

ANL/NE-16/1

SHARP Multiphysics Tutorials

Nuclear Engineering Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,

at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a

growing number of pre-1991 documents are available free via DOE’s SciTech Connect

(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the

National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandria, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the

Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,

Argonne National Laboratory, or UChicago Argonne, LLC.

http://www.osti.gov/scitech/)
http://www.ntis.gov/
mailto:orders@ntis.gov
http://www.osti.gov/

SHARP Multiphysics Tutorials

ANL-NE-16/1

SHARP Multiphysics Tutorials

prepared by

Y. Q. Yu, E. Shemon

Nuclear Engineering Division, Argonne National Laboratory

V. Mahadevan, R. Rahaman

Mathematics and Computer Science, Argonne National Laboratory

February 29, 2016

SHARP Multiphysics Tutorials

ANL-NE-16/1 ii

ABSTRACT

SHARP, developed under the NEAMS Reactor Product Line, is an advanced modeling and

simulation toolkit for the analysis of advanced nuclear reactors. SHARP is comprised of three

physics modules currently including neutronics, thermal hydraulics, and structural mechanics.

SHARP empowers designers to produce accurate results for modeling physical phenomena

that have been identified as important for nuclear reactor analysis. SHARP can use existing

physics codes and take advantage of existing infrastructure capabilities in the MOAB

framework and the coupling driver/solver library, the Coupled Physics Environment (CouPE),

which utilizes the widely used, scalable PETSc library.

This report aims at identifying the coupled-physics simulation capability of SHARP by

introducing the demonstration example called sahex in advance of the SHARP release

expected by Mar 2016. sahex consists of 6 fuel pins with cladding, 1 control rod, sodium

coolant and an outer duct wall that encloses all the other components. This example is

carefully chosen to demonstrate the proof of concept for solving more complex demonstration

examples such as EBR II assembly and ABTR full core. The workflow of preparing the input

files, running the case and analyzing the results is demonstrated in this report. Moreover, an

extension of the sahex model called sahex_core which adds six homogenized neighboring

assemblies to the full heterogeneous sahex model is presented to test homogenization

capabilities in both Nek5000 and PROTEUS.

Some primary information on the configuration and build aspects for the SHARP toolkit,

which includes capability to auto-download dependencies and configure/install with optimal

flags in an architecture-aware fashion is also covered by this report. A step-by-step instruction

is provided to help user to create their cases. Details on these processes will be provided in the

SHARP user manual that will accompany the first release.

SHARP Multiphysics Tutorials

Table of Contents

Abstract ... ii
Table of Contents ... iii
List of Figures .. iv
List of Tables.. iv
1 Introduction of SHARP ... 1

2 SHARP Configuration and Installation ... 7

2.1 Package Dependencies .. 7

2.2 Source Management .. 7

2.3 Configuration Options ... 8

2.3.1 Enabling/disabling compile-time features or packages.. 8

2.3.2 Linking to existing libraries ... 8

2.3.3 Downloading third-party libraries .. 8

2.4 Installation ... 9
3 Demonstration Examples .. 11

3.1 sahex .. 11

3.1.1 Problem Description... 11

3.1.2 Input files.. ... 12

3.1.3 Running…. ... 16

3.1.4 Analyzing.. ... 18

3.2 sahex_core ... 24

3.2.1 Problem Description... 24

3.2.2 Input files.. ... 25

3.2.3 Running…. ... 26

3.2.4 Analyzing.. ... 27
4 Create Own Test Case ... 30
5 Reference... 32

SHARP Multiphysics Tutorials

ANL-NE-16/1 iv

LIST OF FIGURES

Figure 1.1. a) Depiction of the CouPE solvers interacting with MOAB data backplane driving

the standalone or coupled physics calculations. b) Sketch of global iteration. 3
Figure 1.2 Coupling and iteration process. .. 6
Figure 3.1 sahex problem geometry and mesh... 11
Figure 3.2 NEK5000 mesh and Block number (sahex_nek.h5m) ... 14

Figure 3.3 DIABLO and PROTEUS mesh Block number (sahex_proteus.h5m) 15
Figure 3.4 Power profile and temperature distribution for steady state solution 18
Figure 3.5 Load .hdf5 and .h5m file in Visit .. 20
Figure 3.6 Temperature distributions on different elevations .. 21
Figure 3.7 keff transient profile as a function of feedback and temporal resolution 22

Figure 3.8 Transient evolution of coupled field profiles at the beginning, during and at the

end of the perturbation a) power distribution (W) b) temperature (K) 23

Figure 3.9 sahex_core problem mesh... 25
Figure 3.10 Velocity distribution for sahex_core .. 27

Figure 3.11 Power distributions for heterogeneous and homogenized assembly 28
Figure 3.12 Temperature distributions on difference elevations ... 29

LIST OF TABLES

Table 2.1. List of SHARP toolkit dependencies .. 7
Table 3.1 sahex detailed geometry information. .. 12

Table 3.2 sahex property and flow condition. .. 12
Table 3.3 sahex input files ... 13

Table 3.4 Mesh convergence study on keff ... 20

1

1 Introduction of SHARP

SHARP [1], developed under the NEAMS program, is an advanced modeling and simulation

toolkit for the analysis of nuclear reactors. SHARP is comprised of several components,

including physical modeling tools, tools to integrate the physics codes for multi-physics

analyses, and a set of tools to couple the codes within the MOAB [2] framework. Physics

modules currently include the PROTEUS [3] neutronics code, the Nek5000 [4] thermal-

hydraulics code, and the Diablo [5] structural mechanics code. The development philosophy

for the physics modules is to incorporate as much fundamental physics as possible, rather than

developing tools for specific reactor analysis applications. This empowers designers to analyze

transformative reactor concepts with simulation tools that are not limited to available

experimental data sets from currently existing reactor designs. By developing the tools to be

highly efficient on parallel computing platforms; employing millions of processor cores;

engineering-scale simulations become practical on high-performance computers currently

available at the DOE complex. Development efforts strive to work in tandem with efforts in

experimentation, so that the tools are validated to produce accurate results for modeling

physical phenomena that have been identified as important for nuclear reactor analysis. By

taking this approach, SHARP supports nuclear reactor analysis and design activities for DOE

programs and industrial partnerships with trustworthy modeling and simulation tools.

