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SUMMARY 
 
 

As more wind power and other renewable resources are being integrated into the electric 
power grid, the forecast uncertainty brings operational challenges for the power system 
operators. In this report, different operational strategies for uncertainty management are 
presented and evaluated. A comprehensive and consistent simulation framework is developed to 
analyze the performance of different reserve policies and scheduling techniques under 
uncertainty in wind power. Numerical simulations are conducted on a modified version of the 
IEEE 118-bus system with a 20% wind penetration level, comparing deterministic, interval, and 
stochastic unit commitment strategies. The results show that stochastic unit commitment 
provides a reliable schedule without large increases in operational costs. Moreover, 
decomposition techniques, such as load shift factor and Benders decomposition, can help in 
overcoming the computational obstacles to stochastic unit commitment and enable the use of a 
larger scenario set to represent forecast uncertainty. In contrast, deterministic and interval unit 
commitment tend to give higher system costs as more reserves are being scheduled to address 
forecast uncertainty. However, these approaches require a much lower computational effort 
Choosing a proper lower bound for the forecast uncertainty is important for balancing reliability 
and system operational cost in deterministic and interval unit commitment. Finally, we find that 
the introduction of zonal reserve requirements improves reliability, but at the expense of higher 
operational costs. 
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1  INTRODUCTION 
 
 
 The rapidly growing penetration of renewable energy resources has created significant 
challenges for the electricity markets and grid operators because of their inherent variability and 
uncertainty. Commonly adopted approaches to address these challenges include advanced 
forecasting techniques [1]-[7] and improved system operational uncertainty modeling [8]-[25]. 
Traditionally, the system operators make the commitment and dispatch decisions on the basis of 
a deterministic renewable point forecast. Numerous statistical methods and machine learning 
techniques have been applied to the accuracy of wind power forecasting [1]-[7], including 
Gaussian processes, support vector machines, artificial neural networks, random forest, and 
others [1]. Although these methods produce a point forecast with improved accuracy, additional 
information about the uncertainty in the forecast is needed. Recently, probabilistic wind power 
forecasting has attracted substantial attention as a means to provide wind power’s probability 
distribution in addition to the central point forecast [2]. Kernel density estimation [3], quantile 
regression, and other parametric or non-parametric algorithms [1]-[2] have been proposed in this 
context. With such probabilistic information, wind power scenarios or uncertainty sets with a 
certain confidence level can be properly constructed to feed power system operational models for 
improved representation of wind power forecast uncertainty.  
 
 In the literature, many researchers have applied different operational schemes to 
incorporate stochastic wind power generation [8]-[25]. These approaches mainly include 
deterministic unit commitment (DUC) with dynamic reserves [8]-[9], scenario-based stochastic 
UC (SUC) [8]-[15], interval-based UC (IUC) [16]-[18], robust UC (RUC) [19]-[20], chance-
constrained UC [21], and hybrid and unified approaches [22]-[23]. The traditional DUC typically 
keeps contingency reserves to address the possibility of a generation or line outage. To better 
account for the stochastic system conditions, including forecast uncertainty, more dynamic 
operating reserve strategies can be used. For instance, Zhou et al. [8] propose that the dynamic 
reserve amount be determined through the difference between a central point forecast and a 
lower-level quantile obtained from a probabilistic forecast. A large system sometimes may fail to 
deliver reserve because of transmission congestion when there is only a system-wide reserve 
requirement. To account for these issues, zonal reserve requirements are presented in a 
simulation of the Midcontinent Independent System Operator (MISO) market considering 
reserve deployment with transmission constraints [25].  
 
 In contrast, scenario-based SUC determines the UC decisions to provide implicit reserves 
by considering a set of forecast scenarios. Papavasiliou et al. [10] compare two-stage SUC and 
DUC with different reserve policies. The results show that SUC can produce a lower-cost 
solution than DUC. This conclusion is similar to the one drawn in [8]. In [15], Uckun et al. 
propose an improved stochastic UC formulation which approximates a multi-stage formulation. 
The results show a significantly lower operational cost than traditional two-stage SUC, with a 
limited increase in computational burden. SUC requires a good-quality scenario set that fully 
characterizes the wind uncertainty. However, SUC is generally not computationally tractable, 
with more than 100 scenarios for a system of realistic size. Hence, scenario reduction is applied 
to select representative scenarios [12][26][27]. Fast forward selection performs well with regard 
to both economical and computational aspects [12]. Decomposition frameworks are also helpful 
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to address the computational challenges. We consider Benders decomposition (BD) [11] and 
linear-shift-factor (LSF) decomposition [28], two common approaches to improving the 
computational performance of UC, as discussed in Chapter 3.  
 
 IUC does not require full information about the wind power distributions, as it only uses 
the upper bound (UB) and lower bound (LB) for the wind power forecast. Ramping capabilities 
between these bounds are considered to ensure the operational feasibility in extreme situations 
[16]. Pandzic et al. [17] modify the IUC approach by determining the ramping requirements with 
a data-driven method to reduce the over-conservativeness within the original formulation. Liu et 
al. [18] further improve the IUC formulation with a fuzzy set approach to transform the crisp 
interval bounds into a fuzzy one, and show that if the wind curtailment cost is zero, then only the 
LB is necessary. Similarly, RUC only requires a polyhedral uncertainty set. It aims to minimize 
the worst-case operating cost and ensure the feasibility of all possible realizations within the set 
[19]-[20]. Hence, the RUC approach is by definition a very conservative operational strategy. 
We review different approaches to power system operations under uncertainty with renewable 
energy in more detail in [24]. 
 
 The contribution of the present report is to systematically evaluate the impact of UC 
formulations, operating-reserve policies, and wind uncertainty representations on short-term 
power system operations in terms of economics, reliability, and computational performance. We 
focus the comparison on DUC, IUC, and SUC formulations with different decomposition 
techniques. A zonal implementation is also listed as additional constraints to improve system 
reliability.  
 
 The report is organized as follows: Chapter 2 describes the probabilistic forecasting 
techniques and scenario generation and reduction methods used in the analysis. Chapter 3 
introduces details of the different UC formulations and decomposition techniques that are 
compared in the case study. The market simulation platform is presented in Chapter 4, and 
Chapter 5 presents the case study based on a modified IEEE-118 bus system. Conclusions are 
summarized and discussed in Chapter 6. 
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2  WIND POWER PROBABILISTIC FORECASTING AND REPRESENTATION 
 
 
 In this chapter, we present a brief introduction to probabilistic wind power forecasting as 
well as scenario generation and reduction methods that are typically used to generate inputs for 
UC models under forecast uncertainty. References with more details are provided for interested 
readers. 

 
2.1  PROBABILISTIC FORECASTING 
 
 As wind uncertainty information is becoming increasingly important with higher wind 
penetration levels, probabilistic forecasting has drawn a lot of attention from both industry and 
academia in recent years [2]. Probabilistic wind forecasting methods can be categorized into two 
groups: parametric approaches and non-parametric approaches.  
 
 Parametric approaches assume that the wind power/speed follows a predictive density 
fully characterized by a parameter set. Common assumptions include Gaussian or Beta 
distribution [29]. Pinson [4] also proposes a modified Generalized Logit-Normal distribution to 
improve the uncertainty modeling.  
 
 For non-parametric approaches, there is no assumption of the distribution shape, and a set 
of quantiles or probability density forecasts are used to characterize the wind uncertainty 
information [2]. Quantile regression (QR) [5]-[6] and kernel density estimation (KDE) [3],[7] are 
two popular non-parametric methods. QR forecasts each desired quantile level in the probability 
distribution, commonly as 5%, 10%, 90% and 95%. Spline-based QR [5] and forest-based QR 
[6] have been demonstrated to have prediction ability without prior knowledge of the wind 
distribution shape. Serving as another powerful tool, KDE generates a smooth probability density 
function for the wind power with a sum of kernels. In order to perform well, this data-driven 
approach relies on tunings and cross-validation steps to select proper kernel functions, 
explanatory variables, and bandwidths [3],[8].  
 
 In this report, we generate probabilistic wind forecasts with a well-tuned conditional 
KDE method as presented in [3],[8]. We adopt a time-adaptive quantile-copula to produce the 
probabilistic wind power forecasts. Following the approach in [3], the point forecast and the hour 
of the day are used as explanatory variables in the model, which is trained on historical wind 
power data. Then, conditional KDE is applied to estimate the conditional wind power probability 
distribution. Next, the time-adaptive quantile-copula approach estimates the forecast probability 
density function for each time interval. We refer readers to [3] for more details. 
 
 
2.2  SCENARIO GENERATION WITH SPATIO-TEMPORAL CORRELATION 
 
 From the probabilistic forecasts, we generate the wind uncertainty sets on the basis of 
desired confidence levels for the DUC and IUC formulations. For instance, for a 90% confidence 
range, we use the 5% and 95% quantiles as the LB and UB for wind power. To generate 
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scenarios for multiple wind farms for the SUC formulation, a spatio-temporal covariance matrix 
is constructed following [30]-[31]. 
 
 The historic values are first transformed into a standard normal distribution domain with 
a nataf transformation [30]. Then, historic time series including multiple time periods and wind 
farm locations are obtained to build the covariance matrix. In our case, the covariance matrix has 
72 dimensions, as 24 hours and 3 wind farm locations are considered for the spatio-temporal 
correlation. This covariance matrix is adaptively trained as time evolves.  
 
 Then, we sample a multivariate normal distribution with a zero-mean and trained 
covariance matrix. Each sampling produces a vector with 72 dimensions, which can be 
transformed back into the wind power value domain with the inverse nataf transformation. This 
vector represents one scenario of three wind farms’ wind profile in 24 hours. We keep sampling 
with the same covariance matrix until the desired number of scenarios is reached. Next, we 
update the covariance matrix and move the scenario generation on to the next day. Readers can 
consult [31] for more a detailed description of procedures.  
 
 
2.2  SCENARIO REDUCTION 
 
 After a large set of scenarios is sampled from the estimated probability distribution and 
covariance matrix, scenario reduction [26] is applied to obtain a reduced scenario set with 
GAMS/SCENRED [32]. As the computational burden to run stochastic optimization with more 
than 100 scenarios is usually intractable, the scenario reduction step is necessary to approximate 
the true optimal solution at the expense of slightly lower accuracy. 
 
 As discussed in [12], fast forward selection, simultaneous backward reduction, k-means 
clustering and importance sampling are four popular scenario reduction techniques. Fast forward 
selection can achieve better results, both economically and computationally, when the selected 
scenario number is not large. In addition, although selecting more scenarios brings more accurate 
approximation results, this marginal economic benefit does not make up for exponentially 
increased computing time. Wu et al. [13] present similar results when comparing stochastic UC 
with different numbers of selected scenarios. 
 
 GAMS/SCENRED provides a utility to automatically select scenarios efficiently with a 
combination of fast forward and backward reductions. Interested readers can refer to [32] for 
more material. Figure 1 shows a reduced scenario set for one sample day. 
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FIGURE 1  Reduced Scenarios and Confidence Interval for Wind Power.  
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3  METHODS AND FORMULATIONS 
 
 
 In this chapter, we present detailed UC formulations with different uncertainty 
management strategies. We first introduce the deterministic formulations with dynamic reserve 
strategies (DUC); then the zonal modifications (DUC-Z) are applied to further improve the 
reliability. Next, the extensive stochastic programming formulation (SUC-E) is provided. To 
improve the computational efficiency, a linear-shift-factor-based decomposition (SUC-LSF) and 
Benders decomposition (SUC-BD) are also discussed here. In addition, we provide the 
formulation with interval optimization (IUC) to determine the optimal reserve level on the basis 
of the given wind confidence intervals.  
 
