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EXECUTIVE SUMMARY 
 

Low-velocity channel-margin habitats serve as important nursery habitats for the 
endangered Colorado pikeminnow (Ptychocheilus lucius) in the middle Green River between 
Jensen and Ouray, Utah. These habitats, known as backwaters, are associated with emergent 
sand bars, and are shaped and reformed annually by peak flows. A recent synthesis of 
information on backwater characteristics and the factors that influence inter-annual variability in 
those backwaters (Grippo et al. 2015) evaluated detailed survey information collected annually 
since 2003 on a relatively small sample of backwaters, as well as reach-wide evaluations of 
backwater surface area from aerial and satellite imagery. An approach is needed to bridge the 
gap between these detailed surveys, which estimate surface area, volume, and depth, and the 
reach-wide assessment of surface area to enable an assessment of the amount of habitat that 
meets the minimum depth requirements for suitable habitat. 

 
Optical remote sensing is recognized as an effective tool for gathering river parameters 

across an extensive reach in a spatially continuous manner. Many existing studies tested remote 
sensing approaches for clear, gravel-bed rivers; however, these techniques may not be directly 
applicable for estimating depth of backwater habitats in relatively turbid rivers with sandy 
substrate such as the Green River. Argonne National Laboratory (Argonne) examined the 
effectiveness of optical remote sensing for estimating backwater depth using National 
Agriculture Imagery Program (NAIP) imagery that was collected in July 2006 for the Jensen-
Ouray reach of the Green River. Three regression models—linear, multiple, and partial least 
square (PLS) regression models—were developed.  

 
Among the three models, the multiple and PLS regression models showed moderately 

high correlation with the reference depth (R2 = 0.669 and 0.689, respectively). The maps 
generated using the models share overall similarity in spatial patterns of relative depth 
(e.g., deep, moderate, and shallow) and correspond well to the reference maps. The model 
validation indicated that the PLS regression model had the most unbiased estimate of backwater 
depth, while the linear regression model has considerable bias across the backwater habitats. The 
multiple and PLS regression models appeared equally effective for estimating turbid water depth 
when pooling all backwaters. However, the PLS regression model had more unbiased and 
consistent depth estimates across backwaters than the multiple regression model.  

 
While absolute depth estimates may be somewhat uncertain for backwaters in our study 

area that are deeper than approximately 40 cm, it would be possible to obtain reasonable 
estimates of the amount of habitat that exceed 30 cm in depth. Backwater habitats with these 
minimum depths are considered suitable for young-of-the-year Colorado pikeminnow  
(Muth et al. 2000), and are surveyed annually by the Upper Colorado River Endangered Fish 
Recovery Program to determine annual production of young. We consider our PLS regression 
approach supported by field survey data to be a viable option for developing cost-effective, 
reach-wide assessments of backwater habitat characteristics. The effect of interannual variability 
in suspended sediment concentrations on model performance should be evaluated to determine 
how the model could be adjusted among years to provide accurate results.  
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NOTATION 
 
B blue spectral band 
bw backwater 
 

cfs cubic feet per second; 1 cfs = 0.028317 m3/s 
cm centimeter(s) 
 
DEM digital elevation model 
df degree of freedom 
DN digital number 
 
F F-statistic 
G green spectral band 
 
km kilometer(s) 
 
ln natural log  
log log (base 10) 
 
m meter(s) 
MAE  mean absolute error 
ME mean error  
 
NAIP National Agriculture Imaging Program 
ND normalized difference 
  
 
ONWR Ouray National Wildlife Refuge  
 
p statistical significance 
PLS partial least squares 
 
r Pearson correlation coefficient 
R red spectral band 
R2  coefficient of determination 
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1  INTRODUCTION 
 
 

Low-velocity channel-margin habitats serve as important nursery habitats for the 
endangered Colorado pikeminnow (Ptychocheilus lucius) in the middle Green River between 
Jensen and Ouray, Utah. These habitats, known as backwaters, are associated with emergent 
sand bars, and are shaped and reformed annually by peak flows. A recent synthesis of 
information on backwater characteristics and the factors that influence inter-annual variability in 
those backwaters (Grippo et al. 2015) evaluated detailed survey information collected annually 
since 2003 on a relatively small sample of backwaters, as well as reach-wide evaluations of 
backwater surface area from aerial and satellite imagery. An approach is needed to bridge the 
gap between these detailed surveys, which estimate surface area, volume, and depth, and the 
reach-wide assessment of surface area to enable an assessment of the amount of habitat that 
meets the minimum depth requirements for suitable habitat. 
 

From 2003 to 2013, Argonne National Laboratory (Argonne) conducted backwater 
surveys for selected backwaters in the Ouray National Wildlife Refuge reach of the Green River 
to measure topographic features of backwater habitats during the base flow period (Grippo et al. 
2015). The characteristics (location, surface area, volume, and depth) of backwaters surveyed 
were not consistent across years because of the dynamics of sandbars and associated backwater 
habitats. A total of 51 backwater habitats that represented 13 backwater locations were surveyed 
during the course of the 11 years. The data were used to quantify relationships between base 
flows and backwater habitat characteristics including surface area, volume, and depth (Grippo et 
al. 2015). Although surveys provide accurate topographic measurements, the process is costly, 
time consuming, and feasible for only a limited number of backwater habitats. These 
shortcomings of surveying impose a challenge to a comprehensive understanding of backwater 
habitat conditions for larger river reaches and multiple years.  

 
Remote sensing offers simultaneous, spatially comprehensive data collection and 

potential for systematic, semiautomatic data processing over a large areal extent. It is a non-
invasive data collection method that is also suitable for repeated surveys (Legleiter 2013). 
Optical remote sensing is perhaps the only method for estimating parameters over a large 
channel extent in a spatially contiguous manner (Marcus and Fonstad 2008). Sunlight in the 
optical spectral range that reaches the water surface is either reflected (or diffused), transmitted, 
or absorbed at the surface. The transmitted light attenuates as it travels through the water column 
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according to a specific function with depth. In theory, therefore, water depth at a given location 
can be estimated based on how much light is attenuated at that specific location of the river. 
Detailed theoretical background is provided by Legleiter et al. (2009). 

