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EXECUTIVE SUMMARY

Computational physics solvers take a continuous domain of interest, the problem
geometry, and apply specialized discretizations based on the Partial Differential Equation
(PDE) describing the relevant physical model. The discretization involves two components:
computing a discrete mesh of the domain that accurately models the continuous geometry
and defining the solution fields as degrees-of-freedom on the mesh, that needs to be
computed by appropriately solving the discretized operators. The resulting single/multi
component physics solutions need to be serialized back to a format amenable for
visualization.

The Scalable Interfaces for Geometry and Mesh based Applications (SIGMA) toolkit
provides interfaces and tools to access geometry data, create high quality unstructured
meshes along with unified data-structures to load and manipulate parallel computational
meshes for various applications to enable efficient physics solver implementations. Mesh
generation is a complex problem since most problem geometries involve complicated curved
surfaces that require physics imposed spatial resolution and optimized elements for good
quality. These tools simplify the process of generation and handling of discrete meshes with
scalable algorithms to leverage efficient usage from desktop to petascale architectures.

SIGMA contains several components including CGM for the geometry handling,
MOAB to represent the unstructured mesh data-structure, MeshKit containing several mesh
generation algorithms and CouPE for driving coupled multi-physics solvers. These
components are used tightly within the SHARP toolkit that is part of the Integrated Product
Line for fast reactor simulations. The goal of the SHARP framework is to perform fully
resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to
reduce the overall numerical uncertainty while leveraging available computational
resources.

In this report, we present details on SIGMA toolkit along with its component
structure, capabilities, and feature additions in FY15, release cycles, and continuous
integration process. These software processes along with updated documentation are
imperative to successfully integrate and utilize in several applications including the SHARP
coupled analysis toolkit for reactor core systems funded under the NEAMS DOE-NE program.
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1 Introduction

Computational modeling and simulation of complex physical phenomena presents
several challenges and it is imperative to converge on scalable, flexible workflows to improve
scientific productivity. Typically, computational physics solvers take a continuous domain of
interest, describe the detailed problem geometry, and apply specialized discretizations on a
discrete mesh to solve multiple Partial Differential Equation (PDE) systems to model
interactions between the physical scales of interest. The spatial discretization alone involves
multiple components: capturing the geometry complexity accurately, generating a discrete
mesh representation of the domain so as not to introduce geometry errors and defining the
solution fields as degrees-of-freedom (DoFs) on the mesh, which needs to be computed by
appropriately solving the discretized operators. The resulting single/multi component
physics solutions are usually serialized back to a format amenable for post-processing and
visualization as shown in Fig. 1.

S|
S ) ) el
Computational B.Cs \
Scientist > Solve Coupled . Serialize, Visualize

PDE System: Check-point Pom-process
Define Generate
Discrete
Geometry Mesh

Unresolved "key" spatio-temporal physical scales ? lterate model setup

Figure 1. Traditional computational workflow

Additional difficulties in performing predictable simulations require quantification of
numerical errors including those that are introduced due to geometry modeling and mesh
resolution errors. Such intensive modeling needs require automated computational tools to
simplify the iterative refinement and optimization in the workflow for complex problems
that typically take several modifications to get the right problem configurations when
matching experimental setups.

In this report, we present details on the Scalable Interfaces for Geometry and Mesh
based Applications (SIGMA) toolkit [1] along with its component structure, capabilities, and
feature additions in FY15, release cycles, and continuous integration process. These software
processes along with updated documentation are imperative to successfully integrate and
utilize in several applications including the SHARP coupled analysis toolkit for reactor core
systems funded under the NEAMS DOE-NE program.

The organization of the report is as follows: In §2, the background on the SIGMA
toolkit and its associated components are proved followed by §3 where details on the new
mesh quality quantification library integration into MOAB is detailed. In section §4, the
major research and development of a parallel uniform mesh refinement hierarchy
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methodology along with results are provided in addition to potential implications to
applications in the SHARP toolkit. Next, the design of a new language-agnostic mesh API is
described that can potentially replace the existing ITAPS based wrappers in the SHARP
physics modules that have proven to be cumbersome to maintain and extend. Finally, the
software engineering processes used in SIGMA are given in order to verify usability and to
enhance confidence in the overall SHARP coupled multi-physics simulation toolkit.

2 SIGMA toolkit

SIGMA provides interfaces and tools to access geometry data, create high quality
unstructured meshes along with unified data-structures to load and manipulate parallel
computational meshes for various applications to enable efficient physics solver
implementations. Mesh generation is a complex problem since most problem geometries
involve complicated curved surfaces that require physics imposed spatial resolution and
optimized elements for good quality. These tools simplify the process of generation and
handling of discrete meshes with scalable algorithms to leverage efficient usage from
desktop to petascale architectures.

The SIGMA toolkit has been designed with the aim to enable and expedite modeling
scientific problems by computational scientists and converge on simulation workflow
without investing significant effort in learning an array of tools. It provides interfaces and
tools to understand geometry models, create high quality unstructured meshes along with
unified data-structures to load and manipulate parallel computational meshes for various
applications to enable efficient physics solver implementations. Additionally, optimal quality
mesh generation is a complex process for complicated curved problem geometries, with
physics imposed spatial resolution requirements. These tools simplify the process of
generation and handling of discrete meshes with scalable algorithms to leverage efficient
usage from desktop to petascale architectures. The interaction of the various SIGMA
components along with several key dependent applications and tools are shown in Fig. 2.

CGM: The Common Geometry Module (CGM) [2], is a library with a common API for
querying and modifying the topological model for geometry represented in ACIS and
OpenCASCADE solid modeling engines. CGM (ITAPS iGeom) also provides the common
geometry infrastructure for the CUBIT mesh generation toolkit [3].

In collaboration with researchers in Sandia and our contributors in University of
Wisconsin, over the past several years, we have been maintaining compatibility with the
CUBIT releases. Currently, Cubit v14.0 support has been verified in CGM and it is expected
that Cubit 14.9/15.0 support will be available in the coming months for both mesh
generation and geometry model creation for use in nuclear engineering and fusion
problems.

MeshKit: One of the unique capabilities provided by SIGMA toolkit is the inclusion of
an array of generic mesh generation algorithms that seamlessly integrates into several
different external applications. MeshKit serves as a library of advanced mesh-generation
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algorithms implemented natively and provides an extensible design to perform R&D on new
meshing techniques.

The MeshKit library [4, 5] contains several mesh-generation algorithms that utilize
CGM and MOAB descriptions of geometry and mesh to discretize complex geometric
domains. Nuclear reactor specific geometries can be easily meshed through a GUI tool from
Kitware built on top of Reactor Geometry Generator written in MeshKit whose overall goal is
to develop a complete package for generating reactor core models.

MOAB: The Mesh-Oriented datABase (MOAB) [6] (ITAPS: iMesh, iMeshP), is a
library for uniformly representing both structured and unstructured meshes, along with
associated field data defined on mesh entities, using an efficient array-based data model.
MOAB provides query, construction, and modification of finite-element meshes, plus
polygons and polyhedra. Various options are available for writing and visualizing the final
meshes produced by meshing algorithms. MOAB uses an HDF5-based file format, which can
be visualized by using a ParaView plugin that is implemented by the MOAB library. The Visit
visualization tool can also be configured and built with MOAB to provide a similar import
capability.

MOAB has shown demonstrated scalability to at least 512K processors [7] using its
efficient parallel mesh handling algorithms, which includes arbitrary point location, and
interpolation of field data during multi-mesh solution transfers.

The relational mapping between MOAB and CGM is also implemented in Lasso
(ITaPs iRrel), which is utilized for mesh generation and adaptive mesh refinements, where
associations between mesh and geometry must be queried and maintained. Recently, in a
move to reduce the dependency chain for SIGMA, a decision was taken to integrate the
Lasso source base into MOAB. The description of this effort is provided in one of the
subsections.

Solver Interoperability: High-resolution computational physics solvers require
assembling the discrete operators on unstructured meshes and strong software coupling
between scalable solvers in PETSc and MOAB provide abstractions (DMMoab) to manage
field data, DoFs and traversal semantics to fully enable efficient solution techniques. In
coupled phenomena, aggregating the interaction between such solvers to capture the
physical behavior during solution evolution of dependent models require consistent, global
nonlinear solvers with advanced block-preconditioning strategies (in addition to robust
multi-mesh transfer projection algorithms) [8]. These algorithms have been implemented
within the Coupled Physics Environment (CouPE) [9] that utilizes the software abstractions
exposed through DMMoab and native MOAB-based wrappers.

