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Abstract  
We report non-destructive measurements of the full elastic strain and stress tensors from 

individual dislocation cells distributed along the full extent of a 50 µm long polycrystalline 

copper via in Si.  Determining all of the components of these tensors from sub-micrometer 

regions within deformed metals presents considerable challenges.  The primary issues are 

ensuring that different diffraction peaks originate from the same sample volume, and accurate 

determination of the peak positions from plastically deformed samples.  For these measurements, 

three widely separated reflections were examined from selected, individual grains along the via.  

The lattice spacings and peak positions were measured for multiple dislocation cell interiors 

within each grain and the cell-interior peaks were sorted out using the measured included angles.  

A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided 

uncertainties for the elastic strain tensor and stress tensor components.  
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1. Introduction  
Recent advances in synchrotron X-ray techniques (Larson et al., 2002; Yang et al., 2003; Ice et 

al., 2005; Jakobsen et al., 2006; Levine et al., 2006; Jakobsen et al., 2007; Ice et al., 2011; 

Levine et al., 2011) have provided an unprecedented capability for probing phases, 

microstructure, and elastic strains with micrometer, and even submicrometer, spatial resolution 

within complex real-world materials (Larson & Levine, 2013).  For example, recent experiments 

on 34ID-E of the Advanced Photon Source (APS), Argonne National Laboratory, used energy-

scanned Laue diffraction with depth-resolved, submicrometer-focused X-ray beams to measure 

the axial 006 lattice parameter of isolated large dislocation cell interiors in heavily (30 %) 

deformed Cu (Levine et al., 2006).  In later work, improved instrumentation and techniques 

allowed Levine et al. (2011; 2012) to measure diffraction line profiles from numerous individual 

dislocation cell walls and cell interiors within a heavily deformed Cu single crystal, and even 

from an ultra-fine grained commercial Al alloy that was severely deformed using equal-channel 

angular pressing (Lee et al., 2013; Phan et al., 2014).   

These studies provided ground-breaking results, but they were limited to just a single reflection.  

Thus, only a single component of the elastic strain could be measured.  Ultimately, a primary, 

long-range goal of that microbeam diffraction facility is to enable full strain and stress tensors to 

be extracted from buried submicrometer-scale sample volumes within complex devices and 

microstructures.  We report the measurement of full elastic strain tensors from individual 

dislocation cell interiors distributed along the 50 µm length of a copper through-Si via (Cu 

TSVs).  These strain tensors are then converted to full stress tensors using the known elastic 

constants for Cu.  Measurement uncertainties were propagated through the experimental design 
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using a Monte Carlo uncertainty algorithm to provide uncertainties for each strain and stress 

component. 

The determination of stresses within Cu-TSVs is important for microelectronic applications, and 

preliminary results have already been reported separately (Okoro et al., 2014a, 2014b).  Here, the 

primary emphasis will be a detailed description of the measurements and analysis required to 

determine the strain and stress tensors, and a thorough discussion of the uncertainty analysis.   

2. Experimental 

 
Figure 1   
Diagram of the microbeam diffraction instrument showing all major components discussed in 
the text.  The upper right corner is a photograph of the area detectors as seen from below and 
the laboratory frame coordinate system is shown in the lower left corner.  The x axis extends 
out from the drawing. 

 
Figure 1 is a diagram of the microbeam diffraction instrument on APS sector 34ID.  The X-ray 

beam from the insertion device is followed by a translating monochromator and vertical and 

horizontal slits, producing either a polychromatic or monochromatic X-ray beam that is shown 
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entering from the right of the diagram.  The beam is then focused using an orthogonal pair of 

elliptically-figured Kirkpatrick-Baez focusing mirrors.  In these measurements, the focused beam 

size was approximately 1.0 µm vertical × 0.6 µm horizontal.  Diffracted X-rays from the sample 

are incident upon three amorphous Si area detectors with 200 µm square pixels.  The large 

central detector (designated “O” for Orange), has 2048 × 2048 pixels and is roughly centered 

over the sample; the two smaller side detectors (Purple and Yellow) have 1024 × 1024 pixels and 

are tilted to provide the maximum angular acceptance for the diffracted X rays. A 50 µm 

diameter Pt wire can be inserted to provide depth profiling.  This wire is incrementally translated 

parallel to the sample surface as images are acquired from the area detectors.  By subtracting 

successive images, the X-rays blocked by the profiler during each step are identified and the 

corresponding sample depths are obtained by triangulation.  A more thorough description of this 

procedure can be found in Levine et al. (2011).   

