results shown here are performed with spectral 

nudging and bias correction of the input fields obtained from the CCSM4 model. This process is 

explained in Wang and Kotamarthi (2015). Figure 21 compares the bias in temperature as 

simulated by WRF_CCSM4. The WRF driven by bias-corrected CCSM4 shows less bias than 

those obtained from the GCM (Figure 17) for both summer and winter temperature.  
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FIGURE 21  Bias of WRF-simulated Temperature (°C) in Winter (DJF: 

December, January, and February) and Summer (JJA: June, July, and 

August), Driven by Bias-corrected CCSM4 Model  

 

 

 Figure 22 shows bias in precipitation simulated by WRF, driven with bias-corrected 

CCSM4. The bias in summer precipitation is reduced when the boundary condition is bias 

corrected compared to GCMs (Figure 17).  

 

 

 

FIGURE 22  Bias of WRF-simulated Precipitation (mm/day) in Winter 

(DJF: December, January, and February) and Summer (JJA: June, July, 

and August), Driven by Bias-corrected CCSM4 Model  
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5.4  PROJECTIONS FOR CLIMATE CHANGE FROM REGIONAL CLIMATE 

SIMULATIONS FOR MAINE 
 
 Figure 23 shows the temperature change in 2045-2054 projected by WRF_CCSM4 and 

WRF_GFDL. Similar to Figure 18, which shows the temperature changes projected by GCMs, 

both models project positive temperature changes in both summer and winter. In addition, they 

both project lower warming in summer and higher warming in winter. However, the 

WRF_GFDL model projects higher winter temperature change than WRF_CCSM4. The 

projected summer temperature change (1.2-1.6 °C [~34.2-34.9 °F]) is similar for WRF_GFDL 

and WRF_CCSM4. 
 
 

   

  

FIGURE 23  WRF-model-projected Temperature (°C) Change in 2045–

2054 under RCP8.5 versus 1995-2004 (Top panels: WRF_CCSM4; 

bottom panels: WRF_GFDL. Both simulations apply bias correction and 

spectral nudging. The left panels are for winter months [DJF: December, 

January, and February] and the right panels are for summer months 

[JJA: June, July, and August].) 
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 Figure 24 shows the WRF-projected preciptiation change in 2045–2054 under RCP8.5. 

Both WRF_CCSM4 and WRF_GFDL project an increase in winter precipitation. The projected 

change in summer precipitation is small, although the WRF_GFDL projects a decrease in 

precipitation. The WRF_CCSM4 projects a much larger winter precpitation increase.   

 

 

 

FIGURE 24  WRF-model-projected Precipitation (mm/day) 

Change in 2045–2054 under RCP8.5 versus 1995–2004 (Top 

panels: WRF_CCSM4; bottom panels: WRF_GFDL. Both 

simulations apply bias correction and spectral nudging. The left 

panels are for winter months [DJF: December, January, and 

February] and the right panels are for summer months [JJA: 

June, July, and August].) 
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6  APPROACHES/RECOMMENDATIONS FOR USING CLIMATE MODELING 

PRODUCTS FOR ASSESSMENTS 

 

 

 Climate change assessments often require inputs from climate models; these inputs 

depend on the sector, depth of analysis, and expected outcomes of the assessment. A commonly 

followed path is to begin by performing a scenario analysis (Figure 2), followed by a more in-

depth IAV analysis (Figure 3) based on the outcome of the scenario analysis. The data 

requirements for each stage of this process can be met by using readily available climate model 

outputs. The goal of scenario analysis is to survey a wide range of possible model outcomes 

based on GHG forcing scenarios. Coarse-spatial-resolution GCM output is often converted to 

high-spatial-resolution statistical downscaling products using numerous techniques available in 

the literature. Several of these model products are available freely (see Kotamarthi et al. [2016] 

for details on various statistical downscaling techniques and the availability of downscaled data 

they produce). As discussed earlier in this report and Kotamarthi et al. (2016), there are different 

levels of data needs depending on the complexity of the analysis. For example, Kotamarthi et al. 