CouPE is implemented based on MOAB and makes use of PETSc solvers to drive the
global nonlinear problem to convergence and provides a flexible infrastructure to abstract
coupling needs without intrusively modifying existing physics solvers. Several real-world
problems in nuclear reactor analysis [10] have been analyzed using this framework to
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accurately converge to coupled solutions of interest while quantifying numerical errors
introduced due to both coupling and discretization using SIGMA tools.

PETSc
DMMoab Interfaces

SpaFEDTe

PROTEUS

toolkit

Figureiz—. SEMR

The above SIGMA components provide the tools to seamlessly traverse the entire
computational workflow from problem design to analysis, improving scientific productivity.
The following sections in this paper describe details about each of the components along
with dependent applications developed by collaborators. The details on the software

architecture of SIGMA and the continuous integration process enforced to maintain rigorous
code standards will be described in the following sections.

3 Verdict mesh-quality library integration

One fundamental aspect of any mesh generation toolkit is the quality of the elements
generated. As a result, significant research has gone into defining quality metrics for which
elements may be judged. Element quality criteria are generally agreed upon standards for
acceptance of a mesh for simulation purposes.
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One concern is that the errors introduced by interpolation be as small as possible. In
the finite element method, another important requirement is that the condition numbers of
the assembled stiffness matrices be small. Sixty years after the invention of the finite
element method, the relationship between mesh quality measures, numerical accuracy, and
stiffness matrix conditioning is still an area of research, especially for anisotropic cases.

3.1 Background

Verdict [11] is a comprehensive suite of mesh quality metrics for evaluating the
quality of hexahedral, tetrahedral, quadrilateral and triangular finite elements. Verdict has
been developed to help standardize the quality metrics. It is included in CUBIT, and it is also
integrated in VTK, maintained by KitWare. In VTK integration, the filter vtkMeshQuality is a
wrapper around Verdict library.

This library was originally developed at Sandia and released under LGPL licensing.
Due to the need to measure and perform a posteriori operations during the process of mesh
generation, a decision was made to include the Verdict library directly in MOAB as a ready-
to-use quality measure tool.

3.2 Description

Verdict is a collection of methods for evaluating the geometric qualities of standard
finite elements, using a variety of quality metrics [12, 13]. All quality metrics are real
numbers, and they are computed as a function of vertex coordinates for the respective cell.
The methods are written in C++ and have a simple “C” interface. Each metric can be
computed individually or in combination with other metrics. When multiple metrics are
evaluated at once, if possible, common calculations are shared, to increase efficiency.

For example, the function to compute the Jacobian of a hex element is

double v_hex_jacobian( int num nodes, double coordinates[][3] );

It can be used as follows:

double coords[8]1[3];
double jac_value = v_hex_jacobian(8, coords);

There are functions like these for each individual quality metric [14, 15], and they are
all defined in verdict.h, which is the only header a user would have to include to use the
functionality. Another way of directly using verdict is to compute with one call multiple
qualities for an element, with a method like this:
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//! Calculates quality metrics for hexahedral
elements.
void v_hex_quality( int num_nodes,
double coordinates[][3],
unsigned int

In this method, metrics_request_flag is a mask for desired quality metrics, and
gualities are returned in a structure defined also in verdict.h, HexMetricVals.

struct HexMetricVals

{
/** \sa v_hex edge ratio */
double edge _ratio ;
/** \sa v_hex max edge ratio */
double max edge ratio ;
/** \sa v_hex skew */
double skew ;
/** \sa v_hex taper */
double taper ;
/** \sa v_hex volume */
double volume ;
/** \sa v_hex stretch */
double stretch ;
/** \sa v_hex diagonal */
double diagonal ;
/** \sa v_hex dimension */
double dimension ;
/** \sa v_hex oddy */
double oddy ;
/** \sa v_hex med aspect frobenius */
double med_aspect frobenius ;
/** \sa v_hex condition */
double condition ;
/** \sa v_hex jacobian */
double jacobian ;
/** \sa v_hex scaled jacobian */
double scaled jacobian ;
/** \sa v_hex shear */
double shear ;
/** \sa v_hex shape */
double shape ;
/** \sa v_hex relative size */
double relative size squared;
/** \sa v_hex shape and size */
double shape and_ size ;
/** \sa v_hex shear and size */
double shear and size ;
/** \sa v_hex distortion */
double distortion;

}i

Internally, a matrix with possible quality metrics for each element type is maintained,
and could be extended if new measures become available. In the matrix, rows correspond to
MOAB entity types, and columns correspond to QualityType enum.
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MB_EDGE_RATIO = 0 /70
MB_MAX_EDGE_RATIO /71
MB_SKEW /12
MB_TAPER // 3
MB_VOLUME /1 4
MB_STRETCH /15
MB_DIAGONAL // 6
MB_DIMENSION /11
MB_ODDY // 8
| MB_MED_ASPECT_FROBENIUS // 9
| | MB_MAX_ASPECT_FROBENIUS // 10
| | MB_CONDITION /7 11
MB_JACOBIAN /7 12
MB_SCALED_JACOBIAN // 13
MB_SHEAR // 14
MB_SHAPE // 15
MB_RELATIVE_SIZE_SQUARED // 16
MB_SHAPE_AND_SIZE /7 117
MB_SHEAR_AND_SIZE // 18
| MB_DISTORTION // 19
| | MB_LENGTH // 20 edge
| | MB_RADIUS_RATIO // 21 tet
| | MB_ASPECT_BETA // 22 tet
| | | MB_ASPECT_ RATIO // 23 tet
| | | | MB_ASPECT_GAMMA // 24 tet
| | | | | MB_MINIMUM ANGLE // 25 tet
I | | | | | MB_COLLAPSE_RATIO // 26 tet
| I R N MB_WARPAGE // 27 quad
I | | | | | | ™B_AREA // 28 quad
| | | | 0 ! | | | | M™MB_MAXIMUM_ANGLE // 29 quad
| | I | [ T T A O
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
0o 000 O0OO0OTOOOOTU OO OT® ©OO0OOOO0OOO0OOO0O0 OO0 O0O0 0 0 0 MBVERTEX
0o 00 o0 0O0O0OTOOOOTOTOT® O©OO0OOTOOOTO0OT10 0 0O0UO0TO0TO0 O0 O MBEDGE
100 0 0 00 000 11010 1110101 01 010 0 1 1 MBTRI
1111010901111 111111110101 00 01 1 1 MBQUAD
00 00 0O0O0OTOOOOOO OO O©OO0OOOO0OOO0OOO0OO0 OO0 O0 0 O0 0 0 MBPOLYGON
100 0100 000 1 1 110 1 100 001 11 11 10 0 0 MBTET
00 0 o0 0O0O0OTO0OOOTOOTO O©OOO0OOOO0OOO0OOTO0OO0OO0OO0O0O0 0 0 MBPYRAMID
00 00 100 0O0O0O0OUOT®O©OO0OO0OO0OO0OO0O0OOO0O0O0O0O0 0 O0 00 MBPRISM
00 00100 0O0O0WO0OUOOTU O©OO0OOO0OOO0OTOO0O0 OO0 O0 0 0 0 0 MBKNIFE
11111111111 1111 1111100 00 00 00 0 0 MBHEX
00 00 0O0OTOOOOOTO OO O©OO0OOOO0OOO0OOO0OO0 OO0 O0O0 0 0 0 MBPOLYHEDRON
00 00 0O0O0OTOOOOTUOTOT® ©OOOOOOO0OOO0O0 OO0 O0O0O0 0 0 MBENTITYSET
To compute all qualities available for one element type,

VerdictWrapper::all quality measures returns a map from the quality type to the

corresponding value.

VerdictWrapper vw(&mb);
EntityHandle hex;
std: :map<QualityType, double> qualities;
vw.all quality measures(hex, qualities);

For simpler use in MOAB, a verdict wrapper is implemented. A MOAB user can
include VerdictWrapper.hpp in the application, and utilize it like this:

rval

VerdictWrapper vw(&mb);
EntityHandle hex;
double jacobian;
vw.quality measure(hex, MB_JACOBIAN,

jacobian);
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The user has to pass moab::QualityType (MB_JACOBIAN) above, which is an enum
type with supported qualities. If a specific quality metric is not supported for a particular
element, MB_NOT_IMPLEMENTED error flag is returned.

