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ABSTRACT 

SHARP, developed under the NEAMS Reactor Product Line, is an advanced modeling and 

simulation toolkit for the analysis of advanced nuclear reactors. SHARP is comprised of three 

physics modules currently including neutronics, thermal hydraulics, and structural mechanics. 

SHARP empowers designers to produce accurate results for modeling physical phenomena 

that have been identified as important for nuclear reactor analysis. SHARP can use existing 

physics codes and take advantage of existing infrastructure capabilities in the MOAB 

framework and the coupling driver/solver library, the Coupled Physics Environment (CouPE), 

which utilizes the widely used, scalable PETSc library. 

This report aims at identifying the coupled-physics simulation capability of SHARP by 

introducing the demonstration example called sahex in advance of the SHARP release 

expected by Mar 2016. sahex consists of 6 fuel pins with cladding, 1 control rod, sodium 

coolant and an outer duct wall that encloses all the other components. This example is 

carefully chosen to demonstrate the proof of concept for solving more complex demonstration 

examples such as EBR II assembly and ABTR full core. The workflow of preparing the input 

files, running the case and analyzing the results is demonstrated in this report. Moreover, an 

extension of the sahex model called sahex_core which adds six homogenized neighboring 

assemblies to the full heterogeneous sahex model is presented to test homogenization 

capabilities in both Nek5000 and PROTEUS. 

Some primary information on the configuration and build aspects for the SHARP toolkit, 

which includes capability to auto-download dependencies and configure/install with optimal 

flags in an architecture-aware fashion is also covered by this report. A step-by-step instruction 

is provided to help user to create their cases. Details on these processes will be provided in the 

SHARP user manual that will accompany the first release. 

 

 

 

 

 



SHARP Multiphysics Tutorials 

 

Table of Contents 

Abstract ..................................................................................................................................... ii 
Table of Contents ..................................................................................................................... iii 
List of Figures .......................................................................................................................... iv 
List of Tables............................................................................................................................ iv 
1 Introduction of SHARP ....................................................................................................... 1 

2 SHARP Configuration and Installation ............................................................................... 7 

2.1 Package Dependencies ...................................................................................................... 7 

2.2 Source Management .......................................................................................................... 7 

2.3 Configuration Options ....................................................................................................... 8 

2.3.1 Enabling/disabling compile-time features or packages.................................................... 8 

2.3.2 Linking to existing libraries ............................................................................................. 8 

2.3.3 Downloading third-party libraries .................................................................................... 8 

2.4 Installation ......................................................................................................................... 9 
3 Demonstration Examples .................................................................................................. 11 

3.1 sahex ................................................................................................................................ 11 

3.1.1 Problem Description....................................................................................................... 11 

3.1.2 Input files.. ..................................................................................................................... 12 

3.1.3 Running…. ..................................................................................................................... 16 

3.1.4 Analyzing.. ..................................................................................................................... 18 

3.2 sahex_core ....................................................................................................................... 24 

3.2.1 Problem Description....................................................................................................... 24 

3.2.2 Input files.. ..................................................................................................................... 25 

3.2.3 Running…. ..................................................................................................................... 26 

3.2.4 Analyzing.. ..................................................................................................................... 27 
4 Create Own Test Case ....................................................................................................... 30 
5 Reference........................................................................................................................... 32 
 

 

 



SHARP Multiphysics Tutorials 

 

ANL-NE-16/1 iv  
 

LIST OF FIGURES 

Figure 1.1. a) Depiction of the CouPE solvers interacting with MOAB data backplane driving 

the standalone or coupled physics calculations. b) Sketch of global iteration. .......................... 3 
Figure 1.2 Coupling and iteration process. ................................................................................ 6 
Figure 3.1 sahex problem geometry and mesh......................................................................... 11 
Figure 3.2 NEK5000 mesh and Block number (sahex_nek.h5m) ........................................... 14 

Figure 3.3 DIABLO and PROTEUS mesh Block number (sahex_proteus.h5m) .................... 15 
Figure 3.4 Power profile and temperature distribution for steady state solution ..................... 18 
Figure 3.5 Load .hdf5 and .h5m file in Visit ............................................................................ 20 
Figure 3.6 Temperature distributions on different elevations .................................................. 21 
Figure 3.7 keff transient profile as a function of feedback and temporal resolution ................. 22 

Figure 3.8  Transient evolution of coupled field profiles at the beginning, during and at the 

end of the perturbation a) power distribution (W) b) temperature (K) .................................... 23 

Figure 3.9 sahex_core problem mesh....................................................................................... 25 
Figure 3.10 Velocity distribution for sahex_core .................................................................... 27 

Figure 3.11 Power distributions for heterogeneous and homogenized assembly .................... 28 
Figure 3.12 Temperature distributions on difference elevations ............................................. 29 

 

 

LIST OF TABLES 

Table 2.1. List of SHARP toolkit dependencies ........................................................................ 7 
Table 3.1 sahex detailed geometry information. ...................................................................... 12 

Table 3.2 sahex property and flow condition. .......................................................................... 12 
Table 3.3 sahex input files ....................................................................................................... 13 

Table 3.4 Mesh convergence study on keff ............................................................................... 20 
 

 



