ANL/MCS-TM-356

Argon ne‘)

NATIONAL LABORATORY

SHARP pre-release v1.0 -
Current status and documentation

Mathematics and Computer Science Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, lllinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE’s SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandria, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

SHARP pre-release v1.0 -
Current status and documentation

ANL/MCS-TM-356

Vijay S. Mahadevan, Ronald Rahaman
Mathematics and Computer Science Division,
Argonne National Laboratory

September 30, 2015

2015 SHARP pre-release v1.0
Vijay S. Mahadevan, Ronald Rahaman

EXECUTIVE SUMMARY

The NEAMS Reactor Product Line effort aims to develop an integrated multiphysics
simulation capability for the design and analysis of future generations of nuclear power
plants. The Reactor Product Line code suite’s multi-resolution hierarchy is being designed to
ultimately span the full range of length and time scales present in relevant reactor design
and safety analyses, as well as scale from desktop to petaflop computing platforms. In this
report, building on a several previous report issued in September 2014, we describe our
continued efforts to integrate thermal/hydraulics, neutronics, and structural mechanics
modeling codes to perform coupled analysis of a representative fast sodium-cooled reactor
core in preparation for a unified release of the toolkit. The work reported in the current
document covers the software engineering aspects of managing the entire stack of
components in the SHARP toolkit and the continuous integration efforts ongoing to prepare
a release candidate for interested reactor analysis users.

Over the past several years, the Reactor Product Line effort has developed high-
fidelity single-physics codes for neutron transport modeling, in the PROTEUS code, and
Computational Fluids Dynamics thermal/fluid modeling in the Nek5000 code. Both these
codes have been exercised on over 100,000 processors of the IBM Blue Gene/P. The Diablo
code has been used to perform structural mechanics and thermo-mechanical modeling.
MOAB, the Reactor Geometry Generator (RGG), and MeshKit have been developed to
generate and manipulate mesh and mesh-based data, in both serial and parallel
environments. With the coupled physics simulations orchestrated by CouPE, the
combination of these modules enables computational scientists to simulate complex multi-
physics problems in nuclear engineering. These tools together form a strong basis on which
to build a multi-physics modeling capability. The goal of developing such a tool is to perform
multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the
components inside a reactor core, the full reactor core or portions of it, and be able to
achieve that with various level of fidelity. This flexibility allows users to select the
appropriate level of fidelity for their computational resources and design constraints.

Here we report on the continued integration effort of PROTEUS/Nek5000 and Diablo
into the NEAMS framework and the software processes that enable users to utilize the
capabilities without losing scientific productivity. Due to the complexity of the individual
modules and their necessary/optional dependency library chain, we focus on the
configuration and build aspects for the SHARP toolkit, which includes capability to auto-
download dependencies and configure/install with optimal flags in an architecture-aware
fashion. Such complexity is untenable without strong software engineering processes such
as source management, source control, change reviews, unit tests, integration tests and
continuous test suites. Details on these processes are provided in the report as a building
step for a SHARP user guide that will accompany the first release, expected by Mar 2016.

i ANL/MCS-TM-356

SHARP pre-release v1.0
September 30, 2015

TABLE OF CONTENTS

EXECUTIVE SUMMARY ..ottt sttt ettt sse st sae s i
TaAbIE Of CONLENLSeeuiiiiietieieeieete ettt sttt ettt sbe e b saeesbeenneas il
LSt OF FAGUIES ..ttt ettt et ettt et e et e e bt e ssseesaeeabeenseesnseensaennseens v
LSt OF TADIES ...ttt et ettt sttt v
I INEEOAUCTION <.ttt ettt ettt ettt be et bt e sbeebesanens 5
2 STIGMA LOOLKIE..cueeiteiieieeitesteete ettt ettt sttt ettt et sb e ettt e s bt et et e sbeeteeaeens 6
3 The SHARP t0OIKIE ..cc.eeiuiiiiiiiiieieeec ettt sttt 8
4 CONTIGUIATION. ...eutiiiiieiieeiie ettt ettt ettt et e et e esteeeae e teeenseeseesaseenseesaseenseesnseenseennseans 10
4.1 Package DepPendenCies.........cceuiuieriieniieiiieiiieiiesteeieeete et e sreeteesaeebeeseaeeteesnaeenee e 10
4.2 SOUICE MANAZEIMNENIL ...eeuvieeruiieeriiieeriieeenteeertteeesiteesstteesseeesseeessseeensseessreessseessseeessseeenns 11
4.3 GEttING STATEEA ...c.eeeeevietieeieeiie ettt ettt et et e et e sete e bt esebeeteesateesbeessbeenseeenaeenseennns 12
4.4 Configuration OPLIONScecueeriieriieeieeiieeteeieesteesteesteeaeesbeenseessseesseessseenseessseenseensns 12
4.4.1 Enabling/disabling compile-time features or packages..........cccceevveerverrrennnne. 13

4.4.2 Linking to eXiSting lIDIariescceeviieriieiiieniieeiieie ettt 13

4.4.3 Downloading third-party Ibraries...........cccceevveeciieniieiiienieciieee e 13

4.4.4 Precedence Of OPtiONS.......ccuieciieriieiiieniieeieerie ettt ettt seeeae s seeeesee e 14

4.4.5 AVvailable OPtIONS.....cccciiiiiieiieeiiecie ettt ettt et 14

4.5 Configuration on the BIUes CIUSET..........ccccuiiuieriiiiieeiieiiecie e 16
4.5.1 Basic EXAMPIE.....ccciiiiiiiieiiieiiee et 16

4.5.2 MPI libraries and COMPILETScccueeciirriieiiieieeieeee e 16

4.5.3 Configuring With Diablocccoooiiiiiiiiiiiiie e 17

4.5.4 Building essential third-party libraries from source.............cceeceeeiienveneiennnne. 17

4.5.5 Linking to pre-installed librariesccoecierieeciieniieiieieceeee e 17

4.6 COMPILET CROICEuvieniieiiieiiecie ettt ettt et s te et e st e et e s abeesbeessbeenseeenseenseennns 18
4.7 Updated DOCUMENTATIONeoueeriiieiieeiieeiie et eiee et eiteste et e sereeteeeaaeebeesereeseesnaeenseennns 18
4.8 Standardizing command-1ine OPLIONScccuieruieriieriieniieiieeie et eieeiee e eeee e eeee e 19
4.9 Early checking of command-ling Optionsceeeeeeiieriieriiieniienieeieeeie e 19