A quality tool was added too, to report minimum and maximum quality values for all
entities in a mesh file. Example of output, for sahex1 model:

Table 1. Output from mbquality tool for sahex mesh file (sahexl _unic_128p.h5m)

15180 entities of type MBHEX
Quality Name MIN MAX
edge ratio 1.05258 3.685
maximum edge ratio 2.29601 12.8944
skew 8.40E-005 0.868193
taper 0.00152519 1.03726
volume 0.0332479 0.364545
stretch 0.127674 0.564097
diagonal 0.807002 0.999996
characteristic length 0.0763946 0.345867
oddy 4.85347 227.634
average Frobenius aspect 1.44291 5.84735
maximum Frobenius aspect 1.48698 6.74519
condition number 1.48698 6.74519
jacobian 0.0237652 0.33081
scaled jacobian 0.399842 0.999988
shear 0.399842 0.999988
shape 0.151717 0.669321
relative size squared 0.00110542 0.132893
shape and size 0.000167711 0.0889482
shear and size 0.000441994 0.113245
distortion 0.424985 0.998294
47259 entities of type MBQUAD
Quality Name MIN MAX
edge ratio 1.05258 12.8887
maximum edge ratio 1 12.8887
skew 0 0.868193
taper 0 1.03726
stretch 0.109396 0.949672
oddy 0.0131246 82.0621
average Frobenius aspect 1.00284 6.48314
maximum Frobenius aspect 1.00328 6.48314
condition number 1.00328 6.48314
jacobian 0.0190122 1.11875
scaled jacobian 0.399842 1
shear 0.399842 1
shape 0.154246 0.996735
relative size squared 1 1
shape and size 0.154246 0.996735
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shear and size 0.399842 1
distortion 0.424985 1
radius ratio 1.05632 6.48314
aspect ratio 1.02676 6.94434
warpage 1 1
area 0.0265983 1.11875
maximum angle 90 154.438
49046 entities of type MBEDGE
Quality Name MIN MAX
length (volume) 0.0969843 1.25

Plots with 2 quality measures, scaled jacobian and condition number. (range is the

same as computed by Vislt) are shown in Fig. 3 and Fig. 4 respectively.

Pseudocolor
Var. mesh_qualty/scalked_jacobian
[

—0.8500

Figure 3. The scaled Jacobian metric for elements in sahex mesh.
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Figure 4. Condition number of elements in sahex mesh.

3.3 Current Uses within SIGMA and Future Plans

It is currently used for immediate feedback during uniform mesh refinement, and for
checking the quality of the thin layers of hexahedra generated in MeshKit by the PostBL tool
(anisotropic boundary layer generation). Future plans include using it for adaptive mesh
refinement (AMR) in MOAB and overall quality checking for all meshes generated by
MeshKit.

4 Parallel hierarchical mesh generation capability

In the numerical solution of complex partial differential equations (PDE's) using finite
element methods for unstructured meshes, the two most computationally intensive steps
are mesh generation and linear solvers. An initial coarse mesh representing the
computational domain might not be of sufficient resolution to get meaningful results out of
the discretizations for physical scales that might be present. As a result, the capability to
refine a mesh is an essential part of any simulation process. On the other hand, it is well
known that multi-level methods such as geometric multigrid methods (GMG) can
theoretically deliver optimal time complexity for solving sparse linear systems from PDE
discretizations. Thus, it would be advantageous to use nested multi-level i.e., hierarchical
meshes to achieve accuracy and computational efficiency, especially in the context of large-
scale parallel computing, as both the number of processors and the mesh resolution
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increase. Uniform mesh refinement(UMR) provides a simple and efficient way to generate
such hierarchies via successive refinement of the mesh at a previous level. It also provides a
natural hierarchy via parent and child type of relationship between entities of meshes at
different levels. While UMR is a relatively simple process, it is by no means trivial. Notable
issues include performing multi-level and multi-degree refinement efficiently, and data
structure and software design. We developed a parallel uniform refinement-based algorithm
[16] under the mesh framework MOAB [6] to generate multi-degree, multi-dimensional and
multi-level meshes from coarse unstructured meshes. The developed capability is currently
being used for a variety of purposes such as convergence studies, mutlilevel methods,
generating large meshes in parallel to overcome 10 bottlenecks, etc.

2
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Figure 5. The refinement templates defined for degree 2 and 3 refinements over a reference
triangle and quadrilateral entity. The local vertex order of the reference entities follow MOAB
conventions[18]. The new vertices to be introduced during refinement are assigned local ids wrt to
the reference. Similarly, the children entities are assigned local order. The half-facet maps are
created for the refined entities in terms of their local ids.

The uniform refinement based mesh hierarchy generation is build on top of the
array-based parallel mesh framework of MOAB and utilizes its various functionalities such as
compact memory storage, parallel communication algorithms to resolve shared entities on
partition boundaries, etc. The refinement algorithm has three key components: (a) template
refinement patterns, (b) an array-based half-facet mesh data structure and (c) level-wise
compact mesh storage. Entity type and degree-specific refinement templates store several
semantic data such as the local connectivity of the new refined entities and other mesh data
structural information with respect to the reference entity [18]. The templates are integral
not only to make decisions on subdividing an entity to its children but also to update the
underlying mesh data structures for all the new children. The multi-degree refinement
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patterns follow the vertex positions analogous to high-order (degree p where p >= 2)
Lagrangian elements and the associated templates stores degree specific data for a
supported entity type. Fig. 5 illustrates the templates for 2D entity types. A considerably
general refinement pattern for both volume and manifold meshes using templates is also
shown in Fig. 6.

2D Triangle Mesh 2D Quad Mesh 3D Tetrahedral Mesh 3D Hex Mesh

o s
f
|
1L

01

It

Figure 6. Standard template refinement patters for simple geometries.

During refinement, one of the key tasks is to avoid introducing duplicate vertices for
shared boundaries between entities. This requires frequent calls to adjacency routines to get
entities connected through entity boundaries. We use an array-based half-facet mesh data
(AHF [17]) structure that stores the mapping between all sibling half-facets corresponding to
a facet of a mesh entity and has compact memory footprint. As each level of the mesh
hierarchy is generated by refinement of the previous level, the appropriate AHF maps are
updates for the new level in a two-step process. First, during refinement of a single entity,
the local maps only for the children of the working entity are updated via the templates.
Second, after all entities are refined, the maps between children sharing a parent boundary
are updated. Fig. 7 shows this two-step mesh data structural update process.

Array based mesh storage leads to increased efficiency, however it requires careful
consideration to maintain it for operations involving a change in the contiguity of the
memory space. By virtue of the uniform refinement of the mesh, it is possible to estimate
the total number of entities that will be created for a given degree of refinement. Once the
storage requirement for a new level is estimated, the memory is allocated in contiguous
blocks. During refinement, as each entity is subdivided, the new entities are stored according
to the local order specified in the refinement template. Thus, children of the first entity in
previous level are stored first, then the children of the second and so on. This data layout
supports straightforward index based inter-level (i.e., parent-to-child or child-to-parent)
queries, which are vital to multi-level methods. To provide mesh independence at each level,
we duplicate vertices from the previous level to create the new mesh along with new
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vertices. As a result, the mesh hierarchy generation would return a sequence of meshes that
are independent of each other while providing inter- and intra-level mesh access.

Update AHF maps for child entities

efine deg 3

P

Update AHF maps between
children on shared facet of parents

%‘
Update AHF maps for child entities

Figure 7. Updating the AHF maps for the refined mesh takes place in two stages. First, maps for the
children of each triangle are updated. After, both the triangles have been refined, the maps are
now updated to connect the children entities sharing a parent facet.

The MOAB library implemented with array-based data-structures has been designed
to be scalable in memory access and there are several optimized one-sided communication
algorithms that make use of strategies to minimize total data transferred between
processors. Using this parallel framework, the mesh hierarchy generation is performed in a
series of optimal steps. Once each processor loads a part of the distributed coarse mesh,
local refinement for all the entities can be performed. Since the refinement is based on pre-
defined templates, the co-ordinates for the new vertices and entities on the shared interface
between processors will be the same. We utilize this information to design the
communication algorithm to resolve the newly created entities in preparation for
synchronization of ghost layers and exchange of meta-data (MOAB tags). This parallel merge
of the interface mesh algorithm [7, 4] first matches mesh vertices based on geometric
proximity and then uses connectivity matching algorithm to decipher the corresponding
entity in the local mesh.