 
3.1  NOMENCLATURE 
 

 
Indices and Sets: 
 

i Index of thermal generators 

k Index of generator cost blocks 

t Index of scheduling time periods 

s Index of scenarios 

zn Index of zones 

l Index of transmission lines 

b Index of buses 

w Index of wind farms 

v Index of decomposition iterations 

 
 

 
Binary Decision Variables: 
 

ui,t Commitment variable for generator i at time t 

yi,t Shutdown indicator for generator i at time t 

zi,t Start-up indicator for generator i at time t 
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Continuous Non-negative Decision Variables: 
 

csui,t Start-up cost for generator i at time t 

csdi,t Shutdown cost for generator i at time t 

cpgi,t,s Energy production cost for generator i at time t, scenario s 

cregi,t,s Regulation reserve cost for generator i at time t, scenario s 

csri,t,s Spinning reserve cost for generator i at time t, scenario s 

cnsri,t,s Non-spinning reserve cost for generator i at time t, scenario s 

tcenst,s Total penalty cost for unserved energy at time t, scenario s 

tcregnst,s Total penalty cost for unserved regulation reserve at time t, scenario s 

tcrnst,s Total penalty cost for unserved spinning reserve at time t, scenario s 

tcnrnst,s Total penalty cost for unserved non-spinning reserve at time t, scenario s 

tcregznst,zn,s Total penalty cost for unserved regulation reserve at time t, zone zn, scenario s 

tcrznst,zn,s Total penalty cost for unserved spinning reserve at time t, zone zn, scenario s 

tcnrznst,zn,s Total penalty cost for unserved non-spinning reserve at time t, zone zn, scenario s 

pi,t,s Dispatched power output for generator i at time t, scenario s 

deltai,k,t,s Dispatched power output at block k for generator i at time t, scenario s 

wgw,t,s Scheduled wind output for wind farm w at time t, scenario s 

regupi,t,s Regulation up reserve for generator i at time t, scenario s 

regdni,t,s Regulation down reserve for generator i at time t, scenario s 

sri,t,s Spinning reserve for generator i at time t, scenario s 

nsrni,t,s Non-spinning reserve when the unit is on for generator i at time t, scenario s 

nsrfi,t,s Non-spinning reserve when the unit is off for generator i at time t, scenario s 

ensb,t,s Amount of non-served energy at bus b, time t, scenario s 

runst,s Amount of non-served up regulation reserve at time t, scenario s 

rdnst,s Amount of non-served down regulation reserve at time t, scenario s 

rnst,s Amount of non-served spinning reserve at time t, scenario s 

nrnst,s Amount of non-served non-spinning reserve at time t, scenario s; 

ruznst,zn,s Amount of non-served up regulation reserve at time t, zone zn, scenario s 

rdznst,zn,s Amount of non-served down regulation reserve at time t, zone zn, scenario s 

rznst,zn,s Amount of non-served spinning reserve at time t, zone zn, scenario s 

nrznst,zn,s Amount of non-served non-spinning reserve at time t, zone zn, scenario s 

α Auxiliary variable to compute total cost during BD 

αs Optimal dispatch cost for scenario s during BD 

slacks Slack variables at scenario s 

pi,t
c Corrective generation for IUC for generator i at time t  

wgw,t
c Corrective wind dispatch for IUC for wind farm w at time t  
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Parameters: 

PROBs Probability for scenario s 
SUCi Start-up cost for generator i 
SDCi Shutdown cost for generator i 
NLCi No-load cost for generator i 
MCi,k Marginal cost for generator i at cost segment k 
COSTREGi Regulation reserve cost for generator i 
COSTSRi Spinning reserve cost for generator i 
COSTNSRi Non-spinning reserve cost for generator i 
CENS Cost of unserved energy 
CRGNS Cost of unserved regulation reserve 
CRNS Cost of unserved spinning reserve 
CNRNS Cost of unserved non-spinning reserve 
Db,t Load at bus b at time t 
LSFb

l Linear-Shift-Factor for line l at bus b 
U(b) Resources connected at bus b 
LINEl

cap Real power capacity for line l 
REGRATIO Regulation reserve ratio in the total reserve amount 
SRRATIO Spinning reserve ratio in the total reserve amount 
RCONt Contingency reserve amount at time t 
RWw,t,s Dynamic reserve amount from wind w at time t, scenario s 
MUTi Minimum up time for generator i 
MDTi Minimum down time for generator i 
PMINi Minimum generation level for generator i 
PMAXi Maximum generation level for generator i 
PRi,k Power capacity for generator i at cost segment k 
RSUi Start-up ramp limit for generator i 
RSDi Shutdown ramp limit for generator i 
RUi Ramp up limit for generator i 
RDi Ramp down limit for generator i 
REGRTi Regulation reserve responsive time for generator i 
SRRTi Spinning reserve responsive time for generator i 
NSRRTi Non-spinning reserve responsive time for generator i 
MSRi Minute spinning reserve rate for generator i 
QSCi Quick-start generation capability for generator i 
POi Initial power generation level for generator i 
UOi Initial commitment status for generator i 
WGw,t,s Forecast wind generation for wind farm w at time t, scenario s (denoted as central 

forecast in DUC case) 
Fs

v Optimality dispatch cost at BD iteration v, scenario s 
DualUi,t,s

v Dual variable for fixing ui,t at BD iteration v, scenario s 
DualYi,t,s

v Dual variable for fixing yi,t at BD iteration v, scenario s 
DualZi,t,s

v Dual variable for fixing zi,t at BD iteration v, scenario s 
TempUi,t

v Temporary solution of ui,t at BD iteration v 
TempYi,t

v Temporary solution of yi,t at BD iteration v 
TempZi,t

v Temporary solution of zi,t at BD iteration v 
WGw,t

LB Forecast wind generation LB for wind farm w at time t 
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3.2  DETERMINISTIC FORMULATION WITH DYNAMIC RESERVE STRATEGIES 
 
 DUC is the current industry practice and there are many papers devoted to improving the 
computational issues for DUC formulations, e.g., [33]-[35]. Compared to other formulations as 
presented in [33]-[34], Morales-Espana’s formulation [35] is tight and compact and can be 
efficiently solved with current commercial MILP solvers. Therefore, we adopt this formulation 
[35] as the core UC formulation, and extra constraints are added to achieve additional functions. 
We model multiple reserve products including the regulation up/down, spinning, non-spinning 
reserve and corresponding zonal reserve products.  
 
 
A.  Objective Function 
 

min 
, ,

,

 (3.1) 

, , , , , , , ,

,

 

, , , ,  

, , , , , ,

,

 

 
Cost components: 

, ∙ ,  (3.2) 

, ∙ ,  (3.3) 

, , ∙ , , ∙ , , ,  (3.4) 

, , ∙ , , , ,  (3.5) 

, , ∙ , ,  (3.6) 

, , ∙ , , , ,  (3.7) 

, ∙ , ,  (3.8) 
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, ∙ , ,  (3.9) 

, ∙ ,  (3.10) 

, ∙ ,  (3.11) 

, , ∙ , , , ,  (3.12) 

, , ∙ , ,  (3.13) 

, , ∙ , ,  (3.14) 

 
 As shown in equation (3.1), the DUC model minimizes the sum of start-up and shutdown 
costs (first row), fuel costs and reserve costs (second row), and penalties for the violations (third 
row). If zonal reserve is implemented, the corresponding penalty terms (fourth row) are added in 
the objective function. In the DUC settings, there is only one scenario, and its probability is 1. 
We include the scenario index, s, in the equations above since we use the same equations to 
describe the SUC models in sections 3.2 and 3.3. Equations (3.2)–(3.14) describe the calculation 
for each cost component. Note that there is no penalty cost for wind curtailment.  
 
 
B.  Power System Operational Requirements 
 

Power balance constraint: 

, , , , , , ,  (3.15) 

Power flow constraint:  

, , ∙ , ,

∈

, ,

∈

, , ,  (3.16) 

, ,  (3.17) 

Market regulation up/down reserve requirement: 

, , , ∙ , ,  (3.18) 

, , , ∙ , ,  (3.19) 
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Market spinning reserve requirement: 

, , , , ,

∙ , ,  

(3.20) 

Market non-spinning reserve requirement 

, , , , , , , , ,

, ,  

(3.21) 

Zonal regulation up/down reserve requirement: 

, , , ,

∈

∙ , ,

∈

 (3.22) 

, , , ,

∈

∙ , ,

∈

  

Zonal spinning reserve requirement: 

, , , ,

∈

, ,

∈

∙ , ,

∈

 

(3.23) 

Zonal non-spinning reserve requirement 

, , , ,

∈

, ,

∈

, ,

∈

, ,

∈

, ,

∈

 

(3.24) 

 
Equations (3.15-3.24) represent the constraints related to the system operation constraints 

as described in [8][28][35]. The market and zonal reserve implementation follows the one 
described for MISO [25]. The higher-quality reserve product is able to substitute for low-quality 
products. As regulation reserve has the strictest time requirement (i.e., how quickly the reserve 
capacity has to respond), it is the highest-quality reserve product, followed by spinning reserve 
and non-spinning reserve. The dynamic reserve amount is determined from the probabilistic 
wind power forecast; normally, we choose the 10%, 5% or 1% quantile to hedge against over-
forecasting. The sum of this dynamic reserve and a fixed contingency reserve satisfies the 
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system-wide total operating-reserve requirements. Regulation up/down, spinning and non-
spinning reserve requirements are determined as fixed fractions of the total reserve requirements. 
The percentages are obtained from PJM historical data statistics [36].  
 
 
C.  Thermal Unit Constraints 
 

Generator logical constraint:  

, , , ,  (3.25) 

Minimum up and down time: 

, ,  
(3.26) 

, 1 ,  
(3.27) 

Generation block constraints:  

, , ∙ , , , ,  (3.28) 

, , , ,  (3.29) 

Generation limits with minimum for t = 1: 

, , , , , , , , ,

∙ , ∙ ,  

(3.30) 

, , , , , , , , ,

∙ , ∙ ,  

(3.31) 

Generation limits with minimum for t > 1: 

, , , , , , , , ,

∙ , ∙ ,

∙ ,  

(3.32) 
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Regulation reserve rate: 

, , ∙ ∙ ,  (3.33) 

, , ∙ ∙ ,  (3.34) 

Spinning reserve rate: 

, , ∙ ∙ ,  (3.35) 

Non-spinning reserve rate: 

, , ∙ ∙ ,  (3.36) 

, , ∙ 1 ,  (3.37) 

Ramp rate for t > 1: 

, , , , , , , , , ,  (3.38) 

, , , , , ,  (3.39) 

Ramp rate for t = 1:  

, , , , , , , , ∙ ∙ ,  (3.40) 

, , , , ∙ , ∙ ,  (3.41) 

 
Equations (3.25) to (3.41) represent all generation constraints of the UC model, including 

minimum/maximum generation limits, ramping constraints, UC logic, minimum up/down time 
and reserve rate [35]. Ramp constraints and generation limits are specifically formulated in a 
tight and compact form. 
 