5 Open and Recently-Resolved ISSUEScccuieriiiiiiiiiieiieeieeee et 19
Parsing OPLIONSccueeriieiieiie ettt ettt ete et stte et e et e ebe e seesabeeseeenbeeseesnseenseennns 19

HEIP MESSAZES. ...vvieuvieeieeiieeiie ettt ettt ettt ettt s e et e eabeebeeenbeenseesnseenseeenns 19
Detecting and Propagating Variables for Compiler Choices, Flags, Libraries, etc.20
PROTEUS COmMPIlation.......ccecouieriiiiieriieeiieiie ettt esiee et esieeeeveesieesveeseesneeeseeenne 20
MUltiphySiCS COUPIING....c.viiiuiiiiieiieeiieeiie ettt ettt ettt et sbeesbeeseeeneeenaeeenee 20

6 ReGIESSION tESTINME. .. .eiueiutiiiiiiiieieeie ettt ettt ettt et st e st e e eatesbe et e eaeenbeenees 20
T TSt PIODICINS ...ttt ettt ettt ettt et ettt e st eebeesaaeesbeessseenseesaseenseessseenseennsaans 22
8 FULUIE PIANS ...ttt ettt et e st e et e st e e bt e snbeenseeenseenseennne 23
ACKNOWICAZMENES.eoiiieiiiiiiiieiieeie ettt ettt et te et et e et e esabeesbeeesbeenseesnseenseessseenseas 23

ANL/MCS-TM-356 ii

SHARP pre-release v1.0
Vijay S. Mahadevan, Ronald Rahaman

REFERENCESottt e 23

iii ANL/MCS-TM-356

SHARP pre-release v1.0
September 30, 2015

LIST OF FIGURES

Figure 1. SIGIMA TOOIKIt......eeiieiiiiiee ettt e e e e rr e e e tae e e e e aaaeeeeearaeeeanes 7
Figure 2. SHARP ArchiteCture SChemME.........ooii i 9
Figure 3. SHARP WOTIKFIOWuiiiiiiiiieeeee ettt ettt e et e e e e aaaeeeenes 10
Figure 4. SHARP ArchiteCture SChemME.........oooiiiiiiiieee e 22
LIST OF TABLES
Table 1. List of SHARP toolkit dependenciesccueeueeeeeieeciiiueeeieeeeeeeeciieeeeeeeeeeeeeeiereeeee e 10
Table 2. Available list of configuration OPLiONScoouecvvvueeeeeeeeeeeeiiiieeeeeeeeeeeeeiireeeeeeens 14
Table 3. List of continuous regression builds and teStS...........cccoveeeviieeeeeciiiieeiiieeeeeieciieeeeeeeen 21

ANL/MCS-TM-356 iv

SHARP pre-release v1.0
Vijay S. Mahadevan, Ronald Rahaman 5

1 Introduction

The NEAMS Reactor Product Line (RPL) aims to develop an integrated multi-physics
simulation with a multi-resolution hierarchy that is designed to ultimately span the full range
of length and time scales present in relevant reactor design and safety analyses, as well as
scale from desktop to petaflop computing platforms. In this report, we focus on the steps
taken in terms of software engineering to verify individual physics component codes, and
the integrated coupled system through robust architecture-aware configuration and build
system development, regression test suites, and nightly verifications. These steps are
essential in preparation of a reliable first release of the Simulation-based High-efficiency
Advanced Reactor Prototyping (SHARP) toolkit to interested users. The current report is
intended to provide details on the current software architecture of SHARP, its components
and the ongoing steps in preparation for the first release version by Mar 2016.

The SHARP modeling and simulation project is a component-based toolkit that
enables nuclear engineers and computational scientists to analyze and design the next
generation of predictive tools for nuclear reactor analysis. The SHARP project is unique in its
capabilities by employing advanced parallel methods development in support of reactor core
calculations, using state-of-art discretization and solver strategies for both the single physics
and coupled multi-physics applications. The SHARP toolkit integrates neutronics,
thermal/hydraulics, and structural mechanics physics modules to perform coupled reactor
analysis on representative sodium-cooled fast reactor core geometries.

In order to produce a fully coupled-physics simulation capability, there are two
obvious approaches that can be pursued. In one approach, existing single-physics
codes/components can be assembled into an overall coupled simulation code with
appropriate interfaces to communicate between the components to capture the nonlinear
feedback effects. This is generally referred to as a “small-f” or “bottom-up” framework
approach [1, 2]. The other approach is to use an integrated, coupled-physics modeling
framework, with new code pieces for each relevant physics area developed inside that
framework from scratch. This is sometimes referred to as a “large-F” or “top-down”
framework approach [3, 4]. The primary advantage of the former approach is that it
preserves several man-years invested in existing verified and validated individual physics
modeling codes, but at the cost of some intrusive modifications to enable the software
interfaces. The large-F approach avoids intrusive interfacing by providing a unified platform
to enable coupling, but at the cost of re-writing all the necessary physics codes and verifying
the components individually and as a whole. The overall approach being pursued in the RPL
effort is to develop and demonstrate a small-f framework for performing coupled
multiphysics analysis of reactor core systems. This system takes advantage of many single-
physics codes also sponsored by the overall NEAMS program over past several years.

The details regarding the background on construction of the IPL coupled physics
framework (SHARP) along with the software engineering details are discussed in the
following sections.

ANL/MCS-TM-356

SHARP pre-release v1.0
6 September 30, 2015

2 SIGMA toolkit

The Scalable Interfaces for Geometry and Mesh based Applications (SIGMA) toolkit
[5] provides interfaces and tools to access geometry data, create high quality unstructured
meshes along with unified data-structures to load and manipulate parallel computational
meshes for various applications to enable efficient physics solver implementations. Mesh
generation is a complex problem since most problem geometries involve complicated curved
surfaces that require physics imposed spatial resolution and optimized elements for good
guality. These tools simplify the process of generation and handling of discrete meshes with
scalable algorithms to leverage efficient usage from desktop to petascale architectures.