1 

1 Introduction of SHARP 

SHARP [1], developed under the NEAMS program, is an advanced modeling and simulation 

toolkit for the analysis of nuclear reactors. SHARP is comprised of several components, 

including physical modeling tools, tools to integrate the physics codes for multi-physics 

analyses, and a set of tools to couple the codes within the MOAB [2] framework. Physics 

modules currently include the PROTEUS [3] neutronics code, the Nek5000 [4] thermal-

hydraulics code, and the Diablo [5] structural mechanics code. The development philosophy 

for the physics modules is to incorporate as much fundamental physics as possible, rather than 

developing tools for specific reactor analysis applications. This empowers designers to analyze 

transformative reactor concepts with simulation tools that are not limited to available 

experimental data sets from currently existing reactor designs. By developing the tools to be 

highly efficient on parallel computing platforms; employing millions of processor cores; 

engineering-scale simulations become practical on high-performance computers currently 

available at the DOE complex. Development efforts strive to work in tandem with efforts in 

experimentation, so that the tools are validated to produce accurate results for modeling 

physical phenomena that have been identified as important for nuclear reactor analysis. By 

taking this approach, SHARP supports nuclear reactor analysis and design activities for DOE 

programs and industrial partnerships with trustworthy modeling and simulation tools. 

In order to produce a fully coupled-physics simulation capability, two obvious approaches can 

be pursued. In one approach, existing single-physics codes/components can be assembled into 

an overall coupled simulation code with appropriate interfaces to communicate between the 

components to capture the nonlinear feedback effects. This is generally referred to as a “small-

f” or “bottom-up” framework approach [1, 6]. The other approach is to use an integrated, 

coupled-physics modeling framework, with new code pieces for each relevant physics area 

developed inside that framework from scratch. This is sometimes referred to as a “large-F” or 

“top-down” approach [7, 8]. The primary advantage of the former approach is that it preserves 

several man-years invested in existing verified and validated individual physics modeling 

codes, but at the cost of some intrusive modifications to enable the software interfaces. The 

large-F approach avoids intrusive interfacing by providing a unified platform to enable 

coupling, but at the cost of re-writing all the necessary physics codes and verifying the 

components individually and as a whole. The overall approach being pursued in the RPL effort 

is to develop and demonstrate a small-f framework for performing coupled multi-physics 
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analysis of reactor core systems. This system takes advantage of many single-physics codes 

also sponsored by the overall NEAMS program over past several years. 

In the SHARP framework, MOAB interfaces are implemented for 3 different physics 

components that are relevant to fast reactor physics analysis. The addition of a new physics 

component to the framework requires integration and ability to read the mesh and possibly 

associated data from iMesh/MOAB formats, along with implementation to propagate solution 

variables back onto the mesh after their computation via tags defined either on discrete vertices 

or elements. Because of the various storage formats used in physics models, and the parallel 

domain-decomposed environment in which these calculations are usually run, this integration 

process can be somewhat involved. 

A multi-physics reactor core modeling code can be constructed in many ways, and numerous 

past efforts have provided stepping-stones for future efforts [8]. What distinguishes the 

SHARP effort from others is the goal of flexibility in the physics, discretization types, and 

software options supported by the framework. This section describes the SHARP modeling 

approach in detail and illustrates how various existing physics codes have been connected to 

this framework. 

As stated above, SHARP employs a “bottom-up” approach, so it can use existing physics codes 

and take advantage of existing infrastructure capabilities in the MOAB framework and the 

coupling driver/solver library, the Coupled Physics Environment (CouPE), which utilizes the 

widely used, scalable PETSc library [8].  

Using an existing physics code in this system (Figure 1.1) requires that the system support the 

mesh type used by the individual physics models. The physics models can retain their own 

native representation of the mesh, which gets transferred to and from MOAB’s representation 

through a mesh adaptor; or it can use MOAB’s representation directly. Language 

interoperability through the C/Fortran-based iMesh interfaces also allows flexibility in the 

implementations that are tuned to individual physics requirements without overhead. 

In practice, this means that the coupled system may be solved on multiple meshes, each of 

which models part or the entire physical domain of the problem. To perform efficient coupled 

calculations, the results must be transferred from the mesh on which they are generated (source 

mesh), to the mesh for which they provide initial or boundary conditions (target mesh) due to 
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nonlinearity introduced because of coupling between physics models. “Multi-way” transfer is 

required in cases where the physics depend on each other’s solution fields, for example in 

reactor analysis where neutronics computes heat generation based on temperature properties 

computed by thermal-hydraulics, which in turn depends on the heat-generation source term 

computed by neutronics. 

 

a 

 

b 

Figure 1.1. a) Depiction of the CouPE solvers interacting with MOAB data backplane 

driving the standalone or coupled physics calculations. b) Sketch of global iteration. 

Since relevant physics components solving a nuclear engineering problem have widely varying 

backgrounds in terms of code architectures, dependency requirements, and specialized solver 
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data-structures, a flexible approach to the coupling methodology was necessary to obtain 

accurate solutions. This motivation led to the development of the MOAB-based spatial 

projection tools and the CouPE drivers based on PETSc library to orchestrate the global 

nonlinear solver. Details regarding these tools are given in the following sections. 

In the future, Diablo, PROTEUS, and Nek5000 will all run simultaneously underneath the 

CouPE framework and commproteusate quantities through MBCoupler in MOAB. As an 

interim step, the coupling has been accomplished through file-based transfer. This is a 2-step 

process, with the second step consisting of 8 substeps. 