In order to produce a fully coupled-physics simulation capability, two obvious approaches can

be pursued. In one approach, existing single-physics codes/components can be assembled into

an overall coupled simulation code with appropriate interfaces to communicate between the

components to capture the nonlinear feedback effects. This is generally referred to as a “small-

f” or “bottom-up” framework approach [1, 6]. The other approach is to use an integrated,

coupled-physics modeling framework, with new code pieces for each relevant physics area

developed inside that framework from scratch. This is sometimes referred to as a “large-F” or

“top-down” approach [7, 8]. The primary advantage of the former approach is that it preserves

several man-years invested in existing verified and validated individual physics modeling

codes, but at the cost of some intrusive modifications to enable the software interfaces. The

large-F approach avoids intrusive interfacing by providing a unified platform to enable

coupling, but at the cost of re-writing all the necessary physics codes and verifying the

components individually and as a whole. The overall approach being pursued in the RPL effort

is to develop and demonstrate a small-f framework for performing coupled multi-physics

SHARP Multiphysics Tutorials

ANL-NE-16/1 2

analysis of reactor core systems. This system takes advantage of many single-physics codes

also sponsored by the overall NEAMS program over past several years.

In the SHARP framework, MOAB interfaces are implemented for 3 different physics

components that are relevant to fast reactor physics analysis. The addition of a new physics

component to the framework requires integration and ability to read the mesh and possibly

associated data from iMesh/MOAB formats, along with implementation to propagate solution

variables back onto the mesh after their computation via tags defined either on discrete vertices

or elements. Because of the various storage formats used in physics models, and the parallel

domain-decomposed environment in which these calculations are usually run, this integration

process can be somewhat involved.

A multi-physics reactor core modeling code can be constructed in many ways, and numerous

past efforts have provided stepping-stones for future efforts [8]. What distinguishes the

SHARP effort from others is the goal of flexibility in the physics, discretization types, and

software options supported by the framework. This section describes the SHARP modeling

approach in detail and illustrates how various existing physics codes have been connected to

this framework.

As stated above, SHARP employs a “bottom-up” approach, so it can use existing physics codes

and take advantage of existing infrastructure capabilities in the MOAB framework and the

coupling driver/solver library, the Coupled Physics Environment (CouPE), which utilizes the

widely used, scalable PETSc library [8].

Using an existing physics code in this system (Figure 1.1) requires that the system support the

mesh type used by the individual physics models. The physics models can retain their own

native representation of the mesh, which gets transferred to and from MOAB’s representation

through a mesh adaptor; or it can use MOAB’s representation directly. Language

interoperability through the C/Fortran-based iMesh interfaces also allows flexibility in the

implementations that are tuned to individual physics requirements without overhead.

In practice, this means that the coupled system may be solved on multiple meshes, each of

which models part or the entire physical domain of the problem. To perform efficient coupled

calculations, the results must be transferred from the mesh on which they are generated (source

mesh), to the mesh for which they provide initial or boundary conditions (target mesh) due to

SHARP Multiphysics Tutorials

3

nonlinearity introduced because of coupling between physics models. “Multi-way” transfer is

required in cases where the physics depend on each other’s solution fields, for example in

reactor analysis where neutronics computes heat generation based on temperature properties

computed by thermal-hydraulics, which in turn depends on the heat-generation source term

computed by neutronics.

a

b

Figure 1.1. a) Depiction of the CouPE solvers interacting with MOAB data backplane

driving the standalone or coupled physics calculations. b) Sketch of global iteration.

Since relevant physics components solving a nuclear engineering problem have widely varying

backgrounds in terms of code architectures, dependency requirements, and specialized solver

SHARP Multiphysics Tutorials

ANL-NE-16/1 4

data-structures, a flexible approach to the coupling methodology was necessary to obtain

accurate solutions. This motivation led to the development of the MOAB-based spatial

projection tools and the CouPE drivers based on PETSc library to orchestrate the global

nonlinear solver. Details regarding these tools are given in the following sections.

In the future, Diablo, PROTEUS, and Nek5000 will all run simultaneously underneath the

CouPE framework and commproteusate quantities through MBCoupler in MOAB. As an

interim step, the coupling has been accomplished through file-based transfer. This is a 2-step

process, with the second step consisting of 8 substeps.

1. Individual Nek5000, PROTEUS, and Diablo meshes are generated in the undeformed

configuration. Nek5000 and PROTEUS use MOAB mesh files natively. Currently Diablo

uses an EXODUS input file and writes the equivalent MOAB (“.h5m”) file as part of the

initialization process. Thus, four mesh files are prepared:

a. NEK.in.h5m

b. PROTEUS.in.h5m

c. DIABLO.in.exo

d. DIABLO.in.h5m (created by Diablo when it initializes)