The SIGMA toolkit has been designed with the aim to enable and expedite modeling
scientific problems by computational scientists and converge on simulation workflow
without investing significant effort in learning an array of tools. It provides interfaces and
tools to understand geometry models, create high quality unstructured meshes along with
unified data-structures to load and manipulate parallel computational meshes for various
applications to enable efficient physics solver implementations. Additionally, optimal quality
mesh generation is a complex process for complicated curved problem geometries, with
physics imposed spatial resolution requirements. These tools simplify the process of
generation and handling of discrete meshes with scalable algorithms to leverage efficient
usage from desktop to petascale architectures. The interaction of the various SIGMA
components along with several key dependent applications and tools are shown in Fig. 1.

CGM: The Common Geometry Module (CGM) [6], is a library with a common API for
querying and modifying the topological model for geometry represented in ACIS and
OpenCASCADE solid modeling engines. CGM (ITAPS iGeom) also provides the common
geometry infrastructure for the CUBIT mesh generation toolkit [7].

MeshKit: One of the unique capabilities provided by SIGMA toolkit is the inclusion of
an array of generic mesh generation algorithms that seamlessly integrates into several
different external applications. MeshKit serves as a library of advanced mesh-generation
algorithms implemented natively and provides an extensible design to perform R&D on new
meshing techniques.

The MeshKit library [8] contains several mesh-generation algorithms that utilize CGM
and MOAB descriptions of geometry and mesh to discretize complex geometric domains.
Nuclear reactor specific geometries can be easily meshed through a GUI tool from Kitware
built on top of Reactor Geometry Generator written in MeshKit whose overall goal is to
develop a complete package for generating reactor core models.

MOAB: The Mesh-Oriented datABase (MOAB) [9] (ITAPS: iMesh, iMeshP), is a
library for uniformly representing both structured and unstructured meshes, along with
associated field data defined on mesh entities, using an efficient array-based data model.
MOAB provides query, construction, and modification of finite-element meshes, plus
polygons and polyhedra. Various options are available for writing and visualizing the final

ANL/MCS-TM-356

SHARP pre-release v1.0
Vijay S. Mahadevan, Ronald Rahaman 7

meshes produced by meshing algorithms. MOAB uses an HDF5-based file format, which can
be visualized by using a ParaView plugin that is implemented by the MOAB library. The Visit
visualization tool can also be configured and built with MOAB to provide a similar import
capability.

PETSc
DMMoab Interfaces

SpaFEDTe

PROTEUS

Fig;;; 1— SIHII; t'oiolkit
MOAB has shown demonstrated scalability to at least 512K processors [10] using its

efficient parallel mesh handling algorithms, which includes arbitrary point location, and
interpolation of field data during multi-mesh solution transfers.

The relational mapping between MOAB and CGM is also implemented in Lasso
(ITaPs iRrel), which is utilized for mesh generation and adaptive mesh refinements, where
associations between mesh and geometry must be queried and maintained. Recently, in a
move to reduce the dependency chain for SIGMA, a decision was taken to integrate the
Lasso source base into MOAB. The description of this effort is provided in one of the
subsections.

ANL/MCS-TM-356

SHARP pre-release v1.0
8 September 30, 2015

Solver Interoperability: High-resolution computational physics solvers require
assembling the discrete operators on unstructured meshes and strong software coupling
between scalable solvers in PETSc [11] and MOAB provide abstractions (DMMoab) to
manage field data, DoFs and traversal semantics to fully enable efficient solution techniques.
In coupled phenomena, aggregating the interaction between such solvers to capture the
physical behavior during solution evolution of dependent models require consistent, global
nonlinear solvers with advanced block-preconditioning strategies (in addition to robust
multi-mesh transfer projection algorithms). These algorithms have been implemented within
the Coupled Physics Environment (CouPE) [12] that utilizes the software abstractions
exposed through DMMoab and native MOAB-based wrappers.

CouPE is implemented based on MOAB and makes use of PETSc solvers to drive the
global nonlinear problem to convergence and provides a flexible infrastructure to abstract
coupling needs without intrusively modifying existing physics solvers. Several real-world
problems in nuclear reactor analysis [13] have been analyzed using this framework to
accurately converge to coupled solutions of interest while quantifying numerical errors
introduced due to both coupling and discretization using SIGMA tools.

The above SIGMA components provide the tools to seamlessly traverse the entire
computational workflow from problem design to analysis, improving scientific productivity.

3 The SHARP toolkit

Typically, there are two primary approaches to assemble a coupled-physics
simulation capability for analyzing reactor core systems. Of the two options, we choose to
use the “bottom-up” approach for its ability to use existing physics codes and to take
advantage of existing infrastructure capabilities in the MOAB and the coupling driver/solver
library, CouPE which utilizes the widely used, scalable PETSc library.

Using an existing physics codes in this system (Fig. 2) requires that the system
support whichever mesh type(s) the individual physics natively uses. The physics models can
retain their own native representation of the mesh, which gets transferred to and from
MOAB'’s representation through a Mesh Adaptor (Physics Model A); or, it can use MOAB's
representation directly (Physics Model B). Language interoperability through the C/Fortran
based iMesh interfaces also allows flexibility in the implementations that are tuned to
individual physics requirements without overhead.

ANL/MCS-TM-356

SHARP pre-release v1.0
Vijay S. Mahadevan, Ronald Rahaman 9

Motivation: Solve tightly coupled physical phenomena using
loosely coupled software interfaces

Applications
and Usability

78]
D)
o
<
o

System
Response

Validation and
SIGMA (CouPE, MOAB, MeshKit) UuQ

SQA including Verification, Regression

Figure 2. SHARP Architecture Scheme

In practice, this means that the coupled system may be solved on multiple meshes,
each of which models part or the entire physical domain of the problem. In order to perform
efficient coupled calculations, the results must be transferred from the physics/mesh on
which they are generated (source), to the physics/mesh for which they provide initial or
boundary conditions (target) due to nonlinearity introduced because of coupling between
physics. “Multi-way” transfer is required in cases where the physics depend on each other’s
solution fields, for example in reactor analysis where neutronics computes heat generation
based on temperature properties computed by thermal-hydraulics, which in turn depends
on heat generation source term computed by neutronics.