Polychromatic measurements of a single reflection only provide information on the direction of 

the diffracted X-rays with respect to the incident beam.  Energy-scanned measurements are much 

slower, but they also allow the lattice parameter to be determined.  The full strain tensor can be 

obtained by conducting energy-scanned measurements using at least three non-collinear 

reflections, or by conducting at least one energy scan along with polychromatic measurements on 

at least four independent reflections.  In this study, energy scans were conducted on three 

independent reflections that cover the widest possible angular range to minimize uncertainties.   

In principle, this method for determining the full strain tensor is very simple, but several 

practical issues have prevented this method from being employed successfully so far.  First, the 

measured reflections must all originate from the same sample volume for the strain tensor to be 
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meaningful.  Ideally, the depth-resolving wire should allow such volumes to be determined.  

However, since widely spaced reflections intersect the wire at positions up to a few millimeters 

apart, even small uncertainties in the wire shape, position and motion can make it impossible to 

determine the true depths with adequate accuracy.  Second, when a sample is plastically 

deformed, the diffraction spots become smeared out and the angles between the reflections can 

no longer be determined with sufficient accuracy to provide meaningful tensor components 

(Larson and Levine, 2013).  Finally, once these problems are solved, it is also critical to perform 

a rigorous uncertainty analysis to determine how the experimental uncertainties affect each of the 

extracted tensor components. 

 

Figure 2   
(a) Geometry of Cu TSVs along with the incident X-ray microbeam and the X-rays 
diffracted from the Cu. (b) Microstructure of typical Cu TSVs acquired using scanning 
electron microscopy of cross sections cut using focused ion beams. 
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In this study, the origin for each reflection was primarily determined by a combination of the 

sample geometry and microstructure, rather than relying solely upon the depth resolving wire.  

Figure 2(a) shows our sample geometry.  For this study, blind (fully buried) Cu TSV arrays, with 

pitch, diameter and depth dimensions of 12 µm, 5.5 µm and 50 µm, respectively, were built into 

a full thickness 300 mm silicon wafer.  The thickness of the isolation liner (SiO2) and the barrier 

layer (TaN) were 0.5 µm and 0.025 µm, respectively.   Subsequently, the wafer was diced into 

separate dies; an individual die was used for this study.  170 nm of plasma-enhanced chemical 

vapor deposited (PECVD) SiO2 was deposited on half of the die, to simulate the presence of a 

back-end-of-line (BEOL) layer, so as to study its effect on the Cu TSV stress state. After the 

deposition of SiO2, the sample was annealed at 420 °C for 30 min in a nitrogen ambient 

environment.  The Cu TSV described in this study was uncapped. 

The incident micro-beam enters the sample at a 45° angle on a path that intersects multiple Cu 

TSVs as shown in Fig. 2(a).  Since the photon energies typically range from around 10 keV to 24 

keV, the beam can easily penetrate tens of micrometers into the specimen and the diffracted 

intensity on the area detectors originates from several Cu TSVs and the single crystal Si matrix.  

With the beam centered on the top of the selected Cu TSV, a wire scan was conducted using 

polychromatic X-rays and all three area detectors.  The resulting images were reconstructed into 

depth-resolved white beam Laue patterns as described previously (Levine et al., 2011; Levine et 

al., 2012), thereby identifying the diffraction peaks that originate from the target Cu TSV.   