1. Individual Nek5000, PROTEUS, and Diablo meshes are generated in the undeformed 

configuration. Nek5000 and PROTEUS use MOAB mesh files natively. Currently Diablo 

uses an EXODUS input file and writes the equivalent MOAB (“.h5m”) file as part of the 

initialization process. Thus, four mesh files are prepared: 

a. NEK.in.h5m 

b. PROTEUS.in.h5m 

c. DIABLO.in.exo 

d. DIABLO.in.h5m (created by Diablo when it initializes) 

2. SHARP iterates the problem until convergence: 

a. Coupled 2-mechanics runs (PROTEUS and Nek5000) are made using the updated 

mesh 

b. Temperature data from Nek5000 is written to  its native “FLD” file format, 

NEK.temps.FLD 

c. The VisIt utility converts the “FLD” file format to a MOAB (“h5m”) file, 

NEK.temps.h5m 

d. A standalone version of MBcoupler maps the Nek5000 data in .h5m format to the 

Diablo .h5m file, DIABLO.temps.h5m 

e. Diablo uses the temperature data and coupled solid mechanics to produce 

deformations, which are written as scalar quantities UX, UY, and UZ to an 

undeformed MOAB database, DIABLO.disp.h5m 

f. The standalone version of MBCoupler maps the UX,UY,UZ data to the Nek5000 

and PROTEUS meshes,  

i. NEK.disp.h5m 
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ii. PROTEUS.disp.h5m 

g. The standalone utility DEFORM moves the vertex coordinates on the PROTEUS 

and Nek5000 meshes according to the mapped values of UX, UY, and UZ,  

i. NEK.deformed.h5m 

ii. PROTEUS.deformed.h5m 

h. PROTEUS densities and isotope volume fractions are updated based on the mesh 

deformation if so desired. 

i. The deformed meshes are used as inputs to repeat step 2a above and continue the 

iterations, as depicted in Figure 1.2 

To better understand the level of fidelity that can be achieved by the SHARP framework, some 

key aspects of the 3 physics components are given in the following chapters. 



SHARP Multiphysics Tutorials 

 

ANL-NE-16/1 6  
 

 

Figure 1.2 Coupling and iteration process. 
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2 SHARP Configuration and Installation 

2.1 Package Dependencies 

In Table 2.1, the dependencies of SHARP toolkit and each module are provided. “√” indicates 

a required package and “(O)” indicates an optional package. A number of packages are 

optional for single-physics modules but required by the coupled problems in SHARP.  

Table 2.1. List of SHARP toolkit dependencies 

Package Version DIABLO PROTEUS Nek5000 SHARP 

ARPACK  √    

EXODUS II 6.06 (O)    

FEMSTER  √    

HDF5 1.8 (O) (O) (O) √ 

HYPRE 2.9 √    

ITAPS  (O)   √ 

Metis 4.0 (O) √ (O) √ 

MILI 13.1 √    

MOAB 4.7 (O) (O) (O) √ 

MPI  √ √ √  

MUMPS 4.1 √    

NASA  √    

NetCDF 4.3 (O) (O) (O) √ 

ParMetis 4 (O)   √ 

PETSc 3.1 or 3.4  √   

PWSSMP  √    

SILO 4.1 √    

ZOLTAN 3.8 (O) (O) (O) √ 

 

2.2 Source Management  

The SHARP toolkit utilizes SVN version control system to manage the sources for different 

components. The repository is hosted at Argonne and is available at the following link, as long 

as users have been pre-approved to gain access to it.  

Link: https://svn.mcs.anl.gov/repos/SHARP 

For instructions on how to obtain access to the SHARP repository, contact sharp-

dev@mcs.anl.gov. Once you have been granted access, the user could checkout the sources by 

invoking the following Subversion command: 

svn co https://svn.mcs.anl.gov/repos/SHARP/trunk SHARP 

mailto:sharp-dev@mcs.anl.gov
mailto:sharp-dev@mcs.anl.gov
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This command will create the SHARP directory containing all the configuration scripts, 

physics code module sources and a particular version of the coupled system driver along with 

several examples and test problems. 

2.3 Configuration Options 

There are several families of configuration options available when running the configure script, 

that can be used to control whether certain features are enabled/disabled, or if certain 

dependencies (pre-installed) need to be used in the current build or if the user wants the 

package manager to auto‐download and configure some of the dependencies. 

2.3.1 Enabling/disabling compile-time features or packages 

Compile-time features are enabled by options of the form: 

--enable-<feature>[=yes|no] 
--enable-<package>[=yes|no] 

Values other than yes/no will return an error. -­enable-<feature> is synonymous with -­enable-

<feature>=yes and -­disable-<feature> is synonymous with -­enable-<feature>=no. 

2.3.2 Linking to existing libraries 

The user may to link pre-installed libraries with options of the form: 

--with-<PACKAGE>=PATH 

where the PATH points to the installation directory typically containing the library and its 

headers. The PATH argument is mandatory and invalid paths return an error during 

configuration checks. If a valid library or dependency has been found, then the configuration 

for the dependency is processed to see if the required headers are available and if a test 

program that utilizes the library calls can be successfully compiled and linked in order to 

accumulate the overall LDFLAGS and LIBS to compile SHARP successfully. 

2.3.3 Downloading third-party libraries 

SHARP allows the user to download and compile third-party libraries through the configure 

script. Third-party libraries may be downloaded and compiled with options of the form: 

--download-<PACKAGE>[=yes|no|url] 

Specifying -­download-library[=yes] will download a tarball (.tar.gz file) of the library’s 

source code from a default URL and utilize default, verified workflows to configure, build and 
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install the dependency onto a dependency installation directory. Running “configure –help” 

provides a list of the default URLs associated with each library. Optionally, the user can also 

specify -­download-­library=URL in order to download the library from the given URL and 

build/install using the same process. Note that the user-provided URL should point to a valid 

tarball and may not be guaranteed to be compatible with other SHARP libraries and modules. 