2. SHARP iterates the problem until convergence:

a. Coupled 2-mechanics runs (PROTEUS and Nek5000) are made using the updated

mesh

b. Temperature data from Nek5000 is written to its native “FLD” file format,

NEK.temps.FLD

c. The VisIt utility converts the “FLD” file format to a MOAB (“h5m”) file,

NEK.temps.h5m

d. A standalone version of MBcoupler maps the Nek5000 data in .h5m format to the

Diablo .h5m file, DIABLO.temps.h5m

e. Diablo uses the temperature data and coupled solid mechanics to produce

deformations, which are written as scalar quantities UX, UY, and UZ to an

undeformed MOAB database, DIABLO.disp.h5m

f. The standalone version of MBCoupler maps the UX,UY,UZ data to the Nek5000

and PROTEUS meshes,

i. NEK.disp.h5m

SHARP Multiphysics Tutorials

5

ii. PROTEUS.disp.h5m

g. The standalone utility DEFORM moves the vertex coordinates on the PROTEUS

and Nek5000 meshes according to the mapped values of UX, UY, and UZ,

i. NEK.deformed.h5m

ii. PROTEUS.deformed.h5m

h. PROTEUS densities and isotope volume fractions are updated based on the mesh

deformation if so desired.

i. The deformed meshes are used as inputs to repeat step 2a above and continue the

iterations, as depicted in Figure 1.2

To better understand the level of fidelity that can be achieved by the SHARP framework, some

key aspects of the 3 physics components are given in the following chapters.

SHARP Multiphysics Tutorials

ANL-NE-16/1 6

Figure 1.2 Coupling and iteration process.

SHARP Multiphysics Tutorials

7

2 SHARP Configuration and Installation

2.1 Package Dependencies

In Table 2.1, the dependencies of SHARP toolkit and each module are provided. “√” indicates

a required package and “(O)” indicates an optional package. A number of packages are

optional for single-physics modules but required by the coupled problems in SHARP.

Table 2.1. List of SHARP toolkit dependencies

Package Version DIABLO PROTEUS Nek5000 SHARP

ARPACK √

EXODUS II 6.06 (O)

FEMSTER √

HDF5 1.8 (O) (O) (O) √

HYPRE 2.9 √

ITAPS (O) √

Metis 4.0 (O) √ (O) √

MILI 13.1 √

MOAB 4.7 (O) (O) (O) √

MPI √ √ √

MUMPS 4.1 √

NASA √

NetCDF 4.3 (O) (O) (O) √

ParMetis 4 (O) √

PETSc 3.1 or 3.4 √

PWSSMP √

SILO 4.1 √

ZOLTAN 3.8 (O) (O) (O) √

2.2 Source Management

The SHARP toolkit utilizes SVN version control system to manage the sources for different

components. The repository is hosted at Argonne and is available at the following link, as long

as users have been pre-approved to gain access to it.

Link: https://svn.mcs.anl.gov/repos/SHARP

For instructions on how to obtain access to the SHARP repository, contact sharp-

dev@mcs.anl.gov. Once you have been granted access, the user could checkout the sources by

invoking the following Subversion command:

svn co https://svn.mcs.anl.gov/repos/SHARP/trunk SHARP

mailto:sharp-dev@mcs.anl.gov
mailto:sharp-dev@mcs.anl.gov

SHARP Multiphysics Tutorials

ANL-NE-16/1 8

This command will create the SHARP directory containing all the configuration scripts,

physics code module sources and a particular version of the coupled system driver along with

several examples and test problems.

2.3 Configuration Options

There are several families of configuration options available when running the configure script,

that can be used to control whether certain features are enabled/disabled, or if certain

dependencies (pre-installed) need to be used in the current build or if the user wants the

package manager to auto‐download and configure some of the dependencies.

2.3.1 Enabling/disabling compile-time features or packages

Compile-time features are enabled by options of the form:

--enable-<feature>[=yes|no]
--enable-<package>[=yes|no]

Values other than yes/no will return an error. -­enable-<feature> is synonymous with -­enable-

<feature>=yes and -­disable-<feature> is synonymous with -­enable-<feature>=no.

2.3.2 Linking to existing libraries

The user may to link pre-installed libraries with options of the form:

--with-<PACKAGE>=PATH

where the PATH points to the installation directory typically containing the library and its

headers. The PATH argument is mandatory and invalid paths return an error during

configuration checks. If a valid library or dependency has been found, then the configuration

for the dependency is processed to see if the required headers are available and if a test

program that utilizes the library calls can be successfully compiled and linked in order to

accumulate the overall LDFLAGS and LIBS to compile SHARP successfully.

2.3.3 Downloading third-party libraries

SHARP allows the user to download and compile third-party libraries through the configure

script. Third-party libraries may be downloaded and compiled with options of the form:

--download-<PACKAGE>[=yes|no|url]

Specifying -­download-library[=yes] will download a tarball (.tar.gz file) of the library’s

source code from a default URL and utilize default, verified workflows to configure, build and

SHARP Multiphysics Tutorials

9

install the dependency onto a dependency installation directory. Running “configure –help”

provides a list of the default URLs associated with each library. Optionally, the user can also

specify -­download-­library=URL in order to download the library from the given URL and

build/install using the same process. Note that the user-provided URL should point to a valid

tarball and may not be guaranteed to be compatible with other SHARP libraries and modules.

2.4 Installation

Step 1:

The user could checkout the sources by invoking the following Subversion command:

$svn co https://svn.mcs.anl.gov/repos/SHARP/trunk SHARP

This command will create a SHARP directory. Go to SHARP directory:

$cd SHARP

Step 2: To configure SHARP, the user first needs to run a top-level configuration generator

script, aptly named “bootstrap”. This script will verify whether the system contains the

necessary and supported version of autotools before proceeding further. After verification, the

autotools toolchain (aclocal, autoheader, autoconf, automake) can be used to generate the

configuration script. An example output from successfully running the bootstrap script is

shown below.

$./bootstrap

Bootstrap for SHARP build system.
Beginning to run bootstrap in /Users/mahadevan/source/sharp/trunk.