Figure 2(b) is a scanning electron microscopy (SEM) image of a focused ion beam (FIB) cross 

section of a randomly selected die.  The Cu TSVs are clearly polycrystalline, with grain 
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dimensions ranging from much less than 1 µm up to at least 6 µm.  Thus, several different grains 

typically contribute to the measured diffraction pattern.   

After indexing the white beam Laue patterns from the targeted Cu TSV, a single grain was 

selected with clear spots on all three detectors.  A single bright reflection on each detector was 

then chosen so as to cover the largest possible angular range.  An energy scan was conducted on 

each selected reflection over an energy range (up to about 400 eV) large enough to include the 

full range of crystallographic orientations present in the grain.  The energy step size was set to 3 

eV to match the microbeam convergence. 

Following the energy scans, the sample was translated parallel to the sample surface so the 

incident X-ray beam would intersect the targeted Cu TSV 5 µm deeper along the via axis, and 

the full set of polychromatic and monochromatic measurements was repeated.  This procedure 

was repeated until diffraction data were obtained from the entire 50 µm length of the Cu TSV. 

 
3. Analysis Methods 

Figure 3 shows the energy-integrated diffracted intensity on all three area detectors from a single 

grain located 5 µm deep in the Cu TSV.  Each detector exhibits sharp diffraction spots from low-

dislocation density volumes and diffuse scattering associated with high dislocation density.  The 

separation of the peaks indicates that the low dislocation regions have slightly different 

crystallographic orientations, suggesting that the high dislocation density regions form walls that 

separate low dislocation density cell interiors.  To set the angular scale, the subtended angle 

between spots A and B on the orange detector (Fig. 2(a)) is about 0.45°. 
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The pattern of spot separations and intensities on the three detectors in Fig. 3 suggests that the 

peaks marked with “A” belong to a single dislocation cell interior.  Comparing the expected and 

measured angles between these spots on the three detectors gives the results shown in Table 1.  

Note that all uncertainties in this paper are one standard deviation.  The largest deviation from an 

unstrained crystal is only about 0.02°, which is consistent with all three peaks originating from a 

single cell interior.    All other peak combinations including an “A” peak give dramatically larger 

deviations.  Similar evaluations of the sets of peaks labeled “B” and “C” confirm that they also 

originate from separate cell interiors.  In nearly all of the measurements from this via, it was 

found that the subtended angles between reflections were sufficient to unambiguously determine 

which peaks came from the same diffracting sample volume.   
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Figure 3   
Energy-integrated distribution of diffracted X-ray intensity on the area detectors from a 
single grain in the Cu TSV: (a) 820 on Orange, (b) 715 on Purple and (c) 046 on Yellow. 
 

Reflections Ideal Angle (°) Measured Angle 

 

Difference (°) 

02�8 to 51�7 47.726 47.75 ± 0.01 -0.02 ± 0.01 

02�8 to 046 35.692 35.70 ± 0.01 -0.01 ± 0.01 

046 to 51�7 52.520 52.53 ± 0.01 -0.01 ± 0.01 

Table 1 
Ideal and measured subtended angles between reflections on the three detectors, along 
with the residuals.  All uncertainties are one standard deviation. 
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3.1 Strained Unit Cell and the Infinitesimal Strain Tensor 

As mentioned above, energy scans of three widely separated, independent reflections are 

sufficient to extract a complete strain tensor, and the subtended angles between multiple sub-

peaks can be used to identify a set of reflections that originate from the same sample volume.  

We proceed by first determining the location of each selected peak on its detector.  The peak 

center is determined using multiple methods including visual inspection, fitting the peak with a 

Gaussian surface, and finding the center-of-mass using several detector areas around the 

apparent peak center.  In most cases, all of the resulting peak positions are in good agreement 

and the small uncertainties are estimated from the spread.  However, the peaks are sometimes 

asymmetric, making automatic peak fitting unreliable.  Until adequate routines are developed 

and validated, each peak fit must be individually inspected and the uncertainties expanded if 

necessary. 

