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EXECUTIVE ABSTRACT 

Under the U.S. DOE NEAMS program, the high-fidelity multi-physics modeling and 

simulation capability SHARP for nuclear reactor design and analysis has been developed. 

SHARP is a suite of physics simulation software modules and computational framework 

components that enables users to accurately evaluate the physical processes of nuclear 

reactors including neutron transport, thermal fluid, and fuel and structure behaviors. Among 

the SHARP components, the goal of the NEAMS neutronics effort is to develop a high-

fidelity deterministic neutron transport code PROTEUS and a cross section library and 

methodology for use primarily on sodium-cooled fast reactors (SFRs) and extendable to other 

reactor types such as light water reactors (LWRs) and high temperature reactors (HTRs).  

The objectives of FY2015 NEAMS neutronics work are to update and improve 

PROTEUS in order to support a multi-physics demonstration of a reactor coupled with other 

physics tools, to verify and validate the code together with the cross section libraries for fast 

and thermal reactors, and to support PROTEUS users. 

This report summarizes the current status of NEAMS activities in FY2015. The tasks this 

year are (1) to improve solution methods for steady-state and transient conditions, (2) to 

develop features and user friendliness to increase the usability and applicability of the code, 

(3) to improve and verify the multigroup cross section generation scheme, (4) to perform 

verification and validation tests of the code using SFRs and thermal reactor cores, and (5) to 

support early users of PROTEUS and update the user manuals. 

PROTEUS was composed of three different high-fidelity transport solvers: SN2ND, 

MOCFE, and MOCEX. Among them, MOCEX (2D MOC coupled with the discontinuous 

Galenkin method axially based on the extruded geometry in the axial direction) requires less 

memory and computation time but is still under verification. To provide more options for 

users, the development of intermediate-fidelity transport solvers (MOC 2D/1D and NODAL) 

were initiated, which allow the code to produce the solutions that the user needs with practical 

time and computing resources. Those new solvers will be completed and tested in the 

following years. 

The current transient solution scheme of PROTEUS with the adiabatic method was 

reviewed to find an efficient way to improve it with the improved quasi-static (IQS) method. 

It was suggested that the IQS method be implemented for a first order solver which can 

compute the full angular flux rather than only the scalar flux (and even-parity angular flux). 

Therefore, an actual implementation of the IQS will be conducted to the existing MOC 

solvers or the first-order SN which should be developed in advance.  

To improve the usability of PROTEUS, a user-friendly mesh generation capability, 

including UFmesh and GRID, was developed for typical Cartesian or hexagonal geometries, 

which generates the mesh input based on user inputs instead of using CUBIT. This allows the 

user to easily build a mesh file with input cards and options and thus to quickly update the 

mesh file by changing user inputs. As the UFmesh is generated preserving the original 

geometry volumes, no additional adjustment that is sometimes required when using CUBIT-



FY15 Status Report on NEAMS Neutronics Activities 

September 30, 2015 

 

ANL/NE-15/23 ii  

 

generated meshes is necessary. This capability fills up the gap that RGG (MeshKit) based 

upon CUBIT does not support. 

The ANL cross section library (ACSL) has been further verified using the selected VERA 

PWR benchmark problems, showing good agreement with MCNP Monte Carlo solutions. 

Previously, the application programming interface (API) was implemented into the SN2ND 

and MOCEX solvers of PROTEUS. This year, it was successfully connected to the MOCFE 

solver as well. To speed up the on-the-fly cross section generation, an additional resonance 

self-shielding option based on the Dancoff approach was tested, which allows the code to 

reduce the number of the FSPs to solve by more than an order of magnitude. 

A 2D transport capability based upon MOC was implemented into the MC
2
-3 code in 

order to better account for the 2D spatial variance of the resonance self-shielding. Preliminary 

verification tests using ZPR-6/7 fuel drawers indicated that the 2D transport calculation of 

MC
2
-3 can better account for the local heterogeneity effect whereas the previously used 1D 

models have accuracy limitations. 

As a continued effort of code verification and validation, three reactors were simulated 

and analyzed with PROTEUS. First, the 3D ABTR cores with different heterogeneity level 

configurations were modelled using MC
2
-3/PROTEUS: homogeneous assembly model, 

partially homogeneous (duct heterogeneous) model, and partially homogeneous model with 

the fuel heterogeneity effect. Note that a fully heterogeneous assembly model is not necessary 

because the heterogeneity effect is not significant in a fast reactor system. It was found that 

most of the PROTEUS-SN eigenvalues with 116 groups were within 100 pcm of the MCNP 

solutions. The total heterogeneity effect and control rod worths were in very good agreement 

with MCNP. The initial thermal expansion tests showed good agreement in the reactivity 

change between PROTEUS and MCNP as well. 

The 3D ASTRID cores were simulated using MC
2
-3/PROTEUS with three different 

configurations similarly to the ABTR simulation: homogeneous assembly model, partially 

homogeneous assembly model (an explicit representation of wrapper tube and inter-assembly 

sodium gap), and partially homogeneous model with a fully heterogeneous assembly. The 

core keff for the homogeneous assembly model showed good agreement between PROTEUS 

and MCNP. Unlike the ABTR simulation, however, those for the partially homogeneous 

assembly model showed a noticeable discrepancy between the two codes, which could be 

attributed to the inconsistency in generating the multigroup cross sections using MC
2
-3 and 

should be investigated further in the future. 

The simulation of the 3D TREAT cores was initiated using PROTEUS and MCNP with 

the homogeneous assembly model and the heterogeneous assembly model. The eigenvalue 

solutions were in reasonable agreement between the two codes. For detailed investigation, 3D 

single assembly models with two different heterogeneous configurations were built: one 

including a zircaloy can smeared over the whole fuel assembly and the other including 

ziracoly cladding on the fuel and aluminum cladding on the reflector. The eigenvalue 
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solutions from the two codes were in good agreement within 90 pcm. Further analysis is 

ongoing and the final report on TREAT will be written in a separate document in October. 

As an effort of the PROTEUS user support, the PROTEUS manual was revised to include 

new options and changes made to the code (Revision 2.0). Technical supports were also made 

to the ORNL team who has been developing the depletion module for PROTEUS using the 

ORIGEN API. Additionally, we took the initiative to write up the MOAB API specifications 

for interfacing MOAB with PROTEUS to minimize current and potential problems arising 

from the multi-physics coupling between three physics tools via SIGMA.  
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1. Introduction 

Under the U.S. DOE NEAMS program, the high-fidelity multi-physics modeling and 

simulation capability SHARP [1] for nuclear reactor design and analysis has been developed. 

SHARP is a suite of physics simulation software modules and computational framework 

components that enables users to accurately evaluate the physical processes of nuclear reactors 

including neutron transport, thermal fluid, and fuel and structure behaviors. Among the SHARP 

components, the goal of the NEAMS neutronics effort [2,3] is to develop a high-fidelity 

deterministic neutron transport code PROTEUS [4,5] and a cross section library and methodology 

for use primarily on sodium-cooled fast reactors (SFRs) and extendable to other reactor types 

such as light water reactors (LWRs) and high temperature reactors (HTRs).  

The objectives of FY2015 NEAMS neutronics work are to update and improve PROTEUS in 

order to support a multi-physics demonstration of a reactor coupled with other physics tools, to 

verify and validate the code together with the cross section libraries for fast and thermal reactors, 

and to support PROTEUS users. 

To meet those objectives, the work scope of FY2015 includes improving solution methods for 

steady-state and transient conditions, enhancing or developing features and user friendliness to 

increase the usability and applicability of the code, improving and verifying the multigroup cross 

section generation scheme, and performing verification and validation tests of the code using 

SFRs and thermal reactor cores such as ABTR [6], ASTRID [7], and TREAT [8].  

Due to its capability to handle unstructured finite element geometries, PROTEUS has minimal 

geometry modeling restrictions. PROTEUS uses largely two different transport solution methods: 

discrete ordinate (SN) and method of characteristics (MOC). The SN is currently based upon the 

even-parity, second-order formulation (SN2ND) while the MOC takes two different approaches: 

full 3D MOC (MOCFE) and 2D MOC coupled with the discontinuous Galenkin method axially 

based on the extruded geometry in the axial direction (MOCEX) [9]. Compared to MOCFE, 

MOCEX is advantageous in computation resource and time for 3D problems. To provide more 

options for users, the development of intermediate-fidelity transport solvers (MOC 2D/1D and 

NODAL) were initiated, which allow the code to produce the solutions that the user needs with 

practical time and computing resources. In future, the new solution options may make it possible 

to solve multi-resolution problems since solvers with different levels of fidelity are available 

within a code. 

As an effort of improving the PROTEUS solution capabilities, the transient solution scheme 

that was developed with the simple adiabatic method [9] was reviewed this year to find an 

efficient way to implement the improved quasi-static (IQS) method. A tentative conclusion 

suggests to update a transport solver at the same time rather than to add the IQS option to the 

existing solution method which should take more time than expected. Thus, an actual 

implementation of the determined approach will take place in the following year. 

To improve the usability of PROTEUS, we developed a user-friendly mesh generation 

capability which generates the mesh input based on user inputs instead of using CUBIT [11]. This 

allows the user to easily build a mesh file with input cards and options and thus to quickly update 

the mesh file by changing a few user inputs. Even though MeshKit [12] is a convenient tool 

which provides more flexibility in generating mesh files for various geometry components, its 
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mesh is based on CUBIT requiring any updates using the tool only. This sometimes makes it 

difficult or inconvenient to verify the mesh files in terms of geometry and boundary condition. As 

can be seen in many conventional codes, the user-friendly mesh generation capability removes 

intermediate steps between user inputs and mesh files not only to simplify the mesh generation 

process, but also to easily verify the mesh file. However, this new capability is limited to typical 

Cartesian or hexagonal geometry problems. 

In previous years, the ANL cross section library (ACSL) and application programming 

interface (API) have been developed for the application to various reactor types including LWR, 

HTR, and SFR. [12] Currently, the cross section API includes two resonance self-shielding 

options: the subgroup method and the resonance table method. This year, efforts have been 

focused on verifying the cross section libraries and API. During the verification, we noticed that 

the total computation time was significantly increased due to solving many fixed source problems 

(FSPs) to estimate the heterogeneity effect for the multigroup cross sections. In order to reduce 

the number of the FSPs to solve, an additional resonance self-shielding option based on the 

Dancoff approach has been implemented into the cross section API. With the Dancoff approach 

[14], the number of the FSPs is reduced by more than an order of magnitude. As an alternative 

and verification option to the ACSL, a procedure of generating multigroup cross sections using 

Monte Carlo codes was developed, which would be useful to debug and verify the multigroup 

cross sections for complex geometry or spectrum reactor cores. 

The MC
2
-3 code [15] does still play an important role in preparing multigroup cross sections 

for the high-fidelity simulation of fast reactors because cross sections for fast reactors require 

ultrafine-groups which is beyond the memory capacity of the API or any real whole core analysis 

objective today. To improve the accuracy of MC
2
-3, efforts have been made to enable a 2D 

transport capability in order to capture the 2D spatial variance in the resonance self-shielding. 

Verification tests were performed using the ZPR cores which naturally include large 2D effects. 

In the previous year, an initial effort of PROTEUS verification with the heterogeneous cross 

sections was made for core components and 2D cores of ABTR. This year, we continued 

verification calculations for 3D cores and extended the effort to simulating ASTRID whose core 

specifications were taken from the benchmark exercise that was proposed by a collaborative 

effort between U.S. DOE-INL & ANL and France CEA-DEN [7]. Since both cores are SFRs, we 

used MC
2
-3 to generate multigroup cross sections. In addition, a thermal reactor TREAT was 

simulated using PROTEUS. The initial efforts made on TREAT are discussed in this report but 

the detailed progress and results will be presented in a separate report in October. 

For the PROTEUS user support, the PROTEUS manual was revised to include new options 

and changes made to the code (Revision 2.0 [16]). Technical supports were also made to the 

ORNL team who has been developing the depletion module for PROTEUS using the ORIGEN 

API [17]. Additionally, we took the initiative to write up the MOAB API specifications for 

interfacing MOAB with PROTEUS to minimize current and potential problems arising from the 

multi-physics coupling between three physics tools via SIGMA [17]. The discussion is being led 

and progressed by the SIGMA development team. 
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Section 2 discusses the improvements and new development made in PROTEUS. Section 3 

and 4 present continued development and verification tests performed for the cross section 

generation. Section 5 shows verification and validation activities for PROTEUS using ABTR, 

ASTRID, and TREAT cores. Conclusions are discussed in Section 6. 
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2. Improved and New Capabilities for PROTEUS 

As a key component of multi-physics tool SHARP, a high-fidelity deterministic neutronics 

code PROTEUS-SN was developed initially for analysis and design of sodium fast reactors 

(SFRs). In particular, a thermal expansion behavior is one of the most important phenomena in a 

SFR which are very difficult to simulate using the existing computer codes. Our multi-physics 

and associated neutronics exercises in the NEAMS program have been mostly so far focused on 

simulating SFRs such as EBR-II and ABTR [6]. In recent years, efforts have been made to extend 

the applicability of the tools to other reactor types such as light water reactors (LWRs) and high 

temperature reactors (HTRs). For accurately simulating thermal reactors, multigroup cross 

sections should first be prepared appropriately which led us to invest lots of efforts on developing 

the cross section libraries, associated methodologies, and cross section API.  

For PROTEUS, three high-fidelity deterministic neutron transport solvers were initially 

developed based on the finite element method: PN2ND (second order transport equation, 

spherical harmonics), SN2ND (second order transport equation, discrete ordinates), and MOCFE 

(first order transport equation, method of characteristics). Both PN2ND and SN2ND were 

designed to use 100,000+ processors for reasonably large problems with reduced homogenization 

approximations. MOCFE targeted fully heterogeneous fine-group problems. The variety of 

solvers was intended to allow the gradual replacement of the homogenization methodology by 

progressively applying more accurate treatments of the entire space-angle-energy phase space.  

Of the three solvers, SN2ND outperformed the other solvers PN2ND and MOCFE because of 

its ability to seamlessly handle homogeneous or heterogeneous problems as well as problems with 

some spatial details. The use of off-the-shelf components like PETSc [19] helped facilitate the use 

of large supercomputers in solving problems with 10
12

 degrees of freedom. MOCFE was found to 

scale, but the enormous memory usage and relative novelty limited its application. SN2ND was 

therefore carried forward as the primary candidate for large-scale heterogeneous geometry 

calculations. More recently, a reduced-memory method of characteristics methodology based 

upon extruded geometry modeling was developed. [9] Therefore, PROTEUS-MOC includes two 

options: full 3D MOC (MOCFE) and 2D MOC with the discontinuous Galerkin formulation 

axially (MOCEX). 

Since PN2ND was found to be inefficient as a high-fidelity neutron transport method for 

heterogeneous geometry problems, PROTEUS-SN and PROTEUS-MOC are considered as the 

NEAMS neutronics tool. Currently, PROTEUS-SN is more advanced and has also been used in 

multi-physics coupling simulations due to its longer development time than PROTEUS-MOC.  

The current solvers in PROTEUS were built to target particular behaviors of specific reactor 

cores (e.g., a thermal expansion of SFR and a curvilinear geometry of ATR [20]). The underlying 

expense associated with fully unstructured 3D transport calculations is still beyond the existing 

computing resources. This means that the PROTEUS code has a practical limit for the routine 

analysis that is desired for most reactor systems. Unlike MOCFE, the development of MOCEX 

relieves the computing requirements considerably, but it still requires a significant amount of 

computing resources compared with older methodologies. The requirement of a large computing 

resource prevents PROTEUS from being used on a wider set of reactor applications where users 

are willing to accept reduced levels of complexity and fidelity. 
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Thus, to improve the usability of PROTEUS, we decided to add intermediate-fidelity solvers 

which can solve the problems with smaller resources. One of them is the MOC 2D/1D solver [21] 

which uses the 2D MOC coupled with the 1D pin-based nodal transport method (NTM) and 

solves the 3D CMFD equation using the equivalence cross sections and parameters calculated 

from the 2D MOC/1D NTM. The implementation of this solver was initiated this year. The other 

one is the nodal solver for Cartesian and hexagonal geometries which uses the similar method to 

DIF3D-VARIANT [22]. The implementation of the nodal solver is the least worked on aspect, 

but simplest and thus it should be completed in the following year. 

The finite element mesh input of PROTEUS can be generated using CUBIT or RGG 

(MeshKit) which calls CUBIT inside the toolkit. For complex geometry problems, there is no 

better way to generate meshes than using CUBIT. For typical nuclear reactor geometries, 

however, RGG would be a useful tool to generate meshes. For many reactor cores with regular 

Cartesian and hexagonal geometries, the user-friendly mesh generation capability developed for 

PROTEUS this year should be more convenient to provide meshes with direct user inputs and 

without using CUBIT. [22] This allows users to verify the geometry input with ease as well. 

When the preservation of volumes for each composition region is a primary concern for the 

CUBIT mesh, the UFmesh is generated preserving all region volumes, which greatly simplifies 

the mesh verification process. 

The multigroup cross sections can be generated with an independent code (e.g., MC
2
-3) or 

calculated on the fly inside PROTEUS using the cross section API which reads and processes the 

cross section library generated from the Genesis code [24]. Since the resonance self-shielding 

methods available in the cross section API requires many fixed source problems (FSPs) (G × R × 

I times where G is the number of energy groups, R is the number of resonance isotopes or 

categories, and I is the number of subgroups for the subgroup method or the number of iterations 

to converge total cross sections for the resonance table method), the Dancoff approach is added to 

greatly reduce the FSPs to solve (G × 2 times). 
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Figure 1. Inputs, Outputs, and Components of PROTEUS 

 

To support the time-dependent multi-physics modeling capability that is one of the goals of 

NEAMS, a simple time-dependent modeling capability was added to PROTEUS based on the 
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adiabatic method in the previous year. This year, the transport method formulation has been 

reviewed in detail to find an efficient way of implementing the improved quasi-static method. 

Improvements made to PROTEUS, as briefly noted above, are discussed in detail in this 

section. Those for the cross section library and API are presented in the following separate 

section. 