 
D.  Wind Power Constraints 
 

, , , ,  (3.42) 
 

Equation (3.42) represents the wind dispatch constraint, i.e. the wind can be curtailed 
below the forecasted level of available generation.  
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E.  Summary 
 
 The previous sections, 3.2 A–D, presented the DUC optimization model based on 
[8][28][35]. The dynamic reserve is enforced at the system level to schedule the thermal 
generators in positions so that they can easily ramp up and down to mitigate the wind forecast 
errors. In addition, the zonal reserve settings can be added to improve the reserve deliverability 
when wind farms are located in different zones. 
 
 
3.3  STOCHASTIC PROGRAMMING-BASED FORMULATION 
 
 The extensive stochastic programming-based formulation is similar to the deterministic 
formulation we presented above in section 3.2. The major difference is that the DUC model only 
includes one scenario, whereas the SUC formulation includes multiple wind power scenarios and 
minimizes the expected cost across the scenarios. Different scenarios are assigned with different 
probabilities. Hence, the produced schedule can hedge against wind variations within the 
properly constructed scenario set.  
 
 One of the most important features of SUC is the implicit scheduling of reserves rather 
than imposing explicit reserve requirements. Large operating reserve reqirements are therefore 
not necessary and are uneconomical under SUC. In fact, most SUC formulations [11][12] 
remove reserve products completely. However, as shown in [8], adding a small amount of 
dynamic reserve may actually boost the system’s economic performance without adding 
computing time. The reason is that the additional dynamic reserve hedges agains uncertainty not 
captured in the reduced scenario set used as input to the SUC model. In our formulation, we 
follow the approach used in [8] and add additional dynamic reserves equal to a small portion of 
wind power per scenario. Since contingency reserves are deployed for contingencies only, and to 
correct wind power forecasting errors, we do not modify this reserve amount. The full reserve 
formulations, including the zonal parts, still follow equations (3.18)–(3.24). Note that the 
dynamic reserve amount, RWw,t,s, has been reduced and it can also be set to zero, as done in many 
traditional SUC studies. 
 
 
3.4  STOCHASTIC PROGRAMMING FORMULATION WITH 

DECOMPOSITION METHODS 
 
 The solution quality of scenario-based SUC formulations depends on the quality of the 
scenario set. A larger scenario set produces a more accurate schedule at the expense of a higher 
computational burden. To overcome the computational obstacle, many decomposition algorithms 
have been proposed, including LSF decomposition [28], BD [16][28], progressive hedging [14], 
dual decomposition [37] and many more. In this report, we only focus on the LSF decomposition 
and BD, as they are relatively straightforward and no tuning is necessary, unlike the progressive 
hedging approach. 
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3.4.1  Linear-Shift-Factor Decomposition 
 
 When the system is large, it is computationally expensive to evaluate the power flow 
limits for all lines. As shown in [28], the number of congested lines during operations is typically 
only a small fraction of the full line set. Therefore, considering only critical line flow limits can 
improve computational performances without sacrificing solution accuracy. This assumption also 
reflects real-world ISO practice: In [38], only a selected number of lines are labeled with 
“Monitor Flag” to check their line limit during operation, and other line limits are not evaluated 
in the constraints. 
 
 In the SUC problem, considering the number of lines, hours and scenarios, only a few 
transmission constraints are actually binding. Therefore, applying LSF decomposition can 
effectively relieve the computational burden, as checking flow limits is essentially a linear 
programming (LP) feasibility problem, which can be solved very efficiently. This SUC requires 
minimum effort to change from the original extensive form. The pseudo code is as follows: 
 
 

Algorithm 1: LSF Decomposition: 

 Initialize the line checking set O (l, t, s) as an empty set; 1)

 Solve the SUC problem with network constraints (3.17) only imposed on the line 2)
checking set O; 

 Evaluate all the remaining line tuples (l, t, s) for their flow limits: if no limits are 3)
violated, go to step 4); else, add the violated line tuples (l, t, s) in O, and go to step 2); 

 Stop the program, and output the result. 4)
 
 
3.4.2  Benders Decomposition 
 

For the two-stage SUC structure, as the second-stage economic dispatch problem per 
scenario is an LP problem, the BD method can be applied here. The SUC problem is suitable to 
decompose into a master problem and a collection of subproblems for each scenario. The master 
problem involves all the UC constraints and Benders cuts. In the classical Benders approach, the 
subproblems, with the dispatch constraints [13], are used to generate feasibility and optimality 
cuts for the master problem to converge. However, the convergence rate can be slow. Similarly 
to the approach in [11], we only consider the optimality subproblems, and slack variables are 
added to form complete second-stage recourse decisions. In each iteration, the subproblems 
evaluate the dispatch decision on the basis of commitment status sent from the master problem, 
and return sensitivities to generate Benders cuts for the master solution. In the master problem, 
we add an online generation capacity constraint and an aggregate optimality cut summing all 
optimality cuts together to further improve the convergence. The pseudo code is provided below, 
with more detailed descriptions of the acceleration techniques provided in [28].  
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Algorithm 2 - Benders Decomposition: 

 Initialize the problem, UB=+∞, LB= –∞; 1)

 Solve master problem, update the LB with objective function LB=zLB; 2)

 Run optimality subproblem for each scenario: update the UB with solution from 3)
optimality subproblems UB = zUB; 

 Check the convergence: if |UB – LB|≤ε, go to step 5); else, generate optimality cuts 4)
and return to step 2); 

 Stop the program, and output the results. 5)
 
 
A.  Master problem 
 

Objective function: 

min 
, ,

,

 (3.43) 

Start-up and shutdown cost:  

(3.2), (3.3)  

Generator logical constraint:  

(3.25)  

Minimum up and down time: 

(3.26), (3.27)  

Optimality cuts: 

, , ∙ , ,
,

, , ∙ , ,
,

, , ∙ , ,
,

 

(3.44) 
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Aggregate optimality cuts: 

∙

∙ , , ∙ , ,
, ,

∙ , , ∙ , ,
, ,

∙ , , ∙ , ,
, ,

 

(3.45) 

System generation availability constraint: 

∙ , , , , , ,  (3.46) 

 
 In addition to the generator UC constraint (3.25)–(3.27), constraints (3.44)–(3.46) are 
added to calculate the objective function component for the master problem with optimality cuts. 
Equation (3.45) is the classic Benders optimality cuts with dual information from the scenario 
optimality subproblem. Note that DualUi,t,s

v, DualYi,t,s
v and DualZi,t,s

v are the duals of constraints 
(3.48)–(3.50) from subproblem s at iteration v. 
 
 Rather than iterating with feasibility cuts, (3.46) is used to quickly throw away solutions 
far away from optimal solutions. This constraint ensures that sufficient system generation 
capacity is available at any time. For a feasible solution, this valid inequality always holds, 
which helps the solver cut infeasible solutions efficiently. A slack variable with penalty cost 
could also be added in the formulation to consider situations where a very small amount of load 
shedding is optimal from a cost perspective. 
 
 Wen et al. [39] show that aggregate feasibility cuts accelerate BD convergence for 
analyzing energy storage capability to ensure system security. We adopt a similar idea to add an 
aggregate optimality cut in the master problem after each iteration. It indeed improves the 
computational performance.  
 
 
B.  Scenario Optimality Subproblem 
 

Objective function: 

min 
, , , , , , , ,

,

 (3.47) 
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, , , ,  

, , , , , ,

,

 

∙  

Dispatch and penalty costs:  

(3.4)–(3.14)  

Dispatch constraints: 

(3.15)–(3.24), (3.28)–(3.42)  

Fix first-stage binary variables:  

, ,  (3.48) 

, ,  (3.49) 

, ,  (3.50) 

Update the BD UB after all scenario subproblems have finished:  

, ,

,

∙  (3.51) 

 
 In addition to the original dispatch and penalty cost components, additional penalty costs 
for the slack variables are added in the optimality subproblem objective function. After adding 
this term, each second-stage problem is an LP problem with complete recourse (i.e., always 
feasible). In the formulation above, we compactly state this slack variable as slacks in the 
objective function (3.47), with a penalty equation to represent the cost of energy not served, 
CENS. Such slack variables can be added to any inequality constraints. During our simulations, 
we found that it was only necessary to introduce additional slack variables for the generator ramp 
rate constraints. Note that the original formulation already has slack variables for unserved 
energy and reserves, with corresponding penalties included in the objective function (3.1).  
 
 Equations (3.48)–(3.50) are included in the subproblem to pass the information from the 
first stage. Here, we adopt a primal way to optimize the subproblems, as it is effortless for 
implementation. It should be noted that this optimization can also be represented with its dual 
problem, but it is outside the scope of this report. Interested readers can refer to [40] for more 
details on this topic. 
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3.5  INTERVAL OPTIMIZATION-BASED FORMULATION 
 
 Even with decomposition techniques, the SUC computation time is still very high 
compared to DUC. As presented in [16]–[[18], the IUC formulation is computationally efficient 
and hedges wind uncertainty well, within a certain range of uncertainty. In this report, we adopt 
the formulation of Liu et al. [18]. In this formulation, only the lower interval bound for wind 
power and corresponding transitions is considered, as it represents the worst-case situation, as 
proven in the appendix in [18].  
 
 Compared to DUC, the objective is still to minimize the operational cost in the normal 
state. Only a set of corrective action constraints is added in the formulation to ensure feasibility 
within the forecast interval. In the case study chapter, we find that these additional constraints do 
not increase the computing time compared to DUC. Similarly to SUC, the contingency reserve is 
kept and the reserve for wind generation uncertainty is scheduled implicitly.  
 

Objective Function: 

min 
, ,

,

, , , , , , , ,

,

 (3.52) 

, , , ,  

Cost components:  

(3.2)–(3.11)  

UC and power flow constraints at normal state: 

(3.15)–(3.21), (3.25)–(3.42)  

Wind corrective case: 

, ,  (3.53) 

Power balance corrective case:  

, , ,  (3.54) 

Generation corrective distance: 

, , , 	 , , , , , ,  (3.55) 

, 	 ,  (3.56) 
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Transmission constraints corrective case:  

∙ ,
∈

,

∈

,  (3.57) 

 
 Noted that although the scenario subscript, s, is used here, only one scenario is modeled 
in the IUC formulation. Equations (3.53)–(3.57) ensure the system security when the worst-case 
wind occurs, i.e., wind producing at the LB of the forecast interval. In addition, (3.56) ensures 
that the system has enough reserve to move to the new feasible dispatch state during this worst 
case. These additional constraints force the system to buy additional reserves to guarantee the 
worst-case feasibility.  
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4  TEST SYSTEM AND DATA 
 
 
 In this chapter, we will introduce the test system and data used for the case study. The 
simulation settings are also described, to facilitate reproducibility of the work. 
 