Scanning dependencies...
Checking for autoconf........ [found version 2.69]
Checking for autoheader........ [found version 2.69]
Checking for aclocal........ [found version 1.14.1]
Checking for automake........ [found version 1.14.1]
Checking for libtoolize........ [found version 2.4.4]
Checking for autoreconf........ [found version 2.69]
--
Found all necessary dependencies. Proceeding with setup...
--
Running the autotools...
Running autoreconf..... [done]

SHARP Multiphysics Tutorials

ANL-NE-16/1 10

--
Done bootstrapping your system. You may now run ./configure.
To see options use ./bootstrap --help or view the README file.
--

Step 3: Create new “build” directory and set up the build process with desired set of features.

For example, the user may quickly set up and running on Blues with the following commands:

$mkdir build
$cd build
$export MPI_DIR=/soft/mvapich2/2.0-intel-13.1
../configure --enable-diablo=yes --with-mpi=$MPI_DIR --download-
essential CC=$MPI_DIR/bin/mpicc CXX=$MPI_DIR/bin/mpicxx
F77=$MPI_DIR/bin/mpif77 FC=$MPI_DIR/bin/mpif90
$make all -j12 #build with 12 processors in parallel
or
$make all #build in serial

Step 4: (Optional): Visit is open source and necessary for results visualization. User is able to

find the source from the following link:

https://wci.llnl.gov/simulation/computer-codes/visit/source

Copy the script form VisIt build_visit script from the above link.

Run the script with the following command in any directory that user wants to install Visit:

$ <script name> --itaps --netcdf --hdf5 --szip --console --silo --
python

After about 3 hours downloading and compiling the necessary packages, the user may try to

run Visit by cd'ing into the visit2.10.0/src/bin directory and invoking "visit".

https://wci.llnl.gov/simulation/computer-codes/visit/source

SHARP Multiphysics Tutorials

11

3 Demonstration Examples

A number of test problems are provided with SHARP. Users can perform both single physics

and coupled physics with different drivers. The frequently-used drivers are ex2, proteusnek,

proteusnek_pseudo_ss and proteusnekdiablo. The detailed usage and function of these drivers

are described in the following chapter. In this section, two of these tests are described to

illustrate the workflow of SHARP toolkit. Reference outputs are provided such that the user

can run the various example executables described in the previous section and determines

whether the same output is obtained.

3.1 sahex

3.1.1 Problem Description

This model consists of 6 fuel pins with cladding, 1 control rod, sodium coolant and an outer

duct wall that encloses all the other components. This model is carefully chosen to demonstrate

the proof of concept for solving the xx09 assembly used in EBR II SHRT-17. EBR-II is a

heterogeneous, sodium-cooled fast breeder reactor which operated from 1964 to 1994.The

geometry of the problem is shown in Figure 3.1. The detailed geometry information and flow

condition are listed in Table 3.1 and

Table 3.2 respectively.

Figure 3.1 sahex problem geometry and mesh

SHARP Multiphysics Tutorials

ANL-NE-16/1 12

The data transfer mechanism for optimal accuracy and consistency is tested for sahex as the

source and target meshes are refined. The convergence criterion of the global nonlinear

iteration between the physics is evaluated by measuring the error in the coupled solutions in

each physics component. If both the absolute and the relative tolerances are below user-

specified values, the iteration is set to have converged.

The problem was tested in a two-stage process:

1) Compute coupled initial steady state solutions at rated conditions.

2) Perform a quasi-static transient where the power, temperature and density evolve based on

the change in total reactivity.

Table 3.1 sahex detailed geometry information.

Parameter Unit (mm) Parameter Unit (mm)

Rc 14 Li 46.188

Rs 8 Lo 57.735

Ra 10 H 250

h 2

Table 3.2 sahex property and flow condition.

Parameter Value Remark

ρ 0.85 850 kg/m3 p1 in sahex_nek.rea file

µ 0.26 2.6e-4 pas p2 in sahex_nek.rea file

ρCp 1.08110 Cp=1271.5 J/kgK P7 in sahex_nek.rea file

k 0.7 Na @ 700K (W/cm·K) P8 in sahex_nek.rea file

Re 11700 -

Δt 1e-3 s

Vin 65.3896 cm/s

3.1.2 Input files

The inputs files for sahex problem are listed in Table 3.3. These files include input files for

different modules and other control files. The input data for the neutronics solver were

generated a prior using the MC2 library (associated with PROTEUS solver) to obtain

parameterized 9-group cross sections as a function of temperature and density. Since this is an

isolated assembly model, a vacuum boundary (non-reentrant) condition is applied on the top

and the bottom and reflective boundary condition on all other surfaces of the neutronics model

(Dirichlet for the fluid, Neumann for the solid) and outlet boundary conditions are applied at

the top surface.

SHARP Multiphysics Tutorials

13

Table 3.3 sahex input files

PROTEUS

File Name Description

sahex_proteus.inp Driver input file, a plain text (ASCII) file, which drives the

PROTEUS calculation by specifying solver tolerances, the

angular discretization, parallelization options, and other input

options. Additionally, the UNIX file paths to the other input

files (cross sections, mesh, and material assignment file) are

specified in it

sahex_proteus.h5m h5m format mesh file where the block number and sideset

number are specified

sahex_proteus.ISOTXS

sahex_proteus_4g.ISOTXS

sahex_proteus_9g.ISOTXS

The cross section file that consists of the multigroup cross

sections for all isotopes and/or compositions in the problem.

The ISOTXS format is the preferred file format for cross

section data used by PROTEUS-SN. The MC2-3 code

(Argonne National Laboratory) can be used to process

multigroup cross sections in this format. Additionally, the

DRAGON code (Ecole Polytechnique de Montreal) [11] has a

capability to generate ISOTXS file.

sahex_proteus.anlxs The cross section file with anlxs file format is a simple ASCII

interpretation of the data provided in ISOTXS. Any anlxs file

format that is provided is converted into the appropriate

ISOTXS file at runtime.

sahex_proteus.assignment Material assignment file which performs three main functions:

(1) define materials or mixtures based on the isotopes in the

cross section file, (2) assign these materials to blocks in the

mesh, and (3) assign properties (e.g. density) to blocks in the

mesh.