2.1 Review of the Improved Quasi-Static Method for Kinetics 

To deterministically solve time-dependent neutron transport problems, the time variable must 

be treated and discretized along with the other phase space variables. The choice of a kinetics 

treatment is dictated by the applicability of the particular numerical approximation to the problem 

of interest as well as the computational resources available. Numerous methods have been 

developed to treat the time dependence of the angular flux. In between the two extremes of the 

point kinetics approximation and full-blown spatial kinetics lies the quasi-static class of 

approximations which comprise methods of varying accuracy: adiabatic, quasi-static (QS), 

improved quasi-static (IQS).  

All of the quasi-static methods factorize the angular flux into a shape function and time-

dependent amplitude function, i.e. ˆ ˆ( , , , ) ( ) ( , , , )r E t n t r E tψ ψΩ = Ω
� �

� . This factorization is chosen 

such that the shape function ˆ( , , , )r E tψ Ω
�
� varies only slowly with time. This factorization choice 

provides a physically meaningful basis for applying approximations and naturally implies a 

splitting of the time-dependent transport equation into separate equations for the amplitude and 

shape functions. Each quasi-static method therefore yields a set of coupled equations for the 

shape function and amplitude function to be solved iteratively. The complexity of the shape 

function equation is reduced as more approximations are applied, whereas the amplitude function 

equations always looks like the point kinetics equations. The IQS method is the most accurate 

(and most complex) of the three quasi-static methods as it incurs the fewest approximations. 

The approximations made in the different quasi-static methods can be quickly summarized 

[25] as follows:  

• IQS: The time derivative ˆ( , , , )r E t
t
ψ

∂
Ω

∂
�  in the shape function equation is approximated by a 

backward difference of first order. 

• QS: The time derivative ˆ( , , , )r E t
t
ψ

∂
Ω

∂
�  in the shape function equation is neglected under 

the justification that the time variation of the shape function is minimal compared to the 

time variation of the amplitude function. 

• Adiabatic: The shape of the delayed neutron source is not distinguished from the shape of 

the prompt source (the time delay in the shape of the precursor distribution is neglected). 

The time derivatives ˆ( , , , )r E t
t
ψ

∂
Ω

∂
�  and ( )n t

t

∂

∂
 in the shape function equation are neglected 

and an eigenvalue is applied to reduce the shape function equation to a steady state 

eigenvalue problem. 
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PROTEUS-SN currently implements the adiabatic method. As noted above, the adiabatic 

method employs various approximations to reduce the time-dependent transport equation into the 

well-known point kinetics equations for the amplitude function and steady state equation for the 

shape function. The equations are coupled through the point kinetics parameters which are 

defined in terms of the angular flux solution. The steady state equation is recomputed periodically 

(on a longer time-scale) to update the point kinetics parameters, and the point kinetics equations 

are solved frequently (on a short time scale). While this method is low-cost to implement and run 

(it requires no modifications to the existing steady state solver and minimal effort to implement 

the PKE’s) the adiabatic method employs certain assumptions that may not be valid for all 

transients of all reactors. 

In order to extend the accuracy of PROTEUS-SN for a wider variety of transient events, 

implementation of the more accurate IQS method may be necessary. However, studies are 

strongly recommended to determine exactly which focus problems are not well-treated by the 

adiabatic method before expending effort to implement more advanced kinetics schemes such as 

IQS. However, in preparation for considering advanced kinetics options, we review the theory 

and implementation of IQS. In particular, we identify issues with IQS implementation in the 

even-parity method currently used by PROTEUS-SN which was chosen as a short-cut to 

implementing a first order continuous finite element methodology that does not suffer from 

condition number problems. It is important to note that most continuous finite element based 

methods will suffer condition number and all methods can have accuracy problems when cast into 

any discrete time dependent formulation (i.e. full blown kinetics like form). Thus additional 

research will be needed into these issues even after a particular first order formulation is chosen 

assuming that non-simple reactor physics problems are to be studied. 

2.1.1 Derivation of the IQS Equations 

In this chapter, we derive the IQS equations beginning with the time dependent neutron 

transport equation and the time-dependent balance equation for the precursors. We apply a 

factorizing expression for the angular flux and perform a series of operations on these equations. 

The factorizing expression involves no approximation and simply separates the time dependence 

of the angular flux into two different functions: shape and amplitude. In the quasi-static series of 

approximations for kinetics, the amplitude function is assumed to contain most of the time 

dependence, and the shape function is assumed to vary slowly with time. These assumptions are 

used later to simplify the equations. The end result is a set of coupled equations which are simpler 

to solve than the full spatial kinetics equations but yield higher accuracy than simple point 

kinetics equations.  

Time-Dependent Neutron Transport Equation 

The time-dependent neutron transport equation describes the neutron flux ψ as a function of 

space r
�

, angle Ω̂ , energy E , and time t : 
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( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

0

1 ˆ ˆ ˆ ˆ, , , , , , , , , , ,
( )

ˆ ˆ ˆ, , , , , ,

1 ˆ' 1 , , , , ,
4

1 ˆ, , , , .
4

t

s

j j j j

f

j

i i i

i

r E t r E t r E t r E t
E t

dE d r E E t r E t

E dE d E r E t r E t

E C r t q r E t

ψ
ψ ψ

υ

ψ

χ ν β ψ
π

χ λ
π

∞

′Ω

∞

′Ω

∂
Ω + Ω ⋅∇ Ω + Σ Ω

∂

′ ′ ′ ′ ′ ′= Ω Σ → Ω ⋅Ω Ω

′ ′ ′ ′ ′+ Ω − Σ Ω

+ + Ω

∫ ∫

∑ ∫ ∫

∑

� � � �

� �

� �

� �

 (2.1) 

The equation includes a source term due to the delayed radioactive neutron decay of 

“precursors” created during the fission process. When a fission neutron strikes a fissile isotope, it 

may not promptly cause a fission reaction and instead become absorbed temporarily creating a 

neutron precursor. Delayed neutron precursors are typically lumped into six families according to 

their characteristic decay constant which governs the time delay for producing neutrons after the 

initial fission reaction occurred. Balance equations for the density of each precursor 

group, ( ),iC r t
�

, include a production term representing the fraction of fissions in various isotopes 

( j ) that produce delayed precursors in that group, and a loss term representing radioactive decay 

(delayed neutron emission): 

 
( )

( ) ( ) ( ) ( )
0

, ˆ, , , , ', , , 1,...
i j j j

i f i i

j

C r t
dE E r E t d r E t C r t i I

t
ν β ψ λ

∞

′Ω

∂
′ ′ ′ ′ ′= Σ Ω Ω − =

∂
∑∫ ∫

�
� � �

 (2.2) 

The notation is standard for the angular flux and interaction cross sections. We clarify the 

following quantities which are introduced to distinguish the time-dependent fission source 

contributions: 

( )j
Eν = total number of neutrons (delayed and prompt) emitted from fission of isotope j due 

to an incident neutron with energy E 
j j

i

i

β β= =∑ fraction of fission neutrons that are delayed (emitted from any group of delayed 

neutron precursors) due to fission event in isotope j  

1 jβ− =  fraction of fission neutrons emitted promptly due to fission event in isotope j  

( )j
Eχ = for isotope j (prompt neutron emitter), this is the fraction of (prompt) neutrons 

emitted at energy E; 
0

( ) 1jdE Eχ
∞

=∫  

( )i Eχ = for delayed neutron precursor type i  (delayed neutron emitter), this is the fraction of 

(delayed) neutrons emitted at energy E;  
0

( ) 1idE Eχ
∞

=∫  

( ),iC r t =
�

density of delayed neutron precursor group i  at location r
�

and time t  
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i
λ = radioactive decay constant (in units of s

-1
) for delayed neutron precursor type i, i.e. 

probability per second that a delayed neutron is emitted from a given precursor atom 

 

We also introduce the source-free, steady state adjoint equation for the initial state of the 

reactor (t=0) which includes the total fission source (prompt and delayed): 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

* *

0 ,0 0

*

,0 0
0

*

,0 0
0

ˆ ˆ ˆ, , , , ,

ˆ ˆ ˆ, , , ,

1 ˆ, , , ' 0.
4

t

s

j j j

t f

j

r E r E r E

dE d r E E r E

d dE E E r E r E

ψ ψ

ψ

χ ν ψ
π

∞

′Ω

∞

′Ω

Ω⋅∇ Ω − Σ Ω

′ ′ ′ ′ ′ ′+ Ω Σ → Ω ⋅Ω Ω

′ ′ ′ ′+ Ω Σ Ω =

∫ ∫

∑∫ ∫

� � �

� �

� �

 (2.3) 

Similarly, the source-free, steady state forward equation for the initial state of the reactor (t=0) is: 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

0 ,0 0

,0 0
0

,0 0
0

ˆ ˆ ˆ, , , , ,

ˆ ˆ ˆ, , , ,

1 ˆ, , , ' 0.
4

t

s

j j j

t f

j

r E r E r E

dE d r E E r E

E d dE E r E r E

ψ ψ

ψ

χ ν ψ
π

∞

′Ω

∞

′Ω

Ω ⋅∇ Ω + Σ Ω

′ ′ ′ ′ ′ ′− Ω Σ → Ω ⋅Ω Ω

′ ′ ′ ′ ′− Ω Σ Ω =

∫ ∫

∑ ∫ ∫

� � �

� �

� �

 (2.4) 

In Eq. (2.3), the average fission spectrum ( )j

t Eχ  for isotope j  was introduced as the weighted 

contributions over the prompt and delayed spectra: 

 ( ) ( )(1 ) ( )j j j j

t i i

i

E E Eχ χ β χ β≡ − +∑ . (2.5) 

Definition of Coupled Kinetics Parameters 

Substituting the simplified scattering kernel and fission source expressions in Eq. (2.1) and 

Eq. (2.2), we rewrite Eq. (2.1):  
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( )

( )

( ) ( )

( ) ( )

( ) ( )

*

0
0

*

0

0

*

0
0

0 *

0
0 0

ˆ ˆ( , ) , , ,

ˆ ˆ( , , ) , ,

( ) 1 , , , , ( , )
( )

, , , , ( , )

V

V

t
V

s
V

j j

t f

dV dE r E d r E t

dV dE r E t d r E

dn t dV dE r E t r E t r E
n t

dt
dV dE dE r E E t r E t r E

dV dE dE E E

φ ψ

φ ψ

δ φ φ

α
δ φ φ

ν χ δ

∞

Ω

∞

Ω

∞

∞ ∞

− ΩΩ ⋅∇ Ω

− ΩΩ ⋅∇ Ω

− Σ

′ ′ ′+ Σ →

′ ′+ Σ

 
 
 

 
 
 

=

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

�
�

��

� ��

� ��

( ) ( )

( ) ( ) ( )

( ) ( )

( )

*

0
0 0

*

0
0 0

*

0
0

*

0
0

, , ( , ) , ,

, , ( ) ( , ) , ,

1
, ( , )

1 ˆ( , ) , , ,

j

V
j

j j j

f i i
V

j i

i i i
V

i

V

r E t r E r E t

dV dE dE E r E t E r E r E t

dV dE E C r t r E

dV dE r E q r E t d d

φ φ

ν χ β φ φ

λ χ φ
α

φ
α

∞ ∞

∞ ∞

∞

∞

Ω

′ ′

′ ′ ′ ′− Σ

+

+ Ω Ω

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

∑∫ ∫ ∫

∑ ∑∫ ∫ ∫

∑ ∫ ∫

∫ ∫ ∫

� ��

� ��

�

�
VdE 

 

 (2.6) 

where differential cross section terms have been introduced to represent the cross section 

perturbations from time 0 to time t: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,0

0 0 0

,0

, , , , ,

, , , , , ,0

, , , , ,

t t t

s s s

j j j

f f f

r E t r E t r E

r E E t r E E t r E E

r E t r E t r E

δ

δ

δ

Σ = Σ − Σ

′ ′ ′Σ → = Σ → − Σ →

′ ′ ′Σ = Σ − Σ

� � �

� � �

� � �

 (2.7) 

Eq. (2.2) is rewritten as,  

 
( ) ( ) ( )

( ) ( ) ( )
( )

i i

i

dn t t t
n t c t Q t

dt t

ρ β
λ

−
= + +

Λ
∑ , (2.8) 

with the following definitions: 

 

( )

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

*

0

*

0

*

0

0 *

0
0

*

0
0

ˆ ˆ( , ) , , ,

ˆ ˆ( , , ) , ,

1
( ) , , , , ( , )

( )

, , , , ( , )

, , , , ( , )

t

s

j j j

t f

j

r E d r E t

r E t d r E

t dV dE r E t r E t r E
F t

dE r E E t r E t r E

dE E E r E t r E t r E

φ ψ

φ ψ

ρ δ φ φ

δ φ φ

ν χ δ φ φ

Ω

Ω

∞

∞

 − ΩΩ⋅∇ Ω
 
 
− ΩΩ⋅∇ Ω 
 
 

= − Σ 
 

′ ′ ′+ Σ →


′ ′ ′ ′+ Σ
 

∫

∫

∫

∑∫

�
�

��

� ��

� ��

� ��

0V

∞






∫ ∫  (2.9) 

 ( ) ( )
i

i

t tβ β=∑  (2.10) 
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 ( ) ( ) ( )*

0
0 0

1
( ) ( ) , , ( , ) , ,

( )

j j j

i i i f

jV

t dV dE dE E E r E t r E r E t
F t

β χ ν β φ φ
∞ ∞

′ ′ ′ ′= Σ∑∫ ∫ ∫
� �� , (2.11) 

 ( )
( )

t
F t

α
Λ = , (2.12) 

 ( ) ( ) *

0
0

1
( ) , ( , )i i i

V
c t dV dE E C r t r Eχ φ

α

∞

= ∫ ∫
�

, (2.13) 

 ( )*

0
0

1 ˆ( ) ( , ) , , ,
V

Q t dV dE r E q r E t d dVdEφ
α

∞

Ω
= Ω Ω∫ ∫ ∫

�
, (2.14) 

 ( ) ( ) ( )*

0
0 0

( ) ( ) , , ( , ) , ,j j j

t f

jV

F t dV dE dE E E r E t r E r E tχ ν φ φ
∞ ∞

′ ′ ′ ′= Σ∑∫ ∫ ∫
� �� . (2.15) 

We note that the definition of ( )F t  is arbitrary; it scales ρ , β , and Λ  by the same factor and 

cancels out of the final equations. Due to the arbitrary definition of ( )F t , the quantities ρ , β , 

and Λ  should therefore not be attached to any specific physical meaning although we can choose 

( )F t  such that these numbers are similar to the constants typically applied to point kinetics 

methodologies. Also note that ( ) ( )t F tα = Λ  is the time-independent value determined by the 

normalization condition in Eq. (2.15). 

Operations on Precursor Equations 

To derive the corresponding equation for the precursor densities, we apply the operator 

*

0
0

( , ) ( )
i

V

r E E dVdEφ χ
∞

< >∫ ∫ i  to the time-dependent precursor equation which yields: 

 

( )

( ) ( ) ( )

( )
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0
0

*

0
0 0

*

0
0

( , ) ( ) ,

( ) ( , ) ( ) , , , ,

( , ) ( ) , .

i i

V

j j j

i i f
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V
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t

n t r E E dE E r E t r E t dVdE

r E E C r t dVdE
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φ χ ν β φ

λ φ χ

∞

∞ ∞

∞

 ∂
 

∂ 

 
′ ′ ′ ′= Σ 

 

 
−  

 

∫ ∫
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∫ ∫

�

� ��

�

 (2.16) 

We multiply by the constant 
1

α
 and move the partial derivative outside the integral, and replace 

the partial derivative with a normal derivative since the quantity inside is only a function of time: 
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�

 (2.17) 

The reduced form of the precursor equation is then directly obtained with all terms having 

previously been defined. 

 
( ) ( )

( ) ( ), 1,...
( )

i i
i i

dc t t
n t c t i I

dt t

β
λ= − =

Λ
 (2.18) 

These equations form the system of equations for the amplitude function, ( )n t . They have the 

same structure as the well-known point kinetics equations, but unlike the point kinetics 

methodology, they contain time-dependent coefficients which are directly coupled to the shape 

function ˆ( , , , )r E tψ Ω� . Thus the point kinetics equations cannot be solved independently from the 

shape function.  

Derivation of Shape Function Equations 

Thus far, we have derived compact equations for the amplitude function which are coupled to 

the shape function through integral parameters. The shape function equation is easily derived by 

substitution of the factorization expression into the transport equation. The time derivative term is 

expanded using the chain rule, and the entire equation is divided by ( )n t  to yield the following 

expression: 
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� �

 (2.19) 

In the improved quasi-static approximation, Eq. (2.19) is solved by replacing the derivative of ψ�  

with a backward difference of first order, 
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, (2.20) 

where t t− ∆  is the time corresponding to the last shape function calculation. The improved quasi-

static shape equation is therefore written as 
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E C r t q r E t
n t

ψ ψ
υ

ψ

χ ν β ψ
π

χ λ
π

∞

  
Ω⋅∇ Ω + Σ + + ⋅ Ω  

∆  

′ ′ ′ ′= Ω Σ → Ω ⋅Ω Ω

 
′ ′ ′ ′ ′+ − Σ Ω Ω 

 


+ + Ω

∫ ∫

∑ ∫ ∫

∑

� � �
� �

� �
�

� �
�

� � ( )1 ˆ, , ,
( )

r E t t
E t

ψ
υ


+ Ω − ∆  ∆ 

�
�

 (2.21) 

We also insert Eq. (2.20) into the precursor density equation: 

 
( )

( ) ( ) ( ) ( )
0

,
, , ( ) , , , , 1,...

i j j j

i f i i

j

C r t
dE E r E t n t r E t C r t i I

t
ν β φ λ

∞∂
′ ′ ′ ′= Σ − =

∂
∑∫

�
� � ��  (2.22) 

Eq. (2.22) can be analytically solved in terms of the amplitude and shape functions for all 

previous time: 

 ( ) ( ) ( ) ( ) ( )

0
, , , , , ( ) , 1,...i

t
t tj j j

i i f

j

C r t dE E r E t r E t n t e dt i I
λν β φ

∞ ′− −

−∞

 
′ ′ ′ ′ ′ ′ ′ ′= Σ = 

 
∑∫ ∫

� � ��  (2.23) 

The precursor density at a given time t  is dependent on the delayed fission source weighted and 

integrated over all preceding times. Eq. (2.23) can be inserted into Eq. (2.22) to eliminate the 

precursor density variable.  