 
Despite a long history of remote sensing research for river bathymetry, the application of 

remote sensing to estimating water depth has only become active over the last ten years. 
Legleiter et al. (2004) conducted a feasibility study for mapping channel bathymetry of a stream 
in Yellowstone National Park using optical imagery. They found that the natural log of the green 
and red spectral band ratio (ln[G/R]) was strongly correlated with the water depth (R2 = 0.79). 
Legleiter et al. (2009) developed a systematic selection of optimal spectral bands for estimating 
water depth—optical band ratio analysis (OBRA)—and confirmed their earlier conclusion 
(Legleiter et al. 2004) that a linear regression model that used ln(G/R) is the optimal model for 
estimating water depth (R2 = 0.79–0.98). Legleiter (2013) applied the technique for the National 
Agriculture Imagery Program (NAIP) image captured over the Laramie and Snake Rivers in 
Wyoming. The accuracy of water depth estimate was slightly lower than his earlier study 
(R2 = 0.64). All studies above were conducted in clear-flowing, gravel-bed rivers that are very 
different from our study reach.  

 
For turbid rivers, Legleiter and other (2011) found that an optical remote sensing method 

can reliably estimate water depth up to approximately 50 cm, and the estimates are subject to a 
significant degree of uncertainty if concentration of suspended sediment is greater than 60 mg/L, 
based on their field spectroscopy study. Javernick et al. (2014) attempted to map bathymetry of 
shallow braided rivers with substantial sediment load in the Ahuriri River, New Zealand using 
optical remote sensing in conjunction with photogrammetry-based 3D modeling. The study 
determined that the standard error in water surface elevation and river bed elevation were  
11–28 cm and 25–41 cm, respectively. Although it would provide a cost-effective means for 
mapping and monitoring backwater habitats, true applicability of optical remote sensing for 
estimating water depth of backwater habitats in turbid rivers is currently unknown because of the 
limited number of relevant studies. Therefore, we explored the effectiveness of optical imagery 
for estimating backwater depth in the Green River using publicly available high resolution, 
multispectral NAIP imagery.  

 
 

2  METHODS 
 
 
2.1  STUDY AREA 
 

We estimated water depth for backwaters located within the 177-km study reach between 
the Utah Route 149 bridge near Jensen, Utah, and the Utah Route 88 bridge at Ouray, Utah, 
where previous backwater surveys were conducted (Grippo et al. 2015). The reach has a 
substrate composed primarily of sand and numerous emergent sand bars and associated 
backwater habitats. For estimating water depth using remote sensing, four backwater habitats 
were selected for ground-truthing from those surveyed by Argonne since 2003 within a 15-km 
reach of the Green River within the Ouray National Wildlife Refuge Project (Figure 1). 
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2.2  MODELING BACKWATERH DEPTH  
 
 
2.2.1  Data Used for Modeling Backwater Depth 

 
The study required an aerial image and an estimate of bathymetry at the flow on the date 

the image was collected. A seamless NAIP image mosaic collected on July 14, 2006 was used to 
estimate water depth of the backwater habitats. The image mosaic consisted of three visible 
spectral bands (i.e., blue, green, and red) at a 1-m spatial resolution in an 8-bit radiometric data 
range. Although images for a region are typically collected from multiple dates, all frames that 
cover our study reach were collected on a single date (i.e., July 14). This single-date image 
mosaic made it possible for us to apply a single flow level for the day to estimate water depth. 
The image frames were color-balanced and georeferenced by the vendor, which resulted in a 
seamless single image available for our study. Within the seamless NAIP image mosaic, an area 
corresponding to our study reach and its vicinity was used for analysis.  

  
Bathymetry of the backwater habitats was generated as part of our backwater habitat 

surveys (Grippo et al. 2015). Backwaters 2, 6, 7a, and 13 (Figure 1) were surveyed on September 
26–28, 2006 using survey-grade equipment (e.g., Topcon GS GPS 34 Unit; Leica TC805 Ultra 
Total Station with +/- 1 cm horizontal and vertical accuracy). For each backwater habitat, a 
digital elevation model (DEM) was developed by interpolating elevation from the survey points 
using a natural nearest neighbor interpolation technique. This DEM was used to generate the 
reference water depths used in model calibration and validation. Flow on the day of the 2006 
NAIP image collection was determined as 2,090 cfs based on mean daily flow at the USGS 
Jensen gauge station (USGS 09261000).  
 
 
2.2.2  Backwater Depth Modeling Approach 
 

Backwater depth modeling consisted of three steps: (1) image data preparation, which 
standardized the data values, (2) generation of predictor variables and a calibration dataset, 
which were derived from the 2006 NAIP image, and (3) regression model development, which 
used three types of regression analyses—linear, multiple, and partial least squares (PLS) 
regression analyses. Image preparation and transformation were performed using the ERDAS 
Imagine software (http://www.hexagongeospatial.com/products/producer-suite/erdas-imagine), 
calibration data generation was performed using the ArcGIS software 
(http://www.esri.com/software/arcgis), and statistical analysis and model development were 
performed using the R statistical language (https://www.r-project.org). 
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FIGURE 1  Study Reach for Previous Backwater Surveys Located in Ouray National 
Wildlife Refuge Project Area within the Green River Subbasin (top). Backwater habitats 
(bw) 2, 6, 7a, and 13 were used to estimate water depth using remote sensing. Aerial photos 
of the four backwater habitats are also shown. 
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 2.2.2.1  Preparing Image Data 
 
The original data values (known as digital numbers or DNs) of the NAIP image were 

converted to reflectance values using an empirical line method adopted from Smith and Milton 
(1999). This method is commonly applied when field-based reflectance data and detailed 
atmospheric parameters at the time of image collection are not available. We first located the 
darkest (i.e., shaded water) and brightest (i.e., rooftops) features in the image using a principal 
component analysis technique. Within those features, 36 to 60 pixels having extreme values were 
selected, and their pixel values were extracted. Those values for the darkest and brightest pixels 
were assumed to represent reflectance values of 1% and 99% across the spectral bands, 
respectively. Based on this assumption, we developed a linear function for each spectral band to 
covert the DNs to reflectance values in the image (Figure 2, left). The reflectance values that 
were obtained using the functions show consistency across the spectral band such that the darkest 
pixels have reflectance values of approximately 1% and the brightest pixels have reflectance 
values of approximately 99% (Figure 2, right). 
 