Since relevant physics components solving a nuclear engineering problem have
widely varying backgrounds in terms of code architectures, dependency requirements and
specialized solver data-structures, a flexible approach to the coupling methodology was
necessary to obtain accurate solutions. The SIGMA tools have been proven effective to
handle unstructured mesh needs of applications in a scalable fashion and developments to
handle the requirements for efficient, conservative spatial projection tools were pursued.
The coupled physics driver based on CouPE library orchestrates the global nonlinear solver
and effectively reduces the nonlinearities between the physics at every time-step in order to
preserve the solution accuracy whilst maintaining unconditional stability requirements.

Fig. 3 illustrates the bottom-up approach used in the current NEAMS IPL effort. The
MOAB library provides a representation of the meshes and optional tools configured as part
of the library provide the solution transfer capability to project each physics component
from the source to target meshes, with appropriate conservation prescriptions. The CouPE
library is responsible for implementing multiphysics coupling methods to consistently and
accurately couple the different components, in order to solve the nonlinear reactor-physics

ANL/MCS-TM-356

SHARP pre-release v1.0

10 September 30, 2015

problem. The combination of these tools provides the basis for the SHARP component-based
framework in RPL.

PROTEUS NEKS000 DIABLO

Driver

L) LBMESH (FEM)
. SLEPC (EIGENVALUE)
L) PETSC (SOLVER)

Figure 3. SHARP Workflow

4 Configuration

In this section, description of the complex configuration of the dependencies and the
ease of use in managing the installation of SHARP toolkit is provided.

4.1 Package Dependencies
In the table below, “X” indicates a required package and “(X)” indicates an optional
package. A number of packages are optional for single-physics modules but required by the
coupled problems in SHARP.

Table 1. List of SHARP toolkit dependencies

Package | Version | DIABLO | PROTEUS | Nek5000 | SHARP Notes
ARPACK X
Only part of TRILINOS used by
EXODUSII| 6.06 (X)
DIABLO
FEMSTER X
HDF5 1.8 (X) (X) (X) X Required for NetCDF and

ANL/MCS-TM-356

SHARP pre-release v1.0

Vijay S. Mahadevan, Ronald Rahaman 11
MOAB. Optional for single-
physics

HYPRE 2.9 X
Required for SHARP. Optional
ITAPS (X) X . .
for single-physics
Required for MOAB and
. PROTEUS. Optional for single-
Metis 4.0 (X) X (X) X))
physics with Nek5000 or
DIABLO
MILI 13.1 X
Required for SHARP. Optional
MOAB 4.7 (X) (X) (X) X .)
for single-physics
MPI X X X
MUMPS 4.1 X
NASA X
Required for MOAB. Optional
NetCDF 4.3 (X) (X) (X) X .)
for single-physics
. Required for SHARP. Optional
ParMetis 4 (X) X . :
for single-physics
PETSc 3.1 X
PWSSMP X
SILO 4.1 X
Required for MOAB. Optional
ZOLTAN 3.8 (X) (X) (X) X .)
for single-physics

4.2 Source management

The SHARP toolkit utilizes SVN version control system to manage the sources for
different components. The repository is hosted at Argonne and is available at the following
link, as long as users have been pre-approved to gain access to it.

Link: https://svn.mcs.anl.gov/repos/SHARP

Once source access has been provided, the user could checkout the sources by
invoking the following Subversion command:

svn co https://svn.mcs.anl.gov/repos/SHARP/trunk SHARP

ANL/MCS-TM-356

SHARP pre-release v1.0
12 September 30, 2015

This command will create the SHARP directory containing all the configuration
scripts, physics code module sources and a particular version of the coupled system driver
along with several examples and test problems.

4.3 Getting started

To configure SHARP, the user first needs to run a top-level configuration generator
script, aptly named “bootstrap”. This script will verify whether the system contains the
necessary and supported version of autotools before proceeding further. After verification,
the autotools toolchain (aclocal, autoheader, autoconf, automake) can be used to generate
the configuration script. An example output from successfully running the bootstrap script is
shown below.

Bootstrap for SHARP build system.
Beginning to run bootstrap in /Users/mahadevan/source/sharp/trunk.

Scanning dependencies...

Checking for autoconf........ [found version 2.69]
Checking for autoheader........ [found version 2.69]
Checking for aclocal........ [found version 1.14.1]
Checking for automake........ [found version 1.14.1]
Checking for libtoolize........ [found version 2.4.4]
Checking for autoreconf........ [found version 2.69]

Running the autotools...
Running autoreconf..... [done]

Done bootstrapping your system. You may now run ./configure.
To see options use ./bootstrap --help or view the README file.

Once the configure script is generated, users can invoke “./configure —help” to view
and set up the build process with desired set of features. Based on the provided options, the
top-level configure script will automatically determine any third-party library dependencies.
To satisfy those dependencies, the user may either: (a) link to previously installed libraries
on the user’s system; or (b) request that the top-level script download and build the
necessary libraries. Details on these options are described in the subsections.

4.4 Configuration Options

There are several families of configuration options available when running the
configure script, that can be used to control whether certain features are enabled/disabled,
or if certain dependencies (pre-installed) need to be used in the current build or if the user
wants the package manager to auto-download and configure some of the dependencies.

ANL/MCS-TM-356

SHARP pre-release v1.0
Vijay S. Mahadevan, Ronald Rahaman 13

4.4.1 Enabling/disabling compile-time features or packages

Compile-time features are enabled by options of the form:

--enable-<feature>[=yes|no]
--enable-<package>[=yes|no]

Values other than yes/no will return an error. --enable-<feature> is synonymous with
--enable-<feature>=yes and --disable-<feature> is synonymous with --enable-<feature>=no.

4.4.2 Linking to existing libraries

The user may to link pre-installed libraries with options of the form:
--with-<PACKAGE>=PATH

where the PATH points to the installation directory typically containing the library
and its headers. The PATH argument is mandatory and invalid paths return an error during
configuration checks.