2.1.2 Implementation of the IQS Method 

The preceding coupled IQS equations govern the amplitude ( )n t  and shape ( )ˆ, , ,r E tψ Ω
�

�  

functions whose product is the angular flux, ( ) ( )ˆ ˆ, , , ( ) , , ,r E t n t r E tψ ψΩ = Ω
� �

� . The “point kinetics” 

parameters ρ , β , and Λ  in the amplitude equations depend on the shape function computed at 

time t . The shape equation includes dependencies on the amplitude and precursor densities. Thus 

the IQS equations are nonlinearly coupled. The key idea behind the QS factorization choice is 

that the time dependence of the shape function is small compared to that of the amplitude 

function. The shape function can be solved on a longer macro-time step scale, t∆ , and the 

simpler amplitude (PK) equations can be solved on a shorter micro-time step scale, tδ . 
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The IQS algorithm can be summarized with the following steps [26] noting that the 

PROTEUS-SN code only computes the even-parity flux and thus we have to approximate the 

angular flux terms as 
1ˆ ˆ( , , ) ( , , )

4
r E r Eψ φ

π
Ω = Ω : 

Step 1. Compute the initial condition (t=0) steady state adjoint and forward solutions including 

the delayed neutron fission source, i.e. *

0ψ  and 0ψ  from Eq. (2.3) and Eq. (2.4). 

Step 2. Evaluate the PK parameters for the interval [0, t∆ ] using the solution 0ψ  from Step 1a. 

This assumes that the shape function does not change over this interval. Solve the PK equations 

over the interval [0, t∆ ] using micro-timesteps tδ  to estimate the amplitude function ( )n t  and its 

time derivative 
( )dn t

dt
at t = t∆ . 

Step 3. Solve Eq. (2.21) for the shape equation for the end of the interval [0, t∆ ] using a 

conventional steady-state transport solver with external source capability, provided the total cross 

section and external source are normalized properly: 

 ( ) ( )
1 1 ( ) 1

, , , ,
( ) ( )

t t

dn t
r E t r E t

E t dt n tυ

 
Σ = Σ + + ⋅ 

∆ 

� ��  (2.24) 

( ) ( ) ( ) ( ) ( )1 1 1ˆ ˆ ˆ, , , , , , , , , ,
( ) 4 ( )

i i i

i

Q r E t E C r t q r E t r E t t
n t E t

χ λ ψ
π υ

 
Ω = + Ω + Ω − ∆  ∆ 

∑
� � � �� �  (2.25) 

This step will produce the shape function at time t t= ∆ , ( )ˆ, , ,r E tψ Ω ∆
�

� . [Ref. [26] indicates that 

the shape equation should be “integrated” over time and solved and it is unclear if the above 

procedure is equivalent]. 

Step 4. Evaluate the error on the normalization of the shape function by evaluating the inner 

product of the initial condition adjoint scalar flux (known from Step 1) and scalar shape function 

with inverse velocity, ( )
1

, ,r E t
v

φ ∆
��   (known) and comparing to the assigned value: 

 

* 1
0 ,

v

ψ

φ φ α
ε

α

−
=

�

�

 (2.26) 

If the relative error is greater than some criteria epsilon, the shape function is then re-

normalized such that the normalization condition is satisfied. [Note: In Ref. [26] the angular 

adjoint flux and angular shape function are used in this normalization.] 

Step 5. The re-normalized shape function is used to re-compute the PK parameters over the first 

macro time step. Re-solve the PK equations using the new PK parameters, obtain a new estimate 

of the amplitude ( )n t  and its time derivative at t∆ . 
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Step 6. Repeat Steps 3-5 until the epsilon criteria is satisfied. Once satisfied, then the solution 

( )n t∆  and ( )ˆ, , ,r E tψ Ω ∆
�

�  have been estimated.  

Step 7. The solution over the next macro-timestep can be initiated starting with Step 2 and 

estimating the point kinetics parameters initially using the solution ( )ˆ, , ,r E tψ Ω ∆
�

� . 

While we have not yet described the actual implementation into the PROTEUS-SN solver, the 

existing SN solver with external source capability can be used to solve the second order even 

parity form of the shape equation, yielding the angle-dependent even parity flux. However, 

without the corresponding odd-parity angle-dependent flux (which is not calculated in 

PROTEUS-SN), we can only compute the scalar flux (independent of angle). It appears to be 

common in classical kinetics codes to utilize an isotropic approximation for the angular flux when 

computing the PK coefficients and adjusted source term, but such an approximation clearly 

introduces some inconsistency into the IQS equations. A recent paper [27] describes some of the 

errors which might expected by using a classical (vs consistent) method when the code does not 

directly produce the angular flux such as in PROTEUS-SN. To use a fully consistent approach 

(computation of angular flux), the PROTEUS-SN formulation would have to be significantly 

changed. 

2.1.3 Transformation of the Shape Equation into Even-Parity Form 

Here we derive the even-parity multigroup form of the IQS shape equation to determine its 

form in PROTEUS-SN. Beginning with the first order continuous energy shape equation, we 

apply the multigroup approximation to obtain  

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

1

,

, '

1

,

1

,

1

1 ( ) 1ˆ ˆ ˆ, , , , ,
( )

ˆ ˆ ˆ' , ', , ,

1
1 , ,

4

1 1 ˆ, , ,
( ) 4

1 ˆ,

g t g g g

G

s g g g

g

G
j j j

g f g g

j g

i g i i g

i

g g

dn t
r t r t r t

t dt n t

d r t r t

r t r t

C r t q r t
n t

r
t

ψ υ ψ

ψ

χ β ν φ
π

χ λ
π

υ ψ

−

′→
′=

′ ′
′=

−

  
Ω⋅∇ Ω + Σ + + ⋅ Ω  

∆  

′= Ω Σ Ω⋅Ω Ω

+ − Σ

 
+ + Ω 

 

+
∆

∑∫

∑ ∑

∑

� � �
� �

� �
�

� ��

� �

�
� ( ), t tΩ − ∆

 (2.27) 

Note that a conventional approximation has been introduced in the definition of 
, ( , )t g r tΣ
�

 

which should actually be weighted with the angular shape function instead of the scalar flux. 

However this results in an angle dependent total cross section which is not practical. We define a 

“virtual” total cross section as: 
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 ( ) ( ) 1

, ,

1 ( ) 1
, ,

( )
t g t g g

dn t
r t r t

t dt n t
υ −  

Σ = Σ + + ⋅ 
∆ 

� �� . (2.28) 

We also lump the group-to-group scattering sources (except the within group scattering term) 

into one term called the group source in order to obtain the following equation: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

, , '

1

,

1

,

1

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , , ,

1
1 , ,

4

1 1 1 ˆ, , ,
( ) 4 ( )

1 ˆ, ,

G

g t g g s g g g

g

G
j j j

g f g g

j g

i g i i g

i

g g

r t r t r t r t r t d

r t r t

C r t q r t
n t n t

r t t
t

ψ ψ ψ

χ β ν φ
π

χ λ
π

υ ψ

′→
′=

′ ′
′=

−

′ ′ ′Ω ⋅∇ Ω + Σ Ω = Σ Ω⋅Ω Ω Ω

+ − Σ

+ + Ω

+ Ω − ∆
∆

∑∫

∑ ∑

∑

� � � � ��� � �

� ��

� �

�
�

 (2.29) 

We lump the group-to-group scattering sources (except the within group scattering term) into 

a single term called the group source in order to obtain Eq. (2.30), a familiar form for the within 

group transport equation: 

 ,
ˆ ˆ ˆ ˆ ˆ( , , ) ( , ) ( , , ) ( , ) ( , )g t g g g gr t r t r t W r S rψ ψΩ⋅∇ Ω + Σ Ω = Ω + Ω
� � � � � ����� � . (2.30) 

The term ˆ( , )gW r Ω
��  represents the within-group scattering source, and the term ˆ( , )gS r Ω

��  

represents the adjusted sources particular to the IQS method: 

 
( ) ( )

( ) ( )
,

, ,

ˆ ˆ ˆ ˆ( , ) , , , ,

ˆ ˆ ˆ, ( ) , ,

g s g g g

s g g m m g

W r r t r t d

r t P r t d

ψ

ψ

→

→

′ ′ ′Ω = Σ Ω⋅Ω Ω Ω

′ ′ ′= Σ Ω⋅Ω Ω Ω

∫

∫

� � �� �

� �
�

 (2.31) 

 

( ) ( )

( ) ( ) ( )

( ) ( )

( )

, '

,

1

,

1

ˆ ˆ ˆ ˆ( , ) , , , ,

1
1 , ,

4

1 1 1 ˆ, , ,
( ) 4 ( )

1 ˆ, ,

G

g s g g g

g g

G
j j j

g f g g

j g

i g i i g

i

g g

S r r t r t d

r t r t

C r t q r t
n t n t

r t t
t

ψ

χ β ν φ
π

χ λ
π

υ ψ

′→
′≠

′ ′
′=

−

′ ′ ′Ω = Σ Ω⋅Ω Ω Ω

+ − Σ

+ + Ω

+ Ω − ∆
∆

∑ ∫

∑ ∑

∑

� � �� �

� ��

� �

�
�

 (2.32) 

These definitions differ from the conventional even-parity method in their use of the shape 

function rather than the angular flux, and the definition of source term which contains terms 

specific to IQS. 
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In the even parity method, even- and odd-parity components of the shape function, ˆ( , )g rψ + Ω
�

� , 

are defined as the sum and difference, respectively, of the shape function evaluated at directions 

Ω̂  and ˆ−Ω :  

 ( )1ˆ ˆ ˆ( , ) ( , ) ( , )
2

g g gr r rψ ψ ψ± Ω ≡ Ω ± −Ω
� � �

� � � . (2.33) 

The shape function can be written as the sum of the even- and odd-parity components: 

 ˆ ˆ ˆ( , ) ( , ) ( , )g g gr r rψ ψ ψ+ −Ω = Ω + Ω
� � �

� � � . (2.34) 

The even- and odd-parity components have the following properties, where the function ( )g rφ
��  

represents the group scalar shape function. 

 ˆ ˆ( , ) ( , )g gr rψ ψ+ +Ω = −Ω
� �

� � , (2.35) 

 ˆ( , ) ( )
g g

r d rψ φ+ Ω Ω =∫
� ��� , (2.36) 

 ˆ ˆ( , ) ( , )g gr rψ ψ− −Ω = − −Ω
� �

� � , (2.37) 

 ˆ( , ) 0
g

r dψ − Ω Ω =∫
�

� . (2.38) 

Substituting these into Eq. (2.30) yields the following equation. 

 ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

g g t g g g g g
r r r t r r W r S rψ ψ ψ ψ+ − + −   Ω⋅∇ Ω + Ω + Σ Ω + Ω = Ω + Ω   

� � � � � � � ����� � � � . (2.39) 

Evaluating this equation at ˆ−Ω  and adding that equation to Eq. (2.30) yields the even-parity form 

of the transport equation in Eq. (2.40). Evaluating Eq. (2.39) at ˆ−Ω  and subtracting from Eq. 

(2.30) yields the odd-parity form of the transport equation given by Eq. (2.41). 

 ,
ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ) ( , )g t g g g gr r r W r S rψ ψ− + + +Ω⋅∇ Ω + Σ Ω = Ω + Ω
� � � � � ����� � , (2.40) 

 ,
ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ) ( , )g t g g g gr r r W r S rψ ψ+ − − −Ω⋅∇ Ω + Σ Ω = Ω + Ω
� � � � � ����� � . (2.41) 

We have defined the even- and odd-parity components of the within group source by: 

 

, ,

4

, ,

4

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , )

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , )

g s g g m m g

m even

g s g g m m g

m odd

W r r P r d

W r r P r d

π

π

ψ

ψ

+ +

→
∈

− −

→
∈

′ ′ ′Ω = Σ Ω ⋅Ω Ω Ω

′ ′ ′Ω = Σ Ω ⋅Ω Ω Ω

∑ ∫

∑ ∫

� � �� �

� � �� �

 (2.42) 

Above we have used the identities ˆ ˆ ˆ ˆ( ) ( )m mP P′ ′Ω ⋅Ω = −Ω ⋅Ω  for m even∈  and 

ˆ ˆ ˆ ˆ( ) ( )m mP P′ ′Ω ⋅Ω = − −Ω ⋅ Ω  for m odd∈ . Furthermore, the odd parity flux is an odd function of 

′Ω  and therefore integrates to zero when weighted by even order functions of ′Ω  (even order 
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Legendre moments and consequently spherical harmonics). This causes the cancellation of 

several terms. Similarly, the remaining even- and odd-parity components of the source term are 

defined in Eq. (2.42), where the isotropic terms drop out of the odd-parity component definition:  

 

( ) ( ) ( ) ( )

( )

, , '

'

, ,

1

1

, , '

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , )

1 1 1
1 , , ,

4 ( ) 4

1 1 ˆ( ) , ,
( )

ˆ ˆ ˆ( , ) ( ) ( )

G M

g s g g m m g

g g m even

G
j j j

g f g g i g i i

j g i

q g g

g s g g m m g

S r r P r d

r t r t C r t
n t

q r r t t
n t t

S r r P

ψ

χ β ν φ χ λ
π π

υ ψ

ψ

+ +
′→

≠ =

′ ′
′=

+ − +

−
′→

′ ′ ′Ω = Σ Ω⋅Ω Ω Ω

+ − Σ +

+ + Ω − ∆
∆

′Ω = Σ Ω⋅Ω

∑ ∑ ∫

∑ ∑ ∑

� � �
�

� � ��

� �
�

� �
�

( )

'

1

ˆ ˆ( , )

1 1 ˆ( ) , ,
( )

G M

g g m odd

g g g

r d

q r r t t
n t t

υ ψ

−

≠ =

− − −

′ ′Ω Ω

+ + Ω − ∆
∆

∑ ∑ ∫
�

� �
�

 (2.43) 

The additional IQS terms in the source term components of Eq. (2.43) causes considerable 

complications in PROTEUS-SN. The even-parity source term can be straightforwardly computed 

as the even-parity angular flux is computed in PROTEUS-SN. However, the odd-parity source 

term requires the odd-parity angular flux to be computed (at all discrete ordinates, at all vertices, 

and stored for the previous time step). While mathematically we can show that this odd-parity 

term is consistent with the even-parity methodology, this procedure requires major changes in the 

PROTEUS-SN code which still leaves us with an even-parity code when we are done.  

The interested reader should refer to the PROTEUS-SN methodology manual [4] to 

understand which steps are taken (discrete ordinates approximation and finite element 

approximation) past this stage. 

2.1.4 Summary 

The improved quasi-static (IQS) method for kinetics has been reviewed. The IQS equations 

were derived from the time-dependent Boltzmann transport equation (with accompanying 

precursor balance equation) and implementation guidelines were reviewed based on recent 

journal articles. Finally, the discussion on issues with implementation in the even-parity method 

is included. It is suggested that the IQS method be implemented for a first order solver which can 

compute the full angular flux rather than only the scalar flux (and even-parity angular flux).  

2.2 User-friendly Finite Element Mesh Generation Capability 

2.2.1 UFmesh and GRID 

The PROTEUS code has a built-in finite element library which provides one-, two-, and 

three-dimensional modeling capabilities. The finite element library is defined by its data structure 

setup which consists of a serial instance called NTmesh and a parallel instance called PNTmesh. 

[22] The latter of these contains the parallel details of a given mesh which maps the locally 
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visible mesh information into the global quantities on the parallel system. For PROTEUS, one 

needs to provide a mesh as input and while mesh generation tools such as CUBIT [11] are 

available, they can be considerably complicated to use for simple geometries.  

Given the complexity of real world problems, experience has shown that using commercial 

mesh generator to create rather simple input geometries is overly complex and slow. As a 

consequence, significant effort has been put into place to create multiple codes that help assist in 

the mesh generation and manipulation. Even though MeshKit [12] is a convenient tool which 

provides more flexibility in generating mesh files for various geometry components, its mesh is 

based on CUBIT. This sometimes makes it difficult or inconvenient to verify the mesh files in 

terms of geometry and boundary condition. In addition, preserving the geometry volume with 

finite element meshes is a big concern for the CUBIT-generated meshes. 

To improve the user convenience for mesh generation, a user-friendly built-in mesh 

generation tool was developed to generate meshes for simple Cartesian and hexagonal geometries 

without using CUBIT: UFmesh and GRID. The UFmesh is a simple way to generate two-

dimensional Cartesian and hexagonal fuel assembly geometries. The GRID input allows users to 

generate conventional homogenized geometries for structured grid codes containing options for 

Cartesian, hexagonal, and regular triangular geometry options. Because it does its visualization 

using the finite element method, one can use the GRID input to construct a finite element mesh of 

the domain. Figure 2 shows how different the meshes generated from RGG (MeshKit) and 

UFmesh tools look. 

 

     

Figure 2. Meshes Generated from RGG-MeshKit (left) and User-friendly Mesh Generation (right) 

 

The UFmesh format was developed to assist in the creation of meshes for pin-cells and to 

better control the meshing behavior than what is practical in CUBIT. The UFmesh is a keyword-

based input description. The current UFmesh capability only supports Cartesian and Hexagonal 

geometries. Note that UFmesh only creates linear two-dimensional meshes of circular geometries 

and thus curvilinear surfaces are always represented using faceted surfaces. Thus all cylinders are 

linearly tessellated and the radius of each cylinder is adjusted to give the correct volume. While 

the input does allow the conversion to higher order basis functions, the cylindrical surfaces are 
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always based upon the linear tessellation such that the cylinder volume is always exact. We have 

significant extra work to ensure this in CUBIT and MeshKit.  

Figure 3 and Figure 4 show the example inputs for Cartesian and hexagonal geometry fuel 

assemblies, respectively. The resulting UFmesh outputs are illustrated in Figure 5. More detailed 

information is discussed in Reference [22]. 