 
4.1  IEEE 118-BUS SYSTEM 
 
 The modified IEEE 118-bus system [41] is applied as the test system for the work. There 
are a total of 118 buses, 54 generators, 186 transmission lines and 91 load demands. The one-line 
diagram is shown in Figure 2 [42]: 
 
 
4.2  LOAD DEMAND AND GENERATION SUPPLY 
 
 In the IEEE 118-bus test system, there are a total of 54 thermal generators, including 
21 quick-start units. The total generation capacity is 7220 MW, of which 650 MW is from quick-
start units. The whole generation portfolio includes 21 gas/oil units and 33 coal units. The 
generator cost data originate from the 118-bus system with piecewise cost curves. The reserve 
costs are computed on the basis of historical data from the PJM reserves market. Rather than 
having each generator provide its own unique reserve bid, we set a system-wide offer price for  
 
 

 

FIGURE 2  IEEE-118 System One-line Diagram  
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all generators. The assumed bid costs for regulation services, spinning reserve, and non-spinning 
reserve are 10 $/MW, 2.88 $/MW and 0.70 $/MW, respectively [36]. 
 
 There are a total of 91 load buses, with hourly loads following a fixed ratio based on the 
total system demand. The original 118-bus system load is scaled on the basis of actual load 
profiles from the U.S. state of Illinois in 2006. The system peak load is 6616 MW and the 
average load is 4093 MW in the four-month simulation period from July to October. The 
summer season from July to August represents a heavy-load season with peak load of 6616 MW 
and average load of 4535 MW. In contrast, the fall season from September to October represents 
a light-load season with peak load of 4722 MW and average load of 3645 MW. 
 
 
4.3  TRANSMISSION NETWORK 
 
 There are 186 lines in the system, and the total transmission capacity is 45,265 MW. 
Within all lines, the maximum value of the line rating is 500 MW, the minimum value of the line 
rating is 175 MW, and the average value of the line rating is 243 MW. The DC approximation is 
applied to compute the active power flow with the LSF approach, as explained in the previous 
chapter. 
 
 
4.4  ZONAL SETTING 
 
 There are three zones in the system, as shown in Figure 2. The bus numbers and load 
ratios are shown in Table 1. 
 
 
4.5  WIND FARM DEPLOYMENT 
 
 We assume that there are three wind farms located at buses 15, 54, and 96, i.e., one in 
each zone. The installed wind capacity is 902.6, 911.4, and 1232.2 MW, respectively. With this 
wind capacity, the average available wind energy is 21% of the average load. The wind profiles 
are selected from the Eastern Wind Integration Dataset [43]. In order to capture the spatial 
correlation, the selected wind farms are all located within the state of Illinois, with a correlation 
of more than 0.75 in the hourly time series of wind power availability.  
 
 

TABLE 1  IEEE 118 Zonal Information 

 
 

Number of Buses Total Load Ratio 

    

Zone 1 42 0.308 

Zone 2 48 0.493 

Zone 3 28 0.199 

Total 118 1 
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4.6  DECISION FRAMEWORK 
 
 The simulation is based on a rolling decision-making process, which is typically applied 
in U.S. electricity markets. This includes the Day-ahead (DA) UC (DA-UC), Reliability 
Assessment Commitment (RAC), and Real-time (RT) Economic Dispatch (RT-ED), with 
updated forecast information applied at each stage. In DA-UC, the UC schedule for the day 
ahead is determined and passed on to the RAC stage. In RAC, the slow generators follow the DA 
schedule, whereas quick-start generators are allowed to adjust their status on the basis of the 
updated forecast. This schedule update passes to the RT-ED for the actual dispatch solution. This 
final dispatch then passes to the next day’s simulation as the initial condition. DA-UC and RAC 
consider full reserve constraints on the basis of the available wind power forecast and 
corresponding scenarios. In contrast, the RT-ED procures the contingency reserve only, under 
the assumption that the wind power uncertainty has been resolved at this stage. The flowchart for 
the simulation is presented in Figure 3. A four-month out-of-sample simulation is carried out for 
the different operational strategies to cover daily, weekly, and seasonal patterns of loads and 
wind resource availability. 
 
 

 

FIGURE 3  Decision-making Processes 
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4.7  SIMULATION SETTINGS 
 
 The DA forecast is used as the initial forecast for the DA-UC stage, and the four-hour-
ahead forecast is used as the forecast for the RAC stage. Out-of-sample, actual wind realizations 
are applied at the RT-ED stage to evaluate the UC performance. Probabilistic forecasts for the 
three wind farms are first generated, then 1000 scenarios are sampled each day considering 
spatio-temporal correlations, with a reduced scenario set of 10 selected, as explained in chaper 2. 
We use 10 scenarios primarily to limit the computational burden, especially for the SUC 
extensive-form model. However, the extra economic benefits of more scenarios are also limited. 
In the case study, regulation up/down equals 15% of the total reserve requirement, while 
spinning and non-spinning reserve each takes 42.5% of the total requirement.  
 
 The framework is implemented in AMPL [44] and the mixed integer programming (MIP) 
solver is IBM ILOG CPLEX 12.1 [45] with a 0.1% optimality gap. For BD, 0.1% is the gap for 
the UB and LB convergence rate, and a MIP gap of 1% is used for each master problem. All the 
results are obtained on a Linux-based server at Argonne National Laboratory with 2x Intel E5430 
Xeon CPUs and 32 GB of RAM. 
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5  RESULTS AND ANALYSIS 
 
 
 In this chapter, we present the results comparing different UC formulations. Both DA and 
RT results are evaluated to illustrate the various features and implications of the UC 
formulations. We first present production cost results. The load curtailment, reserve shedding, 
and wind curtailment results are also shown. Last, the computational times are compared to 
further demonstrate the differences between the UC models. 
 
 
5.1  CASE STUDY DESCRIPTION 
 
 The DUC cases with perfect wind forecast (DUC-perfect) and point forecast (DUC-point) 
are selected as the two reference cases. The point forecast is obtained as the 50% quantile from 
the probabilistic wind power forecast. In these two reference cases, only the contingency reserve 
is imposed at all stages. For the DUC with dynamic reserve (DUC-DR), we choose the 
difference between the 50% and a lower quantile as the dynamic reserve quantity. 
Correspondingly, the lower quantile is also chosen as the LB for the IUC formulation. Sensitivity 
analysis considers multiple lower quantiles, including 40%, 30%, 20%, 10%, 5%, and 1%. The 
results show that using the 20% quantile is more economical than using other lower quantiles, as 
the benefits of the dynamic reserve cannot compensate for the additional reserve costs for lower 
quantiles. In the SUC cases, in addition to the different solution techniques, we compared 
different levels of additional wind reserve (0, 1%, 5% and 10% of wind power in each scenario).  
 
 Table 2 shows all the case descriptions that are used in the case study. 
 
 
5.2  PRODUCTION COST 
 
 
5.2.1  Day-ahead Costs 
 
 We first present results for DA total costs (energy production costs, load-shedding 
penalty, reserve cost and reserve curtailment penalty) and total energy costs (energy production 
costs and load-shedding penalty) for summer (July and August) and fall (September and 
October) in Tables 3–6. “Total costs” compares the operational cost as expressed in the objective 
function, whereas total energy cost represents the unit scheduling cost and load-shedding penalty 
only, without considering the costs of reserves. As the reserve requirements are different in the 
different cases, we present both cost figures for a better illustration of cost performances under 
different formulations. DUC-perfect always produces the cheapest solution, as expected given 
the perfect-forecast assumption.  
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TABLE 2  Case Description. All cases use a 21% available wind penetration 

 
Case Number Description 

  
DUC-perfect Deterministic UC with perfect forecast 

DUC-point Deterministic UC with deterministic forecast 

DUC-DR-40 Deterministic UC with deterministic forecast, dynamic reserve with 50%–40% quantile 

DUC-DR-30 Deterministic UC with deterministic forecast, dynamic reserve with 50%–30% quantile 

DUC-DR-20 Deterministic UC with deterministic forecast, dynamic reserve with 50%–20% quantile 

DUC-DR-10 Deterministic UC with deterministic forecast, dynamic reserve with 50%–10% quantile 

DUC-DR-5 Deterministic UC with deterministic forecast, dynamic reserve with 50%–5% quantile 

DUC-DR-1 Deterministic UC with deterministic forecast, dynamic reserve with 50%–1% quantile 

DUC-DZR-40 Deterministic UC with deterministic forecast, dynamic reserve with 50%–40% quantile, 
zonal implementation 

DUC-DZR-30 Deterministic UC with deterministic forecast, dynamic reserve with 50%–30% quantile, 
zonal implementation 

DUC-DZR-20 Deterministic UC with deterministic forecast, dynamic reserve with 50%–20% quantile, 
zonal implementation 

DUC-DZR-10 Deterministic UC with deterministic forecast, dynamic reserve with 50%–10% quantile, 
zonal implementation 

DUC-DZR-5 Deterministic UC with deterministic forecast, dynamic reserve with 50%–5% quantile, 
zonal implementation 

DUC-DZR-1 Deterministic UC with deterministic forecast, dynamic reserve with 50%–1% quantile, 
zonal implementation 

IUC-40 Interval UC with 40% quantile LB 

IUC-30 Interval UC with 30% quantile LB 

IUC-20 Interval UC with 20% quantile LB 

IUC-10 Interval UC with 10% quantile LB 

IUC-5 Interval UC with 5% quantile LB 

IUC-1 Interval UC with 1% quantile LB 

SUC-E-0 Extensive-form stochastic UC with 10 scenarios and no additional reserve derived from 
wind scenario 

SUC-E-1 Extensive-form stochastic UC with 10 scenarios and 1% additional scenario reserve  

SUC-E-5 Extensive-form stochastic UC with 10 scenarios and 5% additional scenario reserve 

SUC-E-10 Extensive-form stochastic UC with 10 scenarios and 10% additional scenario reserve 

SUC-EZ-1 Extensive-form stochastic UC with 10 scenarios and 1% additional scenario reserve, zonal 
implementation 

SUC-EZ-5 Extensive-form stochastic UC with 10 scenarios and 5% additional scenario reserve, zonal 
implementation 

SUC-EZ-10 Extensive-form stochastic UC with 10 scenarios and 10% additional scenario reserve, 
zonal implementation 

SUC-L-0 LSF decomposition stochastic UC with 10 scenarios 

SUC-L-1 LSF decomposition stochastic UC with 10 scenarios and 1% additional scenario reserve 

SUC-L-5 LSF decomposition stochastic UC with 10 scenarios and 5% additional scenario reserve 

SUC-L-10 LSF decomposition stochastic UC with 10 scenarios and 10% additional scenario reserve 
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TABLE 2  (Cont.) 