2.4 Installation 

Step 1:  

The user could checkout the sources by invoking the following Subversion command: 

$svn co https://svn.mcs.anl.gov/repos/SHARP/trunk SHARP 

This command will create a SHARP directory. Go to SHARP directory: 

$cd SHARP 

Step 2: To configure SHARP, the user first needs to run a top-level configuration generator 

script, aptly named “bootstrap”. This script will verify whether the system contains the 

necessary and supported version of autotools before proceeding further. After verification, the 

autotools toolchain (aclocal, autoheader, autoconf, automake) can be used to generate the 

configuration script. An example output from successfully running the bootstrap script is 

shown below.  

$./bootstrap 
----------------------------------------------------------------- 
Bootstrap for SHARP build system. 
Beginning to run bootstrap in /Users/mahadevan/source/sharp/trunk. 
----------------------------------------------------------------- 
Scanning dependencies... 
Checking for autoconf........ [ found version 2.69 ] 
Checking for autoheader........ [ found version 2.69 ] 
Checking for aclocal........ [ found version 1.14.1 ] 
Checking for automake........ [ found version 1.14.1 ] 
Checking for libtoolize........ [ found version 2.4.4 ] 
Checking for autoreconf........ [ found version 2.69 ] 
-------------------------------------------------------------------- 
Found all necessary dependencies. Proceeding with setup... 
-------------------------------------------------------------------- 
Running the autotools... 
Running autoreconf..... [ done ] 
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-------------------------------------------------------------------- 
Done bootstrapping your system. You may now run ./configure. 
To see options use ./bootstrap --help or view the README file. 
-------------------------------------------------------------------- 

Step 3: Create new “build” directory and set up the build process with desired set of features. 

For example, the user may quickly set up and running on Blues with the following commands:    

$mkdir build 
$cd build 
$export MPI_DIR=/soft/mvapich2/2.0-intel-13.1 
../configure --enable-diablo=yes --with-mpi=$MPI_DIR --download-
essential CC=$MPI_DIR/bin/mpicc CXX=$MPI_DIR/bin/mpicxx 
F77=$MPI_DIR/bin/mpif77 FC=$MPI_DIR/bin/mpif90 
$make all -j12 #build with 12 processors in parallel 
or 
$make all #build in serial 
 

Step 4: (Optional): Visit is open source and necessary for results visualization. User is able to 

find the source from the following link: 

https://wci.llnl.gov/simulation/computer-codes/visit/source 

Copy the script form VisIt build_visit script from the above link. 

Run the script with the following command in any directory that user wants to install Visit:  

$ <script name> --itaps --netcdf --hdf5 --szip --console --silo --
python 

After about 3 hours downloading and compiling the necessary packages, the user may try to 

run Visit by cd'ing into the visit2.10.0/src/bin directory and invoking "visit".  

https://wci.llnl.gov/simulation/computer-codes/visit/source
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3 Demonstration Examples 

A number of test problems are provided with SHARP. Users can perform both single physics 

and coupled physics with different drivers. The frequently-used drivers are ex2, proteusnek, 

proteusnek_pseudo_ss and proteusnekdiablo. The detailed usage and function of these drivers 

are described in the following chapter.  In this section, two of these tests are described to 

illustrate the workflow of SHARP toolkit. Reference outputs are provided such that the user 

can run the various example executables described in the previous section and determines 

whether the same output is obtained. 

3.1 sahex 

3.1.1 Problem Description 

This model consists of 6 fuel pins with cladding, 1 control rod, sodium coolant and an outer 

duct wall that encloses all the other components. This model is carefully chosen to demonstrate 

the proof of concept for solving the xx09 assembly used in EBR II SHRT-17. EBR-II is a 

heterogeneous, sodium-cooled fast breeder reactor which operated from 1964 to 1994.The 

geometry of the problem is shown in Figure 3.1. The detailed geometry information and flow 

condition are listed in Table 3.1 and  

Table 3.2 respectively. 

  

Figure 3.1 sahex problem geometry and mesh 
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The data transfer mechanism for optimal accuracy and consistency is tested for sahex as the 

source and target meshes are refined. The convergence criterion of the global nonlinear 

iteration between the physics is evaluated by measuring the error in the coupled solutions in 

each physics component. If both the absolute and the relative tolerances are below user-

specified values, the iteration is set to have converged. 

The problem was tested in a two-stage process:  

1) Compute coupled initial steady state solutions at rated conditions. 

2) Perform a quasi-static transient where the power, temperature and density evolve based on 

the change in total reactivity. 

Table 3.1 sahex detailed geometry information. 

Parameter Unit (mm) Parameter Unit (mm) 

Rc 14 Li 46.188 

Rs 8 Lo 57.735 

Ra 10 H 250 

h 2   

 

Table 3.2 sahex property and flow condition.  