GRID_TYPE CARTESIAN  5   5 

GRID_PITCH           2.0 2.0 

ELEMENT_ORDER        1 

ASSEMBLY_SIZES       10.0 11.0 12.0 

ASSEMBLY_REGIONS     DUCT1 DUCT2 

ASSEMBLY_MESHES      1 2 

PINCELL_RADII        A1   0.1    0.5   0.75 

PINCELL_REGIONS      A1 FUEL1  FUEL1  CLAD1  MODERATOR 

PINCELL_MESHES       A1     1      2      1          2 

PINCELL_RADII        A2   0.1    0.5    0.6     0.7      0.75 

PINCELL_REGIONS      A2 FUEL1 FUEL1 INNERCLAD2 POISON2 OUTERCLAD2 MODERATOR 

PINCELL_MESHES       A2     1     2          1       1          1         2 

PINCELL_REGIONS      A3 MODERATOR 

PINCELL_MESHES       A3         3 

GRID_MAP             5  A2 A1 A1 A1 A2 

GRID_MAP             4  A1 A2 A2 A2 A1 

GRID_MAP             3  A1 A2 A3 A2 A1 

GRID_MAP             2  A1 A2 A2 A2 A1 

GRID_MAP             1  A3 A1 A1 A1 A3 

PINCELL_AZIMUTHAL    3 4 3 4 3 4 3 4 

ASSEMBLY_BORDER      22 18 22 18 

Figure 3. Example Cartesian Sector and Face Meshing Control UFmesh File 

 

GRID_TYPE HEXAGONAL  5  5 

GRID_PITCH           2.0 

ELEMENT_ORDER        2 

ASSEMBLY_SIZES       10.20  10.3 

ASSEMBLY_REGIONS     DUCT1  

ASSEMBLY_MESHES      1       

PINCELL_RADII        A1   0.1    0.5   0.75 

PINCELL_REGIONS      A1 FUEL1  FUEL1  CLAD1  MODERATOR 

PINCELL_MESHES       A1     1      2      1          2 

PINCELL_RADII        A2   0.1    0.5       0.6     0.7       0.75 

PINCELL_REGIONS      A2 FUEL1 FUEL1 INNERCLAD2 POISON2 OUTERCLAD2 MODERATOR 

PINCELL_MESHES       A2     1     2          1       1          1         2 

PINCELL_REGIONS      A3 MODERATOR 

PINCELL_MESHES       A3         3 

GRID_MAP             5  A1  A1  A1   O   O 

GRID_MAP             4  A1  A3  A2  A1   0 

GRID_MAP             3  A1  A2  A1  A2  A1 

GRID_MAP             2   O  A1  A2  A3  A1 

GRID_MAP             1   O   O  A1  A1  A1 

PINCELL_AZIMUTHAL    4 

Figure 4. Example Hexagonal Assembly UFmesh File 
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Figure 5. Cartesian and Hexagonal Meshes Resulting From the User-friendly Mesh Generation Capability 

of PROTEUS 

2.2.2 Verification Tests 

Verification tests of UFmesh were conducted using the C5 benchmark problem for which 

came from the C5G7 PWR benchmark problem [28] with the unrodded condition by changing 

two-region (fuel and cladding+moderator) to three-region pin (fuel, cladding, and moderator) 

with typical Westinghouse-type UO2 and MOX geometry and isotopic compositions. 

 With PROTEUS, a mesh and angular convergence study was conducted to determine the 

optimal mesh refinement and Legendre-Tchebychev (LmTn) angular cubature for a pin cell: 

spatial mesh varied from 80 to 528 elements and angular cubature order from L3T3 to L7T35. 

PROTEUS-SN2ND (using linear and quadratic order element meshes) and PROTEUS-MOCFE 

(using linear order element mesh) were run for the 3.1 wt% UO2 pin cell of the C5 benchmark 

problem. Figure 6 shows the convergence of mesh refinement and angular Tchebychev order with 

angular Legendre order L5 and 383 elements (1198 vertices). The eigenvalues of PROTEUS were 

compared with the MCNP [29] solutions using the same 4-group multi-group cross sections. 

The mesh and angle refinement study indicates that with the UFmesh, SN requires quadratic 

order elements to obtain accurate solutions whereas the linear order elements are sufficient for 

MOC. Furthermore the MOC eigenvalue is more accurate than any of the SN for the same mesh 

and angle although it is important to note that MOC uses many more characteristic lines than 

there are elements in the domain. From the mesh and angle refinement study, 352 elements and 

L5T17 angular cubature were selected for testing fuel assemblies and a 2D core. 

The same mesh and angle refinement study was conducted using the cross section API with 

the 4-group cross section library, resulting in the similar conclusion made with the 4-group 

multigroup cross sections above. Unlike the previous comparison, DeCART [21] solutions were 

used as reference solutions because the 4-group cross section library is not accurate enough to 

compare with continuous energy MCNP and both PROTEUS and DeCART use the same 

resonance self-shielding methodology.  

The UOX and MOX fuel assemblies and 2D core of the C5 benchmark problem were 

simulated with PROTEUS using the same cross section libraries, whose eigenvalue solutions 

were compared with multi-group MCNP or DeCART with the same library. For the 2D core, the 

UFmesh and GRID meshes were used for fuel assemblies and reflector region, respectively, as 
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shown in Figure 7. The GRID mesh spacing was made coarser as approaching to the core 

boundaries. 

 

 

Figure 6. Eigenvalue Convergence with Mesh (element/vertex) and Angular Refinement for a Pin Cell 

 

Table 2 digests the eigenvalue comparison between PROTEUS and MCNP when the 4-group 

multigroup cross sections are used for both codes. For PROTEUS, L5T15 angular cubature was 

used with or without boundary layer meshes. Table 2 shows the eigenvalue comparison between 

PROTEUS and DeCART when the 4-group cross section library is used. As seen in the tables, the 

MOC eigenvalues with the linear meshes were closer to the reference solutions, compared to the 

SN eigenvalues with the quadratic meshes in most cases except for the 2D core case. The 

comparison results indicate that the UFmesh and GRID meshes work well for such a typical PWR 

problem. 

 

Table 1. Eigenvalue Comparison between PROTEUS and MCNP Using 4G Multigroup Cross Sections 

CASE MCNP 
a)

 Mesh SN
 b)

 MOC
 b)

 

      Linear Mesh Quadratic Mesh Linear Mesh 

UOX Pin (3.1 wt%) 1.31751 
BL -83 -41 -31 

No  BL -97 -58 -34 

MOX Pin (7.4 wt%) 1.25267 
BL -161 -69 -58 

No BL -165 -71 -61 

UOX FA 1.33695 
BL -50 -19 -11 

No  BL -58 -22 -12  

MOX FA 1.24818 
BL -100 -55 -43 

No  BL -105 -54 -44 

2D Core 1.23961 BL - 24 +55 -101 
a) MCNP standard deviation ≤ 7 pcm, b) ∆k (pcm) difference from reference 
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Table 2. Eigenvalue Comparison between PROTEUS and DeCART Using 4G Cross Section Library 

Case Reference 
SN 

a)
 MOC

 a)
 

Linear Mesh Quadratic Mesh Linear Mesh 

UOX Pin (3.1 wt%) 1.29785 -264 -86 -61 

UOX FA 1.32556   -126 -98 

MOX FA 1.03817  -90 -64 
a) ∆k (pcm) difference from reference 

 

      

Figure 7. 2D Core Mesh Using UFmesh and GRID 
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3. Cross Section Library and API 

In the previous years, the Argonne cross section library (ACSL) and methodology were 

developed for application to various reactor types including LWR, HTR, and SFR. The Genesis 

code (formerly named GeneCS) [25] produces the ACSL using NJOY [29] and MC
2
-3, The base 

ACSL is composed of isotopic cross sections and resonance tables with 2158 energy groups 

which include 2123 groups with constant lethargy intervals from 20 MeV to 0.414 eV and 35 

groups from 0.414 to 10
-4

 eV with variable lethargy intervals. Genesis is able to determine the 

broad group structures optimized for a reactor of interest. The use of the ACSL requires solving 

the fixed source problems (FSPs) to determine the escape cross sections which account for the 

heterogeneity effect in the resonance cross section. The main reason for the use of the ultrafine 

group (UFG) cross section set as a base library is that the fast reactor cross section often requires 

a UFG spectrum calculation to maintain accuracy. 

The cross section API is a set of routines which read the ACSL, assign compositions and 

geometry data to cross section regions, calculate the escape cross sections, and then generate 

multigroup cross sections. It is calling the FSP solver which should be provided by the transport 

solver (SN2ND, MOCFE, or MOCEX). Therefore, the preparation of the FSP solver is most of 

the work when connecting the cross section API to any transport code. Previously, the cross 

section API was connected to the SN2ND and MOCEX solvers, but this year it was linked to the 

MOCFE solver. Thus, all the exiting solvers are able to use the cross section API to generate 

multigroup cross sections on the fly although both MOCEX and MOCFE are not releasable as 

production versions at this time.  

Previously, the cross section API included two cross section generation method options: the 

subgroup method [30] and the resonance table method [24]. Both methods require solving the 

FSPs to determine the escape cross sections which contribute to the total background cross 

sections. The number of the FSPs for the subgroup method is G × R × S where G is the number of 

resonance energy groups, R is the number of resonant isotopes or categories, and S is the number 

of subgroups. The number of categories is normally four or more, the number of resonance 

isotopes depends on problem compositions, and the number of subgroups is usually 4 to 7. For 

the resonance table method, S should be the number of iterations to converge total cross sections, 

which is normally 2 to 4. Basically both the subgroup method and the resonance table method 

require solving at least G × 16 FSPs to determine the escape cross section.  

This year, as an alternative resonance self-shielding option, the Dancoff approach was 

developed to reduce the computation time. Since the Dancoff approach requires G × 2 FSPs only 

(fuel and cladding), the number of FSPs to solve is reduced by more than an order of magnitude.  

3.1 Verification of Argonne Cross Section Library and API 

The broad-group cross section libraries contain resonance cross sections as a function of 

temperature and background cross sections. Previously, those libraries generated from the 

Genesis code have been tested for different background cross sections at 300K. Verification tests 

were extended for temperature coefficients. A typical fuel pin and assembly of HTR were 

selected for the test varying the temperature from 300 to 1500K. The keff values of the fuel pin 

and assembly were calculated using DeCART with the 198-group cross section library. As shown 
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in Figure 8, the temperature coefficients (pcm/K) agreed within 2% for all temperature conditions 

with the MCNP solutions except for the case of the fuel assembly with 600-900K which showed a 

difference of 4.6%. This appears to be a problem with the MCNP solutions, compared with the 

results in the fuel pin which represent very good agreement at all temperature conditions. 

 

Pin Assembly 

Figure 8. Comparison of Temperature Coefficients of HTR Fuel Pin and Assembly 

 

The broad-group cross section libraries generated for LWR were tested for the selected 

VERA PWR benchmark problems [32] which include 2 fuel pin and 7 fuel assembly (17×17) 

problems with different burnable poisons and control rod absorbers. The configurations of the 

problems are presented in Table 3, among which the 2F and 2P fuel assembly cases are shown in 

Figure 9. The original configurations of the problems were modified with simplified compositions 

and a constant temperature of 300K. The keff values of those problems were calculated using 

DeCART with the 204-group cross section library and MCNP with the continuous-energy library. 

As seen in Table 3, the eigenvalues are in good agreement between DeCART and MCNP within 

174 pcm ∆k for fuel pins and 137 pcm ∆k for fuel assemblies.  

 

    

  
(2F) 3.1 wt% fuel pins + 24 Pyrex BAs (2P) 3.1 wt% fuel pins + 24 Gd pins 

Figure 9. Selected Fuel Assemblies from the VERA PWR Benchmarks 
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Table 3. Eigenvalue Comparison between MCNP and DeCART (204 Group Library) for the VERA PWR 

Benchmark Problems 

Case Description MCNP DeCART 204G 

(∆k, pcm) 

1A 3.1wt% fuel pin 1.21056 174 

1E 3.1wt% fuel pin + IFBA 0.78878 99 

2A 3.1wt% fuel pins 1.20201 71 

2F 3.1wt% fuel pins + 24 Pyrex BA 1.00678 -136 

2G 3.1wt% fuel pins + 24 AgInCd control rods 0.88100 -85 

2K 3.1wt% & 3.6 wt% fuel pins + 24 Pyrex BA 1.04989 -113 

2M 3.1wt% fuel pins + 128 IFBA pins 0.96075 137 

2N 3.1wt% fuel pins + 104 IFBA pins + 20 WABA 0.89518 -109 

2P 3.1wt% fuel pins + 24 Gd pins 1.19347 45 
 * Standard deviation of MCNP ≤ 20 pcm 

The cross section API with the ACSL was verified by comparing DeCART and 

PROTEUS solutions. Verification tests were conducted for homogeneous and pin cell problems. 

The four-group cross section library with the resonance table method was chosen for the tests. For 

homogeneous compositions with 3.1 wt% U-235, the number density of oxygen varied to provide 

different background cross sections of uranium isotopes. The k∞ solutions of PROTEUS were 

compared with DeCART, resulting in only several pcm differences between the two codes as 

shown in Figure 10. Those differences are acceptable but larger than the expected numerical 

errors. We noticed that although the escape cross sections are supposed to be zero for 

homogeneous compositions, the fixed source problem solutions of PROTEUS may be sensitive to 

the default convergence criteria embedded in the code. 

 
Figure 10. Comparison of k∞ between DeCART and PROTEUS (Using the 4-group Cross Section Library) 

for Homogeneous Compositions 

 

Additional PROTEUS calculations were conducted for pin cell problems with 3.1 or 24.2 

wt% U-235 to provide different background cross sections for U-238. The spatial meshes 

employed for the C5 benchmark problem were used, which is composed of 308 elements (1198 

vertexes) as shown in Figure 11. The Legendre-Tchebychev order was changed from L3T5 to 

L13T55 to see the convergence of eigenvalue. The PROTEUS eigenvalues were compared with 
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DeCART which were obtained with relatively little mesh refinement (solution is based upon 

characteristic lines and not elements). Unlike the subgroup method option with which PROTEUS-

SN suffered from a large discrepancy in eigenvalue from the two codes, the converged eigenvalue 

of PROTEUS with the resonance table option agreed very well with DeCART within 5 pcm and 

19 pcm ∆k for 24.2 wt% (k∞ = 1.79977) and 3.1 wt% (k∞ = 1.32893) pin-cell problems, 

respectively.  

The relatively large difference in k∞ between PROTEUS-SN and DeCART observed from the 

subgroup method option can be attributed to the large “subgroup” flux gradient, which required 

using the boundary layer meshing and high-order angular cubature. With the resonance table 

method option, however, the flux gradient is not so much as that of the subgroup method option.  

 

 

Figure 11. Difference in k∞ between DeCART and PROTEUS (Using the New 4-group Cross Section 

Library) for Pin-cell Problems 

 

3.2 Alternative Resonance Self-Shielding Method 

The resonance self-shielding methods currently available in the cross section API of 

PROTEUS are the subgroup method and the resonance table method, both of which require 

solving the fixed source problems (FSPs) for each resonance isotope or category, each resonance 

group, and each subgroup. Solving many FSPs is a big computational burden for PROTEUS. 

Therefore, the Dancoff approach was added as an alternative resonance self-shielding option to 

reduce the computation time to be spent for the FSPs. 

The Dancoff correction is to reduce the in-current of resonance neutrons into the fuel in a 

closely packed lattice, compared to the in-current into a single fuel rod in an infinite moderator 

because of the shadowing effect of adjacent rods. In other words, the Dancoff factor is the 

probability that a neutron emitted isotropically from the surface of the fuel region of the fuel 

element will have its next collision in the fuel region of any other surrounding fuel element. 
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Therefore, the Dancoff factor is used to adjust the first collision probabilities for lattice-cell 

geometry to account for the presence of other fuel rods for a single fuel lump in an infinite 

moderator. The Dancoff correction does not depend on the composition of a fuel while it is 

calculated by the geometry and cross section of the moderator. This allows the calculation process 

to be simple while its application is often limited to typical geometries. 

For this Dancoff approach, the resonance table as a function of background and temperature 

for each isotope is generated from NJOY. The smooth cross sections and the intermediate 

resonance (IR) parameters are prepared as well. The fixed source problem with the source ( pλΣ ) 

is solved to determine the Dancoff factors for fuel and cladding regions. 

  
1
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where 
t

RI = total resonance integral that is calculated by solving the fixed source problem, ( )f

t
EΣ  

= total cross section for fuel, f

s
Σ = scattering cross section for fuel, 

e
Σ = escape cross section 

defined by the inverse of the average chord length,1/ / 4S V=� . Assuming a black pin (i.e., 
f

t
Σ → ∞ ), Eq. (3.1) becomes  
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where 
b

Σ = background cross sections for homogeneous mixture and D = Dancoff factor. Once 

the total resonance integral is solved using the FSP assuming the infinite cross sections in the fuel 

region, the Dancoff factor for the fuel region can be calculated using Eq. (3.2). When resonant 

isotopes are included in the cladding region, the similar approach can be applied to calculation the 

Dancoff factor for the cladding region. 

Since the one-term rational approximation is known to be not accurate, the non-escape 

probability ( ffP ) can be represented by the two-term rational approximation as Eq. (3.3). Finally, 

the resonance cross section ( i

x
σ ) for the reaction x  of the resonant isotope i  is determined by Eq. 

(3.4). 
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where 
x

RI = resonance integral of reaction x , i
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σ  = ( ) /k i
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Nλ αΣ + Σ∑ , and ,

n n
α β = n-th 

term coefficients.  

In the Dancoff approach, only 2G times of the fixed source problems are necessary to 

determine the Dancoff factors for the fuel and cladding regions if resonant isotopes are included 

in both regions. Using the Dancoff approach which is to be considered as the third option in the 
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cross section API, a large reduction of the computation time is expected, compared to the other 

two resonance self-shielding options (the subgroup and resonance table method options). 

Preliminary verification tests were conducted with the pin cells of the C5 benchmark problem: 

3.1 wt% UO2 and 3.8 wt% MOX. The 72 group cross section library was used for the tests, 

whose group structure (lethargy intervals) is shown in Figure 12. The eigenvalue solutions from 

the Dancoff approach were compared with the MCNP solutions, showing good agreement for 3.1 

wt% UO2 pin cell but relatively large overestimation for 3.8% MOX pin cell (see Table 4). As 

shown in Figure 13, the large underestimation of absorption cross sections of Pu-239 were 

observed in its resolved resonance energy range compared to the MCNP tallied cross sections, 

whereas the absorption cross sections of U-238 and U-235 are in good agreement with MCNP. 

This can be attributed to the inaccurate estimation of the resonance interferences between U-238, 

U-235, and Pu-239. Therefore, an accurate estimation of the resonance interference effect remains 

as a future work.   