NEK5000

sahex_nek.rea Input file consists of several sections:

o Parameters such as viscosity, conductivity, number of

steps, time step size, order of the time stepping,

frequency of output, iteration tolerances, flow rate,

filter strength, etc.

o passive scalar and logical switches

o Mesh and boundary condition information

o Output info like restart conditions

sahex_nek.h5m h5m format mesh file which can only work under MOAB

framework

sahex_nek.usr The user file where users may specify spatially varying

properties (e.g., viscosity), volumetric heating sources, body

forces, and so forth. One can also specify arbitrary initial and

boundary conditions through the routines useric() and

userbc(). The routine userchk() allows the user to interrogate

the solution at the end of each time step for diagnostic

purposes.

SHARP Multiphysics Tutorials

ANL-NE-16/1 14

SIZE The SIZE file that defines the problem size, i.e. spatial points

at which the solution is to be evaluated within each element,

number of elements per processor etc. The SIZE file governs

the memory allocation for most of the arrays in Nek5000, with

the exception of those required by the C utilities.

Diablo

sahex_Diablo.assembly Input file consists of solver information and material data

sahex_Diablo.subassembly Input file consists of block ids and boundary conditions

sahex_Diablo.exo The EXODUS format mesh file and writes the equivalent

MOAB (“.h5m”) file as part of the initialization process

sahex_Diablo.h5m h5m format mesh file created by Diablo when it initializes

OTHER

README Simple description of the sahex problem

Makefile.am Make file with Driver information

sahex_nek.jou mesh script for RGG program in MeshKit

Figure 3.2 NEK5000 mesh and Block number (sahex_nek.h5m)

SHARP Multiphysics Tutorials

15

Figure 3.3 Diablo and PROTEUS mesh Block number (sahex_proteus.h5m)

The mesh and block number for Nek5000 and PROTEUS are shown in Figure 3.2 and Figure

3.3. For NEK5000, there are 5 blocks for fuel pins; cladding; sodium coolant; control rod and

duct wall. For PROTEUS and DIABLO, there are 25 blocks which are divided by 5 parts in

stream wise direction for different axial height materials. In term of the mesh resolution, the

SHARP Multiphysics Tutorials

ANL-NE-16/1 16

hydraulics solver uses a comparatively coarser mesh than neutronics, consistent with the use of

quadratic elements and nature of spectral discretization.

3.1.3 Running

3.1.3.1 Steady State

Step1: Prepare input files

Make sure all the input files are available in the working directory: ~/sharp/build/tests/sahex

Step2: Build driver

cd ~/sharp/build/tests/sahex
make all #build all the drivers
make single_physics_sahex # build single physics driver
make single_physics_with_mesh_sahex #build single physics driver to
read a mesh file and create an iMeshInstance
make proteusnek_sahex # build PROTEUS-NEK coupled physics driver
make proteusnek_pseudo_ss_sahex # build PROTEUS-NEK pseudo-transient
coupled physics driver
make proteusnekdiablo_sahex # build PROTEUS-NEK-Diablo coupled
physics driver

The above command lines create executable files single_physics_sahex,

single_physics_with_mesh_sahex, proteusnek_sahex, proteusnek_pseudo_ss_sahex

Step3: Run the case

Serial:

./single_physics_sahex -physics_type proteus -session sahex # Run
PROTEUS single physics
./ single_physics_sahex -physics_type nek -session sahex # Run
NEK5000 single physics
./single_physics_sahex -physics_type proteus sahex_proteus.h5m # Run
PROTEUS single physics with iMeshInstance option
./ single_physics_sahex -physics_type nek sahex_nek.h5m # Run NEK5000
single physics iMeshInstance option
./proteusnek_sahex -session sahex # Run PROTEUS-Nek5000 coupled
calculation
./proteusnek_pseudo_ss_sahex -session sahex # Run PROTEUS-Nek5000
pseudo-transient coupled calculation

User can use the following option to control the calculation such as maximum integrations and

minimum tolerance.

SHARP Multiphysics Tutorials

17

-coupe_rtol <1e-06>: Stop if decrease in function norm less than (CoupeSetTolerances)

-coupe_max_it <50>: Maximum iterations (CoupeSetTolerances)

-coupe_ploc_tol <5e-06>: Specify the minimum tolerance for the point location from a source

to target mesh (CoupeSpatialProjection)

-coupe_type <picard>: Coupe type (one of) picard nk (CoupeSetType)

Parallel:

mpiexec -n <executable file>

Example on blues:

Create a script called sahex.pbs with the following content:

#!/bin/sh
#PBS -N sahex
#PBS -l nodes=4:ppn=16
#PBS -l walltime=10:00:00
#PBS -j oe
cd $PBS_O_WORKDIR
mpiexec
/blues/gpfs/home/yyu/sharp2/build/modules/sharp/src/tests/sahex/prote
usnek_sahex -session sahex | tee proteusnek_sahex.log
Submit to batch queue with qsub hello.pbs
Submit to shared queue with qsub -q shared hello.pbs (if <4
nodes,<60 min)

Use command:

qsub sahex.pbs

to submit jobs on blues.

Step4: check the output files

The following output files are created after calculation:

PROTEUS: sahex_4g_L1T2.hdf5.xx

NEK5000: sahex_nek.fldxx

MOAB: target_proteus_nek.h5m

SHARP Multiphysics Tutorials

ANL-NE-16/1 18

3.1.3.2 Pseudo-transient

The type of transient examined in the paper is a simplified loss-of-heat-sink, where the

temperature of the fluid at the inlet boundary is specified as a function of time and the

evolution in the coupled fields is computed. This simulates an accident scenario when the heat

exchangers fail to remove excess heat from the coolant, thereby increasing the inlet

temperatures steadily, causing feedback effects from different sources to interact nonlinearly

between the physics.