(2016) state that there may be several instances where there is no need for quantitative climate 

data beyond description, such as “it will be warmer and wetter over a region.” This may be 

sufficient information for making decisions on adapting to increased heat stress. The following is 

extracted from Kotamarthi et al. (2016) to illustrate the need for climate data products and the 

level of data that is necessary for various types of impact assessments: 

 

The response of the public health department might be similar regardless of the 

exact numbers attached to the future projections: establish cooling centers, 

educate the public, and reduce the amount of highly absorptive land cover that 

exacerbates extreme heat conditions. In addition, even if clear trends in climate 

are not observed, exploring a system’s resilience to current conditions can be 

informative. Frequently, human systems are not well adapted to current climate 

and weather hazards, let alone to projected future increases. The infrastructure 

destruction in New York and New Jersey in 2013 due to Hurricane Sandy is a 

case in point. 

 

 As discussed in Section 3, the analysis paths for other applications may require more 

detailed climate data. This additional data is often comes the form of high-spatial-resolution 

model output developed using the processes described in Section 3.2.5. Again quoting from 

Kotamarthi et al. (2016), 

 

Temperature and precipitation extremes often fall into this category, in which 

science is able to generate information through a combination of global modeling 

and downscaling and the agency or system requires such information to make 

robust decisions. Examples might include storm-sewer pipe diameter, where the 

cost of installation depends on the frequency of future heavy precipitation; rail 

transportation lines, where the choice of best material depends on the range of 

temperature extremes expected over the duration of the installation; or sea-level 

rise, where protection of coastal infrastructure may depend on both the amount of 

rise expected over a given time horizon and the risk of storm surge.  
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 Quantitative projections of climate change are used as input to other sector models for 

additional quantitative projections of sectoral impacts. We have discussed few of these sectors; 

the sectoral models used for these analyses include:  

 

• Water/Waste Water Impact Assessments: Calculations of streamflow, floods, 

and groundwater levels using hydrological models of varying complexity. 

Often the demand for quantitative climate model inputs depends on the 

hydrological model being used. The more physically based and higher 

resolution the hydrological model, the greater the demand for climate model 

inputs with higher spatial and temporal resolution.  

 

• Infrastructure Risk and Integrity Assessments: Models of infrastructure risk 

and damage due to changes in frequency of extreme events and their strength 

using damage models/fragility curves requires climate information that these 

models convert into risk of design exceedance and development of adaptation 

plans. 

 

• Agriculture: Assessing the impact of climate change on agriculture requires 

quantitative climate projections to estimate crop yield changes and potential 

changes in the availability of water and nutrients across a region and facilitate 

development of adaptation plans.  

 

• Model of Energy Use and Demand: Models of energy use and demand 

forecasts by the various sectors of the economy are used to estimate the 

changes in use and demand in the future due to climate change (Franco et al., 

2006; Isaac and van Vuuran, 2009; Jalcom et al., 2014; Swan and Ugursal, 

2009). These energy sector models use a number of heating and cooling days 

and their changes in number in future decades to develop quantitative 

forecasts for energy use and demand.  

 

• National Security Assessments: Changes in the demand for water, food, and 

energy are key considerations for national security assessments. Quantitative 

climate data could help international security assessments to identify future 

security risks and regions that are susceptible to strife.  

 

 In these cases, it is usually possible to use quantitative projections as input to calculate 

projected changes and their associated uncertainty over the next century. We will discuss the 

data needs and availability of data for in-depth IAV analysis, as shown in Figure 3, in the 

reminder of this document.  

 

 One of the critical needs for an in-depth IAV analysis of the climate change impacts on a 

particular sector is identifying and obtaining climate data (both observational and model) at the 

required frequency and spatial resolution. Although this process is best performed with the 

assistance of a climate scientist, it is possible to develop some general guidelines for the type of 

data available and its suitability for a particular IAV analysis task. Table 1 lists the three 
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common modes of climate model output that is available to a user interested in performing in-

depth IAV analysis of sectoral impacts as described in Section 2. Climate models operating at 

global scales are the original sources of climate data. The two different downscaling methods, 

statistical and dynamic, add additional spatial and time resolution, respectively, to the GCM 

output. GCM model simulations span from pre-industrial times (~1850s) to 2100 and beyond. To 

make these long simulations feasible, the models operate at a coarse spatial resolution; for many 

variables of interest to the IAV analysis community, they save model output as daily averages 

and maximum and minimum values. The number of GHG scenarios, as described by the RCPs, 

is also limited due to the computational complexity of the GCM and availability of 

computational resources. These simulations generally employ three to four different scenarios 

that span the range of the 70 available RCP scenarios.  