 
Figure 12. The 72 Group Structure Used for the Dancoff Approach 

 

 
Figure 13. Percent Differences of Absorption Cross Sections between Dancoff Approach and MCNP for 

3.8 wt% MOX Pin Cell 
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Table 4. Eigenvalue Comparison between MCNP and Dancoff Approach Using the 70-group Library for 

UO2 and MOX Pin Cells 

Fuel Type MCNP ∆k, pcm 

3.1 wt% UO2 1.36845 ±0.00011 -53 

3.8 wt% MOX 1.15161 ±0.00014 338 

 

3.3 Cross Section Generation Using Monte Carlo Codes 

The Serpent code [33] is a continuous energy Monte Carlo reactor physics code. The code 

includes a capability of generating multigroup (MG) cross sections which would be useful to 

perform core analysis as well as to benchmark cross sections generated by deterministic 

approaches. The MG cross sections generated from the latest version of Serpent have the 

following limitations: 

- Macroscopic cross sections only: i.e., no isotopic microscopic cross sections 

- Total scattering matrices only: i.e., no partial scattering matrices such as elastic, inelastic, 

n2n, and n3n cross sections. 

- No high-order PN scattering matrices and total cross sections 

- No partial principle cross sections such as (n,α), (n,p), (n,d), and (n,t) which are included in 

the capture cross section 

Due to the limitations above, the MG cross sections generated from Serpent are so far 

adequate to use in diffusion calculation codes. In addition, the use of many cross sections (more 

than a few to several groups) may require thorough verification tests. 

To use the MG cross sections generated from Serpent in our code suite, a computer code was 

developed, which reads the Serpent cross section output (the .m file) and produces a cross section 

file in the ISOTXS format. Since the contribution of the (n,2n) cross sections is significant for 

fast reactor analysis, those cross sections need to be separate from the total scattering cross 

section matrices. In addition, the high-order PN scattering matrices and total cross sections are 

needed for transport calculations. 

To provide the data missing in the Serpent, the cross sections generated from MC
2
-3 were 

utilized when converting the Serpent cross section output to the ISOTXS format. Assuming 

scattering matrices do not change much, those for PN scattering and (n,2n) are obtained from 

MC
2
-3, as shown in Figure 14. In future, the use of GROUPR of NJOY will be tried instead of 

MC
2
-3 to provide accurate cross section data for the thermal energy range.  

 

Figure 14. ISOTXS Generation Using Serpent Multigroup Cross Section 
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Verification tests were performed with the C5 benchmark problem, showing that the Serpent 

eigenvalues for pin cells and fuel assemblies were well reproduced in the DIF3D calculations 

with the ISOTXS files generated from Serpent and MC
2
-3. For MC

2
-3 cross sections, the 

homogeneous mixture model equivalent to a pin cell or a fuel assembly was used. For a 2D core 

calculation, the 23-group cross sections for the UO2 and MOX fuel assemblies were provided 

from single fuel assembly models, and those for the water reflector were prepared from the two-

region problem with water and a UO2 assembly from which the cross sections for the water 

region only were tallied. 

As shown in Table 5, the eigenvalue difference between MCNP and DIF3D for the 2D C5 

benchmark problem (shown in Figure 15) is only -34 pcm which is smaller than the differences 

between MCNP and Serpent observed for fuel assemblies. Further tests with various benchmark 

problems will be conducted to verify the cross section generation procedure. Note that relatively 

large differences between MCNP and Serpent were observed in the test results because they used 

their own cross section library. We observed that the eigenvalue differences between the two 

codes were reduced to below 50 pcm when both used the same library. 

 

 
(Composition Assignment)      (Fast Spectrum: 300 keV)      (Thermal Spectrum: 0.1 eV) 

Figure 15. Composition Assignment and Fast and Thermal Fluxes of the C5 Problem Resulting from 

DIF3D with the 23-group Multigroup Cross Sections Generated from Serpent 

 
Table 5. Eigenvalue Comparison for the C5 Benchmark Problem between MCNP, Serpent, and DIF3D 

(23-group MG cross sections) 

Case MCNP Serpent (pcm ∆k) DIF3D (pcm ∆k) 

MOX FA (7.4 w/o) 1.21171 -137  

UOX  FA (3.1 w/o) 1.39025 -99  

2D Core 1.19448  -34 

∗ Standard deviation of MCNP and Serpent ≤  20 pcm 

 



 FY15 Status Report on NEAMS Neutronics Activities 

September 30, 2015 

 

ANL/NE-15/23 32  

 

4. Multidimensional Capability of MC
2
-3 

The unit cells of plate-type fast critical assemblies such as those seen in ZPR-3, ZPR-6 and 

ZPPR, are formed of steel square tubes and steel drawers containing rectangular plates of 

different materials such as depleted, enriched, or natural uranium, plutonium, stainless steel, 

sodium, etc. These unit cells show a two-dimensional nature because of the variation in plate 

dimensions and the drawer structure, but in the current MC
2
-3 with 1D transport calculation 

capabilities [15], they are approximated with one-dimensional (1D) slab models along the 

dominant direction of heterogeneity to account for the local heterogeneity effects.  

In order to represent the local heterogeneity effects more accurately for these unit cells, two-

dimensional (2D) transport calculation capabilities have been developed and implemented in the 

MC
2
-3 code. An efficient 2D method of characteristics (MOC) solver based on a modular ray 

tracing technique was implemented and a parallel computation capability was realized using 

OpenMP. The implemented 2D transport solver can handle the 2D geometries of the ZPR type 

unit cells explicitly and can perform the hyperfine-group (HFG) and ultrafine-group (UFG) 

slowing-down calculations with P1 anisotropic scattering sources within the MC
2
-3 framework. 

For the UFG calculation, equivalence theory is used to generate self-shielded ultrafine-group 

cross sections for individual plates. As initial verification tests, the unit cell calculations were 

performed for the fuel drawer of ZPR-6 Assembly 7, and the obtained results were compared 

against the 1D collision probability method (CPM) solution of the current MC
2
-3 and the 

reference Monte Carlo solutions. 

4.1 Development of 2D MOC Solver 

Geometry Modeling  

The primary application target of the 2D transport calculations of the MC
2
-3 code is the unit 

cell calculations for plate-type critical assemblies, illustrated in Figure 16. In the geometry 

treatment module, a problem domain consists of multiple cells that have rectangular shapes of 

arbitrary dimensions. Each cell is further divided into rectangular or annular meshes. A cell 

composed of annular meshes can be used for modeling a cylindrical fuel rod, and therefore, the 

Doppler drawer of the ZPPR-15 core shown in Figure 16(b) and the CADENZA assembly of the 

ZEBRA critical assembly [34] can be modeled explicitly. This type of cell composed of annular 

meshes could be used for lattice calculations of light water reactors (LWRs), when the slowing-

down calculation capability is extended to the thermal energy region as planned. Meshes with the 

same composition are grouped together into a region, which is the most fundamental geometric 

unit of the cross section generation in the MC
2
-3 code, and the meshes belonging to the same 

region share the same UFG or HFG cross sections in a transport calculation. 

 

Ray Tracing and P1 Anisotropic Scattering Treatment 

For a given set of UFG or HFG cross sections, a transport calculation is performed using a 

MOC solver with the modular ray tracing technique. The cyclic ray tracking is applied for the 

modular ray tracing calculation, which allows a simple treatment of reflective boundary 

conditions without approximation. In the ray tracing calculation, the MOC equation is solved for 

each ray segment that passes through a mesh over which the source is assumed flat as 
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      (a) Plate-type (ZPR-6 Assembly 7 Drawer)      (b) Fuel Rod-type (ZPPR-15 Doppler Drawer) 

Figure 16. Illustrations of 2D Unit Cell Models of MC
2
-3 
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where 
out

ϕ  is the outgoing angular flux, 
in

ϕ  is the incoming angular flux, q  is the source, Σ  is 

the macroscopic total cross section, and τ  is the optical path length of the segment. The segment-

averaged value of the angular flux ϕ  is determined as  

 in out qϕ ϕ
ϕ

τ

−
= +

Σ
 . (4.2) 

The corresponding scalar flux and angular flux moments of the mesh are computed by 

summing the segment-averaged angular fluxes over the space and angles with appropriate 

weighting functions. 

In order to reduce the computational time of 2D MOC calculations, a parallel computation 

capability has been implemented. Since a problem size of a unit cell calculation is small relative 

to that of a whole core transport calculation, a massive parallelization in the high-performance 

computing environment by employing the spatial domain decomposition is not applicable. 

Alternatively, the ray tracing angles were decomposed for the parallelized calculation and the 

multi-threading calculation capability for the shared memory machines was implemented in the 

OpenMP framework. 

To account for anisotropic scattering, an anisotropic scattering source is incorporated in the 

2D MOC solver. The anisotropic scattering source is evaluated from the angular flux moments 

that are determined from the angular flux solution of the previous inner iteration, and it is 

explicitly incorporated into the within-group transport sweeping. At the moment, the P1 

anisotropic scattering is the default option of the 2D MOC solver, and the isotropic scattering 

with the transport correction can be used optionally. The anisotropic scattering will be extended 

to a P3 order later. 
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Low-density Region Treatment 

In principle, the 2D MOC solver that relies upon the first order transport equation can handle 

low-density regions, i.e. a region filled with air, without any stability issues. However, for an 

extremely small optical length, the segment-averaged angular flux in Eq. (4.2) is computed to be 

zero or almost zero due to the truncation error of floating point operations, whereas the MOC 

solution in Eq. (4.1) can be computed properly. Consequently, the scalar fluxes of low-density 

regions are obtained to be extremely small values, even though the overall transport calculation 

can be performed properly. It causes a problem for calculating the homogenized cross sections, 

which are used in the subsequent whole core analysis. For example, in the unit cell calculation of 

ZPR-6 Assembly 7 fuel drawer, the volume filled with air is roughly 10% of the problem domain 

and the homogenized drawer cross sections were significantly over-estimated.  

The issue of the low-density regions was remedied by calculating the segment-averaged 

angular flux with a simple average of the incoming and outgoing angular fluxes as 

 
2

in out
ϕ ϕ

ϕ
+

= .  (4.3) 

Due to the negligible flux attenuation in a low-density region, this approximation does not 

introduce any noticeable error to the eigenvalue or the global flux distribution. 

4.2 Integration of 2D MOC Solver into MC
2
-3 Code 

Ultrafine Group Transport Calculation 

In the multi-dimensional transport calculation of MC
2
-3, the heterogeneity effect on the self-

shielded UFG cross sections should be taken into account properly by using equivalence theory.  

In this regard, the UFG cross sections for the existing 1D CPM solver are generated by the use of 

isotopic escape cross sections, which are determined using the Tone’s method. [15,35] The 

Tone’s method is formulated based on the collision probability method, but the collision 

probability method is impractical to deploy for the 2D and 3D problems due to the complexity of 

computing collision probabilities for individual regions. In order to implement a 2D UFG 

transport calculation capability within the existing framework of the UFG cross section 

generation, the isotopic escape background cross section are calculated in an alternative way by 

solving the fixed source transport problems, which are equivalent with the Tone’s Method, using 

the 2D MOC solver [36]. In this formulation, the following two fixed-source transport problems 

are solved: 

 
1, 1, ,( , ) ( ) ( , ) ( ) ( )
g g g g

r t r k t k

k r

Nψ ψ σ
≠

⋅∇ + Σ =∑Ω r Ω r r Ω r r ,  (4.4) 

 2, 2,( , ) ( ) ( , ) ( )g g g

r t r rNψ ψ⋅∇ +Σ =Ω r Ω r r Ω r  . (4.5) 

Using the solutions of Eq. (4.4) and Eq. (4.5), the escape cross section to be used for 

determining the self-shielded group g cross section of resonant isotope r in a region i  can be 

computed as 
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This method for evaluating the escape cross section using the 2D MOC solver was implemented 

in the MC
2
-3 code. For each resonance group, the escape cross sections can be obtained by 

performing 2N fixed source transport calculations, where N is the number of resonant isotopes in 

the entire domain. Then, the UFG cross sections are determined by self-shielding the pointwise 

cross sections using the NR approximation and the calculated escape cross sections.  

The slowing-down source iteration, which is to update the fission source distribution and the 

eigenvalue, was also implemented in the 2D transport UFG solver. If the UFG cross sections for 

the individual regions are prepared, the slowing down calculation for the 2D domain is performed 

with the source iterations. In addition, the interface routines that convert the 2D MOC solutions to 

the MC
2
-3 data structure formats were implemented so that the existing routines for processing 

the cross sections, i.e. homogenization and group condensation, can be readily utilized.  

 

Hyperfine Group Transport Calculation 

The HFG calculation poses a huge computational burden not only in the transport calculation 

for the large number of groups but also in the explicit computation of scattering and fission 

sources for the HFG level. Therefore, in the current 1D transport capability of the MC
2
-3 code, 

the HFG slowing-down calculation is performed by extrapolating the fission, inelastic scattering, 

and (n,2n) source terms  of the UFG calculation to the HFG structure, while calculating the elastic 

scattering source explicitly. [15] The same approach was used for 2D HFG transport calculations 

as illustrated in Figure 17. 

 

 

Figure 17. 2D HFG Transport Calculation Scheme 
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In this approach, the 2D UFG eigenvalue problem is solved using the self-shielded UFG cross 

sections based upon the narrow resonance (NR) approximation and the escape cross sections. By 

interpolating the UFG fission and non-elastic scattering sources of the converged UFG solution, 

the fixed source terms of HGF calculation are determined. With these fixed source terms, the 2D 

HFG transport calculation is performed by explicitly evaluating the elastic scattering sources. 

Once the HFG calculation is finished, the self-shielded cross sections in the resolved resonance 

energy are determined again by making use of the HFG fluxes. Because the cross section in the 

unresolved resonance is self-shielded on the UFG basis using the NR approximation and 

equivalence theory in MC
2
-3, the self-shielded cross sections in the unresolved resonance are not 

updated during the iterative calculation of HFG and UFG problems. Since the fixed source 

problem does not require the source iteration, the computational time can be much shorter than 

that of the HFG eigenvalue calculation. The iteration between ultrafine and hyperfine group 

calculation can be repeated until the UFG solution is converged.  

4.3 Verification Tests of 2D Transport Capability 

1D Slab Model Problem of ZPR-6 Assembly 7 Fuel Drawer 

For the initial verification of the newly implemented 2D transport capability, a 1D slab 

problem was solved using the 2D transport solver and the obtained solution was compared with 

the solutions of the current 1D CPM solver of MC
2
-3 and of the MCNP-6 code. The configuration 

of the 1D slab problem was derived from the ZPR-6 Assembly 7 fuel drawer [37] shown in 

Figure 16(a) by taking a slice along the x-direction at the vertical center of the drawer.  

The eigenvalue results for the 1D slab model of ZPR-6 Assembly 7 fuel drawers are 

compared in Table 6. The eigenvalues obtained with the 1D CPM and 2D MOC UFG calculations 

are 106 pcm and 29 pcm off, respectively, from the MCNP-6 reference solution. With the HFG 

calculations, the eigenvalue error is reduced about 10 pcm for both of the 1D CPM and 2D MOC 

calculations.  

Figure 18 shows the relative difference in the homogenized spectrum between the 2D MOC 

and 1D CPM calculations. A good agreement is observed for most of the energy region, but 

noticeable differences, roughly 1 %, are observed near 2.85 keV where the large resonance of Na-

23 is located. The primary factor that makes the observed spectrum difference is the different 

anisotropic scattering treatment.  

 

Table 6. k-inf Comparison of 1D CPM and 2D MOC Solvers of MC
2
-3 for 1D Slab Model Problem of 

ZPR-6 Assembly 7 Fuel Drawer (Sliced). 

Calculation 

Type 

MCNP-6 

k-inf (std) 

MC
2
-3 k-inf (Del_k, pcm) 

CPM MOC 

Continuous 1.35135 (2) - - 

UFG 
- 

1.35243 (106) 1.35164 (29) 

HFG 1.35232 (97) 1.35155 (20) 
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Figure 18. Spectrum Comparison of 1D CPM and 2D MOC UFG Solutions for 1D Slab Model Problem of 

ZPR-6 Assembly 7 Fuel Drawer (Sliced) 

 

Figure 19. Effect of P1 and P0 Scattering on Spectrum for 1D Slab Model Problem of ZPR-6 Assembly 7 

Fuel Drawer (Sliced) 
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The P1 anisotropic scattering was explicitly used in the 2D MOC calculation while the 1D 

CPM method uses P0 scattering. To examine the effect of the P1 anisotropic scattering, the 1D 

MOC calculation with P0 scattering was additionally performed. The spectrum difference of the 

resulting spectrum from the 1D CPM solution is given in Figure 19, which shows a significantly 

reduced difference at the Na-23 resonance. The eigenvalue of the 1D MOC calculation with P0 

scattering is 1.35208, 73 pcm off from the MCNP-6 result, and the eigenvalue difference between 

2D MOC and 1D CPM decreased from 79 pcm to 35 pcm. It is noted that the UFG calculation 

with the explicit P1 anisotropic scattering results in a better agreement with the reference MCNP-

6 solution. Therefore, anisotropic scattering should be explicitly incorporated in unit cell 

calculations of plate-type critical assemblies.  

 

2D Unit Cell Problem of ZPR-6 Assembly 7 Fuel Drawer 

As the second step of the verification of the 2D capability, the 2D unit cell problem of ZPR-6 

Assembly 7 fuel drawer was calculated with the 2D MOC solver of MC
2
-3 and MCNP-6. The 2D 

drawer configuration depicted in Figure 20(a) was explicitly modeled in the MC
2
-3 and MCNP-6 

calculations. Along with the 2D calculations, the 0D mixture and 1D transport calculations were 

also performed with both MC
2
-3 and MCNP-6 to examine the 2D transport effect. The 1D unit 

cell model was derived from the 2D model by homogenizing each region along the y-direction. 

As a result, the region-wise composition of this 1D model is different with that of the 1D slice 

model above. The MC
2
-3 calculations for the 2D and 1D models were performed by the 2D MOC 

solver with the explicit P1 anisotropic scattering.   

The obtained results for 2D, 1D and 0D models with the MC
2
-3 and MCNP-6 runs are 

summarized in Table 7. The eigenvalue results of the MC
2
-3 calculations for the 2D and 1D unit 

cell models agree well with the MCNP-6 results within 40 pcm for three cases. The eigenvalue 

errors of the 2D and 1D calculations are reduced by about 30 pcm compared to the 0D results. 

This suggests that some sort of error cancelation is involved in the 1D and 2D MOC transport 

calculations.  For the ZPR-6 Assembly 7 fuel drawer, about 300 pcm of 2D transport effect in 

eigenvalue is observed when the 1D model is replaced by the 2D model that can represent the 

local heterogeneity more accurately. The detailed investigation of the 2D transport effect in the 

spectrum and broad-group cross sections is underway.  