Parameter Value Remark 

ρ 0.85 850 kg/m3   p1 in sahex_nek.rea file 

µ 0.26 2.6e-4 pas   p2 in sahex_nek.rea file 

ρCp 1.08110 Cp=1271.5 J/kgK  P7 in sahex_nek.rea file 

k 0.7 Na @ 700K (W/cm·K ) P8 in sahex_nek.rea file 

Re 11700 - 

Δt 1e-3 s 

Vin 65.3896 cm/s 

3.1.2 Input files 

The inputs files for sahex problem are listed in Table 3.3.  These files include input files for 

different modules and other control files. The input data for the neutronics solver were 

generated a prior using the MC2 library (associated with PROTEUS solver) to obtain 

parameterized 9-group cross sections as a function of temperature and density. Since this is an 

isolated assembly model, a vacuum boundary (non-reentrant) condition is applied on the top 

and the bottom and reflective boundary condition on all other surfaces of the neutronics model 

(Dirichlet for the fluid, Neumann for the solid) and outlet boundary conditions are applied at 

the top surface. 
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Table 3.3 sahex input files 

PROTEUS 

File Name Description  

sahex_proteus.inp Driver input file, a plain text (ASCII) file, which drives the 

PROTEUS calculation by specifying solver tolerances, the 

angular discretization, parallelization options, and other input 

options. Additionally, the UNIX file paths to the other input 

files (cross sections, mesh, and material assignment file) are 

specified in it 

sahex_proteus.h5m h5m format mesh file where the block number and sideset 

number are specified 

sahex_proteus.ISOTXS 

sahex_proteus_4g.ISOTXS 

sahex_proteus_9g.ISOTXS 

The cross section file that consists of the multigroup cross 

sections for all isotopes and/or compositions in the problem. 

The ISOTXS format is the preferred file format for cross 

section data used by PROTEUS-SN. The MC2-3 code 

(Argonne National Laboratory) can be used to process 

multigroup cross sections in this format. Additionally, the 

DRAGON code (Ecole Polytechnique de Montreal) [11] has a 

capability to generate ISOTXS file. 

sahex_proteus.anlxs The cross section file with anlxs file format is a simple ASCII 

interpretation of the data provided in ISOTXS. Any anlxs file 

format that is provided is converted into the appropriate 

ISOTXS file at runtime. 

sahex_proteus.assignment Material assignment file which performs three main functions: 

(1) define materials or mixtures based on the isotopes in the 

cross section file, (2) assign these materials to blocks in the 

mesh, and (3) assign properties (e.g. density) to blocks in the 

mesh. 

NEK5000 

sahex_nek.rea Input file consists of several sections: 

o Parameters such as viscosity, conductivity, number of 

steps, time step size, order of the time stepping, 

frequency of output, iteration tolerances, flow rate, 

filter strength, etc.  

o passive scalar and logical switches 

o Mesh and boundary condition information 

o Output info like restart conditions 

sahex_nek.h5m h5m format mesh file which can only work under MOAB 

framework 

sahex_nek.usr The user file where users may specify spatially varying 

properties (e.g., viscosity), volumetric heating sources, body 

forces, and so forth. One can also specify arbitrary initial and 

boundary conditions through the routines useric() and 

userbc(). The routine userchk() allows the user to interrogate 

the solution at the end of each time step for diagnostic 

purposes. 
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SIZE The SIZE file that defines the problem size, i.e. spatial points 

at which the solution is to be evaluated within each element, 

number of elements per processor etc. The SIZE file governs 

the memory allocation for most of the arrays in Nek5000, with 

the exception of those required by the C utilities. 

Diablo 

sahex_Diablo.assembly Input file consists of solver information and material data 

sahex_Diablo.subassembly Input file consists of block ids and boundary conditions  

sahex_Diablo.exo The EXODUS format mesh file and writes the equivalent 

MOAB (“.h5m”) file as part of the initialization process 

sahex_Diablo.h5m h5m format mesh file created by Diablo when it initializes 

OTHER 

README  Simple description of the sahex problem 

Makefile.am  Make file with Driver information 

sahex_nek.jou mesh script for RGG program in MeshKit 

 

  

Figure 3.2 NEK5000 mesh and Block number (sahex_nek.h5m) 
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Figure 3.3 Diablo and PROTEUS mesh Block number (sahex_proteus.h5m) 

The mesh and block number for Nek5000 and PROTEUS are shown in Figure 3.2 and Figure 

3.3. For NEK5000, there are 5 blocks for fuel pins; cladding; sodium coolant; control rod and 

duct wall. For PROTEUS and DIABLO, there are 25 blocks which are divided by 5 parts in 

stream wise direction for different axial height materials. In term of the mesh resolution, the 
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hydraulics solver uses a comparatively coarser mesh than neutronics, consistent with the use of 

quadratic elements and nature of spectral discretization. 

3.1.3 Running 

3.1.3.1 Steady State 

Step1: Prepare input files 

Make sure all the input files are available in the working directory:  ~/sharp/build/tests/sahex 

Step2: Build driver 

cd ~/sharp/build/tests/sahex 
make all #build all the drivers   
make single_physics_sahex # build single physics driver  
make single_physics_with_mesh_sahex #build single physics driver to 
read a mesh file and create an iMeshInstance 
make proteusnek_sahex # build PROTEUS-NEK coupled physics driver 
make proteusnek_pseudo_ss_sahex # build PROTEUS-NEK pseudo-transient 
coupled physics driver 
make proteusnekdiablo_sahex # build PROTEUS-NEK-Diablo coupled 
physics driver  

The above command lines create executable files single_physics_sahex, 

single_physics_with_mesh_sahex, proteusnek_sahex, proteusnek_pseudo_ss_sahex 

Step3: Run the case 

Serial: 