As described previously (Levine et al., 2011), an energy scan gives us the X-ray intensity 

incident upon each pixel on each detector as a function of photon energy (or wavelength).  Since 

the position of each pixel is known through the instrument calibration, the energy-dependent 

intensities can be converted into a diffraction line profile for each pixel.  We then sum the line 

profiles from all of the pixels associated with a given peak on the detector, producing a 

composite line profile that originates from a well-defined sample volume.  This composite line 

profile is then fitted with a Gaussian, Lorentzian, or Pseudo-Voigt function (as called for) to find 

the peak center.   
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Once the locations in reciprocal space of all three diffraction peaks are determined, the cubic 

lattice vectors in the laboratory coordinate system are found using a Gauss-Jordan elimination 

algorithm.  From these vectors, the distortion of the unit cell can be directly calculated.  As 

shown in Fig. 4, the geometry of the cubic unit cell is described using the traditional parameters 

a, b, c, α, β, and γ,  where a subscript of 0 or 1 denotes the undeformed and deformed unit cell, 

respectively. 

 

Figure 4   
Parameter definitions describing the undeformed and deformed unit cell, and the Euler 
angle convention used for relating the unit cell orientation to the laboratory frame 
coordinate system. 
 

Given the geometry of the strained and unstrained cubic unit cell, the infinitesimal (Lagrangian) 

strain tensor components, 

�
𝜀𝜀11 𝜀𝜀12 𝜀𝜀13
𝜀𝜀21 𝜀𝜀22 𝜀𝜀23
𝜀𝜀31 𝜀𝜀32 𝜀𝜀33

�,                                                              (1) 

can be calculated (Schlenker, et al., 1978) using 

𝜀𝜀11 = 𝑎𝑎1
𝑎𝑎0

sin𝛽𝛽1 sin 𝛾𝛾1 − 1, 
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𝜀𝜀22 = 𝑏𝑏1
𝑏𝑏0

sin𝛼𝛼1 − 1, 

𝜀𝜀33 = 𝑐𝑐1
𝑐𝑐0
− 1, 

𝜀𝜀12 = 𝜀𝜀21 = − 𝑎𝑎1
2𝑎𝑎0

sin𝛽𝛽1 cos 𝛾𝛾1, 

𝜀𝜀13 = 𝜀𝜀31 = 𝑎𝑎1
2𝑎𝑎0

cos𝛽𝛽1, and 

𝜀𝜀23 = 𝜀𝜀32 = 𝑏𝑏1
𝑏𝑏0

cos𝛼𝛼1.                                                           (2) 

3.2 Euler Angles 

The crystallographic orientation of the measured sample volume is important for relating the 

individual strain tensor components to the sample geometry and to any anisotropic external 

stresses or other processing conditions that may have been applied.  The crystallographic 

orientation is described with respect to the laboratory-frame coordinate system that is shown in 

the lower right corner of Fig. 1.  The Z axis points downstream along the incident X-ray beam, 

the Y axis is vertical, and the X axis points out from the diagram. 

The orientation of the unit cell is described using three Euler angles that define a series of 

rotations that transform the laboratory-frame coordinate system into the crystal-frame coordinate 

system.  All Euler angles follow the φθψ convention (sometimes referred to as the x-convention 

for the choice of the second rotation axis) described by Goldstein (1980) and diagrammed in Fig. 

4.  The unit cell is first aligned with the [100], [010], and [001] lattice directions along the X, Y 

and Z axes of the laboratory frame coordinate system, respectively.  The unit cell is then rotated 

counterclockwise by φ about Z, giving the rotated coordinate system X1, Y1, Z.  The next 

rotation is counterclockwise by θ about X1, giving X1, Y2, Z2. Finally, the unit cell is rotated 
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counterclockwise about the Z2 axis by ψ to X3, Y3, Z2, which is the measured orientation of the 

deformed unit cell.  The rotation matrix describing this complete transformation is 