If a valid library or dependency has been found, then the configuration for the
dependency is processed to see if the required headers are available and if a test program
that utilizes the library calls can be successfully compiled and linked in order to accumulate
the overall LDFLAGS and LIBS to compile SHARP successfully.

4.4.3 Downloading third-party libraries

SHARP allows the user to download and compile third-party libraries through the
configure script. Third-party libraries may be downloaded and compiled with options of the

form:
--download-<PACKAGE>[=yes |no|url]

Specifying --download-library[=yes] will download a tarball (.tar.gz file) of the
library’s source code from a default URL and utilize default, verified workflows to configure,
build and install the dependency onto a dependency installation directory. Running
“configure —help” provides a list of the default URLs associated with each library. Optionally,
the user can also specify --download-library=URL in order to download the library from the
given URL and build/install using the same process. Note that the user-provided URL should
point to a valid tarball and may not be guaranteed to be compatible with other SHARP
libraries and modules.

Additionally, SHARP accepts two other helper download options (--download-
essential and --download-all) to build a set libraries for some typical configurations.
When DIABLO is disabled (by default), the --download-essential option will download and
build: MPI, BLAS/LAPACK, ScaLAPACK, PETSc, HDF5, MOAB, ParMetis, Metis, and NetCDF.
When DIABLO is enabled (--enable-diablo), the --download-essential option will additionally

ANL/MCS-TM-356

SHARP pre-release v1.0
14 September 30, 2015

build: HYPRE, MUMPS, MILI, and SILO. The --download-all option will build all the above-
mentioned libraries in addition to: PNetCDF, Meshkit and NiCE.

4.4.4 Precedence of Options

In several cases, --enable-<package> is available along with a --with-<package>
and/or --download-<package> argument. The precedence is resolved according to the table
below. The values may be either user-provided or internal default values.

4.4.5 Available options

Table 2. Available list of configuration options

Options --enable-XXX | --with-XXX | --download-XXX [Description
32bit X Force 32-bit objects
64bit X Force 64-bit objects
arpack X ARPACK
blas X BLAS
cc X C compiler
cubit X Cubit library for MeshKit
CXX X C++ compiler
Build with debugging
debug X symbols
diablo X X DIABLO
exodus X EXODUS
77 X Fortran77 compiler
Optimize for fast
fast-install X installation
fc X Fortran compiler
Use profiling for the
fc-profiling X Fortran code
Build with Fortran
fortran X language support
Prefix where GM is
gm X installed (GNOME)
Assume C compiler uses
gnu-Id X GNU linkage

ANL/MCS-TM-356

SHARP pre-release v1.0

Vijay S. Mahadevan, Ronald Rahaman 15
hdf5 X X X HDF5
Extra LDFLAGS for HDF5
hdf5-ldflags X library
hypre X HYPRE
lapack X LAPACK
Avoid locking (might break
libtool-lock X parallel builds)
meshkit X X MeshKit library
metis X X X Metis library
metis-include X Path for Metis headers
mili X MILI
moab X X X MOAB
moose X X MOOSE
mpi X X X MPI
mpi-include X Path for MPI headers
mpi-libs X Path for MPI libraries
mumps X X X MUMPS
nek X X Nek5000
netcdf X X NetCDF
nice X X X NiCE
Build with OpenMP
openmp X support
optimized X Compile optimized (-02)
parmetis X X X ParMetis
parmetis-include X Path for ParMetis headers
parmetis-lib X Path for ParMetis libraries
petsc X X PETSc
Try to use only PIC/non-
pic X PIC objects
pnetcdf X X PNetCDF
shared X Build shared libraries
silo X SILO

ANL/MCS-TM-356

SHARP pre-release v1.0

16 September 30, 2015
Compile and load with
silo-debug X debug version of SILO
slepc X X SLEPc
static X Build static libraries
szip X szip for HDF5
unic X X PROTEUS (formerly UNIC)
zlib X zlib for HDF5
zoltan X X ZOLTAN
zoltan-include X Path for ZOLTAN headers
zoltan-lib X Path for ZOLTAN libraries

4.5 Configuration on the Blues Cluster
4.5.1 Basic Example

One of the simplest configurations is to use a preinstalled MPI library and download
all other essential dependencies through SHARP. For example, the user may quickly get up
and running on Blues with the following commands:

$ export MPI_DIR=/soft/mpich2/1.2.1-intel-11.1

$../configure --enable-diablo --download-essential --with-
mpi=$MPI_DIR CC=$MPI_DIR/bin/mpicc CXX=$MPI_DIR/bin/mpicxx
F77=$MPI_DIR/bin/mpif77 FC=$MPI_DIR/bin/mpif90

These and other possible options are explained below.
4.5.2 MPI libraries and compilers

It is highly recommended to use one of the MPI libraries that are already installed on
Blues, even though SHARP provides an option to download and install MPICH. We have
successfully built SHARP using the Intel compiler v11.1 with either MPICH2 v1.2 or
MVAPICH2 v1.4. On Blues, these library paths are given below.
/soft/mpich2/1.2.1-intel-11.1/
OR
/soft/mvapich2/1.4.1-intel-11.1.064/

More recent versions are also successful; the most recent available on Blues is Intel

v13.1. Ongoing verifications with other available MPI implementations should expand the
supported set of both MPIl and compiler versions.

ANL/MCS-TM-356

SHARP pre-release v1.0
Vijay S. Mahadevan, Ronald Rahaman 17

The user may find success with other compiler versions or MPI implementations.
However, when compiling external libraries from source, the user must choose an
implementation with MPI 1/O features that support parallel HDF5. See
http://www.unidata.ucar.edu/software/netcdf/docs/getting_and_building_netcdf.html#buil
d_parallel and https://www.hdfgroup.org/HDF5/PHDF5 for more info.

In the example above, the library path was set to an environment variable with:

$ export MPI DIR=/soft/mpich2/1.2.1-intel-11.1

The library path specified to the configure script by the option:
--with-mpi=$MPI DIR

and the compilers was specified by the variables:

CC=$MPI_DIR/bin/mpicc CXX=$MPI_ DIR/bin/mpicxx
F77=$MPI_DIR/bin/mpif77 FC=$MPI_DIR/bin/mpif90

4.5.3 Configuring with Diablo

By default, SHARP enables only PROTEUS and Nek5000 modules. Since the Diablo
module requires separate approvals, a decision was made to explicitly enable Diablo only
when required. To build DIABLO during SHARP configuration, the --enable-diablo option can
be utilized, which will also trigger building several Diablo specific dependencies as needed.