 

 
FIGURE 2  Empirical Reflectance Calibration Functions (Left) and Pixel Values Before 
and After Conversion (Right). D = dark, B = bright, Refl = reflectance.  

 
 
In general, an optical image represents how much sunlight was reflected by the surface at 

the time of image collection. For a river, the image indicates the amount of light scattered on the 
surface, attenuated through water column, and absorbed by substrates, which provide useful 
information for estimating depth of water and suspended sediment. 
  

The mean daily flow at the USGS Jensen gage station on the date of the 2006 NAIP 
image collection (July 14), was 2,090 cfs. The reference water depth map was generated from 
our DEM of each backwater using the estimated water surface elevation at a flow of 2,090 cfs. 
As stated earlier, the DEMs were generated from our 2006 field survey data of subject backwater 
habitats. The water surface elevation was subtracted from the DEM to generate the reference 
map representing water depth for each backwater habitat.  

y = 0.4175x + 0.3308
R² = 1

y = 0.4125x + 0.3492
R² = 0.9999

y = 0.4807x ‐ 2.365
R² = 0.9998

0

20

40

60

80

100

120

0 100 200

A
ss
ig
n
e
d
 R
e
fl
e
ct
an
ce
 (%

)

DN

Red band

Green band

Blue band

0

20

40

60

80

100

0

50

100

150

200

250

1 2 3

R
e
fl
e
ct
an
ce
 (%

)

D
ig
it
al
 N
u
m
b
e
r 
(D
N
, 8
 b
it
)

Spectral Band
(1 = Red band, 2 = Green band, 3 = Blue band)

DN_D1 DN_D2 DN_D3

DN_B1 DN_B2 DN_B3

Refl_D1 Refl_D2 Refl_D3

Refl_B1 Refl_B2 Refl_B3



Backwater Depth Estimation 6 February 2016 

 
 

 2.2.2.2  Generating Predictor Variables and Calibration Dataset 
 
To estimate water depth of backwater habitats using optical remote sensing, nine types of 

predictor variables were tested using the NAIP image (Table 1). In addition to reflectance of the 
blue, green, and red bands, square and log terms were calculated for each band. Products and 
ratios were computed for all possible band combinations to account for interactions between 
bands. Simple ratios and normalized difference ratios, which are known to compensate for 
spectral noise associated with incoming light variability, were also computed for all possible 
band combinations. Natural log of simple band ratios was included because the transformation 
characterizes exponential attenuation of light in water column (Legleiter et al 2004, 2009).  
 

The generation of the calibration dataset consisted of four steps: (1) sampling, (2) outlier 
analysis, (3) Pearson correlation analysis, and (4) collinearity analysis. We randomly selected 
400 points consisting of 100 points for each of the four backwater habitats. These points were 
selected only from locations that are expected to be submerged at the flow of 2,090 cfs. For the 
400 points, we extracted values of a total of 33 variables to generate a calibration dataset to 
model water depth. All calibration samples were examined using an outlier test and QQplot. Five 
samples that equate to 1.25% of the calibration data were determined as outliers and eliminated 
from the calibration set without replacement. Correlation between the reference water depth and 
the predictor variables in the calibration set were computed (Table 2), and predictors with r < 
|0.3| were eliminated from the calibration set. A total of 20 predictors were carried forward at this 
step for further consideration. 
 

Lastly, collinearity of the predictor variables within the calibration set was examined. 
Because of the highly correlated nature of spectral bands of the optical imagery, we applied a 
very generous criterion for assessment. When multiple predictors had perfect or extremely strong 
collinearity (r > 0.90), those that have lower correlation with the reference water depth were 
excluded from the calibration set. Based on the criteria, five variables (B+G, B+R, G+R, G-B, 
and R-G) were excluded from the calibration data. A total of 15 predictors were in the final 
calibration (Table 2, italics), and they were carried forward for regression modeling approaches 
described below.  

 
 

2.2.3  Modeling for Water Depth Estimation  
 
To estimate backwater depth, linear, multiple, and PLS regression models were applied. 

A linear regression model using a natural log of the green-red band ratio (ln[G/R]) was first 
developed for estimating water depth of backwater habitats. This predictor was found to be an 
effective predictor for estimating water depth for clear flowing rivers with gravel substrates 
(Legleiter et al. 2004, 2009). Although our study backwaters do not have ideal properties for 
application of a linear regression model, we developed such a model to provide a reference for 
comparison of the performance of multiple and PLS regression models.  
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TABLE 1  Remote-Sensing Variables Evaluated for Use as Predictors of Backwater Depth 

Category Remote-Sensing Variable Description 

Spectral 
Band 

Blue (B) Green(G) Red(R) Reflectance values of the NAIP 2006 imagery. Input for 
the rest of the variables.  

Sum B+G B+R G+R Sum of reflectance values of two spectral bands. 

Difference G-B R-B R-G Difference of reflectance values between two spectral 
bands. 

Squared BSq GSq RSq Squared values of reflectance of the spectral bands.  

Log LogB LogG LogR Log (base 10) of reflectance values of the spectral bands.  

Product B*G B*R G*R Represent interactions between two spectral bands.  

Ratio B/G 

G/B 

B/R 

R/B 

G/R 

R/G 

The most basic spectral index type used for remote 
sensing studies. Mitigates the effects of variability in 
spectral data.  

Normalized 
Difference 
(ND) Ratio 

NDBG NDBR NDGR The most commonly used spectral index type using 
remote sensing studies. Calculated as the difference in 
reflectance values of two spectral bands divided by their 
sum. More effective for mitigating variability and noise 
in spectral data.  

Natural Log 
(ln) 

ln(B/G) 

ln(G/B) 

ln(B/R) 

ln(R/B) 

ln(G/R) 

ln(G/R) 

Natural log of reflectance value ratios. The form tested 
for depth estimation for clear-flowing, gravel-bed rivers. 
Applies attenuation of lights passing through water 
column.  