During preliminary strong scalability studies, the parallel mesh hierarchy generation
perform extremely well as evident in Fig. 8. However, more rigorous testing on larger
number of processors are needed to conclude about the performance of the algorithm. The
parallel UMR capability is useful in generating hierarchy of meshes to perform convergence
studies and for creating optimal multigrid preconditioners for elliptic PDE solvers. Tests are
currently being conducted using the PETSc-MOAB interfaces to employ Geometric MultiGrid
(GMG) preconditioned solvers to ensure optimal convergence for Poisson problems with
variable coefficients.
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Figure 8. Scalability studies for the mesh hierarchy generation algorithm. The top figure shows the
initial coarse hexahedral mesh of a single assembly in a reactor core with fuel pins and central
control rod with 32 partitions. The bottom figure shows the serial O(n) refinement performance of
the UMR algorithm.

The parallel strong scalability of the AHF based hierarchy generation has also been
measured recently and the results will be presented at the upcoming International Meshing
Roundtable conference in Austin, TX (Oct 2015). In this paper, we present the measured
weak scalability results by splitting the timing into primarily two main components 1) the
local refinement of the domain decomposed mesh pieces and 2) the vertex based merge
utilizing parallel advanced MOAB communication algorithm. The preliminary results for
parallel efficiency of the refinement algorithm and the parallel mesh merge implementation
based on coordinates of shared vertices are shown in Fig. 9. These performance studies were
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performed on the Blues LCF machine (310 nodes, 16 cores/node with Intel Sandy Bridge
processor and 64GB RAM per node) cluster.
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Figure 9. Parallel efficiency of the hierarchical mesh generation algorithm (Blues ALCF machine).

5 Analysis of the OBB tree implementation in MOAB

Analysis of complex surface meshes generated in MOAB has shown lower than
expected performance in the past for Monte-Carlo based applications that rely on optimal
ray tracing performance. It is believed that this is partially caused by regions referred to as
high-valence. A single vertex being shared by a large number of triangles characterizes high-
valence regions, which can occur when using faceted geometry representations. As an
example, the region shown in Fig. 10 with high triangle density contains a variable number of
triangles that share a single vertex. Manual generations of high valence regions such as this
allow us to characterize this behavior based on the region's size, valency, and interaction
with surrounding mesh in the context of OBB generation.
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Figure 10. Hierarchical Oriented Bounding Box (h-OBB) (a) Leaf-level OBBs layed on top of the
previous mesh (b) Artificially generated high-valence mesh replacing the surface of a cube.

1E-03

+{1E-04

Area Fraction
Time (s)

1E-05

0.0

1E-06

0 10000 20000 30000 20000 50000
Valance

Figure 11. Plot of ray fire times (averaged over 100k rays) various valencies and area with respect

to the total surface size for the high-valence region.

Adjusting the parameters of the recursive OBB tree building algorithm shows a vast
improvement for the case of high-valence regions. By performing optimizations on the
parameters, the ray-tracing computational time was considerably reduced as shown in Fig.
11 and Fig. 12. This demonstrates the ability to improve spatial query performance for this
acceleration structure based on examination of mesh features. In the future, automated
detection of these features may allow for increased performance on generalize meshes by
adapting OBB tree parameters and heuristics during its construction. The implication of this
speedup will be directly evident when performing Monte-Carlo ray-tracing calculations using
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the geometry and mesh infrastructure provided natively by the SIGMA toolkit. These
demonstrations were performed using the DagMC tool developed on top of MOAB library.

HV Characterization Altered Box Splitting
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Figure 12. Plot of ray fire times (averaged over 100k rays) various valencies and area with respect
to the total surface size for the high-valence region. Here, the OBB splitting parameter is adjusted
to better handle stark contrast of the high-valence regions.

6 Conformal local Hexahedral refinement

In FY15, Scott Mitchell (SNL) collaboratively working with the SIGMA team pursued
development of local hexahedra mesh refinement capabilities in MOAB and Meshkit. MOAB
currently support uniform refinement and is being extended to support mesh adaptivity. The
uniform refinement capabilities can be utilized in parallel for generation of a fine mesh from
an initial coarse mesh. As is well-known, refining hexes is inherently more difficult than
subdividing tetrahedra, because requiring hexes to meet face-to-face introduces global
structural dependencies, such as layers of hexes. Our main technical advance is discovering a
technique that holds the promise of being flexible enough to provide better quality elements
in certain regimes, in particular when refining unstructured regions of about tens of
elements thick in size as shown in Fig. 13. (Larger and smaller patches, and structured
meshes, are better handled using other techniques.) The key idea is automatically defining
hybrid layers of hexes called "slabs." Slabs are two elements thick, but only one layer is
required to be structured and meet face to face. By breaking the refinement region into
slabs, we are able to select geometric configurations that are likely to result in good quality
elements. Slabs generalize prior methods that only worked for structured meshes.
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The identification of slabs and defining the refinement operations is implemented;
remaining tasks include efficiently updating the mesh database, linking to smoothing, and
fine-tuning the selection algorithm to produce better quality hexes. We expect to complete
the basic operations of the remaining tasks by December 2015. Future follow-on efforts will
be invested to ensure good output quality and publish the results in a journal article. The
development is an ongoing partnership between Sandia and ANL.
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Figure 13. (a) Left — Original coarse HEX mesh (b) Right — Locally refined HEX mesh
7 Integration of Lasso component to MOAB

As mentioned previously, CGM offers a complete ITAPS (iGeom) implementation for
standardized access to geometry entities, as needed during mesh generation or other
geometry queries, through interfaces to two geometry engines: ACIS and OpenCascade.

MOAB also supports a partial iGeom implementation, namely FBiGeom, which is built
based on MOAB topology conventions. FBiGeom is a “facet-based” boundary geometry
representation in contrast to the continuous boundary representation (Brep) in CGM.
Internally, MOAB represents these geometric entities through mesh sets; a
GEOM_DIMENSION tag is specified for each geometry entity, dim=[0,3]. These mesh sets
have a hierarchy defined by parent/children relations inside MOAB along with additional
tags that define senses and orientation between adjacent corresponding geometry entities.
Each face in such a model can then be decomposed in to quadrangles or triangles, and each
curve is represented as mesh edges. Hence, a completely discrete representation of the
geometry can be created using standard topological entities and used within MOAB for
geometric relational queries.

This feature was originally being provided by the Lasso component in SIGMA. A
decision was taken to merge this source base into MOAB directly so as to provide all
downstream codes the capability to query geometry — mesh relations within applications.
This has several potential applications, including and not limited to uniform or adaptive
refinement conforming to geometric features.
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For mesh refinement (uniform or adaptive), it is important to have access to accurate
model geometry so as not to introduce meshing errors. The geometry data can be used
effectively to maintain model integrity during mesh discretization and adaptation. Due to the
integration of Lasso, MOAB can now identify, maintain and determine associativity between
mesh entities and geometry entities, for all geometrical base dimensions, vertex, edge, face
and volume. The current implementation uses the iMesh and iGeom API, and optionally with
FBiGeom. Efforts are underway to move away from the ITAPS interfaces for this functionality
to avoid double indirections when calling relational queries and to leverage the array-based
data structure provided by MOAB directly. In FY16, we expect to invest effort into creating a
unified adaptivity framework based on MOAB where the geometry-mesh relational queries
will become important.

8 iMOAB - A language agnostic MOAB interface

The iIMOAB implementation is intended to provide a language agnostic
(C/C++/Fortran 90/77, Python) API for applications and drivers to load, manipulate, query,
handle and traverse through an unstructured MOAB mesh in parallel. This implementation
takes its inspiration from the existing ITAPS iMesh interfaces, which were found to be too
verbose and cumbersome for maintenance and support within the NEAMS applications
(PROTEUS, Nek5000, Diablo). After several rounds of iterative discussions with the physics
code development teams, a suitable interface that supports all solver related queries was
transcribed and finalized. The first draft of the implementation along with unit tests and a
driver written in both Fortran 77 and C has been verified.