𝚨𝚨 = �
cos𝜓𝜓 cos𝜙𝜙 − cos 𝜃𝜃 sin𝜙𝜙 sin𝜓𝜓 cos𝜓𝜓 sin𝜙𝜙 + cos θ cos𝜙𝜙 sin𝜓𝜓 sin𝜓𝜓 sin𝜃𝜃
− sin𝜓𝜓 cos𝜙𝜙 − cos𝜃𝜃 sin𝜙𝜙 cos𝜓𝜓 − sin𝜓𝜓 sin𝜙𝜙 + cos 𝜃𝜃 cos𝜙𝜙 cos𝜓𝜓 cos𝜓𝜓 sin𝜃𝜃

sin𝜃𝜃 sin𝜙𝜙 − sin 𝜃𝜃 cos𝜙𝜙 cos 𝜃𝜃
�, 

with the inverse 

 

𝚨𝚨−1 = �
cos𝜓𝜓 cos𝜙𝜙 − cos 𝜃𝜃 sin𝜙𝜙 sin𝜓𝜓 − sin𝜓𝜓 cos𝜙𝜙 − cos𝜃𝜃 sin𝜙𝜙 cos𝜓𝜓 sin𝜃𝜃 sin𝜙𝜙
cos𝜓𝜓 sin𝜙𝜙 + cos θ cos𝜙𝜙 sin𝜓𝜓 − sin𝜓𝜓 sin𝜙𝜙 + cos 𝜃𝜃 cos𝜙𝜙 cos𝜓𝜓 − sin𝜃𝜃 cos𝜙𝜙

sin𝜃𝜃 sin𝜓𝜓 sin𝜃𝜃 cos𝜓𝜓 cos 𝜃𝜃
�. 

If the measured unit cell had axes that were perfectly orthogonal, the above transformation 

would be unambiguous.  However, shear components distort these angles and an additional 

convention is required.  Here, the reported Euler angles rotate the laboratory-frame X axis into 

the [100] direction of the measured unit cell, and the laboratory-frame Z axis to a direction that is 

orthogonal to the sample [100] and [010] directions.  

The above rotation matrices can be used to easily determine the orientations of crystallographic 

directions in the laboratory coordinate system, and to identify what crystallographic axes are 

aligned along directions relevant to the sample geometry.  For example, the crystallographic 

direction 𝒖𝒖 points along the  𝒖𝒖′ = 𝐀𝐀𝒖𝒖 direction in the laboratory coordinate system.  Similarly, if 

the vector 𝒗𝒗′ in the laboratory coordinate system is an important direction relevant to the sample 

(for example, 𝒗𝒗′ = [0 1 -1] is generally perpendicular to the sample surface), the crystallographic 

orientation for this direction is just 𝒗𝒗 = 𝐀𝐀−1𝒗𝒗′. 
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4. Uncertainties 

The primary sources of uncertainty in the calculated strain tensor components include the 

instrument calibration, measurement uncertainties in the diffraction spot positions on the 

detectors, the centroid positions of the diffraction line profiles, and uncertainties in the lattice 

parameter of the unstrained sample.  When the strain tensor is converted to a stress tensor, the 

uncertainties in the elastic constants must also be considered. 

Instrument calibration consists of three parts: calibration of the monochromator energy, 

calibrations of the positions and orientations of the area detectors, and calibration of the wire 

position and orientation. The energy of the monochromatic beam, E, was calibrated using Si (n n 

n) reflections (n = 4 to 11) in a backscattering geometry, to within the energy resolution of the Si 

(111) monochromator, namely ∆E/E < 1×10-4.  To calibrate the detectors’ geometry, white-beam 

Laue diffraction peaks, from a 4-µm-thick, strain-free single-crystal silicon calibration specimen, 

were collected by all three area detectors.  About 50 peaks were collected and indexed on the 

central detector (Orange), and about 10 to 20 peaks on the two side detectors (Yellow and 

Purple).  The positions and orientations of the three detectors were then determined by matching 

the predicted and measured peaks’ positions on the detectors through an optimization algorithm.  