./single_physics_sahex -physics_type proteus -session sahex # Run 
PROTEUS single physics      
./ single_physics_sahex -physics_type nek -session sahex # Run 
NEK5000 single physics 
./single_physics_sahex -physics_type proteus sahex_proteus.h5m # Run 
PROTEUS single physics with iMeshInstance option       
./ single_physics_sahex -physics_type nek sahex_nek.h5m # Run NEK5000 
single physics iMeshInstance option         
./proteusnek_sahex -session sahex # Run PROTEUS-Nek5000 coupled 
calculation 
./proteusnek_pseudo_ss_sahex -session sahex # Run PROTEUS-Nek5000 
pseudo-transient coupled calculation 

User can use the following option to control the calculation such as maximum integrations and 

minimum tolerance. 
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-coupe_rtol <1e-06>: Stop if decrease in function norm less than (CoupeSetTolerances) 

-coupe_max_it <50>: Maximum iterations (CoupeSetTolerances) 

-coupe_ploc_tol <5e-06>: Specify the minimum tolerance for the point location from a source 

to target mesh (CoupeSpatialProjection) 

-coupe_type <picard>: Coupe type (one of) picard nk (CoupeSetType) 

 

Parallel: 

mpiexec -n <executable file> 

Example on blues: 

Create a script called sahex.pbs with the following content: 

#!/bin/sh 
#PBS -N sahex 
#PBS -l nodes=4:ppn=16 
#PBS -l walltime=10:00:00 
#PBS -j oe 
cd $PBS_O_WORKDIR 
mpiexec 
/blues/gpfs/home/yyu/sharp2/build/modules/sharp/src/tests/sahex/prote
usnek_sahex -session sahex | tee proteusnek_sahex.log 
# Submit to batch queue with   qsub hello.pbs 
# Submit to shared queue with  qsub -q shared hello.pbs (if <4 
nodes,<60 min)  

Use command: 

qsub sahex.pbs 

to submit jobs on blues. 

Step4: check the output files 

The following output files are created after calculation: 

PROTEUS: sahex_4g_L1T2.hdf5.xx 

NEK5000: sahex_nek.fldxx 

MOAB: target_proteus_nek.h5m 
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3.1.3.2 Pseudo-transient 

The type of transient examined in the paper is a simplified loss-of-heat-sink, where the 

temperature of the fluid at the inlet boundary is specified as a function of time and the 

evolution in the coupled fields is computed. This simulates an accident scenario when the heat 

exchangers fail to remove excess heat from the coolant, thereby increasing the inlet 

temperatures steadily, causing feedback effects from different sources to interact nonlinearly 

between the physics. 

𝑇(𝑡) = {
𝑇0,                                             𝑡 ≤ 𝑡0

𝑇0 + 𝛼𝑇0𝑡𝑎ℎℎ (
𝑡 − 𝑡0

∆𝑡
)         𝑡 ≥ 𝑡0

 

where T0 is the transient initiation time, T0 is the initial converged temperature solution, Δt is 

the duration of the transient at the inlet and α is the damping parameter to control the 

magnitude of the perturbation (typically 0.2). User can Run the case with the following 

command:  

./proteusnek_pseudo_ss_sahex -session sahex # Run PROTEUS-Nek5000 
pseudo transient coupled calculation 
 

3.1.4 Analyzing 

3.1.4.1 Steady State 

 

 

 
a) Power b) Temperature 

Figure 3.4 Power profile and temperature distribution for steady state solution 
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The profile of the integral power based on the angular flux computed from solving the 

Boltzmann neutron transport equation and the temperature profile from thermal-hydraulic 

solver as shown in Figure 3.4 . The power distribution shifts towards the inlet of the core due 

to lower material density at the top of the assembly, while the peak temperatures are 

observable near the outlet since the coolant temperature is monotonically increasing. The 

convergence criteria for the neutronics and hydraulics solver were specified to 10−7 and 10−4. 

For Nek5000, use command 

Visnek sahex_nek  

to crease sahex_nek.5000 file which can be loaded into Visit to visualize the results or use 

vis.nek3d script 

Script of vis.nek3d: 

NEK5000 
version: 1.0 
filetemplate:  sahex_nek.fld%02d 
firsttimestep: 1 
numtimesteps: # 
Remember to edit numtimesteps: # (the last time step) 

For PROTEUS, choose UNIC for open file as type as shown in Figure 3.5 to load .hdf5xx file. 

Alternatively, we can load h5m file to visualize the result by using ITAPS_MOAB type. 
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Figure 3.5 Load .hdf5 and .h5m file in Visit 

The power distribution generated by adding a pseudocolor plot of the Power variable from 

sahex_4g_L1T2.hdf5.xx is shown in Figure 3.4 and the temperature distribution on different 

elevations from sahex_nek.fldxx is shown in Figure 3.6. Several successive refinements of the 

neutronics and hydraulics meshes are performed. The convergence result of keff based on a 

reference mesh solution is listed in Table 3.4. User can find the refined mesh in ./refinement 

directory. Users should be able to perform more elaborated mesh convergence study by 

generating their own meshes without doubt. 

Table 3.4 Mesh convergence study on keff 

Element # Element size time keff Error(%) 

7590 0.7144 44.64 0.67387473 0.42 

54740 0.3573 63.39 0.67671801 0.114 

437920 0.1791 84.27 0.67751902 0.0315 

3503380 0.0895 162.93 0.67775429 reference 

 

It is also imperative to note that the parallel performance of the solvers (on 32 processors) 

measured using the computational cost per Picard iteration increases nearly linearly with the 

number of degrees-of-freedom. 