 
Case Number Description 

  

SUC-LZ-1 LSF decomposition stochastic UC with 10 scenarios and 1% additional scenario reserve, 
zonal implementation 

SUC-LZ-5 LSF decomposition stochastic UC with 10 scenarios and 5% additional scenario reserve, 
zonal implementation 

SUC-LZ-10 LSF decomposition stochastic UC with 10 scenarios and 10% additional scenario reserve, 
zonal implementation 

SUC-B-0 BD stochastic UC with 10 scenarios 

SUC-B-1 BD stochastic UC with 10 scenarios and 1% additional scenario reserve 

SUC-B-5 BD stochastic UC with 10 scenarios and 5% additional scenario reserve 

SUC-B-10 BD stochastic UC with 10 scenarios and 10% additional scenario reserve 

SUC-BZ-1 BD stochastic UC with 10 scenarios and 1% additional scenario reserve, zonal 
implementation 

SUC-BZ-5 BD stochastic UC with 10 scenarios and 5% additional scenario reserve, zonal 
implementation 

SUC-BZ-10 BD stochastic UC with 10 scenarios and 10% additional scenario reserve, zonal 
implementation 

 
 

TABLE 3  Summer Average Daily Day-ahead Total Cost 

 
Case Number Cost (106 $) Case Number Cost (106 $) Case Number Cost (106 $) 

      

DUC-perfect 1.5174  

DUC-point 1.5892 

DUC-DR-40 1.6021 DUC-DRZ-40 1.6022 IUC-40 1.5912 

DUC-DR-30 1.6138 DUC-DRZ-30 1.6140 IUC-30 1.5978 

DUC-DR-20 1.6252 DUC-DRZ-20 1.6357 IUC-20 1.6073 

DUC-DR-10 1.6374 DUC-DRZ-10 1.7761 IUC-10 1.6234 

DUC-DR-5 1.6470 DUC-DRZ-5 1.9733 IUC-5 1.6357 

DUC-DR-1 1.6813 DUC-DRZ-1 2.2414 IUC-1 1.6463 

SUC-E-0 1.5646 SUC-L-0 1.5647 SUC-B-0 1.5720 

SUC-E-1 1.5653 SUC-L-1 1.5654 SUC-B-1 1.5725 

SUC-E-5 1.5679 SUC-L-5 1.5681 SUC-B-5 1.5746 

SUC-E-10 1.5714 SUC-L-10 1.5714 SUC-B-10 1.5790 

SUC-EZ-1 1.5653 SUC-LZ-1 1.5654 SUC-BZ-1 1.5716 

SUC-EZ-5 1.5680 SUC-LZ-5 1.5681 SUC-BZ-5 1.5753 

SUC-EZ-10 1.5714 SUC-LZ-10 1.5714 SUC-BZ-10 1.5787 
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TABLE 4  Summer Average Daily Day-ahead Total Energy Cost 

 
Case Number Cost (106 $) Case Number Cost (106 $) Case Number Cost (106 $) 

      

DUC-perfect 1.5011  

DUC-point 1.5729 

DUC-DR-40 1.5729 DUC-DRZ-40 1.5730 IUC-40 1.5727 

DUC-DR-30 1.5732 DUC-DRZ-30 1.5732 IUC-30 1.5729 

DUC-DR-20 1.5736 DUC-DRZ-20 1.5758 IUC-20 1.5751 

DUC-DR-10 1.5752 DUC-DRZ-10 1.5817 IUC-10 1.5809 

DUC-DR-5 1.5777 DUC-DRZ-5 1.5869 IUC-5 1.5872 

DUC-DR-1 1.5811 DUC-DRZ-1 1.5918 IUC-1 1.5938 

SUC-E-0 1.5483 SUC-L-0 1.5484 SUC-B-0 1.5557 

SUC-E-1 1.5483 SUC-L-1 1.5484 SUC-B-1 1.5556 

SUC-E-5 1.5483 SUC-L-5 1.5484 SUC-B-5 1.5549 

SUC-E-10 1.5483 SUC-L-10 1.5484 SUC-B-10 1.5560 

SUC-EZ-1 1.5483 SUC-LZ-1 1.5484 SUC-BZ-1 1.5546 

SUC-EZ-5 1.5483 SUC-LZ-5 1.5485 SUC-BZ-5 1.5556 

SUC-EZ-10 1.5483 SUC-LZ-10 1.5484 SUC-BZ-10 1.5555 

 
 

TABLE 5  Fall Average Daily Day-ahead Total Cost 

 
Case Number Cost (106 $) Case Number Cost (106 $) Case Number Cost (106 $) 

      

DUC-perfect 1.0235  

DUC-point 1.0744 

DUC-DR-40 1.0897 DUC-DRZ-40 1.0902 IUC-40 1.0776 

DUC-DR-30 1.1053 DUC-DRZ-30 1.1091 IUC-30 1.0865 

DUC-DR-20 1.1226 DUC-DRZ-20 1.1568 IUC-20 1.1031 

DUC-DR-10 1.1461 DUC-DRZ-10 1.3760 IUC-10 1.1313 

DUC-DR-5 1.1655 DUC-DRZ-5 1.6880 IUC-5 1.1486 

DUC-DR-1 1.2890 DUC-DRZ-1 2.1998 IUC-1 1.1679 

SUC-E-0 1.0779 SUC-L-0 1.0739 SUC-B-0 1.0776 

SUC-E-1 1.0750 SUC-L-1 1.0749 SUC-B-1 1.0786 

SUC-E-5 1.0787 SUC-L-5 1.0785 SUC-B-5 1.0846 

SUC-E-10 1.0832 SUC-L-10 1.0830 SUC-B-10 1.0869 

SUC-EZ-1 1.0749 SUC-LZ-1 1.0748 SUC-BZ-1 1.0812 

SUC-EZ-5 1.0788 SUC-LZ-5 1.0787 SUC-BZ-5 1.0827 

SUC-EZ-10 1.0839 SUC-LZ-10 1.0836 SUC-BZ-10 1.0875 

  



 

30 

TABLE 6  Fall Average Daily Day-ahead Energy Cost 

 
Case Number Cost (106 $) Case Number Cost (106 $) Case Number Cost (106 $) 

      

DUC-perfect 1.0072  

DUC-point 1.0582 

DUC-DR-40 1.0585 DUC-DRZ-40 1.0591 IUC-40 1.0583 

DUC-DR-30 1.0595 DUC-DRZ-30 1.0620 IUC-30 1.0587 

DUC-DR-20 1.0622 DUC-DRZ-20 1.0702 IUC-20 1.0642 

DUC-DR-10 1.0704 DUC-DRZ-10 1.0858 IUC-10 1.0784 

DUC-DR-5 1.0796 DUC-DRZ-5 1.0968 IUC-5 1.0895 

DUC-DR-1 1.0956 DUC-DRZ-1 1.1130 IUC-1 1.1034 

SUC-E-0 1.0616 SUC-L-0 1.0577 SUC-B-0 1.0613 

SUC-E-1 1.0578 SUC-L-1 1.0577 SUC-B-1 1.0615 

SUC-E-5 1.0580 SUC-L-5 1.0578 SUC-B-5 1.0639 

SUC-E-10 1.0580 SUC-L-10 1.0578 SUC-B-10 1.0617 

SUC-EZ-1 1.0578 SUC-LZ-1 1.0576 SUC-BZ-1 1.0640 

SUC-EZ-5 1.0581 SUC-LZ-5 1.0579 SUC-BZ-5 1.0619 

SUC-EZ-10 1.0587 SUC-LZ-10 1.0584 SUC-BZ-10 1.0622 

 
 
 As we increase the dynamic reserve requirements for DUC or consider a lower interval 
bound for IUC, the system improves its reliability with a higher energy and reserve cost. The 
zonal reserve demands the same amount of dynamic reserve with a stricter rule about its 
locational deployment. Therefore, it always costs more than its DUC-DR counterpart. When 
DUC hedges for a larger wind uncertainty range, the increased cost is due in part to a large 
reserve penalty cost, as will be shown later. It appears that the increased reliability does not yield 
enough overall system benefits, measured in terms of costs.  
 
 Similarly, IUC cost increases as a lower-quantile corrective transition security is ensured. 
Compared to DUC, this cost increment is not as significant. In addition, the IUC produces a 
lower total cost than DUC with the same LB optimized, even though the schedule cost (energy 
cost) is higher in most cases. Note that IUC always reaches a more reliable schedule (less or no 
load shedding) compared to DUC with the same LB. This is because the additional LB 
constraints in IUC ensure the system feasibility (power balance, reserve balance, transmission 
line constraints) in those defined worst cases. 
 
 For SUC, as extensive-form and LSF decomposition have almost identical formulations, 
their costs are very close to each other and within the optimality gap. The small amounts of 
additional explicit dynamic reserve do not affect schedule cost much under SUC, which means 
that the commitment status does not change much with the small amounts of additional reserves. 
In addition, this schedule is more economical than DUC and IUC in both summer and fall. SUC 
strategies can be even cheaper than DUC-point strategies when strong wind is present in the fall. 
For the BD SUC, as we adopt a slightly larger MIP gap to solve each master problem, the final 
solution obtained is slightly more expensive than for LSF and extensive-form decomposition. 
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With a smaller MIP gap, the solution can be improved and will be closer to the LSF solutions at 
the cost of a larger computing time, which reduces the computational benefit from BD. 
 
 Note that the SUC and IUC approaches both schedule wind reserves implicitly. In 
contrast, the DUC strategy schedules explicit reserves for wind power through the reserve 
constraints. There is, therefore, a direct cost, reflected in the objective function and in the total 
costs reported in Table 3, of these wind reserves under DUC. The cost of additional implicit 
wind reserves in the IUC formulation is also accounted for, but in the SUC formulation there is 
no explicit cost for the implicit reserves. Hence, care must be taken when comparing the DA 
total cost results, as DUC and IUC results reflect a cost element for wind reserves that is not 
reflected for SUC. The reported total energy cost figures are more directly comparable, as they 
do not include the cost of reserves. Still, note that the SUC strategy finds the expected DA cost 
over multiple wind scenarios, as opposed to the DUC and IUC strategies that optimize for the 
default point forecast scenario only.  
 
 
5.2.2  Real-time Costs 
 
 In the RT simulations, all cases impose the same reserve requirements, which are limited 
to the amount needed for contingency reserves. Moreover, since there are no RT contingency 
reserve curtailments and corresponding penalties in any of the cases, the reserve cost is the same 
for all cases. Therefore, in TABLE 7 and TABLE 8 we only present the total cost results for the 
RT stage. The results indicate that in the summer, the net load is relatively large, more generators 
are therefore on, and online capacity is sufficient to mitigate the forecast inaccuracy from DA 
scheduling to RT-ED. In this case, when the system buys more explicit reserve as in DUC-DR 
and schedules more implicit reserve in IUC, the additional cost from this reserve component 
does not yield economic benefits. In contrast, when the net load is relatively lower in the fall, 
online capacity is not enough to handle the extreme events without additional reserves, and load 
shedding occurs on particular days in the DUC-point case. In these cases, dynamic reserve and 
IUC produce a more reliable schedule, and the additional reserves from the DA and RAC stages 
result in cost savings because of lower load curtailment. 
 