The final root-mean-square angular uncertainties of the peak positions were ≈ 0.005°, which is 

smaller than the angle subtended by an individual pixel (≈ 0.02°).  The orientation of the depth-

profiling wire was calibrated to be perpendicular to the incident beam and parallel to the 

horizontal plane; this was carried out by fine-scanning the wire edges against the incident beam 

as well as the diffracted peaks from the aforementioned silicon specimen over a necessary range 

along the wire’s length.  The resulting overall wire orientation had an angular deviation of less 
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than ≈ 2 mrad. The origin of the wire center, most importantly its vertical position relative to the 

x-ray beam, was also calibrated during this process to within 1 µm. 

In all cases, the calibration uncertainties are small compared with the uncertainties in the 

deformed copper diffraction data and they will not be included in the following analysis.  It is 

important to note that measurements of low defect materials such as single-crystal Si will have 

smaller uncertainties, and the calibration uncertainties may need to be included in the analysis. 

The uncertainties in the measured peak positions and diffraction peak centers, discussed in the 

previous section, must be propagated through the analysis to provide uncertainties for the 

geometry of the strained unit cell, the Euler angles describing the crystallographic orientation, 

and the components of the strain and stress tensors.  The strain tensor uncertainties also depend 

upon the uncertainty in the unstrained lattice parameter, and the stress tensor must additionally 

include the uncertainties in the elastic constants.  Since energy scans of three independent 

reflections comprise a minimal data set for determining the geometry of the strained unit cell and 

the crystallographic orientation, each such measurement produces a unique solution.  

Uncertainties are propagated using a Monte Carlo algorithm.  Each measured value (i.e. the x 

and y positions of diffraction spots on the detectors and the centroids of the line profiles) has an 

associated uncertainty distribution with a standard deviation that is estimated as described above.  

These distributions are assumed to be approximately Gaussian in form and a set of 40,000 

Gaussian-distributed variants is generated for each measured value, producing 40,000 variants of 

a complete measurement of three reflections.  Each of these variants produces a unique solution 

for the strained unit cell, and the distribution of output values, such as the angle α, is analyzed to 

obtain a standard deviation uncertainty.  Similarly, once an undeformed lattice parameter and a 
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set of elastic constants are obtained, the Monte Carlo uncertainty propagation is carried forward 

for each component of the strain and stress tensors.  Here, the unstrained lattice parameter is 

assumed to be 0.361496(5) nm (Wyckoff, 1963) which is the lattice parameter for pure Cu at 

room temperature.  The elastic constants for copper at room temperature are c11 = (169.1 ± 0.2) 

GPa, c12 = (122.2 ± 0.3) GPa, and c44 = (75.41 ± 0.05) GPa (Ledbetter & Naimon, 1974). 

5. Results 

Table 2 lists all of the calculated parameters and their one-sigma uncertainties from a single 

dislocation cell interior located approximately 17.5 µm deep within the measured Cu-TSV.  

These parameters include the unit cell dimensions and angles, the Euler angles describing the 

crystallographic orientation, the full strain tensor, the full stress tensor, and the hydrostatic stress 

which is the average of the diagonal terms of the stress tensor.  Note that the uncertainties vary 

considerably for the unit cell parameters, and thus for the extracted strain and stress tensor 

components.  This variation is primarily due to the angular range of the measured reflections and 

their orientation with respect to the unit cell.  As an example, lattice vectors aligned 

perpendicular to the sample surface can be measured much more precisely than those with a 

parallel orientation. 
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Table 2   
Unit cell, orientation, strain tensor, and stress tensor components from a sub-micrometer 
sample volume approximately 17.5 µm deep within a Cu TSV.  The one-standard-
deviation uncertainties were calculated using a Monte Carlo uncertainty algorithm as 
described in the text. 