 
 
A multiple regression model was first developed using all 15 predictors, and their 

significance for estimating water depth was examined. The predictors that were determined to 
contribute significantly to the model (p < 0.001) were used to develop the final multiple 
regression model.  

 
A PLS regression model is a statistical technique that is capable of handling highly 

redundant (or collinear) predictor variables (as well as response variables, when applicable) by 
transforming them into a smaller set of uncorrelated variables by achieving the maximum 
covariance prior to regression analysis (Wold et al. 1984). Thus, the technique is suitable when 
you need to analyze more than a few predictor variables that are highly collinear and/or how 
response variables are related to predictor variables. Because of its unique capability, a PLS 
regression model is widely utilized for analytical chemistry such as chemometrics or 
hyperspectral remote sensing (Wold et al. 2001), bioinformatics (Land et al. 2011), and 
neurosciences (Zhao et al. 2013), as an alternative technique to multiple regression. While the 
technique facilitates prediction of the responses, the PLS regression does not describe underlying 
relationship between the predictor and response variables (Wold et al. 1984).   
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TABLE 2  Correlation Between the Reference Water Depth and Remote-Sensing Variables 

Category Remote-Sensing Variablea and Pearson Correlation Coefficient [r] 
Spectral Band Blue (B)  

[0.37] 
Green(G)  

[0.58] 
Red(R)  
[0.35] 

Sum B+G 
[0.49] 

B+R 
[0.36] 

G+R 
[0.48] 

Difference G-B 
[0.51] 

R-B 
[-0.12] 

R-G 
[-0.54] 

Squared BSq 
[0.38] 

GSq 
[0.59] 

RSq 
[0.34] 

Log LogB 
[0.36] 

LogG 
[0.58] 

LogR 
[0.34] 

Product B*G 
[0.48] 

B*R 
[0.37] 

G*R 
[0.49] 

Ratio B/G 
[-0.24] 

B/R 
[0.28] 

G/R 
[0.53] 

 G/B 
[0.24] 

R/B 
[-0.28] 

R/G 
[-0.28] 

Normalized Difference (ND) Ratio NDGB 
[0.24] 

NDRB 
[-0.28] 

NDRG 
[-0.53] 

Natural Log (ln) ln(B/G) 
[-0.24] 

ln(B/R) 
[0.28] 

ln(G/R) 
[0.53] 

 ln(G/B) 
[0.24] 

ln(R/B) 
[-0.28] 

ln(R/G) 
[-0.28] 

a Remaining predictor variables after collinearity analysis, which better represented the relationship with water 
depth, are shown in italics. These variables were used to develop a multiple regression model. 

 
 
A PLS regression model was developed using all 33 predictors regardless of collinearity 

because it is able to handle highly collinear predictor variables as discussed above. A quasi-
principal component analysis was performed on the 33 predictors and yielded 33 components 
having the maximum covariance. We selected the first 11 components for further regression 
analysis because the 12th component only improved R2 between predicted and reference depth by 
0.001. Once the analysis was complete, the output from the 11 components was reverted to the 
original 33 predictor variables. The intercept and coefficients for the PLS regression model in the 
predictor variable domain are summarized in Table 4.  

 
Each regression model was qualitatively and quantitatively examined using scatter plots 

and descriptive statistics. The models were applied to the spectral data to estimate water depth, 
and maps of predicted water depth were generated.  

 
Backwater depths predicted using the linear, multiple, and PLS regression models were 

validated using a sample of 400 points consisting of 100 randomly selected points from each of 
the four backwater habitats. The sampled points were examined using an outlier test and QQplot. 
Three samples (0.75% of the validation data) were determined outliers and eliminated from the 
validation set without replacement.  
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3  RESULTS 
 
 
3.1  MODEL DEVELOPMENT  
 
3.1.1  Linear Regression Model  
 

The linear regression model was as follows: 
 

	 	 10.753 ln / 0.492                                       (1) 
 
The scatter plot of water depth that was predicted using the linear regression model 

(Equation 1) and the reference depths calculated from the DEM used for the calibration data is 
shown in Figure 3 (left). For comparison to the data scatter, the plot shows a perfect one-to-one 
relationship between predicted and reference water depth. The reference depth ranged up to 
approximately 2 m. However, the model was not able to predict water depths greater than 1 m. 
The model indicated difficulty accurately predicting water depth beyond approximately 30 cm 
using the calibration data.  

 
 

 
FIGURE 3  Scatter Plots of Predicted Water Depth Using the Regression Models against 
Reference Water Depth. Regression lines correspond to a hypothetical one-to-one 
relationship.    

 
 
Descriptive statistics of the linear regression model using the calibration data is shown in 

Table 3. The model produced an F-value (F = 156.7) that was statistically significant  
(p < 0.001) and the coefficient of determination (R2 = 0.283) indicates that approximately 28% of 
water depth variability can be explained by ln(G/R) alone. The standard error of the model was 
0.319 m. A simple average of residuals that estimates bias in model output (i.e., mean error 
[ME]) indicated there was no positive or negative bias in water depth prediction (ME = 0.000). 
An average of absolute values of residuals that estimates an overall magnitude of error (i.e., 
mean absolute error [MAE])–was 0.155 m. The linear regression model was applied to the 2006 
NAIP image to generate a map of predicted water depth.  
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TABLE 3  Statistics of Regression Models Using Calibration Dataa 

 R2 df SE F p ME MAE

Linear regression model 0.283 393 0.319 156.7 < 0.0001 0.000 0.155 

Multiple regression model 0.675 388 0.216 134.6 < 0.0001 0.000 0.096 

PLS regression model 0.737 362 0.016 690.9 < 0.0001 0.000 0.083 

a  PLS = partial least squares; R2 = coefficient of determination, df = degree of freedom, SE = standard error, F = 
F-statistic, p = significance, ME = mean error, MAE = mean absolute error 

 
 
3.1.2  Multiple Regression Model 

 
A multiple regression model was developed using the 15 predictor variables described in 

Section 3.2.2. The only statistically significant (p < 0.01) predictors were included in the model. 
The final multiple regression model was as follows: 
 

	 	 1.845 4.883 0.028
0.048 	

76061.32 38132.21 ln / 114.446 
 

The scatter plot of water depth that was predicted using the multiple regression model 
(Equation 2) and the reference depth in the calibration data is shown in Figure 3 (center). The 
plot shows that points are clustered near the one-to-one line between predicted and reference 
water depth. The model predicted water depth up to approximately 1.5 m, which is 50 cm 
shallower than the maximum depth in the reference data. Although it showed greater promise 
than the linear regression model for predicting backwater depth, the multiple regression model 
had low accuracy when predicting water depth beyond approximately 30 cm using the 
calibration data.  