𝑇(𝑡) = {
𝑇0, 𝑡 ≤ 𝑡0

𝑇0 + 𝛼𝑇0𝑡𝑎ℎℎ (
𝑡 − 𝑡0

∆𝑡
) 𝑡 ≥ 𝑡0

where T0 is the transient initiation time, T0 is the initial converged temperature solution, Δt is

the duration of the transient at the inlet and α is the damping parameter to control the

magnitude of the perturbation (typically 0.2). User can Run the case with the following

command:

./proteusnek_pseudo_ss_sahex -session sahex # Run PROTEUS-Nek5000
pseudo transient coupled calculation

3.1.4 Analyzing

3.1.4.1 Steady State

a) Power b) Temperature

Figure 3.4 Power profile and temperature distribution for steady state solution

SHARP Multiphysics Tutorials

19

The profile of the integral power based on the angular flux computed from solving the

Boltzmann neutron transport equation and the temperature profile from thermal-hydraulic

solver as shown in Figure 3.4 . The power distribution shifts towards the inlet of the core due

to lower material density at the top of the assembly, while the peak temperatures are

observable near the outlet since the coolant temperature is monotonically increasing. The

convergence criteria for the neutronics and hydraulics solver were specified to 10−7 and 10−4.

For Nek5000, use command

Visnek sahex_nek

to crease sahex_nek.5000 file which can be loaded into Visit to visualize the results or use

vis.nek3d script

Script of vis.nek3d:

NEK5000
version: 1.0
filetemplate: sahex_nek.fld%02d
firsttimestep: 1
numtimesteps: #
Remember to edit numtimesteps: # (the last time step)

For PROTEUS, choose UNIC for open file as type as shown in Figure 3.5 to load .hdf5xx file.

Alternatively, we can load h5m file to visualize the result by using ITAPS_MOAB type.

SHARP Multiphysics Tutorials

ANL-NE-16/1 20

Figure 3.5 Load .hdf5 and .h5m file in Visit

The power distribution generated by adding a pseudocolor plot of the Power variable from

sahex_4g_L1T2.hdf5.xx is shown in Figure 3.4 and the temperature distribution on different

elevations from sahex_nek.fldxx is shown in Figure 3.6. Several successive refinements of the

neutronics and hydraulics meshes are performed. The convergence result of keff based on a

reference mesh solution is listed in Table 3.4. User can find the refined mesh in ./refinement

directory. Users should be able to perform more elaborated mesh convergence study by

generating their own meshes without doubt.

Table 3.4 Mesh convergence study on keff

Element # Element size time keff Error(%)

7590 0.7144 44.64 0.67387473 0.42

54740 0.3573 63.39 0.67671801 0.114

437920 0.1791 84.27 0.67751902 0.0315

3503380 0.0895 162.93 0.67775429 reference

It is also imperative to note that the parallel performance of the solvers (on 32 processors)

measured using the computational cost per Picard iteration increases nearly linearly with the

number of degrees-of-freedom.

1/4 Span 1/2 Span

SHARP Multiphysics Tutorials

21

3/4 Span 1 Span

Figure 3.6 Temperature distributions on different elevations

3.1.4.2 Pseudo-transient

Once the Initial Conditions are converged, the loss-of-heat-sink simulation is initiated at t=t0,

by updating the inlet boundary conditions to increase inlet boundary temperature from 600 to

720K during the transient. The total power in the assembly is specified as user input and power

distributions are normalized accordingly.

#include "../src/physics/impls/proteus/proteusimpl.h"
PetscErrorCode PerformPerturbation_PROTEUS(Physics proteus)
{
 PetscReal perturbation_factor = 2.0;
 // scale the total power by 2.0; should see
 // increase in temperature and decrease in density
 SN2ND_ScaleTotalPower(&perturbation_factor);
 PetscFunctionReturn(0);
}

#include "../src/physics/impls/nek/nekimpl.h"
PetscErrorCode PerformPerturbation_NEK(Physics nek)
{
 PetscReal perturbation_factor = 1.2;
 // scale the input boundary condition power by 2.0; should see
 // increase in temperature and decrease in density
 NEK_Perturb_BCVars(&perturbation_factor);
 PetscFunctionReturn(0);
}

SHARP Multiphysics Tutorials

ANL-NE-16/1 22

In all the cases, the number of sub-cycling steps performed in thermal-hydraulics was specified

to resolve the transient change in temperature. Several transients have been performed to test

for sensitivity of the coupled field solutions to different feedback effects. Figure 3.7 shows the

change in keff as a function of normalized time for different types of coupled feedback effects

optionally turned on. As the frequency of coupling is increased, the accuracy of the coupled

physics solution improves since the computed criticality converges towards the reference. The

flow time of the sodium through the assembly is 0.9 s (characteristic time scale), and the

overall time-steps are reduced consistently to resolve this spatial and temporal scales in

successive simulations starting with Δtcoarse=0.02s. Note that feedback based on both

temperature and density are necessary to show the complex nonlinear coupling between the

neutronics and thermal-hydraulics physics for this test problem since the case where only

Doppler feedback is considered shows larger sensitivity to the inlet temperature change. In

other words, the density and Doppler expansion feedback are competing effects as validated

from theory and experimental observations. The total power decrease in the assembly as the

transient progresses can be observed in Figure 3.8a. The corresponding evolution of the

temperature profiles is shown in Figure 3.8b. Note that the significant change in power profile

corresponding to only a minor penetration of the high temperature front within the domain

indicates a very fast response (high sensitivity) to the boundary condition in the system.