 In sensitivity runs, when we choose a more conservative strategy and select a lower 
quantile, such as 5% or 1%, the reliability for IUC holds, and for dynamic reserves the RT load 
shedding is reduced. However, as we compare the cost components, DUC with dynamic reserve 
pays more for buying reserves in the DA stage from slow generators and produces a cheaper 
schedule in the RT stage. In contrast, IUC provides more implicit reserves from quick-start units 
in the DA stage with less reserve bought, but the IUC schedule is more expensive in RT stages. 
On the contrary, when we choose a less conservative strategy and select a higher quantile of 20% 
or 30%, the reliability for IUC also decreases, and DUC can reach a point where the purchased 
dynamic reserve is economically viable to compensate for the possible load-shedding penalty. 
The results show that the 20% LB yields the lowest RT cost in the high-wind/low-load fall 
season for both DUC and IUC. This result suggests that optimizing the dynamic reserve amount 
in DUC or the lower interval bound under IUC can find a good balance between economics and 
reliability. This is a promising direction for future research.  
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TABLE 7  Summer Average Daily Real-time Total Cost 

 
Case Number Cost (106 $) Case Number Cost (106 $) Case Number Cost (106 $) 

      

DUC-perfect 1.5174  

DUC-point 1.5228 

DUC-DR-40 1.5231 DUC-DRZ-40 1.5230 IUC-40 1.5227 

DUC-DR-30 1.5231 DUC-DRZ-30 1.5230 IUC-30 1.5227 

DUC-DR-20 1.5229 DUC-DRZ-20 1.5245 IUC-20 1.5232 

DUC-DR-10 1.5232 DUC-DRZ-10 1.5281 IUC-10 1.5244 

DUC-DR-5 1.5246 DUC-DRZ-5 1.5330 IUC-5 1.5274 

DUC-DR-1 1.5275 DUC-DRZ-1 1.5370 IUC-1 1.5317 

SUC-E-0 1.5209 SUC-L-0 1.5209 SUC-B-0 1.5279 

SUC-E-1 1.5209 SUC-L-1 1.5210 SUC-B-1 1.5281 

SUC-E-5 1.5209 SUC-L-5 1.5210 SUC-B-5 1.5281 

SUC-E-10 1.5210 SUC-L-10 1.5209 SUC-B-10 1.5285 

SUC-EZ-1 1.5209 SUC-LZ-1 1.5209 SUC-BZ-1 1.5271 

SUC-EZ-5 1.5209 SUC-LZ-5 1.5209 SUC-BZ-5 1.5281 

SUC-EZ-10 1.5209 SUC-LZ-10 1.5209 SUC-BZ-10 1.5280 

 
 

TABLE 8  Fall Average Daily Real-time Total Cost 

 
Case Number Cost (106 $) Case Number Cost (106 $) Case Number Cost (106 $) 

      

DUC-perfect 1.0235  

DUC-point 1.0498 

DUC-DR-40 1.0495 DUC-DRZ-40 1.0533 IUC-40 1.0444 

DUC-DR-30 1.0449 DUC-DRZ-30 1.0441 IUC-30 1.0416 

DUC-DR-20 1.0397 DUC-DRZ-20 1.0458 IUC-20 1.0407 

DUC-DR-10 1.0432 DUC-DRZ-10 1.0566 IUC-10 1.0464 

DUC-DR-5 1.0473 DUC-DRZ-5 1.0643 IUC-5 1.0520 

DUC-DR-1 1.0573 DUC-DRZ-1 1.0743 IUC-1 1.0585 

SUC-E-0 1.0338 SUC-L-0 1.0336 SUC-B-0 1.0384 

SUC-E-1 1.0336 SUC-L-1 1.0337 SUC-B-1 1.0375 

SUC-E-5 1.0340 SUC-L-5 1.0338 SUC-B-5 1.0387 

SUC-E-10 1.0336 SUC-L-10 1.0336 SUC-B-10 1.0370 

SUC-EZ-1 1.0336 SUC-LZ-1 1.0336 SUC-BZ-1 1.0425 

SUC-EZ-5 1.0339 SUC-LZ-5 1.0342 SUC-BZ-5 1.0362 

SUC-EZ-10 1.0340 SUC-LZ-10 1.0338 SUC-BZ-10 1.0369 
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 For SUC cases, the scenarios capture the wind uncertainty better. In the DA-UC stage, 
SUC encourages more flexible units (including quick-start units and slow-start units with large 
ramping capabilities) online, and the wind utilization rate is higher with less wind spillage, 
resulting in a similar range of DA costs compared to DUC-point. As the wind uncertainty is 
better managed with SUC, all the SUC RT-ED solutions are very close to the DUC-perfect case 
and cheaper than the other DUC and IUC cases, for both summer and fall. At the same time, 
there is no load shedding at all, showing that the optimized schedule is also reliable. Hence, the 
results indicate that SUC reaches a better balance between system costs and reliability. 
 
 Note, again, that in the RT stage, all the strategies impose the same reserve requirements, 
i.e. contingency reserves only, and also solve for only one wind scenario, i.e., the realized 
availability for wind power. Hence, the RT total cost results in TABLE 7 and TABLE 8 can be 
directly compared across the cases. 
 
 
5.3  RESERVE COSTS 
 
 Tables 9 and 10 present total DA reserve costs, which include reserve purchase costs and 
reserve curtailment penalty costs. The reserve purchase cost is the largest cost element in most 
cases. However, when we impose a strict reserve policy, especially in the high-wind fall season, 
reserve curtailment drives the reserve costs to a large value, especially in the zonal cases. The 
results demonstrate that it is important to properly select the reserve rules to balance the need for 
system reliability with the additional costs of scheduling more reserves. For DUC, the reserve 
costs increase with an increase in the reserve requirements (i.e., lower forecast quantile). 
Moreover, imposing zonal reserve requirements increases the reserve cost, particularly for high 
reserve levels. The IUC cases have lower reserve costs than DUC, indicating that the reserves are 
scheduled more efficiently with the implicit IUC reserve strategy. SUC cases have the lowest 
reserve costs, since the cost of implicit wind reserves are not considered under this formulation, 
i.e., only the cost of contingency reserves are accounted for explicitly in the base SUC-E-0 case. 
Note that the other SUC cases do also purchase additional explicit reserves in each wind 
scenario, but these reserve levels and costs are small compared to the dynamic wind reserves in 
the DUC cases. 
 
 
5.4  CURTAILMENT OF RESERVE AND LOAD 
 
 
5.4.1  Day-ahead 
 
 From Tables 11 and 12, we observe that the DA load-shedding amount is very limited. 
As there is a $ 3500/MWh load-shedding penalty, the UC optimizes the schedule to minimize 
this penalty payment. For the DUC and IUC cases, this payment is entirely avoided by adopting 
a more expensive schedule. For the SUC cases, as multiple scenarios are considered, load 
shedding occurs for some particular scenarios on certain days, primarily in the fall. This load-
shedding penalty may be tolerable from an economic perspective, as we see that the total cost is 
still lower for the SUC cases.  
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TABLE 9  Summer Average Daily Day-ahead Reserve Cost 

 
Case Number Cost (106 $) Case Number Cost (106 $) Case Number Cost (106 $) 

      

DUC-perfect 0.0163  

DUC-point 0.0163 

DUC-DR-40 0.0292 DUC-DRZ-40 0.0292 IUC-40 0.0185 

DUC-DR-30 0.0407 DUC-DRZ-30 0.0408 IUC-30 0.0249 

DUC-DR-20 0.0516 DUC-DRZ-20 0.0599 IUC-20 0.0322 

DUC-DR-10 0.0621 DUC-DRZ-10 0.1945 IUC-10 0.0425 

DUC-DR-5 0.0693 DUC-DRZ-5 0.3864 IUC-5 0.0485 

DUC-DR-1 0.1002 DUC-DRZ-1 0.6496 IUC-1 0.0525 

SUC-E-0 0.0163 SUC-L-0 0.0163 SUC-B-0 0.0163 

SUC-E-1 0.0170 SUC-L-1 0.0170 SUC-B-1 0.0169 

SUC-E-5 0.0197 SUC-L-5 0.0196 SUC-B-5 0.0196 

SUC-E-10 0.0230 SUC-L-10 0.0230 SUC-B-10 0.0230 

SUC-EZ-1 0.0170 SUC-LZ-1 0.0170 SUC-BZ-1 0.0170 

SUC-EZ-5 0.0197 SUC-LZ-5 0.0196 SUC-BZ-5 0.0196 

SUC-EZ-10 0.0230 SUC-LZ-10 0.0230 SUC-BZ-10 0.0232 

 
 

TABLE 10  Fall Average Daily Day-ahead Reserve Cost 

 
Case Number Cost (106 $) Case Number Cost (106 $) Case Number Cost (106 $) 

      

DUC-perfect 0.0163  

DUC-point 0.0163 

DUC-DR-40 0.0311 DUC-DRZ-40 0.0311 IUC-40 0.0192 

DUC-DR-30 0.0458 DUC-DRZ-30 0.0471 IUC-30 0.0278 

DUC-DR-20 0.0604 DUC-DRZ-20 0.0866 IUC-20 0.0389 

DUC-DR-10 0.0757 DUC-DRZ-10 0.2902 IUC-10 0.0529 

DUC-DR-5 0.0859 DUC-DRZ-5 0.5912 IUC-5 0.0591 

DUC-DR-1 0.1934 DUC-DRZ-1 1.0868 IUC-1 0.0645 

SUC-E-0 0.0163 SUC-L-0 0.0163 SUC-B-0 0.0163 

SUC-E-1 0.0172 SUC-L-1 0.0172 SUC-B-1 0.0172 

SUC-E-5 0.0207 SUC-L-5 0.0207 SUC-B-5 0.0207 

SUC-E-10 0.0252 SUC-L-10 0.0252 SUC-B-10 0.0252 

SUC-EZ-1 0.0172 SUC-LZ-1 0.0172 SUC-BZ-1 0.0172 

SUC-EZ-5 0.0207 SUC-LZ-5 0.0207 SUC-BZ-5 0.0207 

SUC-EZ-10 0.0252 SUC-LZ-10 0.0252 SUC-BZ-10 0.0252 
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TABLE 11  Summer Daily Average Day-ahead Load Shedding 
Amount 

 
Case Number MW Case Number MW Case Number MW 

      

DUC-perfect 0  

DUC-point 0 

DUC-DR-40 0 DUC-DRZ-40 0 IUC-40 0 

DUC-DR-30 0 DUC-DRZ-30 0 IUC-30 0 

DUC-DR-20 0 DUC-DRZ-20 0 IUC-20 0 

DUC-DR-10 0 DUC-DRZ-10 0 IUC-10 0 

DUC-DR-5 0 DUC-DRZ-5 0 IUC-5 0 

DUC-DR-1 0 DUC-DRZ-1 0 IUC-1 0 

SUC-E-0 0 SUC-L-0 0 SUC-B-0 0 

SUC-E-1 0 SUC-L-1 0 SUC-B-1 0 

SUC-E-5 0 SUC-L-5 0 SUC-B-5 0 

SUC-E-10 0 SUC-L-10 0 SUC-B-10 0 

SUC-EZ-1 0 SUC-LZ-1 0 SUC-BZ-1 0 

SUC-EZ-5 0 SUC-LZ-5 0 SUC-BZ-5 0 

SUC-EZ-10 0 SUC-LZ-10 0 SUC-BZ-10 0.0102 

 
 

TABLE 12  Fall Daily Average Day-ahead Load Shedding Amount 

 
Case Number MW Case Number MW Case Number MW 

      

DUC-perfect 0  

DUC-point 0 

DUC-DR-40 0 DUC-DRZ-40 0 IUC-40 0 

DUC-DR-30 0 DUC-DRZ-30 0 IUC-30 0 

DUC-DR-20 0 DUC-DRZ-20 0 IUC-20 0 

DUC-DR-10 0 DUC-DRZ-10 0 IUC-10 0 

DUC-DR-5 0 DUC-DRZ-5 0 IUC-5 0 

DUC-DR-1 0 DUC-DRZ-1 0 IUC-1 0 

SUC-E-0 1.0756 SUC-L-0 0 SUC-B-0 0.0251 

SUC-E-1 0.0036 SUC-L-1 0 SUC-B-1 0.1200 

SUC-E-5 0.0039 SUC-L-5 0.0002 SUC-B-5 0.8666 

SUC-E-10 0 SUC-L-10 0 SUC-B-10 0.2418 

SUC-EZ-1 0 SUC-LZ-1 0 SUC-BZ-1 0.7598 

SUC-EZ-5 0 SUC-LZ-5 0 SUC-BZ-5 0.2951 

SUC-EZ-10 0.0033 SUC-LZ-10 0 SUC-BZ-10 0.1475 
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Tables 13 to 15 show that the reserve curtailment mainly occurs for the DUC with zonal 
reserves. With larger reserve requirements, there tends to be a larger reserve penalty, as the 
system cannot always provide such reserve amounts and has to curtail certain amounts even if 
doing so is very expensive. Table 15 further presents the curtailment for the different reserve 
products, averaged across the four months. Spinning reserve suffers from the most curtailment, 
which is not surprising, since the reserve-shedding penalties follow the order of non-spinning, 
which corresponds to total reserve ($1100/MWh), regulation ($1000/MWh), and spinning 
($850/MWh) [8] [46]. Hence, the system curtails spinning reserves, the cheapest products, first. 
To avoid load shedding, which has a higher penalty, non-spinning reserve curtailment is 
sometimes implemented during periods of high reserve requirements. From Tables 13–15, we 
observe that the dynamic reserve requirement should be properly selected, and a too large value 
would decrease the economic benefit without improving reliability. 
 