 
Descriptive statistics of the multiple regression model using the calibration data is shown 

in Table 3. The model showed a smaller F-value (F = 134.6) than that of the linear regression 
model (F = 156.7). The multiple regression model had a moderately high coefficient of 
determination (R2 = 0.675), which was considerably higher than that of the linear regression 
model (R2 = 0.283). The standard error of the multiple regression model was 0.216 m, which is 
noticeably smaller than that of the linear regression model (SE = 0.319). There was no positive 
or negative bias in water depth prediction (ME = 0.000), and MAE was 0.096 m. The multiple 
regression model was applied to the 2006 NAIP image to generate a map of predicted water 
depth. 
 
 

(2)
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3.1.3  Partial Least Squares Regression Model 
 
The scatter plot of water depth that was predicted using the PLS regression model 

(Table 4) and the reference depth in the calibration data is shown in Figure 3 (right). The model 
predicted water depth up to approximately 2 m, which is nearly the entire depth range in the 
reference data. While the plot shows some similarity to the one for the multiple regression model 
(Figure 3, center), points were more tightly clustered along the one-to-one line than those of the 
multiple regression model, particularly for the depth around 30–40 cm. Thus, we could anticipate 
that the PLS regression model would have a greater predictive power for backwater depth than 
the multiple regression model.   

 
Descriptive statistics of the PLS regression model (Table 4) using the calibration data is 

shown in Table 3. The coefficient of determination of the model (R2 = 0.757) was slightly lower 
than that of the multiple regression model (R2 = 0.675) and considerably higher than that of the 
linear regression model (R2 = 0.283). On average, the standard error in water depth prediction 
using the PLS regression model was 0.016 m, which is noticeably lower than that of the multiple 
regression model (SE = 0.216) and the linear regression model (SE = 0.319). The PLS regression 
model showed negative bias in water depth prediction (ME = 0.000) like the other two regression 
models. MAE of the PLS regression model was comparable to that of the multiple regression 
model (ME = 0.096). The PLS regression model was applied to the 2006 NAIP image to 
generate a map of predicted water depth. 
 
 
3.2  QUALITATIVE ANALYSIS OF MODELED WATER DEPTH  
 
 

The water depth maps of the four backwater habitats (i.e., bw2, bw6, bw7a, and bw13) 
that were generated by applying the linear, multiple, and PLS regression models are shown in 
Figures 4–7. The maps showed similar color gradation representing overall distributions of 
relative water depth across the backwater habitats. Although the models did show some 
differences in predicted depth, there was overall similarity in areas categorized as deep and 
shallow.  

 
For backwater 2, the three models predicted deeper water in the southwestern part of the 

habitat and at the center of the cross channel through the sandbar (Figure 4). This basic pattern 
can also be seen in the reference water depth map. The range of water depth predicted by the 
linear regression model was generally smaller, as indicted by the lighter color overall, than that 
from the other two models. The multiple and PLS regression models yielded very similar overall 
patterns of water depth. Both maps indicated the deepest water in the southwestern part of the 
habitat, which showed similarity to the reference water depth estimated from the survey data.  

 
For backwater 6, all three models predicted that the central part of the backwater was 

deeper than surrounding areas, and this pattern corresponded well with the reference water depth 
map (Figure 5). The linear regression model predicted deeper water at the central part of the 
habitat particularly near the vegetated sandbar, which shows greater similarity to the reference 
map than the maps generated from the multiple and PLS regression models. The multiple 
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TABLE 4  Intercept and Coefficients of Partial Least Squares Regression Modela 

Non-Standardized Coefficients 

Intercept Blue (B) Green (G) Red (R) BSq GSq RSq LogB LogG LogR 

-11880.61 -8.51 -19.59 -17.42 -0.61 0.45 0.27 2052.20 3541.82 3499.54 

          

 B+G B+R G+R G-B R-B R-G B*G B*R G*R 

 -7.31 -6.55 -9.78 -68.89 -80.28 16.90 -0.06 0.11 0.08 

          

 B/G B/R G/R G/B R/B R/G NDGB NDRB NDRG 

 2899.72 -3707.51 536.58 -1894.29 1298.79 1298.79 4202.08 -1723.49 -5314.58 

          

 ln(B/G) ln(B/R) ln(G/R) ln(G/B) ln(R/B) ln(R/G)    

 -634.53 -118.17 681.06 634.53 118.17 118.17    

 

Standardized Coefficients 

Intercept Blue (B) Green (G) Red (R) BSq GSq RSq LogB LogG LogR 

N/Ab -63.11 -144.75 -124.11 -500.80 454.20 261.49 119.04 165.70 156.80 

          

 B+G B+R G+R G-B R-B R-G B*G B*R G*R 

 -106.00 -94.13 -138.26 -203.60 -182.75 56.04 -56.45 99.74 77.02 

          

 B/G B/R G/R G/B R/B R/G NDGB NDRB NDRG 

 130.08 -142.49 26.33 -129.91 78.17 78.17 115.19 -40.92 -131.93 

          

 ln(B/G) ln(B/R) ln(G/R) ln(G/B) ln(R/B) ln(R/G)    