Figure 3.7 keff transient profile as a function of feedback and temporal resolution

SHARP Multiphysics Tutorials

23

Figure 3.8 Transient evolution of coupled field profiles at the beginning, during and at

the end of the perturbation a) power distribution (W) b) temperature (K)

The coupled physics simulation capability with SHARP framework was tested on the sahex

problem for a loss-of-heat-sink transient and the results obtained have been verified by spatial

and temporal solution convergence studies. The sensitivity tests lead to important conclusions

on:

i) The time-step size necessary for this transient to maintain accuracy.

ii) The importance of the inclusion of all types of feedback effects.

SHARP Multiphysics Tutorials

ANL-NE-16/1 24

3.2 sahex_core

3.2.1 Problem Description

In order to perform a full core simulation with PROTEUS and Nek5000, some form of

homogenization is necessary as solving the full core heterogeneously is in fact likely to result

in excessive computational requirements.

An important step toward a full-core simulation is therefore to test homogenization

capabilities in both Nek5000 and PROTEUS. The chosen test case is an extension of the sahex

model described in this section. It adds six homogenized neighboring assemblies to the full

heterogeneous sahex model. A multi-resolution, homogeneous-heterogenous problem that

contains explicitly represented pin cell assembly in the middle, surrounded by homogenized

assemblies with a duct surrounding it.

The PROTEUS and Nek5000 mesh for this model is shown in Figure 3.9. In the PROTEUS

mode, l reflective boundary conditions are assumed at the boundaries of the domain. In the

Nek5000 model the boundary is assumed adiabatic.

In the homogenized assemblies material properties and cross sections are homogenized in

PROTEUS. In Nek5000, in each homogenized assembly two one-dimensional equations are

solved for the temperature T in time t and axial coordinate x:

𝜌𝑓𝐶𝑝
𝑓 𝜕

𝜕𝑡
𝑇𝑓 = −ℎ𝑙𝑓(𝑇𝑓 − 𝑇𝑠) + 𝑞(x)

𝜌𝑠𝐶𝑝
𝑠 𝜕

𝜕𝑡
𝑇𝑠 = −ℎ𝑙𝑠(𝑇𝑓 − 𝑇𝑠) − 𝑣𝑠𝜌𝑠𝐶𝑝

𝑠 𝜕

𝜕𝑥
𝑇𝑠

where the superscript s refers to sodium and the superscript f refers to fuel. This very simple

model removes the thermal inertia of the ducts and the cladding; these can be added later. The

variable h is the heat transfer coefficient to be determined by appropriate correlations. The

variable vs is the bulk velocity of sodium in the assembly Here q is the volumetric heat, and is

obtained from integration of PROTEUS results. The variables lf and ls are appropriate heat

transfer length-scales. Both temperatures Ts and Tf are stored, but only the temperature of

sodium is passed to PROTEUS which then recomputes the properties of the homogenized

regions.

SHARP Multiphysics Tutorials

25

sahex_core_nek.h5m

sahex_core_proteus.h5m

Figure 3.9 sahex_core problem mesh

3.2.2 Input files

PROTEUS:

SHARP Multiphysics Tutorials

ANL-NE-16/1 26

sahex_core_4g.ISOTXS sahex_core_9g.ISOTXS: cross sections file of different group

numbers

sahex_core _proteus.inp: driver input file

sahex_core_proteus.h5m: mesh file

sahex_core_proteus.assignment: material assignment file

NEK5000:

sahex_core _nek.rea: driver input file

sahex_core _nek.usr: user file

sahex_core_nek.h5m: mesh file

SIZE: size file

3.2.3 Running

Step1: Prepare input files

Make sure all the input files are available in the working directory:

~/sharp/build/tests/sahex_core

Step2: Build driver

cd ~/sharp/build/tests/sahex_core
make all #build all the drivers

The above command lines create the following executable files

single_physics_sahex_core,

single_physics_with_mesh_sahex_core,

proteusnek_sahex_core

proteusnek_pseudo_sahex_core

Step3: Run the case

Serial:

./proteusnek_sahex_core -session sahex_core # Run PROTEUS-Nek5000
coupled calculation

SHARP Multiphysics Tutorials

27

Step4: check the output files

The following output files are created after calculation:

PROTEUS: sahex_core_4g_L1T2.hdf5.xx

NEK5000: sahex_core_nek.fldxx

MOAB: target_proteus_nek.h5m

3.2.4 Analyzing

The velocity distribution shown in Figure 3.10 can be visualized with pseudocolor plot in Visit.

The precise velocity distribution in the center sahex assembly can be predicted with CFD

calculation. Higher velocity can be clearly observed in the gap regions between walls and rods.

In the neighbor homogenized assemblies, the velocity distribution which is not our most

concern in coupled calculation is uniform since the porous medium model is adopted.

Figure 3.10 Velocity distribution for sahex_core

SHARP Multiphysics Tutorials

ANL-NE-16/1 28

Figure 3.11 Power distributions for heterogeneous and homogenized assembly

The profile of the integral power in both center sahex assembly and neighbor homogenized

assembly are shown in Figure 3.11.The cosine shape power distribution can also be well

predicted in the homogenized neighboring assemblies as well which supports the feasibility of

using some form of homogenization in the coupled calculation for full core simulation.

The temperature distributions on different elevation are shown in Figure 3.12 with

distinguishing temperature in the center assembly and uniform temperature in the neighbor six

assemblies. Although the temperature near the duct wall which is our most concern for radial

core expansion between the center assembly and neighbor assembly looks similar, our recent

research [10] indicates that this simple one region porous medium model can over predict 80K

of the averaged duct wall temperature than the relatively precise CFD results, not to mention

the local temperature discrepancy. After all, the model of homogenization needs to be

improved to better serve the full core multi-physics simulation. Nevertheless, this test case is

still useful for both testing some form of homogenization to reduce the computational cost and

helping users to understand the homogenized model in SHARP.