Several key characteristics and principles were rigorously captured during the design
of the iIMOAB interfaces. Some of these are listed here.

1) All data in the interface are exposed via POD (Plain Old Data) types (int, double, long,
char, etc),

2) Pass all parameters by reference, so we do not have to use VAL() when calling from
Fortran routines;

3) All array memory are allocated by the client calling code, which simplifies the
memory management from the interface standpoint. This is a key difference
between the ITAPS approach and iMOAB where only the driver will take up concerns
about de-allocation of the data.

4) Always pass the pointer to the start of array along with the total allocated size for
the array. The allocated size is used to validate whether the array storage can
sufficiently handle the necessary query.

5) Return the filled array requested by client along with optionally the actual length of
the array that was filled. (for typical cases, should be the allocated length)

The headers, sources and tests for iIMOAB are in a git repository, hosted by BitBucket
(https://bitbucket.org/fathomteam/imoab.git). The details on the iMOAB API and links to
the driver implementations in both C and Fortran are given in the next section.
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8.1 iMOAB: In-built types

In order to abstract out the differences in configuration and architecture, several
measures to describe the local, global IDs and error return codes have been defined as plain
old data types. These will be replaced by MOAB specific type signatures when iMOAB is
merged into MOAB repository.

#define ErrcCode int

#define iMOAB AppID int

#define iMOAB GlobalID int

#define iMOAB LocallID int

#define iMOAB String char*

8.2 iMOAB: Enumeration types

enum MOAB TAG TYPE
Enumerator:
DENSE _INTEGER
DENSE DOUBLE
DENSE ENTITYHANDLE
SPARSE INTEGER
SPARSE DOUBLE
SPARSE ENTITYHANDLE

8.3 iIMOAB: Function specifications

There are several inherent operations supported by iMOAB such as loading and
writing a mesh file along with performing in-memory queries to get the hierarchy of material
blocks, the elements within the block, the element connectivities, the vertex IDs and their
coordinates. Additionally, routines to help define and get/set tag related storage for use in
coupled multiphysics applications is also provided. These routines and interfaces will be
consumed by physics applications and CouPE respectively.

8.3.1 iMOAB_Initialize
ErrCode iMOAB_Initialize ( int argc,

iMOAB_String * argv

Initialize the iMOAB interface implementation.
Will create the MOAB instance, if not created already (reference counted).

Operations: Collective

ANL/MCS-TM-357



2015 SIGMA Release v1.2
Vijay Mahadevan, lulian Grindeanu, Navamita Ray, Rajeev Jain, Danging Wu

Parameters:
[in] argc (int) Number of command line arguments
[in] argv (iMOAB_String*) Command line arguments

8.3.2 iMOAB_InitializeFortran
ErrCode iMOAB_InitializeFortran ()
Initialize the iMOAB interface implementation from Fortran driver.
It will create the MOAB instance, if not created already (reference counted).
Operations: Collective

8.3.3 iMOAB_Finalize

ErrCode iMOAB Finalize ( )

Finalize the iMOAB interface implementation.

It will delete the internally reference counted MOAB instance maintained in iMOAB, if the
reference count reaches 0.

Operations: Collective
8.3.4 iMOAB_RegisterApplication

ErrCode iMOAB_RegisterApplication ( iMOAB_String app_name,

MPI_Comm * comm,
iMOAB_AppID pid

)

Register application - Create a unique application ID and bootstrap interfaces for further
queries.

Note:
Internally, a mesh set will be associated with the application ID and all subsequent
queries on the MOAB instance will be directed to this mesh/file set.

Operations: Collective

Parameters:
[in] app_name (iMOAB_String) Application name (PROTEUS, NEK5000, etc)
[in] comm (MPI_Comm*) MPI communicator to be used for all mesh-related
queries originating from this application
[out] pid (iMOAB_AppID) The unique pointer to the application ID
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8.3.5 iMOAB_DeregisterApplication

ErrCode iMOAB DeregisterApplication ( iMOAB AppID pid)

De-Register application: delete mesh (set) associated with the application ID.

The associated communicator will be released, and all associated mesh entities and sets will
be deleted from the mesh data structure. Associated tag storage data will be freed too.

Operations: Collective

Parameters:
[in] pid (iIMOAB_AppID) The unique pointer to the application ID

8.3.6 iMOAB_ReadHeaderInfo

ErrCode iMOAB ReadHeaderInfo ( iMOAB String filename,

int * num_global_vertices,
int * num_global_elements,
int * num_dimension,

int * num_parts,

int filename_length

Get global information from the file.

It should be called on master task only, and information obtained could be broadcasted by
the user. It is a fast lookup in the header of the file.

Operations: Not collective

Parameters:

[in] filename (iMOAB_String) The MOAB mesh file (H5M) to probe for
header information

[out] num_global_vertices (int*) The total number of vertices in the mesh file

[out] num_global_elements (int*) The total number of elements (of highest
dimension only)

[out] num_dimension (int*) The highest dimension of elements in the mesh
(Edge=1, Tri/Quad=2, Tet/Hex/Prism/Pyramid=3)

[out] num_parts (int*) The total number of partitions available in the
mesh file, typically partitioned with mbpart during pre-
processing

[in] filename_length (int) Length of the file name string
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8.3.7 iMOAB_LoadMesh

ErrCode iMOAB LoadMesh ( iMOAB AppID pid,
iMOAB String filename,

iMOAB_String read_options,

int * num_ghost_layers,
int filename_length,
int read_options_length

Load a MOAB mesh file in parallel and exchange ghost layers as requested.

All communication is MPI-based, and read options include parallel loading information,
resolving shared entities. Local MOAB instance is populated with mesh cells and vertices in
the corresponding local partitions.

Note:
This will also exchange ghost cells and vertices, as requested. The default bridge
dimension is 0 (vertices), and all additional lower dimensional sub-entities are
exchanged (mesh edges and faces). The tags in the file are not exchanged by default.
Default tag information for GLOBAL_ID, MATERIAL_SET, NEUMANN_SET and
DIRICHLET_SET is exchanged. Global ID tag is exchanged for all cells and vertices.
Material sets, Neumann sets and Dirichlet sets are all augmented with the ghost
entities.

Operations: Collective

Parameters:
[in] pid (iMOAB_AppID) The unique pointer to the application ID
[in] filename (iMOAB_String) The MOAB mesh file (H5M) to load onto
the internal application mesh set
[in] read_options (iMOAB_String) Additional options for reading the MOAB

mesh file in parallel

[in] num_ghost_layers (int*) The total number of ghost layers to exchange
during mesh loading

[in] filename_length (int) Length of the filename string
[in] read_options_length (int) Length of the read options string

8.3.8 iIMOAB_WriteMesh

ErrCode iMOAB WriteMesh ( iMOAB AppID pid,
iMOAB String filename,

iMOAB_String write_options,

int filename_length,
int write_options_length

Write a MOAB mesh along with the solution tags to a file.
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Note:
The interface will write one single file (H5M) and for serial files (VTK/Exodus), it will
write one file per task. Write options include parallel write options, if needed. Only
the mesh set and solution data associated to the application will be written to the
file.

Operations: Collective for parallel write, non collective for serial write.

Parameters:
[in] pid (iMOAB_AppID) The unique pointer to the application ID
[in] filename (iMOAB_String) The MOAB mesh file (H5M) to write all the
entities contained in the internal application mesh set
[in] write_options (iMOAB_String) Additional options for writing the MOAB
mesh in parallel
[in] filename_length (int) Length of the filename string

[in] write_options_length (int) Length of the write options string
8.3.9 iIMOAB_GetMeshinfo

ErrCode iMOAB GetMeshInfo ( iMOAB AppID pid,

int * num_visible_vertices,

int * num_visible_elements,

int * num_visible_blocks,

int * num_visible_surfaceBC,

int * num_visible_vertexBC
)

Obtain local mesh information based on the loaded file.

Number of visible vertices and cells include ghost entities. All arrays returned have size 3.
Local entities are first, then ghost entities are next. Shared vertices can be owned in MOAB
sense by different tasks. Ghost vertices and cells are always owned by other tasks.