 -35.18 -5.68 33.82 35.18 5.68 5.68    

a BSq = square of blue band; GSq = square of green band; RSq = square of red band; LogB = log of blue band; 
LogG = log of green band; LogR = log of red band; NDGB = normalized difference of green and red bands; 
NDRB = normalized difference of red and blue bands; NDRG = normalized difference of red and green bands 

b  There is no intercept with a standardized partial least squares model because the standardization results in the 
distribution of output values having a zero intercept. 
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FIGURE 4  Enlarged True-Color Image of Backwater 2 from National Agriculture 
Imagery Program (NAIP) (top left), Reference Water Depth Map (top right), and Water 
Depth Maps Derived from Linear, Multiple, and Partial Least Squares (PLS) Regression 
Models (bottom). The reference map was generated using the digital elevation model 
(DEM) developed from the survey data. 
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FIGURE 5  Enlarged True-Color Image of Backwater 6 from National Agriculture 
Imagery Program (NAIP) (top left), Reference Water Depth Map (top right), and Water 
Depth Maps Derived from Linear, Multiple, and Partial Least Squares (PLS) Regression 
Models (bottom). The reference map was generated using the digital elevation model 
(DEM) developed from the survey data. 
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FIGURE 6  Enlarged True-Color Image of Backwater 7a from National Agriculture 
Imagery Program (NAIP) (top left), Reference Water Depth Map (top right), and Water 
Depth Maps Derived from Linear, Multiple, and Partial Least Squares (PLS) Regression 
Models (bottom). The reference map was generated using the digital elevation model 
(DEM) developed from the survey data. 
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FIGURE 7  Enlarged True-Color Image of Backwater 13 from National Agriculture 
Imagery Program (NAIP) (top left), Reference Water Depth Map (top right), and Water 
Depth Maps Derived from Linear, Multiple, and Partial Least Squares (PLS) Regression 
Models (bottom). The reference map was generated using the digital elevation model 
(DEM) developed from the survey data. 
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regression model, however, appears to capture deep water at the southeastern tip of the habitat 
more accurately than the other models. 

 
For backwater 7a, all three maps show strong similarity with the reference map 

(Figure 6). The three models yielded similar patterns of water depth: (1) a ridge of sand at the 
mouth of the backwater that created a shallow area that crossed the mouth (east end of 
backwater), (2) an area of deeper water just west of this ridge, and (3) relatively shallow water 
on the west end of the backwater. These patterns corresponded well with the reference water 
depth map (Figure 6). Deeper water along the edge of the sandbar was better predicted by the 
linear and PLS regression models than the multiple regression model. The linear and PLS 
regression models also showed several deep spots near the mouth, which were not as noticeable 
in the multiple regression model output. 

 
For backwater 13, the three models predicted deeper water between the bank and sandbar 

and shallow water on the river side of the sandbar (Figure 7). These patterns are also seen in the 
reference water depth map. The maps developed from the linear and multiple regression models 
share many similarities in water depth across the habitat. Water depth predicted by the PLS 
regression model showed greater spatial variability compared to the prediction yielded by the 
other two models, which had gradual depth changes over large areas. 
 
 
3.3  QUANTITATIVE ANALYSIS OF MODELED WATER DEPTH 

 
Figure 8 shows scatter plots of water depth predicted using the three regression models 

against reference water depth by model and backwater habitat. In general, the PLS regression 
model predicted water depth that were the most consistent with the reference depth of the three 
models. The linear regression model had the most inconsistent water depth prediction and 
considerable bias regardless of the backwater compared to other two models. The multiple 
regression model produced relatively unbiased water depth prediction, except for backwater 7a. 

 
When pooling all backwater habitats, the predicted water depth showed moderately high 

correlations with the reference depth for the multiple and PLS regression models (R2 = 0.669 and 
0.689, respectively). The water depth predicted using the linear regression model had limited 
correlation with the reference depth (R2 = 0.279). All three models had regression intercepts very 
close to 0 (-0.012–0.006) and slopes that approximate 1 (1.032–1.194), which suggest consistent 
and unbiased prediction of water depth (Figure 8, pooled). However, when analyzing each 
backwater independently, the agreement of water depth between the reference and remote 
sensing prediction varied across the backwaters.  

 
For backwater 2, the predicted water depth showed moderate correlations with the 

reference depth for all three models (R2 = 0.376–0.406) (Table 5). The multiple and PLS 
regression models had intercepts close to 0 (-0.083 and 0.069, respectively) indicating unbiased 
prediction, but the linear regression model had an intercept of -0.344 (Figure 8, bw2). The 
multiple and PLS regression models had slopes close to 1 (1.167 and 0.988, respectively) 
indicating that there is no noticeable trend (e.g., overestimate or underestimate) in depth 
prediction. The linear regression model had a slope of 2.633 suggesting consistent 
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underestimation of water depth overall. While the linear regression model nearly consistently 
underestimated water depth, the multiple regression model tended to overestimate water depths 
less than approximately 60 cm and tended to underestimate water depths greater than 60 cm. 

 
For backwater 6, the predicted depth showed greater correlations with the reference depth 

than that of backwater 2 for all three models (R2 = 0.592–0.695) (Table 5). All three models had 
intercepts very close to 0 (-0.001–0.004) and slopes less than 1 (0.651–0.866), indicating that 
water depth tended to be consistently overestimated throughout the depth range (Figure 8, bw6).  

 
For backwater 7a, the predicted depth showed lower correlations with the reference depth 

than that of backwaters 2 and 6 for all three models (R2 = 0.109 and 0.249, respectively) 
(Table 5). All models had intercepts greater than 0 (0.087–0.132) indicating unbiased prediction, 
and slopes less than 1 (0.449–0.698) suggesting a tendency of overestimation of water depth 
(Figure 9, bw7a). The linear regression model tended to underestimate shallow water less than 
approximately 20 cm and tended to overestimate depths greater than 20 cm. The multiple 
regression model tended to underestimate water depths shallower than 25 cm and tended to 
overestimate depths greater than 25 cm. The PLS regression model tended to underestimate 
shallow water less than 30 cm and overestimate depths greater than 30 cm. 