 

 The downscaling methods use GCM output to generate spatially disaggregated variable 

mapping, and hence are limited by the available GCM output. In addition, the dynamic 

downscaling is often as expensive as—or sometimes more computationally expensive than—

running the GCMs using coarser resolution, which further limits the output available from 

dynamic downscaling. Statistical downscaling is often computationally inexpensive and hence is 

used to generate a wide variety of RCP scenarios over a range of spatial resolutions.  

 

 The choice of which output to use for an application depends on a number of factors. 

Some of these are set by the data needs for the in-depth IAV analysis. When several choices are 

available, often the availability of resources and project time constraints may dictate the choice 

of dataset for a particular IAV analysis. The next constraint is likely the familiarity of the team 

with traditional data formats, and analytical and visualization tools common to the climate 

modeling community. Most climate model output that uses both regional climate models and 

GCMs is in netcdf format. A number of freely available software programs can extract variables 

from these data files, manipulate the output, and visualize. The complexity of this task and the 

resources that may be needed to run these models and use model-generated output is listed in 

Table 2.  

 

 Table 3 summarizes recommendations on available model output that could be used for 

each of the lifeline sectors discussed in Section 2, and for three types of analysis of increasing 

complexity. The table should be used as a starting point for evaluating the data needs for the 

project; best practice would be to work with a climate scientist familiar with all these data 

products to further down-select the data options before embarking on the IAV analysis. Many of 

these model products are continuously upgraded and recomputed to make use of recent model 

developments, achieve higher spatial resolutions, and increase the ensemble size. Thus, the 

recommendations need to be evaluated often in the light of new data availability.  
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TABLE 1  Commonly Available Model Outputs, Variables, and Data Format and Their 

Availability for Performing Impact Assessments 

Model Type Variables Spatial Resolution 

 

Time 

Resolution 

Format 

Available 

GHG 

Scenarios Availability 

       

GCM Daily average 

surface temperature, 

daily minimum 

temperature, daily 

maximum 

temperature, daily 

average 

precipitation, solar 

flux, relative 

humidity, monthly 

and seasonal 

averages of 

temperature, 

precipitation 

Depends on the 

model and ranges 

from  

300 km × 300 km 

 grid cell to  

100 km × 100 km 

Daily average, 

monthly 

average, and 

annual averages 

netcdf 

formatted 

files 

RCP 8.5, 

RCP 4.5, 

RCP 2.6, 

RCP 6.0  

CMIP5 

Repository  

       

Statistical 

Downscaling 

Surface temperature 

precipitation, solar 

input and relative 

humidity  

Can be produced to 

fit the required 

resolution (range 

between  

50 km × 50 km and 

1 km × 1 km) 

Daily mean, 

monthly, 

seasonal, and 

annual averages 

CSV tables 

and text 

files  

All 

available 

GCM 

output 

scenarios 

Various 

sourcesa 

       

Dynamic 

Downscaling 

Surface temperature, 

precipitation, 

relative humidity, 

solar input, wind 

fields, surface 

pressure and several 

other variables of 

interest; variables 

available range from 

20 to 100, 

depending on the 

model 

Spatial resolution 

of the output varies 

between  

12 km × 12 km to 

50 km × 50 km  

Output is 

available every 

few hours 

(every 3 hours), 

to daily 

averages 

netcdf files Limited to 

a few GHG 

scenarios 

Various 

sourcesb 

 
a Statistical downscaling products are available from the U.S. Geological Survey and from the National Aeronautics 

and Space Agency (see Kotamarthi et al. [2016] for more information). 

b Dynamic downscaling data sources include North American Regional Climate Change Assessment Program 

(NARCCAP) (50-km resolution), Coordinated Regional Climate Downscaling Experiment (CORDEX) (ongoing 

activity), and Argonne National Laboratory.  
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TABLE 2  Selection Matrix for Climate Model Output for Selected Variables, Availability, 

Matched with the Expertise Level of the User and Computational Needs (colors indicate the level of 

difficulty for each task: dark green = easy, light green = moderate, and orange = difficult) 

 

Accessibility 

 Data formats Ease of use 

GCM Experienced 

User (netcdf) 

Experienced 

User 

SD Novice User Novice User 

RCM Experienced 

User 

Experienced 

User 

 

Temperature 

 Monthly, 

annual means 

Ease of 

computing 

GCM Yes Medium 

SD Yes Novice User 

RCM Yes Medium 

 

Precipitation 

 Monthly, 

annual means 

Ease of 

computing 

GCM Yes (large 

regional scales 

Medium 

SD Yes Novice User 

RCM Yes (regional 

and local) 