Operations: Not Collective

Parameters:

[in] pid (iMOAB_ApplID) The unique pointer to the application
ID

[out] num_visible_vertices (int*) The number of vertices in the current
partition/process arranged as: owned/shared only,
ghosted, total_visible (array allocated by client, size
:= 3)

[out] num_visible_elements (int*) The number of elements in current
partition/process arranged as: owned only,
ghosted/shared, total_visible (array allocated by
client, size := 3)

[out] num_visible_blocks (int*) The number of material sets in local mesh in
current partition/process arranged as: owned only,
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ghosted/shared, total_visible (array allocated by
client, size := 3)

[out] num_visible_surfaceBC (int*) The number of mesh surfaces that have a
NEUMANN_SET BC defined in local mesh in current
partition/process arranged as: owned only,
ghosted/shared, total_visible (array allocated by
client, size := 3)

[out] num_visible_vertexBC (int*) The number of vertices that have a
DIRICHLET_SET BC defined in local mesh in current
partition/process arranged as: owned only,
ghosted/shared, total_visible (array allocated by

client, size := 3)
8.3.10 iMOAB_GetVertexID
ErrCode iMOAB_GetVertexID ( iMOAB_AppID pid,
int * vertices_length,
iMOAB_GlobalID * global_vertex_ID

Get the global vertex IDs for all locally visible (owned and shared/ghosted) vertices.

The array should be allocated by the client, sized with the total number of visible vertices
from iIMOAB_GetMeshinfo method.

Operations: Not collective

Parameters:
[in] pid (iMOAB_AppID) The unique pointer to the application ID

[in] vertices_length (int*) The allocated size of array (typical size :=
num_visible vertices)

[out] global_vertex_ID (iMOAB_GloballD*) The global IDs for all locally visible
vertices (array allocated by client)

8.3.11 iIMOAB_GetVertexOwnership

ErrCode iMOAB GetVertexOwnership ( iMOAB AppID pid,
int * vertices_length,

int * visible _global_rank_ ID

Get vertex ownership information.

For each vertex based on the local ID, return the process that owns the vertex (local, shared
or ghost)

Note:
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Shared vertices could be owned by different tasks. Local and shared vertices are first,
ghost vertices are next in the array. Ghost vertices are always owned by a different
process ID. Array allocated by the client with total size of visible vertices.

Operations: Not Collective

Parameters:
[in] pid (iMOAB_ApplID) The unique pointer to the application
ID
[in] vertices_length (int*) The allocated size of array (typically size :=

num_visible vertices)

[out] visible_global_rank_ID (int*) The processor rank owning each of the local
vertices

8.3.12 iIMOAB_GetVisibleVerticesCoordinates

ErrCode iMOAB GetVisibleVerticesCoordinates ( iMOAB AppID pid,
int * coords_length,

double * coordinates

Get vertex coordinates for all local (owned and ghosted) vertices.

Note:
Coordinates are returned in an array allocated by client, interleaved. Size of the array
is dimension times number of visible vertices. The local ordering is implicit,
owned/shared vertices are first, then ghosts.

Operations: Not Collective

Parameters:
[in] pid (iMOAB_AppID) The unique pointer to the application ID

[in] coords_length (int*) The size of the allocated coordinate array (array allocated
by client, size := 3*num visible vertices)

[out] coordinates (double*) The pointer to client allocated memory that will be
filled with interleaved coordinates

8.3.13 iIMOAB_GetBlockinfo

ErrCode iMOAB GetBlockInfo ( iMOAB AppID pid,
iMOAB_GlobalID * global_block_ID,
int * vertices_per_element,
int * num_elements_in_block
)

Get the global block information and number of visible elements of belonging to a block
(MATERIAL SET).
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A block has to be homogeneous, it can contain elements of a single type

Operations: Not Collective

Parameters:
[in] pid (iMOAB_ApplID) The unique pointer to the application
ID
[in] global_block_ID (iMOAB_GloballD) The global block ID of the set to
be queried

[out] vertices_per_element (int*) The number of vertices per element
[out] num_elements_in_block (int*) The number of elements in block

8.3.14 iMOAB_GetBlockiD

ErrCode iMOAB GetBlockID ( iMOAB AppID pid,
int * block_length,
iMOAB_GlobalID * global_block_ IDs

Get the global block IDs for all locally visible (owned and shared/ghosted) blocks.

Block IDs are corresponding to MATERIAL_SET tags for material sets. Usually the block ID is
exported from Cubit as a unique integer value. First blocks are local, and next blocks are
fully ghosted. First blocks have at least one owned cell/element, ghost blocks have only
ghost cells. Internally, a block corresponds to a mesh set with a MATERIAL_SET tag value
equal to the block ID.

Operations: Not Collective

Parameters:
[in] pid (iMOAB_AppID) The unique pointer to the application ID
[in] block_length (int*) The allocated size of array (typical size :=

num_visible blocks)

[out] global_block_IDs (iMOAB_GloballD*) The global IDs for all locally visible
blocks (array allocated by client)

8.3.15 iIMOAB_GetVisibleElementsinfo

fl\ﬁ;g;d:etvisibleElementsInfo ( iMOAB_RppID pid,
int * num_visible_elements,
iMOAB_GlobalID * element_global_1IDs,
int * ranks,

iMOAB_GlobalID * block_IDs

Get the visible elements information.
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Return for all visible elements the global IDs, ranks they belong to, block ids they belong to.

Operations: Not Collective

Parameters:

[in] pid (iMOAB_ApplID) The unique pointer to the application
ID

[in] num_visible_elements (int*) The number of visible elements (returned by
GetMeshlinfo)

[out] element_global_IDs (iMOAB_GloballD*) element global ids

[out] ranks (int*) The owning ranks of elements
[out] block_IDs (iMOAB_GloballD*) The block ids the elements belong
to

8.3.16 iIMOAB_GetBlockElementConnectivities

ErrCode .
B e e PP
iMOAB GetBlockElementConnectivities ( 1MOAB_AppID

iMOAB_GlobalID *

pid,

global_block_1ID,

connectivity_ length

int *
. element connectivit
int * -
Yy
)
Get the connectivities for elements within a certain block.
Operations: Not Collective
Parameters:
[in] pid (iMOAB_AppID) The unique pointer to the application ID
[in] global_block_ID (iMOAB_GloballD*) The global block ID of the set being

queried

[in] connectivity_length (int*) The allocated size of array (typical size :=
vertices_per element*num elements_in block)

[out] element_connectivity (int*) The connectivity array to store element ordering
in MOAB canonical numbering scheme (array allocated
by client); array contains vertex indices in the local
numbering order for vertices elements are in the same
order as provided by GetElementOwnership and
GetElementID

8.3.17 iMOAB_GetElementID

ErrCode iMOAB GetElementID ( iMOAB AppID pid,
iMOAB_GlobalID * global_block_ID,
int * num_elements_in_block,

ANL/MCS-TM-357



2015 SIGMA Release v1.2
Vijay Mahadevan, lulian Grindeanu, Navamita Ray, Rajeev Jain, Danging Wu

iMOAB_GlobalID * global_element_ID,
iMOAB_LocallID * local_element_ID

Get the global IDs for all locally visible elements belonging to a particular block.

The method will return also the local index of each element, in the local range that contains
all visible elements

Operations: Not Collective

Parameters:
[in] pid (iMOAB_ApplID) The unique pointer to the application
ID
[in] global_block_ID (iMOAB_GloballD*) The global block ID of the set

being queried

[in] num_elements_in_block (int*) The allocated size of global element ID array,

same as num_elements_in block returned from
GetBlockInfo()

[out] global_element_ID (iMOAB_GloballD*) The global IDs for all locally
visible elements (array allocated by client)
[out] local_element_ID (iMOAB_LocallD*) (optional) The local IDs for all

locally visible elements (index in the range of all
primary elements in the rank)

8.3.18 iMOAB_GetPointerToSurfaceBC (Neumann B.C)

ErrCode

iMOAB_GetPointerToSurfacesc ( 1MOAB_APPID pid,
int * surface_BC_length,
iMOAB_LocallID * local_element_ID,
int * reference_surface_ID,
int * boundary_condition_value

Get the surface boundary condition information.