 

TABLE 13  Summer Average Daily Day-ahead Reserve Curtailment 

 
Case Number MW Case Number MW Case Number MW 

      

DUC-perfect 0  

DUC-point 0 

DUC-DR-40 0 DUC-DRZ-40 0 IUC-40 0 

DUC-DR-30 0 DUC-DRZ-30 0.0001 IUC-30 0 

DUC-DR-20 0 DUC-DRZ-20 0.0083 IUC-20 0 

DUC-DR-10 0 DUC-DRZ-10 0.1323 IUC-10 0 

DUC-DR-5 0.0013 DUC-DRZ-5 0.3184 IUC-5 0 

DUC-DR-1 0.0279 DUC-DRZ-1 0.5773 IUC-1 0 

SUC-E-0 0 SUC-L-0 0 SUC-B-0 0 

SUC-E-1 0 SUC-L-1 0 SUC-B-1 0 

SUC-E-5 0 SUC-L-5 0 SUC-B-5 0 

SUC-E-10 0 SUC-L-10 0 SUC-B-10 0 

SUC-EZ-1 0 SUC-LZ-1 0 SUC-BZ-1 0 

SUC-EZ-5 0 SUC-LZ-5 0 SUC-BZ-5 0 

SUC-EZ-10 0 SUC-LZ-10 0 SUC-BZ-10 0.0002 
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TABLE 14  Fall Average Daily Day-ahead Reserve Curtailment 

 
Case Number MW Case Number MW Case Number MW 

      

DUC-perfect 0  

DUC-point 0 

DUC-DR-40 0 DUC-DRZ-40 0 IUC-40 0 

DUC-DR-30 0 DUC-DRZ-30 0.0013 IUC-30 0 

DUC-DR-20 0 DUC-DRZ-20 0.0262 IUC-20 0 

DUC-DR-10 0 DUC-DRZ-10 0.2146 IUC-10 0 

DUC-DR-5 0.0024 DUC-DRZ-5 0.5077 IUC-5 0 

DUC-DR-1 0.1021 DUC-DRZ-1 0.9957 IUC-1 0 

SUC-E-0 0 SUC-L-0 0 SUC-B-0 0 

SUC-E-1 0 SUC-L-1 0 SUC-B-1 0 

SUC-E-5 0 SUC-L-5 0 SUC-B-5 0 

SUC-E-10 0 SUC-L-10 0 SUC-B-10 0 

SUC-EZ-1 0 SUC-LZ-1 0 SUC-BZ-1 0 

SUC-EZ-5 0 SUC-LZ-5 0 SUC-BZ-5 0 

SUC-EZ-10 0.0001 SUC-LZ-10 0.0001 SUC-BZ-10 0.0001 

 
 

TABLE 15  Four-Month Average Daily Day-ahead Reserve 
Curtailment for DUC Cases 

Case Number 

 
Regulation Up 

(MW) 
Regulation Down 

(MW) 
Spinning 

(MW) 
Non-Spinning 

(MW) 

     

DUC-DR-40 0 0 0 0 

DUC-DR-30 0.0005 0.0005 0.0033 0 

DUC-DR-20 0 0 0.0072 0 

DUC-DR-10 0 0 0.0093 0 

DUC-DR-5 0 0.5990 1.4641 0 

DUC-DR-1 0.8841 7.250 26.6372 30.87 

DUC-DRZ-40 0 0 0 0 

DUC-DRZ-30 0 0 0.0032 0 

DUC-DRZ-20 0 0 0.0072 0 

DUC-DRZ-10 0 0 0.0275 0 

DUC-DRZ-5 0 0.7337 1.3047 0.4935 

DUC-DRZ-1 0.7430 7.056 27.33 30.90 
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5.4.2  Real-time 
 
 Table 16 presents the RT load shedding results for the fall. As the wind power generation 
is relatively low in summer, there is no load shedding at all. However, as wind availability is 
higher in the fall, the forecast inaccuracy brings more challenges to the system, and there is load 
shedding for DUC cases on some particular days with poor wind power forecasts. Although 
dynamic reserves and also zonal settings provide room to hedge against the forecast errors, these 
strategies still cannot mitigate the error as well as in the SUC cases. Even though BD solutions 
are not as good as the other two SUC solution methods, they are still better than the DUC cases 
in terms of load shedding. Since the worst-case wind is considered, IUC also performs well here 
when the LB is based on lower quantiles.  
 

There is no reserve curtailment in RT dispatch, as we only impose a system-wide 
contingency reserve requirement in the RT dispatch simulation. This contingency reserve amount 
is not large and is easy to cope with for all the scheduling approaches.  
 
 

TABLE 16  Fall Average Daily Real-time Load Shedding 

 
Case Number MW Case Number MW Case Number MW 

      

DUC-perfect 0  

DUC-point 3.4257 

DUC-DR-40 3.3233 DUC-DRZ-40 4.4695 IUC-40 1.8495 

DUC-DR-30 2.0674 DUC-DRZ-30 1.2941 IUC-30 1.0830 

DUC-DR-20 0.4593 DUC-DRZ-20 0.1167 IUC-20 0.3307 

DUC-DR-10 0.5161 DUC-DRZ-10 0 IUC-10 0 

DUC-DR-5 0.2856 DUC-DRZ-5 0 IUC-5 0 

DUC-DR-1 0 DUC-DRZ-1 0 IUC-1 0 

SUC-E-0 0 SUC-L-0 0 SUC-B-0 0.2056 

SUC-E-1 0 SUC-L-1 0 SUC-B-1 0.2126 

SUC-E-5 0 SUC-L-5 0 SUC-B-5 0.6239 

SUC-E-10 0 SUC-L-10 0 SUC-B-10 0 

SUC-EZ-1 0 SUC-LZ-1 0 SUC-BZ-1 1.3849 

SUC-EZ-5 0 SUC-LZ-5 0 SUC-BZ-5 0 

SUC-EZ-10 0 SUC-LZ-10 0 SUC-BZ-10 0 
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5.5  WIND CURTAILMENT 
 
 Different wind profiles and representations are used for the different formulations at the 
DA stage. In contrast, at the RT stage, every formulation uses the same realized wind data. 
Therefore, RT-stage wind curtailment is a good illustration of the system wind utilization level. 
In Table 17, we present the average daily total wind curtailments for summer and fall in RT. Not 
surprisingly, the perfect-forecast case results in the lowest wind curtailment, as the scheduling is 
based on perfect foresight of available wind power. Among the other cases, SUC performs the 
best in terms of reducing the wind curtailment, indicating that the scenarios capture the 
uncertainty quite well and schedule resources accordingly. DUC is worse than SUC but better 
than IUC. IUC curtails the most wind to ensure feasible operation in preparation for the worst-
case scenario. In general, higher explicit or implicit reserves in DUC and SUC, respectively, give 
rise to slightly more wind curtailments as additional units are scheduled to provide reserves, as 
discussed in the next section. 
 
 
5.6  NUMBER OF COMMITMENTS 
 
 In Table 18, we present the average daily number of commitments for fast (i.e., oil and 
gas) and slow (i.e., coal) generators. As the two reference DUC strategies (perfect and point) rely 
on a point forecast only, they tend to use the cheaper slow units as much as possible. In contrast, 
the dynamic reserve and IUC cases consider the wind-power forecast uncertainty and more 
quick-start units are running for these cases, especially for lower forecast quantiles. As IUC 
provides implicit reserve and ensures the reserve deliverability for the transition and LB forecast  
 
 

TABLE 17  Average Daily Total 
Real-time Wind Curtailments 

 

 
Wind Curtailments 

(MWh) 

Case Number 
 

Summer Fall 

   

DUC-perfect 540 1361 

DUC-point 732 2199 

DUC-DR -30 737 2214 

DUC-DR -10 735 2239 

DUC-DRZ-30 733 2158 

DUC-DRZ-10 751 2287 

IUC-30 737 2224 

IUC-10 783 2551 

SUC-E-0 712 2044 

SUC-E-5 711 2044 

SUC-EZ-5 712 2030 
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cases, the IUC cases tend to start up more quick-start units with a more expensive schedule. For 
the same forecast interval, DUC starts fewer generators than DUC-Z, while IUC starts more units 
than DUC-Z.  
 
 The results also show that the stochastic cases commit significantly fewer units to hedge 
against uncertainty. The advantage of SUC is evident, as it commits fewer units at the DA and 
RAC stages than DUC and IUC but with better reliability. Therefore, the results indicate that a 
stochastic formulation with a good representation of uncertainty can reduce unnecessary start-
ups.  
 
 Additional quick-start units can be started in RAC when necessary. For the less-windy 
summer season, Table 18 shows that there are only small changes in the average commitment 
levels between DA and RAC, indicating that the need for doing re-commitments in RAC is 
limited. The differences are somewhat more significant in the more windy fall season, i.e., with 
more adjustments in RAC. Note that the SUC cases tend to give smaller changes in commitments 
between DA and RAC than the DUC and IUC cases, indicating that the DA schedule under SUC 
is more capable of handling deviations in the wind power forecast. Different reserve strategies do 
not significantly change the commitment decisions under SUC. Therefore, their operational 
schedules are close to the two reference cases (DUC-perfect and DUC-point) and still have better 
reliability metrics than other operational strategies (Table 16). Hence, Tables 16–18 illustrate the 
advantage of stochastic scheduling methods. Table 18 shows that the DUC and IUC strategies 
schedule more units than SUC, particularly in the fall season. Furthermore, more units are 
scheduled with increasing reserve requirements. Finally, zonal reserves tend to increase the 
number of commitments under DUC.  
 