SHARP Multiphysics Tutorials

29

a) 20% of the total elevation

b) 50% of the total elevation

c) 80% of the total elevation

Figure 3.12 Temperature distributions on difference elevations

SHARP Multiphysics Tutorials

ANL-NE-16/1 30

4 Create Own Test Case

This section describes the procedure of how to create users’ own test cases. To be concise, the

input files of sahex is renamed as sa and assumed to be the input files of a new case. Certainly,

users can used their own input files to create their own case by following this procedure.

Step 1:

Create a new test case called sa in test directory and prepare the input files.

$cd ~/SHARP/tests
$cp -r sahex sa

Change name of all the input files from sahex to sa. For instance, sahex.rea to sa_nek.rea;

sahex_proteus.inp to sa_proteus.inp. Remember to change content in sa_proteus.inp to make

sure the case can be run properly. For example,

SOURCEFILE_MESH sa_proteus.h5m
SOURCEFILE_XS sa_proteus_4g.ISOTXS
SOURCEFILE_MATERIAL sa_proteus.assignment
EXPORT_FILE sa_4g_L1T2.hdf5

Step 2:

Modify the makefile.am and configure.ac and rebuild SHARP.

Modify SHARP/tests/Makefile.am by including sa in new SUBDIRS:

SUBDIRS = dbgprb sahex sahex_core xx09 xx09_core sa

Modify SHARP/tests/sa/Makefile.am by changing PROBLEM variable and driver name:

PROBLEM = sa
DRIVERS = ex2_sa ex3_sa

Drivers
ex2_sa_SOURCES = ../ex2.cxx
ex3_sa_SOURCES = ../ex3.cxx

if SHARP_ENABLE_PROTEUS
proteusnek_sa_SOURCES = ../proteusnek.cxx
proteusnek_pseudo_ss_sa_SOURCES = ../proteusnek_pseudo_ss.cxx
DRIVERS += proteusnek_sa proteusnek_pseudo_ss_sa

if SHARP_ENABLE_DIABLO
DRIVERS += proteusnekdiablo_sa

SHARP Multiphysics Tutorials

31

proteusnekdiablo_sa_SOURCES = ../proteusnekdiablo.cxx
endif

Modify SHARP/configure.ac to add test directory

Create test directories

SHARP_PREP_TESTDIR([sa])

Step 3:

Rebuild SHARP

$cd ~/SHARP/
$./bootstrap
$cd build
$make

Make the drivers

$cd ~/SHARP/build/tests/sa
$make all #create all drivers
$make ex2_sa # create specific driver

SHARP Multiphysics Tutorials

ANL-NE-16/1 32

5 Reference

1. A. Siegel, T. Tautges, A. Caceres, D. Kaushik, P. Fischer, G. Palmiotti, M.A. Smith, J.

Ragusa, “Software Design of SHARP,” in Proceedings of the Joint International Topical

Meeting on Mathematics and Computations and Supercomputing in Nuclear Applications

(M&C + SNA), American Nuclear Society, April 2007.

2. T.J. Tautges, R. Meyers, K. Merkley, C. Stimpson, C. Ernst, MOAB: A Mesh-Oriented

Database, Sandia National Laboratories report SAND2004-1592, April 2004.

3. M.A. Smith, D. Kaushik, A. Wollaber, W.S. Yang, B. Smith, C. Rabiti, G. Palmiotti,

“Recent Research Progress on PROTEUS at Argonne National Laboratory,” in

Proceedings of the International Conference on Mathematics, Computational Methods and

Reactor Physics (M&C), American Nuclear Society, April 2009.

4. P.F. Fischer, J.W. Lottes, S.G. Kerkemier, Nek5000 Web Page,

http://nek5000.mcs.anl.gov, 2008.

5. D. Parsons, J.M. Solberg, R.M. Ferencz, M.A. Havstad, N.E. Hodge, and A.P. Wemhoff,

Diablo User Manual, Lawrence Livermore National Laboratory report UCRL-SM-234927,

Sept. 2007.

6. T.J. Tautges, H.-J. Kim, A. Caceres, R. Jain, “Coupled Multi-Physics simulation

frameworks for reactor simulation: A Bottom-Up approach,” in Proceedings of the

International Conference on Mathematics and Computational Methods Applied to Nuclear

Science and Engineering (M&C), American Nuclear Society, Rio de Janeiro, Brazil, May

2011.

7. D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandi, “MOOSE: a parallel computational

framework for coupled systems of nonlinear equations,” Nuclear Engineering and Design,

239(10):1768–1778, Oct. 2009.

8. D.E. Keyes et al., ”Multiphysics Simulations: Challenges and Opportunities,” International

Journal of High Performance Computing Applications, 27(1):4-83, 2012.

9. T. Tautges, P. Fischer, I. Grindeanu, R. Jain, V. Mahadevan, A. Obabko, M.A. Smith, E.

Merzari, “SHARP Assembly-Scale Multiphysics Demonstration Simulations,” Technical

Milestone Report ANL/NE-13/9, Argonne National Laboratory, 2013.

10. Yiqi Yu, Elia Merzari, Aleksandr Obabko, Justin Thomas, A porous medium model for

predicting the duct wall temperature of sodium fast reactor fuel assembly, Nuclear

Engineering and Design, Volume 295, 15 December 2015, Pages 48-58,

11. G. Marleau, R. Roy, and A. Hébert, “DRAGON: A Collision Probability Transport Code

for Cell and Supercell Calculations,” Report IGE-157, Institut de génie nucléaire, École

Polytechnique de Montréal, Montréal, Québec, 1994.

http://nek5000.mcs.anl.gov/

1

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

Nuclear Engineering Division
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 208

Argonne, IL 60439

www.anl.gov