 
Backwater 13, correlations between the reference and predicted water depth show 

noticeable variation (R2 = 0.268–0.514) (Table 5). The linear and multiple regression models had 
positive intercepts (0.070 and 0.067, respectively) with slopes less than 1 (0.650 and 0.797, 
respectively) indicating a negative bias with underestimation in modeled water depth (Figure 8, 
bw13). The PLS regression model, on the other than, had an intercept of -0.080 with a slope 
1.222 indicating a positive bias with overestimation in predicted water depth. The linear 
regression model tended to underestimate shallow water less than 20 cm and tended to 
overestimate depths greater than 20 cm. The multiple regression model tended to underestimate 
depths less than 30 cm and tended to overestimate depths greater than 30 cm. The PLS 
regression model had the opposite pattern to that of other two models. The PLS regression 
tended to overestimate depths less than 40 cm and tended to underestimate depths greater than 
40 cm.  

 
 Figure 9 shows classification accuracy of backwater depth for all three backwaters when 
applying a 30 cm threshold. When a model predicted < 30 cm for a pixel with a reference depth 
< 30 cm, the prediction is considered success. When a model predicted > 30 cm for a pixel 
having its reference depth > 30 cm, the prediction is also considered success.  

 
 All three models differentiated shallow and deep backwater pixels with accuracy higher 
than 76% (Figure 9). The PLS regression model yielded the highest overall accuracy (84.1%) 
followed by the multiple regression model (80.6%). The linear regression models detected 
backwater pixels > 30 cm more accurately (88.1%) than the two models (77.6– 9.9%). The linear 
regression model, however, did not detect backwater pixels shallower than 30 cm (70.2%) as 
accurately as those for the multiple and PLS regression models (82.1% and 86.3%, respectively). 
the PLS regression model had high accuracy for detecting both shallow and deep backwater 
pixels, which resulted in the highest overall accuracy (84.1%).  
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TABLE 5  Summary of Model Performance 
 
Correlation between Reference and Modeled Water Depth 

 R2  F p  Slope p  Intercept p 
All     

LR 0.279  152.4 < 0.001 1.194 < 0.001 -0.043 0.234
MR 0.669  796.9 < 0.001 1.061 < 0.001 -0.012 0.501
PLS 0.689  872.4 < 0.001 1.032 < 0.001 0.006 0.700

BW2     
LR 0.376  57.2 < 0.001 2.633 < 0.001 -0.344 0.021

MR 0.390  168.7 < 0.001 1.167 < 0.001 -0.083 0.245
PLS 0.406  148.3 < 0.001 0.988 < 0.001 0.069 0.295

BW6     
LR 0.695  218.5 < 0.001 0.651 < 0.001 -0.001 0.954

MR 0.592  139.0 < 0.001 0.866 < 0.001 0.003 0.858
PLS 0.635  166.7 < 0.001 0.812 < 0.001 0.004 0.782

BW7a     
LR 0.232  29.7 < 0.001 0.477 < 0.001 0.087 0.003

MR 0.109  12.0 < 0.001 0.449 < 0.001 0.132 < 0.001
PLS 0.249  32.5 < 0.001 0.698 < 0.001 0.091 < 0.001

BW13     
LR 0.267  36.0 < 0.001 0.650 < 0.001 0.070 0.151

MR 0.333  49.6 < 0.001 0.797 < 0.001 0.067 0.114
PLS 0.514  104.7 < 0.001 1.222 < 0.001 -0.080 0.068

BW = backwater; LR = linear regression model; MR = multiple regression model; PLS = partial least square 
regression model 

 
 

4  DISCUSSION 
 
 

Among the linear, multiple, and PLS regression models, the multiple and PLS regression 
models showed moderately high correlation between the reference depth and the calibration data 
(R2 = 0.675 and 0.737, respectively). The multiple and PLS regression models also had unbiased 
prediction of water depth as indicated by mean estimates of error (ME = 0.000 and  
MAE = 8.3–9.6 cm; Table 3). The model validation also showed that those two models had 
moderately high correlation (R2 = 0.669 and 0.689, respectively; Table 5). 

 
Water depth maps derived from the three regression models generally showed similar 

spatial patterns of relative depth that corresponded relatively well to the reference water depth. 
The variability in the range of actual to predicted depth varied depending on the model and/or 
backwater habitat. For backwater 2, for example, the linear regression model indicted a small 
depth variation across the habitat, which is shown as a small range of blue tone in the map, 
compared to the maps of the multiple and PLS regression models (Figure 4).  
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FIGURE 8  Scatter Plots of Predicted Backwater (bw) Depth Using the Regression Models 
and Reference Water Depth. Model regression lines are solid, and one-to-one lines are 
dashed. PLS = partial least square. RS = remote sensing prediction 
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Linear Regression Model   Multiple Regression Model  
Overall accuracy = 76.3%   Overall accuracy = 80.6%  
  Reference    Reference 

  < 30 cm ≥ 30 cm    < 30 cm ≥ 30 cm 

Predicted 
< 30 cm 184 16

Predicted 
< 30 cm 215 30

≥ 30 cm 78 118 ≥ 30 cm 47 104

  70.2% 88.1%   82.1% 77.6%

         

         

PLS Regression Model       

Overall accuracy = 84.1%       

  Reference      

  < 30 cm ≥ 30 cm      

Predicted 
< 30 cm 226 27     

≥ 30 cm 36 107     

  86.3% 79.9%     

FIGURE 9  Classification Accuracy of Shallow (< 30 cm) and Deep (≥ 30 cm) Backwater 
Pixels for All Three Backwaters. PLS = partial least square.   
 
 

Water depth predicted using the PLS regression model showed the highest correlation 
with the reference depth in general of three models tested. It was apparent that backwaters 7a and 
13 had more biased water depth prediction than backwaters 2 and 6 (Figure 8 and Table 5).  

 
When applying a threshold of 30 cm to classify shallow and deep backwater pixels, the 

multiple and PLS regression models differentiated deep waters pixels from shallow water pixels 
more accurately (80.6% and 84.1%, respectively) than the linear regression model did (76.3%). 
 

When accurately detecting areas of deep backwater is important, the linear regression 
model would provide a highest accuracy (88.1%), but it would come at the expense of a low 
accuracy of shallow water detection (70.2%) (Figure 9).    

 
On the basis of our analysis, the multiple and PLS regression models are expected to be 

equally effective for predicting water depth in turbid rivers (e.g., backwater habitats) when 
pooling all backwaters. However, the PLS regression model had more unbiased and consistent 
depth prediction across the backwaters than the multiple regression model.  