 

 

Table 7. 2D Transport Effect in k-inf for 2D Unit Cell Calculation of ZPR-6 Assembly 7 Fuel Drawer 

Problem 

Type 

k-inf 2D Effect, pcm 

MCNP-6 (std) MC
2
-3 Del_k, pcm MCNP-6 MC

2
-3 

2D 1.30087 (2) 1.30134 47 - - 

1D 1.29798 (2) 1.29842 44 289 292 

0D 1.28358 (2) 1.28434 76 1729 1700 
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2D Unit Cell Model 

The fuel drawer of ZRR-6/7, as illustrated in Figure 20, is formed of a square steel tube and a 

steel drawer containing rectangular plates of different materials such as uranium, plutonium, 

stainless steels, sodium, etc. Even though the actual drawer configuration has a three-dimensional 

(3D) nature as shown in Figure 20, the faithful 2D model can be obtained by taking a slice along 

the radial direction at the axial center of the 3D drawer model because the heterogeneities in the 

Z-direction are negligible. A preparation of the input deck for a 2D MC
2
-3 calculation requires 

extensive effort due to the complexity of the plate dimensions and compositions of the fuel 

drawer configuration. A shell script that can process a 3D as-built MCNP-6 model into a 2D 

model was developed and the 2D MC
2
-3 input deck for ZPR-6/7 fuel drawer was generated by 

making use of this shell script.  

 

 
(a) X-Y Plane (2 x 2 inches) 

 
(b) X-Z Plane (2 x 30 inches) 

Figure 20. Configuration of ZPR-6/7 Fuel Drawer 

 

1D Unit Cell Model 

In a simple 1D model that is derived from the 2D model by homogenizing each region along 

the y-direction, the background cross sections of plates are modified inevitably, which leads to a 

substantial difference in the resulting shielded cross sections. Conventionally, a 1D model is 

prepared in such a way that the mass and the background cross section of fuel and sodium plates 

are preserved. The tube structure, plate cover and void region at the bottom of or above those 
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plates are smeared into similar materials at the periphery.  The variation in the plate heights is 

removed by making all the plate heights equal to the largest one and subsequently adjusting the 

nuclide densities to preserve the material mass in each plate. The adjusted nuclide densities alter 

the optical thickness of each plate and hence perturb the escape cross section and the flux 

distribution. Along with the conventional model, another 1D model was derived in this study by 

taking a slice along the x-direction at the vertical center of the drawer. This model, which is 

denoted here as the 1D slice model, can retain the background cross section and the optical 

thickness of each plate, but it cannot preserve the material masses in the drawer.  

 

2D Transport Effect of ZPR-6/7 Fuel Drawer 

In order to investigate the 2D transport effect, MC
2
-3 unit cell calculations were performed 

for the following four unit cell models of the ZPR-6/7 fuel drawer: 2D explicit, 1D conventional, 

1D slice and 0D models.  The detailed descriptions of these models are provided in the previous 

section. The 2D MOC solver was used in the 1D problems as well as the 2D problem to 

incorporate the P-1 anisotropic scattering and to have consistent comparisons with 2D results. 

The reference calculations for those models were performed using the MCNP-6 code.  

The eigenvalue results of the unit cell calculations are summarized in Table 8. The 

eigenvalues obtained with the 1D and 2D unit cell calculations are less than 20 pcm off from the 

reference MCNP-6 solutions. A local heterogeneity effect of ~1700 pcm, which is the eigenvalue 

difference of 0D and 2D results, is observed in the ZPR-6/7 fuel drawer. Compared to the 1D 

conventional model, the 2D model improves the local heterogeneity effects only by 25 pcm and 

60 pcm in the MC
2
-3 and MCNP-6 results, respectively. In a previous study [38], a 2D transport 

effect of 200 pcm was obtained using a simple 1D model, which was obtained by homogenizing 

each plate region along the y-direction. These results suggest that the 1D conventional model can 

represent the local heterogeneity effects more accurately than the other 1D models since the 

background cross sections of plates are preserved.  

 

Table 8. Eigenvalue Comparisons of Different Unit Cell Models of ZPR-6/7 Fuel Drawers 

Model MCNP-6 
MC

2
-3 

(∆k, pcm) 

2D Effect, pcm 

MCNP-6 MC
2
-3 

2D 1.30087 1.30103 (16) - - 

1D (Conventional) 1.30147 1.30128 (-19) 60 25 

1D Slice
*
 1.35135  1.35130 (-5) - - 

0D 1.28358 1.28405 (47) 1729 1698 
*
1D slice model does not preserve the material masses of the reference 2D model  

 

The 2D transport effect on the broad group cross section is more important than that on the 

unit cell eigenvalue since the broad group cross sections are used in the subsequent whole core 

calculations. The homogenized broad-group cross sections were calculated in the ANL 230 group 

structure using the 1D and 2D models. The reference broad group cross sections of the 2D 

explicit drawer model were obtained using the MCNP-6 code. The results of MC
2
-3 for the 2D 
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unit cell calculation were compared with the reference MCNP-6 results to verify the accuracy of 

2D transport capability. The 2D transport effect on the broad group cross sections was quantified 

by comparing the broad group cross sections of the 2D and 1D models. Note that the broad group 

cross sections obtained by 1D MC
2
-3 calculations were compared with the reference 2D MCNP-6 

results instead of the 2D MC
2
-3 results.  

 

   
Figure 21. Comparisons of Fe-56 Total Cross Section for Different Unit Cell Models 

 

Figure 21 shows the comparisons of the total cross sections for U-238, Pu-239, Na-23 and Fe-

56. The comparisons of other principal cross sections for those isotopes are provided in Appendix 

A. The broad group cross sections of MC
2
-3 obtained with the 2D model generally agree well 

with the reference 2D MCNP-6 results within 1% error. However, as shown in Figure 21, 

noticeable differences (~2%) are observed in the total cross section of Pu-239 around 2.5 keV and 

30 keV. Since these two energy points are the lower and upper bound of the unresolved resonance 

(URR) range of Pu-239 and the same differences are observed in the broad group cross sections 

of the 0D infinite medium problem, the primary cause for the observed differences appears to be 

the cross section discontinuities at the boundaries of the URR range. In order to identify the root 
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cause for this problem, the cross section library and unresolved resonance self-shielding of MC
2
-3 

and the probability table of MCNP-6 need to be investigated.  

The broad-group cross sections obtained with the 1D slice model show significant 

discrepancies above 1 MeV. Because the capture cross section at high energy is less than a few 

barns for most of the isotopes, the structure materials neglected in the slice model can affect the 

neutron transport in this energy range. Consequently, the 1D conventional model that preserves 

the material masses in the fuel drawer shows a better agreement in this energy range with the 

explicit model. In the energy range from 10 keV to 1 MeV, where the most of the neutrons are 

populated in fast reactors, the broad group cross sections of U-238, Pu-239 and Na-23 obtained 

with both 1D models show a good agreement within 1 % difference with the reference 2D results. 

The cross sections of the 1D conventional model show slightly better agreements in this energy 

range. The 1D slice model result of Fe-56 has a large difference in the broad group cross sections 

since a substantial amount of iron in the structure materials were excluded in the 1D slice model. 

In the results of the 1D conventional model, a noticeably large difference is observed near 2.85 

keV. In this model, the plate dimensions are modified to preserve the material masses, and hence 

the optical thicknesses are perturbed. Since a large Na-23, scattering resonance is located at 2.85 

keV, a small change in optical length that perturbs the flux distribution results in large differences 

in the broad group cross sections. 

4.4 Summary 

In order to improve the modeling capabilities of the multi-group cross generation code MC
2
-3 

for fast reactor applications, a 2D method of characteristics solver based upon a modular ray 

tracing technique was successfully developed and implemented. In the MC
2
-3 code, the 2D 

transport capability is now available for the hyperfine and ultrafine group slowing-down 

calculations with P1 anisotropic scattering sources and the local heterogeneity effect can be 

represent more accurately by taking into account the 2D nature of the unit cell explicitly. 

Preliminary verification test results for the unit cell problems of ZPR-6 Assembly 7 fuel drawer 

showed that the 2D transport capability is properly incorporated within the MC
2
-3 framework.  

Using the newly implemented 2D MOC calculation capability, the 2D transport effects on the 

unit cell cross sections of plate-type fast critical assemblies were investigated using the ZPR-6/7 

fuel drawer. MC
2
-3 calculations were performed for the 2D explicit, 1D conventional and 1D 

slice models derived from an as-built model of ZPR-6/7 fuel drawer. The effects of 2D transport 

calculations on the eigenvalue and broad group cross sections were investigated by comparing the 

MC
2
-3 solutions with the reference MCNP-6 solutions. The results show that the 2D transport 

calculations of MC
2
-3 can account for the local heterogeneity effect properly. It also turns out that 

the 1D models have the accuracy limitation in representing the local heterogeneity. 
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5. Verification and Validation of PROTEUS 

5.1 ABTR 

Last year, the initial verification of the generation of heterogeneous cross sections in MC
2
-3 

and their use in heterogeneous PROTEUS transport calculations were performed using the ABTR 

core shown in Figure 22, creating pin cell, assembly, mini-core, and 2D full core geometries with 

varying spatial details. The comparison results for all cases up to 2D cores showed very good 

agreement in eigenvalue between PROTEUS and MCNP. This year, the verification tests were 

extended to 3D full cores so that the radial thermal expansion phenomenon of SFR could be 

simulated.  

5.1.1 Multigroup Cross Section Generation 

Multigroup cross sections are prepared for three distinct calculations for the 3D ABTR core: 

(1) homogeneous assembly model, (2) partially homogeneous assembly model, and (3) partially 

homogeneous assembly model with pin heterogeneity effects. For each of the calculations, two 

configurations are considered: control rods fully inserted into core (“rods in”), and control rods 

fully withdrawn (“rods out”).  

 

 

Figure 22. ABTR Core Loading 

 

 

Homogeneous Model 

A conventional homogenized assembly model was first analyzed to verify MC
2
-3/PROTEUS 

against continuous energy MCNP. Each individual assembly (fuel, control, shield and reflector) is 

spatially homogenized (cladding, sodium, and duct material mixed with the respective pin 

material). Axial heterogeneity is introduced at the natural material boundaries. The cross sections 

are prepared as follows: 

1) MC
2
-3 with homogeneous models generates 1041 group cross sections for each 

homogenized assembly type (fuel, control, shield, and reflector). 
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2) TWODANT with the R-Z equivalent core model calculates 1041 group spectra for each 

region. The spectra are used in MC
2
-3 to collapse the 1041 group cross sections to the 

desired broad group structures. 

 

Partially Homogeneous Model 

In the partially homogeneous model, the materials inside each assembly duct are 

homogenized, but the assembly duct and inter-assembly sodium channels are explicitly 

represented in order to facilitate multi-physics applications (structural mechanical feedback). We 

note that the MC
2
-3 calculations were limited to 1D geometries such that the hexagonal fuel and 

control assembly geometry are approximated by a cylinder that conserves the total volume of 

each of the explicit regions. For the shield and reflector assembly cross sections, the same 

procedures as the homogeneous model were taken as the heterogeneity effect is not significant. 

However, the cross sections are prepared as follows: 

1) MC
2
-3 with the 1D models representing homogenized assembly interior, duct(s), and 

sodium channel(s) generates 1041 group cross sections. For the control rod cross sections, 

the control assembly is surrounded by an additional ring of fuel assemblies (supercell 

configuration). 

2) TWODANT with the 1D models calculates 1041 group spectra for each region. The 

spectra are used in MC
2
-3 to collapse the 1041 group cross sections to the desired broad 

group structures. 

In this cross section generation process, the fuel and control assemblies did not account for 

the global flux spectrum properly, which could introduce some error into the partially 

homogeneous fuel and control assembly cross sections.  

 

Partially Homogeneous Model with Pin Heterogeneity Effects 

The partially homogeneous PROTEUS-SN model is also compared to a fully heterogeneous 

MCNP model by introducing a more complex cross section generation procedure that accounts 

for the pin heterogeneity effects. We note that the only difference between this calculation and the 

“partially homogeneous” calculation is the cross section generation procedure. It is desirable, 

although difficult, to reproduce the fully heterogeneous result with a less spatially detailed 

calculation by accounting for the heterogeneity effects in the cross section generation procedure. 

Most of the cross sections in this model are identical to those used in the regular partially 

homogeneous model. Only the fuel and control absorber cross sections are generated by a slightly 

different second step: 

1) MC
2
-3 with the 1D models (The same as the partially homogeneous model) 

2) TWODANT with the 1D cylinder “assembly” model calculates 1041 group spectrum for 

each region, which is used in MC
2
-3 1D heterogeneous calculation to collapse 1041 group 

cross sections to broad group structures 

The 1D heterogeneous calculation in MC
2
-3 takes the 1041 group spectrum from the 

TWODANT 1D SN calculation and then determines a spatial self-shielding correction to the 

spectrum for each region. MC
2
-3 then homogenizes and condenses all of the fuel, clad, and 
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coolant regions into a single macroscopic cross section for the region inside of the explicit duct in 

the partially homogeneous model. 

Figure 23 depicts the geometry models (only fuel assembly illustrated). Table 9 lists how each 

calculation was performed in the multigroup generation step in MC
2
-3, PROTEUS-SN and what 

type of MCNP calculation was used as a reference solution. The ENDF/B-VII.0 data was used in 

both MC
2
-3 and MCNP. A flat temperature distribution of 300K was used for simplicity. Since 

MC
2
-3 does not have 2D capabilities, the hexagonal assemblies were approximated as cylinders 

for the 1D calculations. 

 

 
 

 

Figure 23. (a)-(c) Spatial models used to represent fuel assembly, (d) 1D equivalent model to the 

heterogeneous model in (c). Other assembly types are not shown (different number of ducts/pins) 

 

 

Table 9. Summary of Calculation Types and Spatial Representations in Codes 

Calculation MC
2
-3 PROTEUS MCNP 

Homogeneous a a a 

Partially Homogeneous b* b b 

Partially Homogeneous with Pin-Heterogeneity Effects d b c 

∗ 1D cylindrical approximation of hex assembly 

 

5.1.2 Verification Tests 

PROTEUS-SN calculations for the homogeneous and partially homogeneous 3D ABTR 

models were compared to MCNP continuous energy calculations with the same geometry. The 

MCNP calculations used 50,000 particles per cycle (100 inactive and 500 active cycles) and were 

converged within 10 pcm uncertainty. Quadratic finite elements were used in the meshes. A 

typical problem used 4 million spatial vertices, 64 angles, and 33 energy groups for a problem 

size on the order of 8 billion degrees of freedom. The eigenvalues for the control “rods out” and 

“rods in” configurations are stated in Table 10 and Table 11, respectively. 

The homogeneous assembly results agree with MCNP within 52 pcm for both cases. Since the 

solution does not improve much with increasing number of energy groups (it actually becomes 

slightly larger in error), we conclude that the core spectrum calculation in the cross section 

generation step is adequate even for a small number of groups (33 groups). 

For the partially homogeneous case, refinement in energy increases the accuracy of 

PROTEUS-SN significantly. This is expected due to increased spatial heterogeneity in the 

(a)Homogeneous (b) Partially 

Homogeneous 

(c) Heterogeneous (d) 1-D Het. 
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problem. Additionally, the global flux spectrum is not accounted for in the fuel and control 

assembly cross sections because MC
2
-3 cannot currently combine local and global spectral effects 

simultaneously. 

 
Table 10. PROTEUS-SN eigenvalue results, control rods out (L7T7 cubature, P1 scattering). 

Rods Out MCNP 
PROTEUS 

33 groups 

PROTEUS 

70 groups 

PROTEUS 

116 groups 

Homogeneous 
1.02634 

±0.00011 

1.02567 

(-67) 

1.02661 

(27) 

1.02686 

(52) 

Partially Homogeneous 
1.03013 

±0.00011 

1.02219 

(-794) 

1.02587 

(-426) 

1.02829 

 (-184) 

Partially Homogeneous w/pin 

heterogeneity effects 

1.03105 

±0.00011 

1.02835 

(-270) 

1.03181 

(76) 

1.03235 

(130) 
*Quantity in ( ) is pcm difference from MCNP reference solution 

 
Table 11. PROTEUS-SN eigenvalue results, control rods in (L7T7 cubature, P1 scattering). 

Rods In MCNP 
PROTEUS 

33 groups 

PROTEUS 

70 groups 

PROTEUS 

116 groups 

Homogeneous 
0.90025 

±0.00009 

0.90021 

(-4) 

0.90067 

(42) 

0.90071 

(46) 

Partially Homogeneous 
0.90829 

±0.00010 

0.90437 

(-392) 

0.90636 

(-193) 

0.90747 

(-82) 

Partially Homogeneous w/pin 

heterogeneity effects 

0.91044 

±0.00010 

0.90793 

(-251) 

0.91145 

(101) 

0.91170 

(126) 
∗ Quantity in ( ) is difference in pcm from MCNP reference solution 

 

The total control rod worth calculated in MCNP for each of the three cases is, in order: 12,609 

pcm, 12,184 pcm, and 12,061 pcm. In PROTEUS, 116 groups, these values are 12,615 pcm, 

12,082 pcm, and 12,065 pcm. For the homogeneous assemblies and the partially homogeneous 

assemblies with heterogeneity effects, the difference in control rod worth between MCNP and 

PROTEUS is less than 10 pcm, which is within uncertainty. This is very encouraging; however, 

for the regular partially homogeneous case, the difference is 102 pcm. It is not clear why this 

large discrepancy exists: it may be related to the inconsistency in the cross section generation (i.e. 

lack of global spectrum for condensing the fuel/control cross sections) but this same 

inconsistency exists when the heterogeneity effects are added, while the difference between 

PROTEUS and MCNP virtually disappears. 

The heterogeneity effects calculated in MCNP are given in Table 12, and those calculated in 

PROTEUS-SN in Table 13. While the separate duct and pin effects calculated in PROTEUS-SN 

seem to have little or no relation to those calculated in MCNP, the combined duct and pin 

heterogeneity effect is actually quite comparable between the two codes. This suggests that the 

MC
2
-3 cross section condensation is capturing most of the significant reactivity effects of the 

heterogeneous configuration, which is an important step towards the ultimate goal of accurate 

transient simulation with homogenized cross sections. 