Operations: Not Collective

Parameters:
[in] pid (iMOAB_ApplID) The unique pointer to the
application ID
[in] surface_BC_length (int*) The allocated size of surface boundary

condition array, same
as num_visible surfaceBC returned by
GetMeshinfo()

[out] local_element_ID (iMOAB_LocallD*) The local element IDs that
contains the side with the surface BC
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[out] reference_surface_ID (int*) The surface number with the BC in the
canonical reference element (e.g., 1 to 6 for HEX,
1-4 for TET)

[out] boundary_condition_value (int*) The boundary condition type as obtained
from the mesh description (value of the
NeumannSet defined on the element)

8.3.19 iIMOAB_GetPointerToVertexBC (Dirichlet B.C)

flﬁgggd:etPointerToVertexBC ( 1MOAB_AppID pid,
int * vertex_BC_length,
iMOAB_LocallID * local_vertex_ID,
int * boundary_condition_value

Get the vertex boundary condition information.

Operations: Not Collective

Parameters:
[in] pid (iMOAB_ApplID) The unique pointer to the
application ID
[in] vertex_BC_length (int) The allocated size of vertex boundary

condition array, same
as num_visible vertexBC returned by
GetMeshinfo()

[out] local_vertex_ID (iMOAB_LocallD*) The local vertex ID that has
Dirichlet BC defined

[out] boundary_condition_value (int*) The boundary condition type as obtained
from the mesh description (value of the
Dirichlet_Set tag defined on the vertex)

8.3.20 iMOAB_DefineTagStorage

ErrCode iMOAB DefineTagStorage ( iMOAB AppID pid,
iMOAB_String tag_storage_name,

int * tag_type,

int * components_per_entity,
int * tag_index,

int tag_storage_name_length

Define a MOAB Tag corresponding to the application depending on requested types.

Note:
In MOAB, for most solution vectors, we only need to create a "Dense"”, "Double" Tag. A
sparse tag can be created too. If the tag is already existing in the file, it will not be
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created. If it is a new tag, memory will be allocated when setting the values. Default
values are O for for integer tags, 0.0 for double tags, 0 for entity handle tags.

Operations: Collective

Parameters:

[in]

[in]

[in]

[in]

[out]

[in]

pid

tag_storage_name
tag_type
components_per_entity

tag_index

(iMOAB_ApplID) The unique pointer to the
application ID

(iMOAB_String) The tag name to store/retrieve the
data in MOAB

(int*) The type of MOAB tag (Dense/Sparse,
Double/Int/EntityHandle), enum MOAB_TAG_TYPE
(int*) The total size of vector dimension per entity
for the tag (e.g., number of doubles per entity)

(int*) The tag index which can be used as identifier
in synchronize methods

tag_storage_name_length (int) The length of the tag_storage_name string

8.3.21 iMOAB_GetDoubleTagStorage

ErrCode iMOAB GetDoubleTagStorage ( iMOAB AppID pid,

iMOAB_String tag_storage_name,

int * num_tag_storage_length,
int * entity type,

double * tag_storage_data,

int tag_storage_name_length

Retrieve the specified values in a MOAB double Tag.

Operations: Collective

Parameters:

[in]

[in]

[in]

[in]

pid

tag_storage_name

num_tag_storage_length

entity_type
tag_storage_data

(iMOAB_ApplID) The unique pointer to the
application ID

(iMOAB_String) The tag name to store/retreive the
data in MOAB

(int) The size of tag storage data (e.qg.,
num_visible_vertices*components_per_entity or
num_visible_elements*components_per_entity)
(int*) type O for vertices, 1 for primary elements
(double*) The array data of type double to be
copied from the internal tag memory; The data is
assumed to be contiguous over the local set of
visible entities (either vertices or elements)

tag_storage_name_length (int) The length of the tag_storage_name string
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8.3.22 iMOAB_SetDoubleTagStorage

ErrCode iMOAB SetDoubleTagStorage ( iMOAB AppID pid,
iMOAB_String tag_storage_name,

int * num_tag_storage_length,

int * entity type,

double * tag_storage_data,

int tag_storage_name_length
)

Store the specified values in a MOAB double Tag.

Operations: Collective

Parameters:
[in] pid (iMOAB_ApplID) The unique pointer to the
application ID
[in] tag_storage_name (iMOAB_String) The tag name to store/retreive the
data in MOAB

[in] num_tag_storage_length (int*) The size of tag storage data (e.qg.,
num_visible_vertices*components_per_entity or
num_visible_elements*components_per_entity)

[in] entity_type (int*) type O for vertices, 1 for primary elements

[out] tag_storage_data (double*) The array data of type double to replace
the internal tag memory; The data is assumed to
be contiguous over the local set of visible entities
(either vertices or elements)

[in] tag_storage_name_length (iMOAB_String) The length of the
tag_storage_name string

8.3.23 iMOAB_SynchronizeTags

ErrCode iMOAB SynchronizeTags ( iMOAB AppID pid,

int * num_tags,
int * tag_indices,
int * ent_type
)
Exchange tag values for given tags.
Operations: Collective
Parameters:
[in] pid (iMOAB_AppID) The unique pointer to the application ID
in] num_tags (int*) Number of tags to exchange

1
1 tag_indices (int*) Array with tag indices of interest (size = *num_tags)
1 ent_type (int*) type of entity for tag exchange
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8.4 Fortran and C drivers

The links to Fortran and C drivers can be obtained by visiting the up to date
documentation website for iMOAB.

ftp://ftp.mcs.anl.gov/pub/fathom/imoab-docs/fex_8F source.html

ftp://ftp.mcs.anl.gov/pub/fathom/imoab-docs/driver_8c.html

It is expected that the convergence to the API after iterative discussions with the
team members will happen by December 2015. This APl will then be integrated as part of
the core MOAB implementation that can then be configured and utilized in all applications.

9 Software infrastructure and collaborative development

The SIGMA toolkit is completely open-source and encourages a collaborative
development process to satisfy the needs of applications in computational science. Due to
the large user base in both academia and industry, strong processes to maintain code quality
without inhibiting user contributions were necessary. SIGMA uses a continuous integration
and build process for all its components and details on different parts of the toolkit are given
in the following sections.

9.1 SIGMA software processes

The SHARP toolkit uniformly uses the Git version control system and all the
repositories are hosted at the Bitbucket website. Git is a relatively new distributed revision
control and source code management system. The flexibility and the seamless workflow that
Git provides is making it a widely adopted version control system for software development
and all the SIGMA tools utilize the best practices put forth to enable collaborative code
developement. The use of pull requests through the Bitbucket interface also brings in
contributions from users willing to be involved with the development of SHARP components
and examples based on the libraries. This system also encourages peer review on commits
and requests thereby combining some SQA process with Cl to ensure the robustness and
efficiency of the code. Several combinations of builds with different compilers including the
GNU, PGI, Intel and Clang have been added to the suite of builds that are run nightly.

One of the complex parts of the SIGMA toolkit, due to the sheer nature of its
dependencies, is the configuration and build system. Efforts to simplify the overall build
system has been undertaken as a parallel effort to writing the solver pieces to ensure
seamless integration of new physics components to SHARP and other applications. Some
details on this build system are provided next.

9.1.1 Build System

The build system of Due to the number of required and optional dependencies
(MOAB, HDF5, Zoltan, Metis, Parmetis, NetCDF, Zlib, PETSc, Blas/Lapack, Blacs), the
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packaging and build system for applications using CouPE can be quite complex. There are
several concurrent efforts to ameliorate the difficulties encountered and to make it flexible
for the user to configure based on —download-PACKAGE and —with-PACKAGE primitives.
There are two main paths a user could take:

1. Autotools
2. CMake

All SIGMA tools from their inception have used autotools build system and it
continues to be well supported. Alternatively, the CMake-based build system allows a user
to build several components in the SIGMA tools: CGM, MOAB, Lasso and MeshKit using
CMake. There are options provided to download and install these dependencies. Part of this
effort is being implemented in collaboration with Kitware using the SuperBuild system.

9.1.2 Documentation updates

Some details on updates to different aspects of manuals, documentation and code
repositories are provided below.

1. SIGMA Website: Contains the latest news and developments about CGM, MOAB,
MeshKit and CouPE. It contains links to other sources of documentation mentioned in
this section. Introduction, download and build instructions for all the SIGMA
components is also available here.

2. Documentation: All SIGMA components contain sources and documentation that
conform to the doxygen documentation guidelines along with generation of user and
developers guide to be showcased in the reference pages. These artifacts are updated
nightly, as part of the continuous integration support (Buildbot) for all library
components.