Diablo also requires lexical analyzer (lex) and scanner generator (flex) for its build and
so it is essential to also check for these system dependencies when configuring.

4.5.4 Building essential third-party libraries from source

As described above, using the --build-essential flag will download and install MPI,
BLAS/LAPACK, ScaLAPACK, PETSc, HDF5, MOAB, ParMetis, Metis, and NetCDF.

4.5.5 Linking to pre-installed libraries

Some libraries required by SHARP are already installed on Blues. These include
PETSc, NetCDF, HDF5. (see http://www.lcrc.anl.gov/installed-software for a full list of
installed software)

For example, the most recent versions on Blues for Intel and MVAPICH2 are:
e /soft/netcdf/4.3.1-parallel/intel-13.1/mvapich2-1.9/
e /soft/hdf5/1.8.12-parallel/intel-13.1/mvapich2-1.9/
e /soft/petsc/3.4.4/intel-13.1/mvapich2-1.9/

which can be used with the corresponding Intel MVAPICH 2 libs:

/soft/mvapich2/1.9-intel-13.1
Together, these libs can be used for configuring SHARP with command such as:

ANL/MCS-TM-356

SHARP pre-release v1.0
18 September 30, 2015

$ export MPI_DIR=/soft/mvapich2/1.9-intel-13.1

$../configure --enable-diablo=yes --download-essential \
--with-mpi=$MPI DIR \

CC=$MPI_DIR/bin/mpicc CXX=$MPI_DIR/bin/mpicxx F77=$MPI_DIR/bin/mpif77
FC=$MPI_DIR/bin/mpif90 \
--with-netcdf=/soft/netcdf/4.3.1-parallel/intel-13.1/mvapich2-1.9/ \
--with-hdf5=/soft/hdf5/1.8.12-parallel/intel-13.1/mvapich2-1.9/ \
--with-petsc=/soft/petsc/3.4.4/intel-13.1/mvapich2-1.9/

4.6 Compiler Choice

For some time, several older compiler versions had unknown compatibility issues
with MOAB, which is required for coupled problems. We recently determined that the
incompatible compilers were unable to build parallel HDF5, which is a requirement of
NetCDF, which is finally a requirement of MOAB. In particular, parallel HDF5 required MPI

I/O features that were unsupported by older compilers.
http://www.unidata.ucar.edu/software/netcdf/docs/getting_and_building_netcdf.html#tbuild_parallel

Though NetCDF failed to compile during SHARP’s configuration, the top-level
configure script did not stop when it encountered this error. In fact, the top-level script only
stopped when it encountered the MOAB error. Detecting and presenting the NetCDF error
will be fixed in an upcoming revision.

4.7 Updated Documentation

The configuration options are documented in at least two places: (a) in the README
file; (b) in the message shown by “configure --help”. It was identified that the existing
documentation does not provide sufficiently recent or detailed information about
configuration options and this is an important concern to address going forward. Some
significant omissions included: (a) acceptable values were not described for all arguments;
(b) default values were not described for all arguments.

We first elaborated the help messages presented by “configure --help.” In many
respects, these are more straightforward to maintain than the README. This is because the
help messages for “--enable-feature” are specified by the “help string” like below.

AC_ARG_ENABLE (feature,help-string,[action-if-given], [action-if-not-given])

Hence the descriptions of the actions are provided in the same macro call as the

Il

actions themselves. Arguments of the form “--with-feature” are described similarly by

AC_ARG_WITH. We updated the help messages to present the user with acceptable values

[

and default values for arguments of the form “--enable-feature[=value]” and “--with-

ANL/MCS-TM-356

SHARP pre-release v1.0
Vijay S. Mahadevan, Ronald Rahaman 19

feature[=value]”. It is our intention that the messages in “configure --help” will ALWAYS
contain the most up-to date documentation.

The README will also be updated with the same info. Maintaining the README will
require more diligence; and we are considering an automated solution, such as Doxygen.

4.8 Standardizing command-line options

The command-line options for the top-level config script follow these conventions:

e Compile-time features are enabled using “--enable-feature[=yes|no]” such as
“--enable-mpi[=yes|no]”, “--enable-hdf5[=yes|no]”, “--enable-openmp[=yes|no]”, “--
enable-debug[=yes|no]”, etc

e Paths to external libraries are specified using “--with-feature=PATH”, for example:

“_-with-mpi=$MPI_DIR”, “--with-hdf5=$HDF_DIR”, etc

There were several options in the initial configuration implementation that did not
follow this format, which were corrected to greatly simplify documentation and reduce user
confusion.

4.9 Early checking of command-line options

We've implemented early checks for command-line options. Options that don’t
follow the above-mentioned format raise an error and halt the configure script. This
happens as soon as the arguments are parsed, before installation of any libs. Previously,
incorrect options would be caught much later.

5 Open and Recently-Resolved Issues
Parsing Options

Changes were made to interpret command-line options more consistently and
correctly. The --enable-diabo flag is now implemented correctly (r2768). The --download-
essential option includes the correct third-party dependencies (r2775). The user-provided
arguments for optional features and libraries (--enable-feature[=yes|no] and --with-
feature=PATH) are validated and raise errors early in the configure process (r2790). The
format for these arguments has also been standardized.

Help messages

The configure script’s help message now displays default values for all command-line
options (r2769).

ANL/MCS-TM-356

SHARP pre-release v1.0
20 September 30, 2015

Detecting and Propagating Variables for Compiler Choices, Flags, Libraries, etc.

The configure script interacts with the MPI libraries more robustly and consistently.
When the user does not specify the MPI directory, it is now detected from the environment
variable SMPI_DIR and never from SMPI_HOME; this was especially problematic on Blues,
since the softenv did not consistently set SMPI_HOME (r2773, r2774).