The duct heterogeneity effect calculated in MCNP (Table 12) is much more significant than 

the pin heterogeneity effect. In MC
2
-3 this is also observed with the control rods inserted, but 
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with the control rods out the opposite is true. The MC
2
-3 heterogeneity effect results are in Table 

14. Except for the rods-out duct effect, the MC
2
-3 heterogeneity effects are significantly larger 

than what is calculated in MCNP. The MC
2
-3 models are characteristically different than the 

PROTEUS and MCNP models in that they are small, reflective boundary models, so there is no 

leakage. The full core models have leakage, which significantly alters the flux shape and 

spectrum. The reflected assemblies have an average k-effective of approximately 1.63, but the 

full core k-effective with control rods withdrawn is much lower, approximately 1.03. Thus, 

leakage is clearly a very significant contributor to reactivity effects. This may explain the large 

difference in predicted heterogeneity effects between the idealized reflective boundary models 

and the full 3D core model. 

 

Table 12. Duct and Pin heterogeneity Effect Calculated from MCNP 

Conf. Homogeneous 
Partially  

Homogeneous 

Duct Het.  

Effect (pcm) 
Heterogeneous 

Pin Het. 

Effect (pcm) 

Total Effect 

(pcm) 

Rods in 0.90025 0.90829 804 0.91044 215 1019 

Rods out 1.02634 1.03013 379 1.03105 92 471 
∗ Standard deviation ≤ 19 pcm 

 

 

Table 13. Heterogeneity Effect Calculated from PROTEUS-SN (116 groups, L7T7, P1 scattering) 

Conf. Homogeneous 
Partially  

Homogeneous 

Duct Het. 

Effect (pcm) 
Heterogeneous 

Pin Het. 

Effect (pcm) 

Total Effect 

(pcm) 

Rods in 0.90071 0.90747 676 0.91170 423 1099 

Rods out 1.02686 1.02829 143 1.03235 406 549 

 
 

Table 14. Assembly Heterogeneity Effect Calculated from MC
2
-3 

Region Homogeneous 
Partially  

Homogeneous 

Duct Het. 

Effect (pcm) 
Heterogeneous 

Pin Het. 

Effect (pcm) 

Inner Fuel 1.56140 1.56334 194 1.56615 281 

Middle Fuel 1.39963 1.40150 187 1.40500 350 

Outer Fuel 1.72706 1.72878 172 1.73128 250 

OF Supercell 1.44162 1.45335 1173 1.45945 610 

IF Supercell 1.28509 1.29681 1172 1.30287 606 

 

Figure 24 shows a sample of the flux spectrum for 4 of the 33 energy groups at a height of 

140 cm, which is approximately the active core mid-plane. The units are arbitrary; the flux is 

directly related to the wavelength of the color (i.e. blue is the lowest, red is the highest). For the 

most part, the fastest neutrons (group 5) do not make it past the reflector region without slowing 

down. The flux in the reflector is much higher for the lower energy groups (14 and 19). In group 

19, the flux is higher in the reflector region than in the fuel. The flux in the fuel is only smaller for 

energy groups lower than 19, so the lower half of energy groups are much less important than the 

upper half for this core.  
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Figure 24. Scalar flux (Clockwise from top left: Group 5, 10, 14, 19 out of 33), homogeneous assemblies, 

33 groups, L7T7, P1 scattering, control rods in (slice at 140 cm) 

 

 

 

Figure 25. ABTR absorption rate for partially homogeneous assemblies with heterogeneity effects, L7T7, 

P1 scattering, 33 groups, control rods in (slice at 140 cm) 

 

SC 

SC 

PC 
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Figure 25 shows the absorption rate in non-fissionable materials for the partially 

homogeneous case with pin heterogeneity effects. The secondary control (SC) has the highest 

absorption rate of any assembly. The effect of the spatial self-shielding in these assemblies is 

apparent in the enlarged plot. The highest absorption rate of any region occurs in the ducts near 

the center of the core, which suggests that HT-9 is a stronger absorber than B4C, the control 

absorber material, for the spectrum of the ABTR. This explains why the internal “reflector” 

assemblies (IR) have a higher absorption rate than the outer ring of primary control assemblies 

(PC). 

Figure 26 shows a vertical slice of the absorption rate plot in Figure 25. The assemblies are 

labeled in the figures: IF/MF/OF = Inner/Middle/Outer Fuel, PC/SC = Primary/Secondary 

Control, RR = Radial Reflector, SH = Shield. Every other assembly in this slice is intersected 

along the duct, so it is narrower than the adjacent assemblies, which are intersected through the 

widest part. The strongest absorption rates are located in the assembly ducts, especially near the 

center of the core. There is a significant amount of absorption well outside the active core region, 

both in the lower reflector and also in the assembly ducts above and below the core. This axial 

cross section of the core shows the strong radial absorption gradient in the control assemblies. It 

also shows the axial dependence of the radial gradient. 

The high absorption rate in the assembly ducts highlights their neutronic significance and the 

importance of accurately modeling them. The partially homogeneous geometry model allows 

PROTEUS-SN to model the spatial configuration of the assembly ducts in a transient scenario 

explicitly without geometric approximation. Thus, the partially homogeneous model with pin 

heterogeneity effects in the cross sections is an important and unique tool for accurately modeling 

the behavior of the ABTR and other SFR cores with respect to assembly deformation. 

 

 

   

Figure 26. Absorption rate in non-fuel, vertical slice of the core midplane, partially homogeneous w/ pin 

heterogeneity effects, L7T7, P1 scattering, 33 groups, control rods in 
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5.1.3 Summary 

PROTEUS-SN closely matches MCNP results when appropriate multigroup generation 

procedures are performed in MC
2
-3/TWODANT for spatial heterogeneity effects. Most of the 

PROTEUS-SN solutions with 116 groups are within 100 pcm of the MCNP reference k-effective. 

For the homogeneous assembly case, where the core spectrum is accounted for in the fuel and 

control assembly cross sections, the 33 and 70 group solutions are also close to the MCNP 

reference. The total heterogeneity effect estimated by PROTEUS with 116 groups is comparable 

to what was calculated in MCNP. The control rod worth was also very similar between the two 

codes: for the homogeneous and partially homogeneous cases with heterogeneity effects, the 

control rod worth in PROTEUS was within uncertainty on the MCNP reference. 

TWODANT provides a core spectrum calculation that extends and improves the cross section 

condensation capabilities of MC
2
-3. However, some of the poor results with the coarser (33 

group) energy structure demonstrate the need for unification of the spectrum calculations. The 

ability of MC
2
-3 to incorporate both the global flux spectrum from TWODANT and the local 

assembly-level spectral variation from a separate, internal 1D calculation is not yet verified. The 

implementation of that capability should greatly improve the multigroup results for cases with 

some assembly-level heterogeneity. This is important because a 33 group transport solution is 

significantly less costly than a 116 group transport solution. 

5.2  ASTRID 

With current deterministic codes, the analysis of complicated reactors is generally carried out 

with the use of simplified models, often omitting important geometric details. Particularly, the 

fuel assemblies are generally modeled through the homogenization of the constituent materials 

and not by an explicit pin by pin representation. The causes of these limitations are generally 

based on the very demanding computational resources that a detailed model requires. Additional 

limitations may be also associated to other issues, such as the mesh size in the case of 

deterministic codes based upon the nodal variational method (e.g. VARIANT). 

 

4 : Diluent Assemblies 

177 : Inner Fuel Assemblies 

114 : Outer Fuel Assemblies 

216 : Reflector Assemblies 

390 : Shielding Assemblies 

12 : Control Rods Assemblies 

6 : Safety Rods Assemblies 

 

Inner Driver Fuel 

 

 
 

Inner Driver Fuel 

Na-plenum 

Lower Axial Blanket 

Intern Axial Blanket 

Outer 

Driver 

Fuel 

 
Figure 27: Radial (left) and Simplified Axial Layout (right) of ASTRID 
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As a code verification and validation effort, PROTEUS calculations were performed for 

partially homogenized systems of ASTRID, where regions of interest are represented explicitly 

and other regions are homogenized to reduce the problem size and required computational 

resources. 

This section shows the preliminary application of PROTEUS to the analysis of the sodium-

cooled fast reactor ASTRID. Model specifications were taken from the benchmark exercise that 

was proposed within a collaborative effort between DOE-INL & ANL and CEA-DEN [7]. 

Particularly, the goal of this study is to show the PROTEUS capabilities for the analysis of 

important neutronic features, such as heterogeneity effects, pin by pin power distribution, etc., 

that cannot be directly investigated with the deterministic codes presently in use. 

5.2.1 Fully Assembly Homogenized Models of ASTRID  

First, applications of the PROTEUS code were made to determine the multiplication factor 

value of a fully assembly homogenized model of the ASTRID reactor at the End of Cycle, as 

described later. For comparison purposes with the deterministic codes commonly used at ANL in 

past years, results were also obtained with the DIF3D/VARIANT code [22]. Both deterministic 

codes use the same 33 energy group ISOTXS cross section file generated with MC
2
-3 and 

ENDF/B-VII.0 data. At present, cross sections were simply processed with homogeneous (0D) 

cell calculations and without the coupling option with the TWODANT code for the collapsing 

procedures.  

VARIANT results are obtained using a P3 angular spherical harmonics approximation with a 

P1 scattering kernel while the PROTEUS results are obtained with the standard S4 angular 

cubature (Carlson level symmetric even-moment cubature) and P1 anisotropic scattering. 

Additionally, the PROTEUS mesh file was generated directly from the VARIANT Hex-Z 

geometry with the use of a convertor tool. Results of both deterministic codes are presented in 

Table 15. For comparison, the k-effective values obtained by MCNP5 with ENDF/B-VII.0 data 

are also given in Table 15. As can be seen in Table 15, there is a ~200 pcm discrepancy between 

the VARIANT and PROTEUS results when using the same ISOTXS cross section set, the same 

anisotropic scattering order and a comparable angular approximation. It was successively 

demonstrated that this discrepancy is due to an inconsistency in the formulation of the fission 

spectrum (χ) in the DIF3D/VARIANT case. Thus, to ensure that the two codes make use of the 

exact same cross sections (particularly χ), PROTEUS calculations were also performed with the 

macroscopic cross sections (the DIF3D COMPXS file is translated into the PROTEUS ANLXS 

input file) which yielded k-effective values that agrees well with the VARIANT code. This also 

happens to be in excellent agreement with MCNP, but that is not typical. Figure 28 is also 

provided to demonstrate the excellent agreement on the flux spectra distributions obtained with 

both deterministic codes in a central zone of the inner core. 

 

Table 15. Comparison of k-effective for a Fully Homogenized Assembly Model of ASTRID. 

Code Calculation type k∞ 

MCNP5 Monte Carlo 1.00702 ± 0.00009 

VARIANT P3P1    1.00720 * 

PROTEUS 
S4P1 CARLSON_EM (using ISOTXS cross section file) 1.00508 

S4P1 CARLSON_EM (using ANLXS cross section file) 1.00713 
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* A 400 pcm difference results if using a different anisotropic scattering orders (P3 vs P1) and different cross section 

processing in MC2-3 (heterogeneous vs homogeneous cell calculation; with and without the use of TWODANT)  

 

  

Figure 28. Flux spectra comparison in a central zone of inner core 

 

5.2.2 Partially Homogenized Geometry 

The main purpose of this work is to demonstrate some computational capabilities of the 

PROTEUS code that other deterministic codes do not have. Thus, applications of the PROTEUS 

code to partially homogenized reactor models are studied. In particular, two applications were 

envisaged for this kind of study: First, calculations were performed for a reactor model with the 

explicit representation of wrapper tube and inter-assembly sodium gap for all fuel and blanket 

regions (see Figure 29). Then, a second model contains an explicit pin by pin representation of a 

single assembly in the inner core (the heterogeneous representation regards both fuel and blanket 

portions of the assembly), leaving a full material homogenization in all other assemblies (see 

Figure 29). Both geometry models considered in this analysis cannot be handled with the 

deterministic codes presently in use, such as VARIANT, that are limited to the full 

homogenization of each reactor assembly. 

Monte Carlo Calculations 

The proposed reactor models were first calculated with the MCNP5 code and results are given 

in Table 16. The obtained results indicate that the reactivity correction due to the explicit 

representation of wrapper tube and inter-assembly sodium gap with respect to the case of fully 

homogenized assemblies is not negligible. On the contrary, the pin by pin representation of a 

single driver assembly does not introduce any additional correction in terms of reactivity but it 

can provide information details (such as pin by pin power profile, flux distributions, etc.) that are 

typically impractical to obtain with the conventional deterministic codes in use. 
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(a) explicit representation of wrapper tube and 

interassembly sodium gap. 

(b) Detail of (a) 

 

 

 

 

(c) pin by pin representation of a single 

assembly of inner core 

(d) Detail of (c) 

Figure 29. PROTEUS Models for ASTRID 

 

Table 16. keff values for Different ASTRID Models Using MCNP5 

Model keff 
Difference from 

Ref. [pcm] 

Fully assembly homogenized 1.00702 ± 0.00009 - 

Explicit representation of duct/Na gap for all fuel and 

blanket regions 
1.01121 ± 0.00008 0.00419 

Pin by pin representation of a single assembly of inner 

core 
1.00724 ± 0.00009 0.00022 
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2D Core Calculations with PROTEUS  

Preliminary applications of PROTEUS to the partially homogenized reactor models discussed 

in the previous section were also performed. These applications were first carried out in 2D 

geometry. The mesh files were generated using the UFmesh generation tool. Figure 30 shows 

some of the details of the generated meshes in the case of the explicit representation of the 

wrapper tube and inter-assembly sodium gap for all fuel assemblies and for the case of pin by pin 

representation of a single fuel assembly. 

 

 
(a) ASTRID 2D Meshes for explicit 

representation of Duct and Sodium gaps  

 
(b) Pin by pin representation of a single 

assembly of inner core. 

Figure 30. PROTEUS Meshes for ASTRID 

 

Table 17 shows the preliminary results of k-effective values obtained with the PROTEUS 

code for both partially homogenized reactor models. For comparison, the k-effective values 

obtained with fully homogenized assembly models both with PROTEUS and VARIANT are also 

presented in Table 17. For all cases, cross sections are provided as an ISOTXS file generated with 

MC
2
-3 in 33 energy groups using ENDF/B-VII.0 nuclear data and homogeneous (0D) cell 

calculations are performed for each medium.  

The non-negligible reactivity effect found with the MCNP5 simulation in the case of explicit 

representation of wrapper tube and inter-assembly sodium gap with respect to the case of fully 

homogenized assemblies is confirmed by the PROTEUS calculation as well. However, the 

magnitude of these effects is not the same as found by the Monte Carlo simulation (~800 pcm 

with PROTEUS in 2D compared to ~400 pcm with MCNP5 in 3D). It is then essential to run a 

PROTEUS calculation on the exact 3D models developed with MCNP5 so that a consistent 

comparison can be made between the results obtained by the two codes. Also, according to the 
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MCNP5 results in Table 16, Table 17 shows that the pin by pin representation of a single driver 

assembly does not introduce any additional correction in terms of reactivity. 

 

 
Table 17. Comparison of calculated keff values for the 2D ASTRID model with DIF3D and PROTEUS 

Code Calculation type Model keff ∆k, pcm 

DIF3D P3P1 
2D with fully assembly 

homogenized model 
1.28332 - 

PROTEUS 
S4P1 

CARLSON_EM 

2D with fully assembly 

homogenized model 
1.28113 - 

2D with explicit description of 

duct/Na gap 
1.28933 820 

2D with pin by pin description of a 

single assembly 
1.28137 24 

 

 

For the case with explicit pin by pin representation of a single driver assembly, power 

fractions and energy spectra were determined in the fuel pins located at the center and at the 6 

corner of the assembly as indicated in Figure 30. Results are presented in Table 18 and in Figure 

31. It can be noted that due to the reactor symmetry similar results are obtained for pins 2 and 5, 3 

and 4, and 6 and 7. Table 18 shows that differences up to 5% may be found on the power fraction 

of the single pins within the same assembly. As shown in Figure 31, differences more or less 

pronounced can be found on the flux distributions as well. 

It is important to underline that the results presented in this section are not intended for a 

specific analysis of the ASTRID neutronic features. The main goal of these applications is to 

demonstrate the capabilities of the code for the investigation of heterogeneity effects that are 

practically impossible to determine with the other deterministic codes in use. As an example, 

assuming that we know the assembly where the maximum power occurs, with this kind of 

application one can investigate the pin by pin power and flux distribution of that specific 

assembly, so that a reactor analysis/design can be based on more precise results than assembly 

averaged values. 

 

 

Table 18. Power fractions for fuel pins in positions 1 to 7. 

Pin Power fraction Difference to central pin (%) 

1 2.835E-05 - 

2 2.817E-05 -0.6 

3 2.939E-05 3.7 

4 2.939E-05 3.7 

5 2.817E-05 -0.6 

6 2.806E-05 -1.0 

7 2.806E-05 -1.0 
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Figure 31. 33 energy-groups flux spectra for fuel pins in positions 1, 2, 3 and 7. 

 

 

3D Core Calculations with PROTEUS 

Preliminary results of PROTEUS applications to partially homogenized models of the 

ASTRID reactor were also obtained in 3D geometry. Using the UFmesh input, mesh files were 

generated for the same reactor models that were calculated with the MCNP5 code and results are 

summarized in Table 19. Similarly to the calculations in 2D geometry, cross sections are provided 

as an ISOTXS file generated with MC
2
-3 in 33 energy groups using ENDF/B-VII.0 nuclear data 

and homogeneous (0D) cell calculations are performed for each medium. 