Medium 

 

Temperature 

 Complexity Resources 

GCM Experienced 

Modeler 

Multi member 

team; HPC 

computing  

SD Some 

Expertise 

Modest 

computing  

RCM Experienced 

Modeler 

Modest 

computing  

 

Producing Data 

 Extremes Ease of 

computing 

GCM Yes (large 

regional scales) 

Medium 

SD No No 

RCM Yes (regional 

and local) 

Medium 

 
Precipitation 

 Extremes Ease of 

computing 

GCM Yes (large           

regional scales) 

Medium 

SD No No 

RCM Yes (regional 

and local) 

Medium 
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TABLE 3  Recommendation on Using Climate Model Products for Selected Sectoral 

Impact Analysis 

Sector Analysis Level 

 

General Climate 

Data Needs 

Climate Variable 

Needs 

Recommended Climate 

Data 

     

Hydrology and 

Hydrological 

Assessments 

Scenario  Large number of 

GHG scenarios, 

coarse resolution 

and seasonal to 

annual means 

Monthly and 

seasonal averages of 

temperature and 

precipitation  

GCM output from 

CMIP5 and statistical 

downscaling output 

    

In-depth IAV 

analysis 

Selected number 

of GHG scenarios, 

high spatial and 

time resolution 

High spatial 

resolution diurnal 

temperature and 

precipitation 

Statistical downscaling 

and dynamic 

downscaling model 

outputs 

    

Extreme events 

impacts 

Selected number 

of GHG scenarios, 

high spatial and 

time resolution and 

extreme events 

data and statistics 

High spatial and time 

resolved data for 

identifying extremes  

Dynamic downscaling 

model outputs are the 

most likely candidates; 

some statistical 

downscaling methods 

also produce statistics of 

extremes
a
 

     

Energy Scenario analysis Large number of 

GHG scenarios, 

coarse resolution 

Monthly and 

seasonal averages of 

temperature and 

relative humidity, 

number of heating 

days, cooling days 

GCM output from 

CMIP5 and statistical 

downscaling output 

    

In-depth IAV 

analysis 

Selected number 

of GHG scenarios, 

high spatial and 

time resolution 

High spatial 

resolution diurnal 

temperature, relative 

humidity, number of 

days with 

temperature over and 

below a threshold for 

estimating heating 

and cooling demand 

Statistical downscaling 

and dynamic 

downscaling model 

outputs 

    

Extreme event 

analysis 

Selected number 

of GHG scenarios, 

high spatial and 

time resolution and 

extreme events 

data and statistics 

High spatial and time 

resolved data for 

identifying extremes 

in temperature as a 

consecutive number 

of days above a 

threshold or below a 

threshold; ice storm 

events and 

hurricanes 

Dynamic downscaling 

model outputs are the 

most likely candidates; 

statistical downscaling 

methods also produce 

these statistics; ice storm 

possibilities can likely be 

estimated from data 

saved in dynamically 

downscaled output and 

projections of hurricanes 

are uncertain. 
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TABLE 3  (Cont.) 

Sector Analysis Level 

 

General Climate 

Data Needs 

Climate Variable 

Needs 

Recommended Climate 

Data 

     

Transportation Sector Scenario analysis Large number of 

GHG scenarios, 

coarse resolution.  

Monthly and 

seasonal averages of 

temperature, 

precipitation 

GCM output from 

CMIP5 and statistical 

downscaling output 

     

 In-depth IAV 

analysis 

Selected number 

of GHG scenarios, 

high spatial and 

time resolution 

High spatial 

resolution diurnal 

temperature, relative 

humidity, 

precipitation; 

estimates of number 

of days with 

precipitation vs dry 

days; estimates of 

precipitation as snow 

and amounts. 

Statistical downscaling 

can provide some of the 

inputs and dynamic 

downscaling model can 

provide most of these 

variables. 

     

 Extreme event 

analysis 

Selected number 

of GHG scenarios, 

high spatial and 

time resolution and 

extreme events 

data and statistics 

High spatial and time 

resolved data for 

identifying extremes 

in temperature as a 

consecutive number 

of days above a 

threshold or below a 

threshold; high 

precipitation events 

and number of wet 

days; precipitation 

that is snow and ice. 

Dynamic downscaling 

model outputs are the 

most likely candidates; 

statistical downscaling 

methods also produce 

these statistics; ice storm 

possibilities can likely be 

estimated from data 

saved in dynamically 

downscaled output 
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