In several other cases, MPl compiler-related variables were not correctly propagated
throughout the configure script, which affected configuration of Metis, ParMetis, NetCDF,
PNetCDF, PETSc, and PROTEUS (r2773, r2776, r2777, 12778, r2787).

Variables related to the HDF5, MOOSE, NiCE, and PETSc libraries were also
propagated incorrectly (r2782). Variables related to the PROTEUS include paths and
compilers were also propagated incorrectly (r2778). Variables related to the MOAB include
paths were also propagated incorrectly (r2781).

Overall, these fixes have made configuration much more robust and transparent to the user.
PROTEUS Compilation

Several changes were made to the PROTEUS makefiles to make compilation much
more robust (r2783, r2785)

Multiphysics Coupling

Numerous fixes to CouPE in terms of new algorithmic developments and
enhancements to the convergence determination in the existing iterative schemes were
committed to the repository. Implementation of acceleration schemes for the Picard
iterative solver using Aitken and Minimum Polynomial extrapolation methods are also
currently underway.

6 Regression testing

SHARP is composed of modules and libraries that are under active development
driven through several SciDAC, ASCR and DOE funded projects. Given the rapidly evolving
component changes, it is vital to run frequent regression tests, which can reveal whether the
existing functionality and feature sets in SHARP have been affected by modifications in the
downstream components.

Due to the need for continued automated testing, we have set up both nightly and
changeset driven regression test suites using the Buildbot suite (http://buildbot.net/).

Currently, there are four specific buildbot builds to stress test the configuration
combinations offered by SHARP. This decision has been taken to make the most commonly
used options more robust by enabling maximal set of available features and dependency
combinations for all modules. Hence, all of the builds use the --download-essential option.

ANL/MCS-TM-356

SHARP pre-release v1.0
Vijay S. Mahadevan, Ronald Rahaman 21

They also differ some time depending on whether optimizations are turned on through the
use of the debug flag (--enable-debug) or the optimization flag (--enable-optimized). Since
Diablo is also an optional component, the inclusion of DIABLO (--enable-diablo) and it’s
required dependencies with or without the use of pre-installed packages covers the regular
configuration space common to many use cases.

Table 3. List of continuous regression builds and tests

) L Preinstalled
Build debug | optimized | DIABLO Downloaded Packages
Packages
HDF5, Metis, MOAB, MPI,
sharpdbg-moab yes no no MPI]
NetCDF, ParMetis, PETSc
HDF5, Metis, MOAB, MPI,
sharpopt-moab no yes no MPI]
NetCDF, ParMetis, PETSc
HDF5, MOAB,))
sharpdbg-mbmaster yes yes no Metis, ParMetis, PETSc
MPI, NetCDF
HYPRE, Metis, ParMetis,
HDF5, MOAB,
sharpopt-all yes yes yes PETSc, SCALAPACK, SILO,
MPI, NetCDF
MUMPS, MILI

Note that two of the builds (sharpdbg-mbmaster and sharpopt-all) use a pre-installed
version of MOAB (along with its corresponding dependencies, HDF5 and NetCDF), rather
than the version of MOAB that is downloaded through the SHARP configuration script. The
pre-installed version of MOAB is pulled from the current up-to-date master branch of the
MOAB repository directly to make sure feature additions in MOAB are always compatible
with the SHARP development process.

Fig. 4 shows the continuous regression tests being run in the buildbot system that is
currently hosted at http://sigmaserver.mcs.anl.gov:8010. Out of the 4 builds being tested,

the figure shows that “sharpopt-all” is failing, while the others have consistently passed the
regression tests. The failure for the build with Diablo enabled is due to the architecture of
the machine with GNU compilers. This is due to a known issue [14] pointed out by Russell
Whitesides at LLNL with respect to GNU Fortran 4.8.x compilers, which has not been patched
in the machine running the buildbot server.

Such intricacies in the dependency builds are difficult to infer through manual testing
and the Buildbot test suites will help SHARP evolve into a portable toolkit that is architecture
and machine configuration aware.

ANL/MCS-TM-356

SHARP pre-release v1.0
22 September 30, 2015

vijaysm@anl [vijaysm@anl@localhost] |Logout
Home - Waterfall Grid T-Grid Console Builders Recent Builds Buildsl Changesources - JSON API - About

sica IECEESHE petsc petscdbg-mbmaster petscdbg-moab sharpdbg-mbmaster sharpdbg-moab
last build build successful build successful
building waiting waiting waiting waiting waiting waiting
: nextin) nextin nextin nextin nextin nextin nextin nextin nextin
current actveY & hrs 43 mins L ~ 40 mins ~ 40 mins ~40 mins ~ 40 mins ~9 hrs 10 mins ~5hrs 10mins | ~11hrs 10mins | ~7hrs 10 mins
at 00:33 at19:30 at19:30 at19:30 at19:30 at04:00 at 00:00 at 06:00 at02:00
CDT changes moab-sharp petsc tscdbg-mbmast tscdbo-moab petscopt-mbmast tscopt-moab sharpdbg-mbmaster sharpdbg-moab sharpopt-all sharpopt-moab
Tue test
29 Sep
2015
12:3351
Configuration
12:33:27
12:33:00 Build 56
12:3057
test
12:23:24
test
12:19:17
‘make
examples’
12:18:22
stdio
12:17:47 warnings (20)
12:00:21
‘svn
up'

Figure 4. SHARP Architecture Scheme

7 Test problems

The SHARP code repository contains several test problem setups, each of which
contains a standard template format for the mesh files, individual physics module input files
and driver options. For each of the configurations shown in Table. 3, the following test
problems are run through both individual physics drivers and coupled physics drivers.

The list of available test problems in the SHARP toolkit is provided below.
dbgprb: A simple tube problem with verifiable analytical solution
SAHEX: A 6 pin, single hexagonal assembly problem that serves as an integration test

SAHEX_Core: A multi-resolution, homogeneous-heterogenous problem description that
contains explicitly represented pin-cell assembly in the middle, surrounded by homogenized
assemblies with a duct surrounding it.