 
Similar to results presented by Legleiter et al. (2011), the linear regression model using 

ln(G/R) did not perform well in predicting water depth for our study reach. The other two models 
may also have difficulty predicting water depth greater than approximately 40 cm. The PLS 
regression model tended to have a greater depth range for reliably predicting backwater depth 
(from 30 cm for backwater 6 to 2 m for backwater 2) than the multiple regression model (30 cm 
for backwater 7a to 1.5 m for backwater 2) (Figure 8).  
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Lower regression coefficients for the relationship between predicted and reference water 
depths for backwaters 7a and 13 compared to backwaters 2 and 6 may be associated with the 
backwater surface areas and the depth range. Backwaters 7a and 13 were considerably smaller 
(1,564 m2 and 628 m2, respectively; Figures 6 and 7) than backwaters 2 and 6 (5,649 m2 and 
4,691 m2, respectively; Figures 4 and 5), yet these small backwaters had a water depth range 
approximately 1.1 m that was comparable to that of backwater 7a (1.4 m). Such a great depth 
change within a small area likely caused considerable depth change or variation within pixels. 
This situation may have resulted in unexpected complexity in relationship between spectral 
reflectance values (or pixel values) and water depth that the models developed using a 1-m 
resolution image could not capture. Using a finer-resolution image (e.g., 0.5 cm resolution) could 
mitigate the problem. 

 
Inclusion of a large number of edge pixels in the calibration and valuation datasets due to 

the size of backwater area would be another source of uncertainty for backwaters 7a and 13. 
Edge pixels that are located near boundaries between water and a sandbar or shore could include 
non-water surface within a pixel. That means that values of those pixels are average of spectral 
reflectance signatures containing both water and non-water surfaces. Thus, the pixel values do 
not have the same relationship with water depth as those of non-edge pixels. This source of 
uncertainty could be reduced by excluding areas near edges from the selection for calibration and 
valuation data.         

 
While absolute depth estimates for backwaters may contain uncertainty, knowledge about 

the distributions of suitable backwater habitats for the endangered Colorado pikeminnow 
(i.e., backwaters with a maximum depth greater than 30 cm) would be beneficial for river 
management and hydropower operation planning. Such information could be obtained using the 
regression models, particularly the PLS regression model that is well calibrated using the field 
survey data. Based on our finding from the study, we recommend applying a PLS regression 
model for estimating and monitoring backwater depth in the Green River. Because bathymetry of 
turbid rivers with sandy substrates is likely dynamic, field surveys should be conducted based on 
a statistically sound sampling design for model calibration and validation in order to reduce 
uncertainty in backwater depth estimates. It is likely that regression equations developed for one 
year will not be directly applicable to other years with different suspended sediment levels. 
Further exploration of the sensitivity of the approach to different sediment conditions is 
recommended. 

 
 

5  REFERENCES 
 
 
Grippo, M., LaGory, K.E., Hayse, J.W., Walston, L.J., Weber, C.C., Waterman, D., Magnuson, 
A.K., and Jiang, X.H. (2015). Relationships between Flow and the Physical Characteristics of 
Colorado Pikeminnow Backwater Nursery Habitat in the Middle Green River, Utah., final report 
to Upper Colorado River Endangered Fish Recovery Program, Denver, Colorado, U.S. Fish and 
Wildlife Service, Denver, Colorado. 

Javernick, L., Brasington, J., and Caruso, B. (2014). Modeling the topography of shallow braided 
rivers using Structure-from-Motion photogrammetry. Geomorphology, 213, 166-182. 



Backwater Depth Estimation 23 February 2016 

 
 

Land, W. H., Ford, W., Park, J. W., Mathur, R., Hotchkiss, N., Heine, J., Eschrich, S., Qiao, X., 
and Yeatman, T. (2011). Partial least squares (PLS) applied to medical bioinformatics. Procedia 
Computer Science, 6, 273-278. 

Legleiter, C. J. (2013). Mapping river depth from publicly available aerial images. River 
Research and Applications, 29(6), 760-780. 

Legleiter, C. J. (2015). Calibrating remotely sensed river bathymetry in the absence of field 
measurements: Flow REsistance Equation‐Based Imaging of River Depths (FREEBIRD). Water 
Resources Research, 51(4), 2865-2884. 

Legleiter, C. J., Kinzel, P. J., and Overstreet, B. T. (2011). Evaluating the potential for remote 
bathymetric mapping of a turbid, sand‐bed river: 2. Application to hyperspectral image data from 
the Platte River. Water Resources Research, 47(9). 

Legleiter, C. J., Roberts, D. A., and Lawrence, R. L. (2009). Spectrally based remote sensing of 
river bathymetry. Earth Surface Processes and Landforms, 34(8), 1039-1059. 

Legleiter, C. J., Roberts, D. A., Marcus, W. A., and Fonstad, M. A. (2004). Passive optical 
remote sensing of river channel morphology and in-stream habitat: Physical basis and feasibility. 
Remote Sensing of Environment, 93(4), 493-510. 

Marcus, W. A., and Fonstad, M. A. (2008). Optical remote mapping of rivers at sub‐meter 
resolutions and watershed extents. Earth Surface Processes and Landforms, 33(1), 4-24. 

Smith, G. M., and Milton, E. J. (1999). The use of the empirical line method to calibrate 
remotely sensed data to reflectance. International Journal of remote sensing, 20(13), 2653-2662. 

Wold, S., Ruhe, A., Wold, H., and Dunn, III, W. J. (1984). The collinearity problem in linear 
regression. The partial least squares (PLS) approach to generalized inverses. SIAM Journal on 
Scientific and Statistical Computing, 5(3), 735-743. 

Wold, S., Sjöström, M., and Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. 
Chemometrics and intelligent laboratory systems, 58(2), 109-130. 

Zhao, Q., Caiafa, C. F., Mandic, D. P., Chao, Z. C., Nagasaka, Y., Fujii, N., Zhang, L. and 
Cichocki, A. (2013). Higher order partial least squares (HOPLS): a generalized multilinear 
regression method. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(7), 
1660-1673.



 

 
 

 