3. Repository: All SIGMA components are hosted on Bitbucket as open-source
repositories. There are detailed build instructions along with information on branches
and other developer related information available in the website and using mailing lists.

9.1.3 Continuous integration

The SIGMA Buildbot system [39] is currently setup to perform both nightly and
continuous branch and integration tests for all of the component libraries. The tests are run
for different configuration options, combinations of dependencies, and variations in
compiler types, versions, MPI implementations and machine architectures. The buildbot test
suite infrastructure tests all major branches including master (primary branch), develop
(integration branch) and feature branches (user submitted PRs, fixes, feature additions). Fig.
14 shows the waterfall page for SIGMA buildbot system that currently tests over 200
configuration combinations every single day for CGM, MOAB, MeshKit, PETSc (DMMoab)
and PyTAPS components.
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[sNs N3} Welcome to Buildbot for the SIGMA project ™
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Welcome to Buildbot website for the SIGMA project!
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12:44:29
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Figure 14. SIGMA Buildbot test suite pages (a) The main buildbot web status page (b) Sample
waterfall page with pending builds.

Strong focus on improving code standards and robustness in the libraries are
continually being pursued by reducing compiler warnings (GNU/Intel/PGl/clang), memory
leaks (valgrind checks) and static code analysis (cppcheck, coverity). These fixes become part
of the ongoing release patches after being thoroughly verified on various build
combinations.
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9.2 Release schedules

The SIGMA toolkit has been undergoing a constant release cycle of 6-8 months with
several advanced capabilities being introduced in every release. Several important bug fixes
and issues have also been resolved, in parallel I/0, tag handling, solution transfer capabilities
etc. The notable feature additions and fixes for the past two releases are given below.

9.2.1 SIGMA v1.1 Release and notes (Jan 2015)

Notable feature additions and fixes for the SIGMA v1.1 release during the first
quarter of FY15 is available at https://sigma.mcs.anl.gov/news/sigma-release-1-1.

9.2.2 SIGMA v1.2 Release and notes (October 2015)

We expect to release SIGMA v1.2 during the first week of October 2015 with the
most notable features listed in this report for MOAB along with corresponding change sets in
MeshKit containing several enhancements and fixes for native scalable mesh generation
algorithms. Detailed changeset will be available at https://sigma.mcs.anl.gov/news/sigma-
release-1-2.

9.2.3 SIGMA v1.3 Release (expected date: Apr 2016)

The next release of SIGMA (v1.3) is expected to occur in April 2016 and will contain
the first release of Mesquite mesh optimization package support natively inside MOAB. A
unified design to support adaptive mesh refinement strategies is also being pursued and will
be implemented in this context for usage in applications.

9.3 ATPESC participation (August 2015)

The Argonne Training Program on Extreme-Scale Computing covers the key topics
that computational science and engineering researchers must master to develop and use
leading-edge applications. The program fills a gap in the training that most computational
scientists receive; hence it will provide a more comprehensive program than typical short
courses. Individuals with expertise and leadership responsibilities in each of these key topic
areas will serve as the respective lecturers and the hands-on laboratory session guides.

The core of the program will focus on programming methodologies that are effective
across a variety of supercomputers and that are expected to be applicable to exascale
systems. Multiple approaches will be covered but the emphasis will be on unifying concepts
and levels of abstraction that provide migration paths and performance portability among
current and future architectures. Additional topics to be covered include computer
architectures, mathematical models and numerical algorithms, approaches to building
community codes for HPC systems, and methodologies and tools relevant for Big Data
applications.
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The SIGMA team conducted several tutorial sessions (Vijay Mahadevan) at the
ATPESC training program hosted by Argonne along with hands-on sessions (Vijay
Mahadevan, lulian Grindeanu) as part of the FastMath section of the tutorial. Rajeev Jain
also participated in the ATPESC training program this year and has gained valuable
background that should prove useful for his research in mesh generation algorithms for
nuclear engineering problems.

Additional details on the tutorial sessions conducted by the SIGMA team are
available in the link below.

https://press3.mcs.anl.gov/sigma/atpesc2015.

10 Publications and talks (FY15)

1) X. Zhao, R. Conley, N. Ray, V. S. Mahadevan, X. Jiao, "Conformal and Non-conformal
Adaptive Mesh Refinement with Hierarchical Array-based Half-Facet Data Structures",
In proceedings of 24th International Meshing Roundtable (IMR24), Austin, TX, Oct
2015.

2) N.Ray, l. Grindeanu, X. Zhao, V. S. Mahadevan, X. Jiao, "Array-Based Hierarchical Mesh
Generation in Parallel", In proceedings of 24th International Meshing Roundtable
(IMR24), Austin, TX, Oct 2015.

3) V. S. Mahadevan, E. Merzari, |. Grindeanu, "A glass box coupling methodology for
rigorously solving strongly coupled phenomena in nuclear reactors"”, Invited, In
proceedings of VI International Conference on Coupled Problems in Science and
Engineering, San Servolo, Venice, Italy, May 2015.

4) R. Jain, V. S. Mahadevan, "Simplying Workflow for Reactor Assembly and Full-Core
Modeling", In proceedings of Joint International Conference on Mathematics and
Computation, Nashville, April 2015.

5) R.Jain, N. Ray, I. Grindeanu, D. Wu, V. S. Mahadevan, "Scalable Mesh Generation for
HPC Applications", Poster In Proceedings of 27th SuperComputing conference, Austin,
TX, Nov 15-20, 2015.

6) J. Becker, R. Jain, V. S. Mahadevan, R. O'Bara, P. O'Leary, "Meshing Sodium-cooled Fast
Reactor Cores for Nuclear Energy Advanced Modeling and Simulation", Poster In
Proceedings of 27th SuperComputing conference, Austin, TX, Nov 15-20, 2015.

7)  X.lJiao, N. Ray, C. Lu, X. Zhao, “High-Order Surface Reconstruction with Applications in
Parallel Meshing and Finite Element Solvers”, SIAM CS&E, Salt Lake City, March 2015.

8) N.Ray, X. Zhao, C. Lu, “MOAB based unstructured meshing and solvers”, LANS seminar
series, Argonne National Lab, Aug 2015.
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11)

12)

13)

14)

15)

16)

17)

18)

N. Ray, “Array-Based Hierarchical Mesh Generation in Parallel”, LANS seminar series,
Argonne National Lab, Aug 2015.

X. Zhao, “Reconstructing High-order Surface for Meshing in MOAB”, LANS seminar
series, Argonne National Lab, Aug 2015.

C. Lu, “2-D Parallel PDE Solvers for Structured and Unstructured Meshes with
DMMoab”, LANS seminar series, Aug 2015.

M. S. Shephard, V. S. Mahadevan, G. Hansen, C. W. Smith, "FASTMath Unstructured
Mesh Technologies and hands-on sessions", Argonne Training Program on Extreme-
Scale Computing (ATPESC) workshop, St. Charles, IL, Invited talk, August 2015.

V. S. Mahadevan, I. Grindeanu, R. Jain, N. Ray, D. Wu, P. Wilson, P. Shriwise, "SIGMA:
Scalable Interface for Geometry and Mesh Based Applications"”, U.S. Department of
Energy Scientific Discovery through Advanced Computing (SciDAC-3) Pl Meeting,
Washington DC, July 2015.

V. S. Mahadevan, "Easing computational workflows through flexible and scalable
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-Jul 1, 2015.
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(MOAB) Solver (PETSc) Interactions", In Proceedings of SIAM Computational Science
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11 Summary

The SIGMA toolkit contains several components that have been designed with the

motivation to improve scientific productivity of computational scientists dealing with issues
in complex unstructured mesh based solvers. The geometry model support through CGM,
the advanced mesh generation capabilities provided by MeshKit, the scalable unstructured
mesh handling features provided by MOAB and robust coupled multi-physics solvers
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provided by CouPE enable high-fidelity applications to focus on the physics representations
and discretizations. The use of SIGMA tools in the SHARP framework has also enabled us to
seamlessly tackle explicitly heterogeneous reactor assembly and full core geometry
configurations and with demonstrations that showcase accurate convergence to true
coupled solutions. Several enhancements for the components in SIGMA are planned for
FY16 and the direct impact on the computational workflow for SHARP will be significant.
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