XX09: The XX09 assembly with explicit geometry description

XX09_Core: Similar to the SAHEX Core, the XX09 _Core problem represents a multi-
resolution core configuration with mixed explicit and homogenized assemblies

ABTR: The full ABTR core represented as homogenized assemblies along with explicit duct
representations to evaluate core deformation

ANL/MCS-TM-356

SHARP pre-release v1.0
Vijay S. Mahadevan, Ronald Rahaman 23

Currently, the verification and generation of gold-standard results for all of these
problems are being performed. When running the regression suite, these gold-standard
results will be used to benchmark the output from the tests after every change in either the
SHARP dependencies or the physics modules to catch inconsistencies in code changes.

8 Future plans

Considerable effort has been invested in FY15 to update the configuration and build
system for the SHARP toolkit in order to make it substantially portable and to improve the
overall computational workflow experience for both new and existing users. The ability to
seamlessly tackle explicitly heterogeneous reactor assembly and full core geometry
configurations places SHARP in a unique space where high-fidelity nuclear reactor analysis
for real world scenarios can be performed. The documentation and user experience have
served as the biggest hurdles in the past and recent work to change this will prove beneficial
to SHARP.

The continuous integration and test suites for SHARP will help the developers identify
and fix several of the pending issues on available architectures, including the LCRC and ALCF
machines at Argonne in order to leverage the petascale computing capability to simulate
high-fidelity problems at scale. We currently expect that a release process will be in place
along with updated user guides and documentation by March 2016. We also plan to provide
the first public release of SHARP tarball to interested users during the March time frame.
Depending on the FY16 funding allocations, a decision will be made to provide consistent
support and hosting tutorial sessions for users to start using the various tools and
components in SHARP toolkit in order to analyze nuclear engineering problems of interest.

Acknowledgments

We thank the contributions from various developers of the code modules (PROTEUS
— ANL/NE, NEK5000 — ANL/MCS, DIABLO — LLNL) for their continued support. We would also
like to thank the SIGMA team for their efforts in supporting a robust open-source workflow
from mesh generation to multi-mesh coupling. This work was supported in part by the U.S.
Department of Energy Office of Nuclear Energy Nuclear Energy Advanced Modeling and
Simulation (NEAMS) Program; by the U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research; and by the U.S. Department of Energy’s Scientific Discovery
through Advanced Computing program, under Contract DE-AC02-06CH11357.

REFERENCES

1. A. Siegel, T. Tautges, A. Caceres, D. Kaushik, P. Fischer, G. Palmiotti, M. Smith, J. Ragusa,
“Software design of SHARP”, Proc of the Joint International Topical Meeting on

ANL/MCS-TM-356

24

SHARP pre-release v1.0
September 30, 2015

10.

11.

12.

13.

Mathematics and Computations and Supercomputing in Nuclear Applications
(M&C+SNA), American Nuclear Society, April 2007.

Timothy J. Tautges, Hong-Jun Kim, Alvaro Caceres, and Rajeev Jain, “Coupled Multi-
Physics simulation frameworks for reactor simulation: A Bottom-Up approach”, Proc. of
the International Conference on Mathematics and Computational Methods Applied to
Nuclear Science and Engineering (M&C), American Nuclear Society, Rio de Janiero, Brazil,
May 2011.

Derek Gaston, Chris Newman, Glen Hansen, and Damien Lebrun-Grandi, “MOOSE: a
parallel computational framework for coupled systems of nonlinear equations”, Nuclear
Engineering and Design, 239, 10, 1768—-1778, October 2009.

Keyes D. E., et al, ”Multiphysics Simulations: Challenges and Opportunities”,
International Journal of High Performance Computing Applications, 27, 1, 4-83 (2012).

. SIGMA: Scalable Interfaces for Geometry and Mesh based Applications, URL:

http://sigma.mcs.anl.gov

Tautges, T. J. (2005). CGM: a geometry interface for mesh generation, analysis and other
applications. Eng. Comput. 17, 486—490.

G. D. Sjaardema, T. J. Tautges, T. J. Wilson, S. J. Owen, T. D. Blacker, W. J. Bohnhoff, T. L.
Edwards, J. R. Hipp, R. R. Lober, and S. A. Mitchell, CUBIT mesh generation environment
volume 1: Users manual, Tech. Report SAND-94-1100, Sandia National Laboratories,
1994,

Rajeev Jain and Timothy J. Tautges. Generating unstructured nuclear reactor core
meshes in parallel. Procedia Engineering, 82(0):351 — 363, 2014. 23rd International
Meshing Roundtable (IMR23).

Tautges, T. J., Meyers, R., Merkley, K., Stimpson, C., and Ernst, C. (2004). MOAB: A mesh-
oriented database, SAND2004-1592. Sandia National Laboratories, Albuquerque, NM.

Timothy J. Tautges, Jason A. Kraftcheck, Nathan Bertram, Vipin Sachdeva, and John
Magerlein. Mesh interface resolution and ghost exchange in a parallel mesh
representation. In Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum, IPDPSW ’12, pages 1670—
1679, Washington, DC, USA, 2012. IEEE Computer Society.

Satish Balay, William D. Gropp, Lois Curfman Mclnnes, Barry F. Smith, “Efficient
management of parallelism in object oriented numerical software libraries”, Modern
Software Tools in Scientific Computing, 163—202, Birkhduser Press, 1997.

V. S. Mahadevan, "Coupled Physics Environment (CouPE) library — Design,
implementation and release", prepared for the U.S. Department of Energy, Office of
Nuclear Energy, Milestone Technical Report, ANL/MCS-TM-345, January 2014.
Mahadevan VS, Merzari E, Tautges T, Jain R, Obabko A, Smith M, Fischer P., High-
resolution coupled physics solvers for analysing fine-scale nuclear reactor design
problems, Phil. Trans. R. Soc. A, 2021, 372:20130381, June 2014.

ANL/MCS-TM-356

SHARP pre-release v1.0
Vijay S. Mahadevan, Ronald Rahaman 25

14 .Russell Whitesides, Bug 60780 - Equivalence statements in nested modules results in fast
growing duplicate statements in module files, URL:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60780

ANL/MCS-TM-356

Argonne

NATIONAL LABORATORY

Mathematics and Computer Science Division
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 240

Argonne, IL 60439

www.anl.gov

U.S. DEPARTMENT OF

ENERGY

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