  

1/4 Span 1/2 Span 
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3/4 Span 1 Span 

Figure 3.6 Temperature distributions on different elevations 
 

3.1.4.2 Pseudo-transient 

Once the Initial Conditions are converged, the loss-of-heat-sink simulation is initiated at t=t0, 

by updating the inlet boundary conditions to increase inlet boundary temperature from 600 to 

720K during the transient. The total power in the assembly is specified as user input and power 

distributions are normalized accordingly. 

#include "../src/physics/impls/proteus/proteusimpl.h" 
PetscErrorCode PerformPerturbation_PROTEUS(Physics proteus) 
{ 
  PetscReal perturbation_factor = 2.0; 
  // scale the total power by 2.0; should see 
  // increase in temperature and decrease in density 
  SN2ND_ScaleTotalPower(&perturbation_factor); 
  PetscFunctionReturn(0); 
} 
 
#include "../src/physics/impls/nek/nekimpl.h" 
PetscErrorCode PerformPerturbation_NEK(Physics nek) 
{ 
  PetscReal perturbation_factor = 1.2; 
  // scale the input boundary condition power by 2.0; should see 
  // increase in temperature and decrease in density 
  NEK_Perturb_BCVars(&perturbation_factor); 
  PetscFunctionReturn(0); 
} 
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In all the cases, the number of sub-cycling steps performed in thermal-hydraulics was specified 

to resolve the transient change in temperature. Several transients have been performed to test 

for sensitivity of the coupled field solutions to different feedback effects. Figure 3.7 shows the 

change in keff as a function of normalized time for different types of coupled feedback effects 

optionally turned on. As the frequency of coupling is increased, the accuracy of the coupled 

physics solution improves since the computed criticality converges towards the reference. The 

flow time of the sodium through the assembly is 0.9 s (characteristic time scale), and the 

overall time-steps are reduced consistently to resolve this spatial and temporal scales in 

successive simulations starting with Δtcoarse=0.02s. Note that feedback based on both 

temperature and density are necessary to show the complex nonlinear coupling between the 

neutronics and thermal-hydraulics physics for this test problem since the case where only 

Doppler feedback is considered shows larger sensitivity to the inlet temperature change. In 

other words, the density and Doppler expansion feedback are competing effects as validated 

from theory and experimental observations. The total power decrease in the assembly as the 

transient progresses can be observed in Figure 3.8a. The corresponding evolution of the 

temperature profiles is shown in Figure 3.8b. Note that the significant change in power profile 

corresponding to only a minor penetration of the high temperature front within the domain 

indicates a very fast response (high sensitivity) to the boundary condition in the system. 

 

Figure 3.7 keff transient profile as a function of feedback and temporal resolution 
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Figure 3.8  Transient evolution of coupled field profiles at the beginning, during and at 

the end of the perturbation a) power distribution (W) b) temperature (K) 

The coupled physics simulation capability with SHARP framework was tested on the sahex 

problem for a loss-of-heat-sink transient and the results obtained have been verified by spatial 

and temporal solution convergence studies. The sensitivity tests lead to important conclusions 

on:  

i) The time-step size necessary for this transient to maintain accuracy. 

ii) The importance of the inclusion of all types of feedback effects. 
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3.2 sahex_core 

3.2.1 Problem Description 

In order to perform a full core simulation with PROTEUS and Nek5000, some form of 

homogenization is necessary as solving the full core heterogeneously is in fact likely to result 

in excessive computational requirements. 

An important step toward a full-core simulation is therefore to test homogenization 

capabilities in both Nek5000 and PROTEUS. The chosen test case is an extension of the sahex 

model described in this section. It adds six homogenized neighboring assemblies to the full 

heterogeneous sahex model. A multi-resolution, homogeneous-heterogenous problem that 

contains explicitly represented pin cell assembly in the middle, surrounded by homogenized 

assemblies with a duct surrounding it. 

The PROTEUS and Nek5000 mesh for this model is shown in Figure 3.9. In the PROTEUS 

mode, l reflective boundary conditions are assumed at the boundaries of the domain. In the 

Nek5000 model the boundary is assumed adiabatic. 

In the homogenized assemblies material properties and cross sections are homogenized in 

PROTEUS. In Nek5000, in each homogenized assembly two one-dimensional equations are 

solved for the temperature T in time t and axial coordinate x: 

𝜌𝑓𝐶𝑝
𝑓 𝜕

𝜕𝑡
𝑇𝑓 = −ℎ𝑙𝑓(𝑇𝑓 − 𝑇𝑠) + 𝑞(x) 

𝜌𝑠𝐶𝑝
𝑠 𝜕

𝜕𝑡
𝑇𝑠 = −ℎ𝑙𝑠(𝑇𝑓 − 𝑇𝑠) − 𝑣𝑠𝜌𝑠𝐶𝑝

𝑠 𝜕

𝜕𝑥
𝑇𝑠 

where the superscript s refers to sodium and the superscript f refers to fuel. This very simple 

model removes the thermal inertia of the ducts and the cladding; these can be added later. The 

variable h is the heat transfer coefficient to be determined by appropriate correlations. The 

variable vs is the bulk velocity of sodium in the assembly Here q is the volumetric heat, and is 

obtained from integration of PROTEUS results. The variables lf and ls are appropriate heat 

transfer length-scales. Both temperatures Ts and Tf are stored, but only the temperature of 

sodium is passed to PROTEUS which then recomputes the properties of the homogenized 

regions. 
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sahex_core_nek.h5m 

 
sahex_core_proteus.h5m 

Figure 3.9 sahex_core problem mesh 

 