From the results presented in Table 19, it can be noted that for the case of fully assembly 

homogenized reactor problems, the use of mesh files generated with the UFmesh and GRID input 

capabilities and the DIF3D_to_PROTEUS convertor tool all produce consistent k-effective 

values. In Table 19 it can be also noted that the reactivity effect introduced by the explicit 

representation of wrapper tube and inter-assembly sodium gap with respect to the case of fully 

homogenized assemblies is ~1400 pcm, i.e. 1000 pcm larger than the effect estimated by the 

MCNP5 simulation (compare with results presented in Table 16). The results presented in Table 

19 should be considered only preliminary. Further studies are required to investigate any 

improvement in the adopted mesh specifications. Additionally, the assembly heterogeneity effects 

also depend on the processed cross sections that at present have been simply obtained from 

separate homogeneous (0D) cell calculations performed with MC
2
-3 for each material (e.g. fuel 

pin, clad, coolant, wrapper tube). In a more accurate approach, cross sections can be processed 

with the heterogeneity capabilities of MC
2
-3 in 1D geometry. 
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Table 19. Comparison of calculated keff values for the 3D ASTRID model with PROTEUS 

Code Calculation type Model keff Het. – Hom., ∆k 

PROTEUS 
S4P1 

CARLSON_EM 

3D with fully assembly 

homogenized model 
1.00408 - 

3D with explicit description of 

duct/Na gap 
1.01869 0.01461 

3D with pin by pin description 

of a single assembly 
1.00424 0.00016 

 

5.2.3 Summary  

With the deterministic codes presently in use, such as DIF3D/VARIANT, the calculations of 

the ASTRID reactor (like any other reactor in general) are based on fully assembly homogenized 

model. Under the NEAMS project, a new deterministic code, PROTEUS, has been recently 

developed at ANL that allows performing 3D transport calculations of more detailed reactor 

models that cannot be handled by the deterministic codes currently in use.  

The preceding results show the application of PROTEUS to the analysis of the sodium-cooled 

fast reactor ASTRID. The ultimate goal of the PROTEUS would be its use on partially 

homogenized systems, where regions of interest are represented explicitly and other regions are 

homogenized to reduce the problem size and required computational resources. However, as 

verification purposes, the code was first applied to the fully assembly homogenized model of the 

ASTRID reactor and a good agreement was found with the VARIANT and MCNP5 results of keff 

values. 

Regarding the application to partially homogenized systems, two reactor models were 

envisaged. The first model is characterized by the explicit representation of wrapper tube and 

inter-assembly sodium gap only for fuel and blanket regions. Then, a second model contains an 

explicit pin by pin representation of a single assembly in the inner core (the heterogeneous 

representation regards both fuel and blanket portions of the assembly), leaving a full material 

homogenization in all other assemblies. Results obtained both with PROTEUS and MCNP5 

confirmed that the reactivity correction due to the explicit representation of wrapper tube and 

inter-assembly sodium gap with respect to the case of fully homogenized assemblies is not 

negligible. However the two codes do not provide consistent results with regard to the magnitude 

of this correction (~1400 pcm in the PROTEUS case vs ~400 pcm in the MCNP5 case). Future 

studies are needed in order to better address the discussed inconsistency which we believe is due 

to the cross section generation process. It is particularly important to note that the PROTEUS 

results, especially in the case of partially homogenized reactor models, are to be considered only 

preliminary. Further studies are required to investigate any improvement in the adopted mesh 

specifications. Additionally, the assembly heterogeneity effects also depend on the processed 

cross sections that at present have been simply obtained from separate homogeneous (0D) cell 

calculations performed with MC
2
-3 for each material (e.g. fuel pin, clad, coolant, wrapper tube). 

In a more accurate approach, cross sections can be processed with the heterogeneity capabilities 

of MC
2
-3 in 1D geometry. Future studies should also compare other neutronic parameters such as 

the sodium void worth coefficient. 

On the contrary, both PROTEUS and MCNP5 results show that the pin by pin representation 

of a single driver assembly does not introduce any additional correction in terms of reactivity with 
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respect to the case of fully homogenized assemblies but it can provide information details (such 

as pin by pin power profile, flux distributions, etc.) that are typically impractical to obtain with 

the conventional deterministic codes in use. 

5.3 TREAT  

5.3.1 Homogenized Fuel Assembly in Infinite Lattice 

To begin investigating the impact of homogenization, MCNP simulations were performed for 

an infinite lattice of TREAT fuel assemblies, assuming a simplified geometry. Reflective 

boundary conditions were applied to the radial surfaces of the assembly, with void boundary 

conditions above and below the axial reflector region. In the heterogeneous model, the fuel and 

clad were modeled with chamfered corners, as shown in Figure 32. As a simplification, the axial 

reflector regions were assumed to have the same radial geometry as the fuel region, and the axial 

spacers were ignored, as shown in Figure 33(a).  

 

 

Figure 32. Cross-section view of TREAT Fuel Assembly in MCNP 

 

 

 

 

Figure 33. Lengthwise View of TREAT Fuel Assembly in MCNP, (a) Simplified Geometry and (b) True 

Geometry 

(A) 

(Fuel 

Top) 

(B) 
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Two cases were simulated: one assuming a zircaloy can over the whole fuel assembly, and the 

other assuming ziracoly cladding on the fuel and aluminum cladding on the reflector. The results 

are summarized in Table 20. The homogenization of the reflector region causes an under-

prediction of the axial neutron leakage, increasing reactivity. This effect may be even more 

significant for the actual geometry of the fuel assembly, which features an outgas tube and larger 

gaps near the fuel-reflector interface, as shown in Figure 33(b). Homogenization of the true 

geometry has not yet been evaluated. In addition, the effect of homogenization has not yet been 

evaluated for fuel assemblies containing a control rod. 

 

 

Table 20. MCNP Results for Infinite Lattice of Simplified TREAT Fuel Assemblies 

Model k 1σ 

∆ρ, 

pcm 

change, 

pcm 

Full Can Zr, Heterogeneous 
1.46428 0.00010 31707 

 

Full Can Zr, Homogenize Fuel 

Region, Heterogeneous Reflector 

Region 

1.46449 0.00009 31717 10 

Full Can Zr, All Regions 

Homogenized Radially 
1.46854 0.00011 31905 198 

 
Al Clad on Reflectors, 

Heterogeneous 
1.45561 0.00011 31300 

 

Al Clad on Reflectors, Homogenize 

Fuel Region, Heterogeneous 

Reflector Region 

1.45624 0.00011 31330 30 

Al Clad on Reflectors, All Regions 

Homogenized Radially 
1.46150 0.00010 31577 277 

 

 

 

The radially homogenized, simplified geometry fuel assembly was then simulated for an 

MCNP-PROTEUS comparison. For consistency with the cross-section set used in the PROTEUS 

simulations, the MCNP inputs were changed to ENDF6.0 cross-sections for the code-to-code 

comparison. In addition, isotopes in the MCNP input without data available in the PROTEUS 

cross-section set were removed from the model, so that the PROTEUS and MCNP simulations 

assumed identical compositions.  Once again, reflective boundary conditions were assumed for 

the sides of the assembly, with void boundary conditions above and below the reflector region. 

Two meshes were used in the PROTEUS simulations, one with 10x10 radial segmentation, and 

the other with 20x20 radial segmentation. Both meshes had 15 axial segments in the fuel region, 

and 7 in each reflector (Figure 34). Results are summarized in Table 21. Further refinement in 

geometry and angle can be evaluated in the future. 

 

4 in. 
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Figure 34. PROTEUS Meshes Used for Infinite Lattice of Homogenized Assemblies, (a) 10x10x29 and (b) 

20x20x29 

 

 
Table 21. MCNP and PROTEUS Simulations of Infinite Lattice of Homogenized, Simplified TREAT Fuel 

Assemblies 

Model k (1σ) 
∆ρ, 

pcm 

MCNP - 

PROTEUS 

Whole 

Can 

Zircaloy 

 

MCNP 1.47848 (0.00011) 32363  

PROTEUS 

LT   1   1, 10x10x29 mesh, 

scatter 1 
1.47878 32377 -14 

LT   5   5, 10x10x29 mesh, 

scatter 1 
1.47914 32393 -30 

LT   5   5, 20x20x29 mesh, 

scatter 1 
1.47914 32393 -30 

LT   5   5, 20x20x29 mesh, 

scatter 0 
1.47703 32297 66 

LT 11 11, 20x20x29 mesh, 

scatter 0 
1.47705 32297 66 

 

Zircaloy 

on Fuel, 

Aluminum 

on 

Reflector 

MCNP 1.47054 (0.00011) 31998  

PROTEUS 
LT 5 5, 20x20x29 mesh, 

scatter 0 
1.46862 31909 -89 

 

5.3.2 Full Core Model 

The previous full-core simulations of the DIF3D-converted PROTEUS model allowed for 

direct comparisons between DIF3D and PROTEUS. To now compare against MCNP as well, a 

new MCNP input was constructed which exactly models the geometry and compositions assumed 

in the DIF3D and PROTEUS simulations. Again ENDF6.0 cross-section libraries were used, to 

eliminate the impact of differences in cross-section data. In addition, the MCNP model used only 

4 in. 

2 ft. 

2 ft. 

4 ft. 
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isotopes present in the PROTEUS model. The original DIF3D model featured a reduced radial 

reflector with an albedo boundary condition. For the current code-to-code comparisons, this 

geometry was still used, now assuming a void boundary condition. In the future, changes can be 

made to all three models to better represent the true TREAT geometry. The PROTEUS model 

(the same as the DIF3D model) is shown in Figure 35, and the MCNP model in Figure 36. 

 

              
                                        (a)                                                                                    (b) 

Figure 35. PROTEUS Model for TREAT, (a) Radial Slice and (b) Axial Slice 

 

          
                                              (a)                                                                                  (b) 

Figure 36. MCNP TREAT Core, (a) X-Y View and (b) X-Z View 

 

PROTEUS simulations were performed for three different meshing schemes. The first used 

the original DIF3D mesh, which features 10.16” (i.e. the width of a single fuel assembly) cells in 

the x- and y-directions, with 16 axial segments. The additional simulations were performed 

doubling, and then quadrupling the refinement of the original mesh (as shown in Figure 37). 
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Results are summarized in Table 22. Additional simulations should be performed to investigate 

further refinement of the mesh (although this refinement may only be necessary in select areas of 

the geometry, rather than universally across the entire model).  

 

 

Figure 37. Meshes Used in Current PROTEUS Simulations 

 

Table 22. PROTEUS, MCNP, and DIF3D Results for TREAT Core 

MCNP 
 keff (1σ) pcm  

 1.00872 (0.00019) 864  

 

PROTEUS 

Scatter 

Order 

mesh 

refinement 
cubature 

Eigenvalue PROTEUS 

- MCNP keff pcm 

1 

DIF3D mesh 

LEG-TCHEBY 1/1 1.009725 963 99 

LEG-TCHEBY 3/2 1.009721 963 98 

CARLSON_EM 4 1.009714 962 98 

Double 

LEG-TCHEBY 3/2 1.011335 1121 256 

LEG-TCHEBY 5/5 1.011329 1120 256 

LEG-TCHEBY 7/8 1.011333 1121 256 

Quadruple LEG-TCHEBY 3/2 1.011726 1159 295 

0 

DIF3D mesh LEG-TCHEBY 3/2 1.004608 459 -406 

Double LEG-TCHEBY 3/2 1.006222 618 -246 

Quadruple 
LEG-TCHEBY 3/2 1.006615 657 -207 

LEG-TCHEBY 11/11 1.006614 657 -207 

 

DIF3D 

Solution option 
Eigenvalue DIF3D - 

MCNP keff pcm 

Nodal Diffusion Theory 1.005454 542 -322 

Variational Nodal 

Transport  

scatter 1 
P3 flux, P3 

leakage 
1.012114 1197 332 

scatter 0 
P3 flux, P3 

leakage 
1.006964 692 -173 
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Because of the high demands of the TREAT conversion project, a smaller fraction of time 

was spent on the TREAT PROTEUS simulations. The primary focus of effort for this project was 

on becoming more familiar with CUBIT, a software toolkit for generation of two- and three-

dimensional geometry and finite element meshes. Because of the unique design of TREAT, 

models must be developed directly in CUBIT. Preliminary PROTEUS simulations for TREAT 

were performed using a converted DIF3D model, which features a homogenized representation of 

the TREAT core. Efforts are now focused on explicitly modeling the TREAT fuel assembly 

geometry, for comparison with MCNP simulations. An example CUBIT-generated TREAT fuel 

assembly mesh is shown in Figure 38.  

 

 

Figure 38. Example CUBIT-generated TREAT fuel assembly mesh for use with PROTEUS 
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6. Conclusions 

This report summarizes the current status of NEAMS activities in FY2015. The tasks this year 

are (1) to improve solution methods for steady-state and transient conditions, (2) to develop 

features and user friendliness to increase the usability and applicability of the code, (3) to 

improve and verify the multigroup cross section generation scheme, (4) to perform verification 

and validation tests of the code using SFRs and thermal reactor cores, and (5) to support early 

users of PROTEUS and update the user manuals. 

PROTEUS was composed of three different high-fidelity transport solvers: SN2ND, MOCFE, 

and MOCEX. Among them, MOCEX (2D MOC coupled with the discontinuous Galenkin 

method axially based on the extruded geometry in the axial direction) requires less memory and 

computation time but is still under verification. To provide more options for users, the 

development of intermediate-fidelity transport solvers (MOC 2D/1D and NODAL) were initiated, 

which allows the code to produce the solutions that the user needs with practical time and 

computing resources. Those new solvers will be completed and tested in the following years. 

The current transient solution scheme of PROTEUS with the adiabatic method was reviewed 

to find an efficient way to improve it with the improved quasi-static (IQS) method. It was 

suggested that the IQS method be implemented for a first order solver which can compute the full 

angular flux rather than only the scalar flux (and even-parity angular flux). Therefore, an actual 

implementation of the IQS will be conducted to the existing MOC solvers or the first-order SN 

which should be developed in advance.  

To improve the usability of PROTEUS, a user-friendly mesh generation capability, including 

UFmesh and GRID, was developed for typical Cartesian or hexagonal geometries, which 

generates the mesh input based on user inputs instead of using CUBIT. This allows the user to 

easily build a mesh file with input cards and options and thus to quickly update the mesh file by 

changing user inputs. As the UFmesh is generated preserving the original geometry volumes, no 

additional adjustment that is required for the CUBIT-generated mesh is necessary. This capability 

fills up the gap that RGG (MeshKit) based on CUBIT does not support. 

The ANL cross section library (ACSL) has been further verified using the selected VERA 

PWR benchmark problems, showing good agreement with MCNP Monte Carlo solutions. 

Previously, the application programming interface (API) was implemented to the SN2ND and 

MOCEX solvers. This year, it was successfully connected to the MOCFE solver as well. To 

speed up the on-the-fly cross section generation, an additional resonance self-shielding option 

based on the Dancoff approach was tested, which allows the code to reduce the number of the 

FSPs to solve by more than an order of magnitude. 

As an alternative and verification option to the ACSL, a procedure of generating multigroup 

cross sections using the Serpent Monte Carlo code was developed. The main multigroup cross 

sections were generated from Serpent and the higher-order PN scattering matrices were provided 

from MC
2
-3, being produced in the ISOTXS form. Preliminary test results with the C5 PWR 

benchmark problem indicated very good agreement in eigenvalue between DIF3D, MCNP, and 
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Serpent. This approach of generating cross sections would be useful to debug and verify the 

multigroup cross sections for complex geometry or spectrum reactor cores. 

The 2D transport capability using MOC was implemented to MC
2
-3 in order to better take 

into account the 2D effect to the resonance self-shielded multigroup cross sections generated from 

the code. Preliminary verification tests using ZPR-6/7 fuel drawers indicated that that the 2D 

transport calculation of MC
2
-3 can account for the local heterogeneity effect properly and the 1D 

models have the accuracy limitation in representing the local heterogeneity. 

As a continued effort of code verification and validation, three reactors were simulated and 

analyzed with PROTEUS. First, the 3D ABTR cores with different heterogeneity level 

configurations were modelled using MC2-3/PROTEUS: homogeneous assembly model, partially 

homogeneous (duct heterogeneous) model, and partially homogeneous model with the fuel 

heterogeneity effect. Note that a fully heterogeneous assembly model is not necessary because the 

heterogeneity effect is not significant in a fast reactor system. It was found that most of the 

PROTEUS-SN eigenvalues with 116 groups were within 100 pcm of the MCNP solutions. The 

total heterogeneity effect and control rod worths were in very good agreement with MCNP. The 

initial thermal expansion tests showed good agreement in the reactivity change between 

PROTEUS and MCNP as well. 

The 3D ASTRID cores were simulated using MC
2
-3/PROTEUS with three different 

configurations similarly to the ABTR simulation: homogeneous assembly model, partially 

homogeneous assembly model (an explicit representation of wrapper tube and inter-assembly 

sodium gap), and partially homogeneous model with a fully heterogeneous assembly. The core 

keff for the homogeneous assembly model showed good agreement between PROTEUS and 

MCNP. Unlike the ABTR simulation, however, those for the partially homogeneous assembly 

model showed a noticeable discrepancy between the two codes, which could be attributed to the 

inconsistency in generating the multigroup cross sections using MC
2
-3 and should be further 

investigated in future. 

The simulation of the 3D TREAT cores was initiated using PROTEUS and MCNP with the 

homogeneous assembly model and the heterogeneous assembly model. The eigenvalue solutions 

were in reasonable agreement between the two codes. For detailed investigation, 3D single 

assembly models with two different heterogeneous configurations were built: one including a 

zircaloy can smeared over the whole fuel assembly and the other including ziracoly cladding on 

the fuel and aluminum cladding on the reflector. The eigenvalue solutions from the two codes 

were in good agreement within 90 pcm. Further analysis is ongoing and the final report on 

TREAT will be written in a separate document in October. 

As an effort of the PROTEUS user support, the PROTEUS manual was revised to include 

new options and changes made to the code (Revision 2.0). Technical supports were also made to 

the ORNL team who has been developing the depletion module for PROTEUS using the 

ORIGEN API. Additionally, we took the initiative to write up the MOAB API specifications for 

interfacing MOAB with PROTEUS to minimize current and potential problems arising from the 

multi-physics coupling between three physics tools via SIGMA.  
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The future work would be as follows: 

• Develop the 1
st
 order SN or use the MOC to implement the IQS for more accurate transient 

simulation,  

• Verify the MOC solvers (MOCFE and MOCEX) to ensure that they are working properly 

in a massive parallel environment and work on getting them into a production form,  

• Complete the development of the intermediate-fidelity solvers (MOC 2D/1D and 

NODAL),  

• Invest effort on numerical acceleration for the SN and MOC solvers,   

• Continue verifying the Argonne cross section libraries (ACSL) independently and via the 

cross section API for thermal and fast reactors,  

• Continue to perform verification and validation tests of PROTEUS against ATRID, 

TREAT and more fast and thermal reactor cores,  

• Add the fuel cycle analysis capabilities to support actual core design and analysis 

activities,  

• Support the users of standalone PROTEUS and multi-physics simulation with other 

physics tools.  
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