 

Figure 5 shows all six stress tensor components plotted as a function of depth along the axis of 

the Cu TSV.  For all depths, the off-diagonal components are much smaller than the diagonal 

components, and the diagonal terms are approximately equal at each depth, consistent with a 

primarily hydrostatic stress state.  The uncertainties for the diagonal components are also 

Unit cell parameters 
a1 = 0.361497 nm ± 0.000013 nm 
b1 = 0.361558 nm ± 0.000037 nm 
c1 = 0.361656 nm ± 0.000017 nm 
α = 90.0028° ± 0.0097° 
β = 89.9988° ± 0.0043° 
γ = 89.9927° ± 0.0049° 

Orientation 
Ψ   = 324.4301° ± 0.0093° 
Θ   = 149.2013° ± 0.0048° 
Φ   = 84.341° ± 0.013° 

Infinitesimal strain tensor components 
e11   = (0.04 ± 0.36) × 10-4 
e22   = (1.7 ± 1.0) × 10-4 
e33   = (4.42 ± 0.47) × 10-4 
e23   = (-0.24 ± 0.85) × 10-4 
e13   = (0.11 ± 0.38) × 10-4 
e12   = (-0.63 ± 0.43) × 10-4 

Stress tensor components in MPa 
s11   = 76 ± 20 
s22   = 83 ± 24 
s33   = 96 ± 22 
s23   = -4 ± 13 
s13   = 1.6 ± 5.7 
s12   = -9.6 ± 6.5 
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consistent with a hydrostatic stress state, although the overlaps suggest a slight overestimation of 

the uncertainties.   

 

Figure 5   
All six stress tensor components plotted as a function of depth along the Cu TSV axis.  
The uncertainties are one standard deviation. 

 

The pattern of the stress components shown in Fig. 5 provides strong supporting evidence that 

the analysis is correct.  That is because all of the likely errors in the analysis would produce large 

artificial stress components.  For example, if the three analyzed reflections come from different 

cell interiors, the corresponding angular misorientations of the cells would be misinterpreted as 

elastic distortions of the unit cell geometry, resulting in large artificial elastic strains and stresses.  



19 

 

This condition was artificially produced and the results are shown in Fig. 6.  Here, three variants 

of the data from approximately 17.5 µm deep (see Table 1and Fig. 5) are displayed.  Variant A is 

the as-measured result, variant B was obtained by shifting the peak on the Orange detector in the 

X direction by an amount comparable to the position difference of nearby peaks B and C in Fig. 

3, and variant C was obtained by shifting the same peak the same amount in the orthogonal 

direction.  As expected, the stress components for variants B and C show considerable 

unphysical distortion. 

 

Figure 6   
All six stress tensor components from the same sample volume plotted for three error 
conditions: A) as measured, B) first artificial peak shift, and C) second artificial peak 
shift. 
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6. Summary and Conclusions 

 We described and demonstrated a new measurement capability of the microbeam diffraction 

instrument on 34ID-E at the APS, which allows the mean geometry and crystallographic 

orientation of a strained unit cell to be determined for submicrometer sample volumes within a 

complex 3D microstructure. Given the unstrained lattice parameter, the full elastic strain tensor 

can be obtained.  With additional information on the elastic constants, the full stress tensor can 

be found.  The one-sigma uncertainties for all extracted parameters are determined using a 

Monte Carlo uncertainty algorithm.  Presently, the analysis software is limited to cubic systems, 

but extending this to arbitrary lattice systems should be straightforward. 

Our approach was demonstrated by extracting full stress tensors from individual dislocation cells 

spaced along the 50 µm length of a buried polycrystalline Cu TSV.   In all cases, the diagonal 

components were nearly equal in magnitude and much larger than the off-diagonal components, 

consistent with a largely hydrostatic stress state. 

The ability to measure full strain and stress tensors from submicrometer sample volumes within 

complex microstructures has broad applications within materials science.  Stresses are a principle 

cause of device failure through processes such as delamination, inter- and intra-granular 

cracking, fatigue, whisker growth, hillock formation, and driven diffusion processes.  With 

submicrometer X-ray diffraction, these critical processes can now be studied non-destructively 

within real-world devices such as microelectronic devices and microelectromechanical systems.   
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