3.2.2 Input files 

PROTEUS: 
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sahex_core_4g.ISOTXS sahex_core_9g.ISOTXS: cross sections file of different group 

numbers 

sahex_core _proteus.inp: driver input file 

sahex_core_proteus.h5m: mesh file 

sahex_core_proteus.assignment: material assignment file 

NEK5000: 

sahex_core _nek.rea: driver input file 

sahex_core _nek.usr: user file 

sahex_core_nek.h5m: mesh file 

SIZE: size file 

 

3.2.3 Running 

Step1: Prepare input files 

Make sure all the input files are available in the working directory:  

~/sharp/build/tests/sahex_core 

Step2: Build driver 

cd ~/sharp/build/tests/sahex_core 
make all #build all the drivers   

The above command lines create the following executable files  

single_physics_sahex_core,  

single_physics_with_mesh_sahex_core,  

proteusnek_sahex_core   

proteusnek_pseudo_sahex_core 

Step3: Run the case 

Serial: 

./proteusnek_sahex_core -session sahex_core # Run PROTEUS-Nek5000 
coupled calculation 
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Step4: check the output files 

The following output files are created after calculation: 

PROTEUS: sahex_core_4g_L1T2.hdf5.xx 

NEK5000: sahex_core_nek.fldxx 

MOAB: target_proteus_nek.h5m 

3.2.4 Analyzing 

The velocity distribution shown in Figure 3.10 can be visualized with pseudocolor plot in Visit. 

The precise velocity distribution in the center sahex assembly can be predicted with CFD 

calculation. Higher velocity can be clearly observed in the gap regions between walls and rods. 

In the neighbor homogenized assemblies, the velocity distribution which is not our most 

concern in coupled calculation is uniform since the porous medium model is adopted.  

 

Figure 3.10 Velocity distribution for sahex_core 
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Figure 3.11 Power distributions for heterogeneous and homogenized assembly  

The profile of the integral power in both center sahex assembly and neighbor homogenized 

assembly are shown in Figure 3.11.The cosine shape power distribution can also be well 

predicted in the homogenized neighboring assemblies as well which supports the feasibility of 

using some form of homogenization in the coupled calculation for full core simulation. 

The temperature distributions on different elevation are shown in Figure 3.12 with 

distinguishing temperature in the center assembly and uniform temperature in the neighbor six 

assemblies. Although the temperature near the duct wall which is our most concern for radial 

core expansion between the center assembly and neighbor assembly looks similar, our recent 

research [10] indicates that this simple one region porous medium model can over predict 80K 

of the averaged duct wall temperature than the relatively precise CFD results, not to mention 

the local temperature discrepancy. After all, the model of homogenization needs to be 

improved to better serve the full core multi-physics simulation. Nevertheless, this test case is 

still useful for both testing some form of homogenization to reduce the computational cost and 

helping users to understand the homogenized model in SHARP. 
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a) 20% of the total elevation 

  
b) 50% of the total elevation 

 

 
c) 80% of the total elevation 

Figure 3.12 Temperature distributions on difference elevations  
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4 Create Own Test Case  

This section describes the procedure of how to create users’ own test cases. To be concise, the 

input files of sahex is renamed as sa and assumed to be the input files of a new case. Certainly, 

users can used their own input files to create their own case by following this procedure.   

Step 1:  

Create a new test case called sa in test directory and prepare the input files.  

$cd ~/SHARP/tests 
$cp -r sahex sa 

Change name of all the input files from sahex to sa. For instance, sahex.rea to sa_nek.rea; 

sahex_proteus.inp to sa_proteus.inp. Remember to change content in sa_proteus.inp to make 

sure the case can be run properly. For example, 

SOURCEFILE_MESH          sa_proteus.h5m 
SOURCEFILE_XS            sa_proteus_4g.ISOTXS 
SOURCEFILE_MATERIAL      sa_proteus.assignment 
EXPORT_FILE              sa_4g_L1T2.hdf5  
 

Step 2:  

Modify the makefile.am and configure.ac and rebuild SHARP. 

Modify SHARP/tests/Makefile.am by including sa in new SUBDIRS: 

SUBDIRS = dbgprb sahex sahex_core xx09 xx09_core sa 

Modify SHARP/tests/sa/Makefile.am by changing PROBLEM variable and driver name:  

PROBLEM = sa 
DRIVERS = ex2_sa ex3_sa 
 
# Drivers 
ex2_sa_SOURCES = ../ex2.cxx 
ex3_sa_SOURCES = ../ex3.cxx 
 
if SHARP_ENABLE_PROTEUS 
proteusnek_sa_SOURCES = ../proteusnek.cxx 
proteusnek_pseudo_ss_sa_SOURCES = ../proteusnek_pseudo_ss.cxx 
DRIVERS         += proteusnek_sa proteusnek_pseudo_ss_sa 
 
if SHARP_ENABLE_DIABLO 
DRIVERS += proteusnekdiablo_sa 
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proteusnekdiablo_sa_SOURCES = ../proteusnekdiablo.cxx 
endif 

Modify SHARP/configure.ac to add test directory 

# Create test directories 

SHARP_PREP_TESTDIR([sa]) 

 

Step 3:  

Rebuild SHARP  

$cd ~/SHARP/ 
$./bootstrap 
$cd build 
$make 

Make the drivers  

$cd ~/SHARP/build/tests/sa 
$make all #create all drivers 
$make ex2_sa # create specific driver 
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