 
TABLE 18  Average Daily Number of Commitments 

 
 

Summer  Fall 

  
 

Fast Units 
 

Total Units   Fast Units  Total Units 

Case Number Slow Units 
 

DA RAC 
 

DA RAC  Slow Units DA RAC  DA RAC 

              

DUC-perfect 705.7 0.6 0.6  706.3 706.3  564.8 1.5 1.5  566.3 566.3 

DUC-point 728.7 1.5 1.3  730.2 730.0  597.4 0.8 1.7  598.2 599.1 

DUC-DR -30 725.6 2.5 2.1  728.1 727.7  594.0 0.9 2.1  594.9 596.1 

DUC-DR -10 732.5 5.3 3.9  737.8 736.4  626.1 20.5 17.8  646.6 643.9 

DUC-DRZ-30 727.2 3.0 2.4  730.2 729.6  600.4 4.1 8.0  604.5 608.4 

DUC-DRZ-10 735.5 13.0 9.1  748.5 744.6  639.8 33.0 42.4  672.8 682.2 

IUC-30 732.3 2.5 2.5  734.8 734.8  610.5 0.9 2.7  611.4 613.2 

IUC-10 760.7 22.9 17.0  783.6 777.7  706.4 30.4 26.1  736.8 732.5 

SUC-E-0 711.0 3.5 3.4  714.5 714.4  567.4 1.0 3.3  568.4 570.7 

SUC-E-5 710.8 3.5 3.3  714.3 714.1  566.5 1.5 3.4  568.0 569.9 

SUC-EZ-5 710.8 3.5 3.2  714.3 714.0  566.3 1.6 3.3  567.9 569.6 
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5.7  COMPUTATION 
 
 The computational effort is also a very important metric when comparing different 
scheduling strategies. The computational wall-clock time is shown in Tables 19 and 20. 
Compared to DUC-point, procuring additional dynamic reserves increases the computing time, 
but the overall speed is still fast. As the reserve requirement increases, the problem becomes 
much harder to solve. Note that there is a substantial difference between DUC-DR-10 and DUC-
DR-5. DUC-Z has similar performance characteristics to DUC, but is slightly slower.  
 
 Interestingly, IUC outperforms DUC from a computational perspective, and performs 
very similarly to the two DUC reference cases. The reason is that IUC adds a set of feasibility 
check constraints to ensure that the system has enough reserve, and these constraints drive the 
system to schedule implicit reserve only when it is necessary, sometimes resulting in less 
reserves scheduled compared to the DUC case. Therefore, IUC adds less computational burden 
than the dynamic reserve case. Another interesting finding is that the lower quantile even drives 
the program to be faster. This is probably because with a lower quantile, the feasible region can 
be more efficiently solved by CPLEX.  
 
 As expected, the computation time is significantly longer for the SUC cases compared to 
IUC and DUC. Still, with ten scenarios, the average times are all below 10 minutes for the DA 
problem. Note that although the extensive-form formulation has similar computing times to the 
LSF decomposition, there are out-of-memory issues for particular days where CPLEX fails to 
provide a solution. Hence, the optimality gap and other settings have to be relaxed and adjusted 
to provide a solution. BD is faster than the extensive-form formulation and the LSF 
decomposition, especially at the RAC stage (Table 20), but some efforts are needed to construct 
proper subproblems for better convergence. With the current 1% MIP gap, the solution is not as 
good as the extensive-form and LSF solutions. When experimenting with a lower gap, such as 
0.5% or even 0.1%, the bloating master problem quickly makes this problem intractable and it 
takes a much longer time to solve and converge. In contrast, with LSF decomposition, these extra 
manual tuning efforts are not necessary. In general, decomposition enables one to consistently 
find solutions for cases incorporating more scenarios. Increasing the number of scenarios is 
something we plan to test in future work. 
 
 Table 21 shows that LSF decomposition generally converges in 4 iterations. Each cut is 
essentially representing one congested or potentially congested line. On average, only 0.73% of 
the lines are potentially congested for case SUC-L-0. These convergence statistics do not change 
much as we change the dynamic reserve settings. A better initialization step could place 
pre-defined critical lines in the line checking set to further reduce the computing time. This 
approach could save time, as fewer iterations of solving the repeated master MIP problem would 
be necessary. 
 
 Finally, Table 22 also shows that BD can normally converge in 16–20 iterations to reach 
the optimality criterion for the DA problem. However, for some extreme cases, the maximum 
iteration limit of 100 is met. In contrast, after fixing the slow generators, RAC only needs one 
more iteration to find the optimal solution. With a lower MIP gap for the master problem, it 
would take hours or even up to one day. Therefore, we select 1% as the MIP gap for this 
instance.  
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TABLE 19  Average Day-ahead Computational Time Per Day (Wall-
clock) 

 
Case Number Time (s) Case Number Time (s) Case Number Time (s) 

      

DUC-perfect 11.5  

DUC-point 9.6 

DUC-DR-40 8.5 DUC-DRZ-40 10.1 IUC-40 20.8 

DUC-DR-30 8.9 DUC-DRZ-30 12.4 IUC-30 16.3 

DUC-DR-20 10.7 DUC-DRZ-20 14.7 IUC-20 12.0 

DUC-DR-10 22.1 DUC-DRZ-10 22.1 IUC-10 9.7 

DUC-DR-5 27.0 DUC-DRZ-5 26.8 IUC-5 14.2 

DUC-DR-1 32.9 DUC-DRZ-1 52.1 IUC-1 8.8 

SUC-E-0 218.5 SUC-L-0 266.3 SUC-B-0 189.0 

SUC-E-1 228.8 SUC-L-1 253.6 SUC-B-1 225.8 

SUC-E-5 239.5 SUC-L-5 455.4 SUC-B-5 241.5 

SUC-E-10 414.3 SUC-L-10 361.9 SUC-B-10 196.8 

SUC-EZ-1 328.1 SUC-LZ-1 349.8 SUC-BZ-1 202.3 

SUC-EZ-5 306.4 SUC-LZ-5 468.0 SUC-BZ-5 194.6 

SUC-EZ-10 314.9 SUC-LZ-10 762.4 SUC-BZ-10 222.5 

 
 

TABLE 20  Average RAC Computational Time Per Day 

 
Case Number Time (s) Case Number Time (s) Case Number Time (s) 

      

DUC-perfect 4.3  

DUC-point 4.6 

DUC-DR-40 4.4 DUC-DRZ-40 4.5 IUC-40 5.0 

DUC-DR-30 4.5 DUC-DRZ-30 4.9 IUC-30 3.9 

DUC-DR-20 4.6 DUC-DRZ-20 5.5 IUC-20 4.2 

DUC-DR-10 5.9 DUC-DRZ-10 9.4 IUC-10 4.3 

DUC-DR-5 25.9 DUC-DRZ-5 9.9 IUC-5 5.7 

DUC-DR-1 25.0 DUC-DRZ-1 14.6 IUC-1 4.3 

SUC-E-0* 62.1 SUC-L-0 47.7 SUC-B-0 10.7 

SUC-E-1* 66.1 SUC-L-1 46.7 SUC-B-1 11.6 

SUC-E-5* 67.1 SUC-L-5 57.3 SUC-B-5 10.8 

SUC-E-10* 107.5 SUC-L-10 51.6 SUC-B-10 9.6 

SUC-EZ-1* 77.0 SUC-LZ-1 54.2 SUC-BZ-1 9.6 

SUC-EZ-5* 83.6 SUC-LZ-5 60.0 SUC-BZ-5 9.7 

SUC-EZ-10* 78.1 SUC-LZ-10 64.9 SUC-BZ-10 10.1 

*Out of memory. 
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TABLE 21  LSF Decomposition Convergence Statistics 

UC Model 

 
DA Average/ 

Maximum Number 
of Iterations 

DA Average/ 
Maximum Number 

of Cuts 

RAC Average/ 
Maximum Number 

of Iterations 

RAC Average/ 
Maximum Number 

of Cuts 

     

SUC-L-0 4/7 328/940 3/4 293/702 

SUC-L-1 4/6 327/942 3/5 294/701 

SUC-L-5 4/6 328/945 3/4 293/680 

SUC-L-10 4/6 328/932 3/5 292/700 

SUC-LZ-1 4/6 329/948 3/5 292/682 

SUC-LZ-5 4/6 329/946 3/4 293/689 

SUC-LZ-10 4/7 329/1016 3/5 293/705 

 
 

TABLE 22  Benders Decomposition Convergence Statistics 

UC Model 

 
DA Average/ 

Maximum Number 
of Iterations 

DA Average/ 
Maximum Number 

of Cuts 

RAC Average/ 
Maximum Number 

of Iterations 

RAC Average/ 
Maximum Number 

of Cuts 

     

SUC-B-0 16/100 166/1100 2/2 11/11 

SUC-B-1 18/100 192/1100 2/2 11/11 

SUC-B-5 20/100 208/1100 2/2 11/11 

SUC-B-10 20/100 204/1100 2/2 11/11 

SUC-BZ-1 20/100 204/1100 2/2 11/11 

SUC-BZ-5 20/100 206/1100 2/2 11/11 

SUC-BZ-10 20/100 214/1100 2/2 11/11 
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6  CONCLUSION AND FUTURE DIRECTIONS 
 
 
 As more wind power is being integrated into the electric power grid, the forecast 
uncertainty brings operational challenges for the system operators. In this report, different 
operational strategies for uncertainty management are presented and evaluated. A comprehensive 
and consistent simulation framework is developed to analyze the performance of different 
reserve policies and scheduling techniques. The numerical results from the IEEE 118-bus system 
show that SUC formulations provide a reliable schedule without large increases in operational 
costs. Moreover, the results indicate that decomposition can help in overcoming the 
computational obstacles for SUC and can enable the use of a larger scenario set. In contrast, 
DUC and IUC tend to yield higher system costs as more reserves are being scheduled, but these 
approaches require much less computational time. The introduction of zonal reserve 
requirements into DUC improves reliability, but at the expense of higher costs. For DUC and 
IUC, choosing a proper LB for the forecast uncertainty is important for balancing reliability and 
system operational cost. The pros and cons of the different operational strategies analyzed in this 
report are summarized in TABLE 23. 
 
 Interesting directions for future work include exploring approaches to optimize the 
dynamic reserve settings under DUC. Moreover, modeling the ability of wind power to provide 
reserves should also be considered as a means to obtain a more economical schedule. Testing 
these operational methods for higher wind penetration levels and for larger scenario sets is also 
important, as is investigating implications for market clearing and pricing. Finally, the 
approaches tested in this report should be compared against a wider set of operational strategies.  
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TABLE 23  Pros and Cons of Different Scheduling Strategies 

 
 

Pros Cons 

   

DUC-DR Computationally efficient 

Reduces load shedding compared to no-
reserve case 

Conservative; may schedule more units than necessary 

Causes reserve curtailments if the reserve rule is too 
conservative 

DUC-DRZ Computationally efficient 

More reliable than DUC-DR because of 
zonal reserve requirements 

More conservative and costly than DUC-DR 

Causes reserve curtailment if reserve rule is set too high 

IUC Computationally very efficient 

Reliable schedule with low or no load 
shedding 

May be difficult to find proper LBs for forecast interval 

Starts more fast units than other formulations 

SUC-E More economic and reliable schedule 

Starts fewer units 

Captures uncertainty well through stochastic 
formulation 

Much slower than DUC and IUC 

Less scalable with more scenarios 

SUC-LSF More economical and reliable schedule 

Starts fewer units 

More computationally efficient than SUC-E 

Identifies congested transmission lines 

Captures uncertainty well through stochastic 
formulation 

Slower than DUC and IUC 

Less scalable with more scenarios 

SUC-BD More economic and reliable schedule 

Computationally efficient 

Better scalability than LSF and SUC-E 

Captures uncertainty well through stochastic 
formulation 

Slower than DUC and IUC 

Need for more model and parameter tuning than with 
LSF decomposition 

Bloating master problem if optimality cuts are weak 
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