

ANL/MCS-TM/354

Mathematics and Computer Science Division

Documentation for MeshKit - Reactor Geometry
(&mesh) Generator

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE’s SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,

Argonne National Laboratory, or UChicago Argonne, LLC.

	

	

ANL/MCS-TM/354

Prepared by:
Rajeev Jain
Vijay Mahadevan
	

Argonne	
 National	
 Laboratory	

September	
 30,	
 2015	

Documentation for MeshKit - Reactor Geometry (&mesh)
Generator

	

	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	

1http://www.sigma.mcs.anl.gov	

	
 	
 i	
 ANL/MCS-­‐TM/354	

SUMMARY	

This report gives documentation for using MeshKit’s Reactor Geometry (and mesh)
Generator (RGG) GUI and also briefly documents other algorithms and tools available in
MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large
hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK
to produce an intuitive user interface. By integrating a 3D view of the reactor with the
meshing tools and combining them into one user interface, RGG streamlines the task of
preparing a simulation mesh and enables real-time feedback that reduces accidental scripting
mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to
consolidate the meshing process, meaning that going from model to mesh is as easy as a
button click. This report is designed to explain RGG v 2.0 interface and provide users with the
knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source
code, tools and other algorithms available are also presented for developers to extend and add
new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to
model complex reactor core models consisting of conical pins, load pads, several thousands of
axially varying material properties of instrumentation pins and other interstices meshes.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	
 ii	

TABLE	
 OF	
 CONTENTS	

Summary ... i	

Table of Contents ... ii	

List of Figures ... iv	

List of Tables .. Error! Bookmark not defined.	

1	
 Introduction .. 6	

2	
 Conceptual Overview and Terminology .. 7	

2.1	
 Cores ... 7	

2.2	
 Assemblies ... 7	

2.3	
 Same As Assembly ... 7	

2.4	
 Pins ... 7	

2.5	
 Ducts ... 7	

2.6	
 Materials ... 7	

2.7	
 Meshes .. 7	

3	
 Basic User Interface Overview .. 8	

3.1	
 Main Window Layout .. 8	

3.2	
 Input Panel .. 8	

3.2.1	
 Materials Tab ... 9	

3.2.2	
 Mesh Tab ... 9	

3.2.3	
 Properties Panel ... 10	

3.2.4	
 Lattice Tab ... 11	

3.2.5	
 Configure Tab .. 11	

3.2.6	
 Assembly Defaults Tab .. 11	

3.2.7	
 Duct Tab .. 11	

3.2.8	
 Pin Tab ... 12	

3.3	
 3D View ... 12	

3.4	
 2D View ... 13	

3.5	
 Mesh View ... 13	

4	
 Building Rectangular Cores ... 13	

4.1	
 Creating an Assembly Duct .. 14	

4.2	
 Creating Fuel Pin .. 16	

4.3	
 Adding Fuel Pins to the Assembly ... 16	

5	
 Building Hexagonal Cores ... 18	

5.1	
 Types of Hexagonal Cores ... 18	

5.2	
 Simple Hexagonal Flat Core .. 18	

5.3	
 Configure Duct ... 20	

5.4	
 Adding a Pin ... 21	

5.5	
 Populating Assembly With Our Pin ... 22	

5.6	
 Populating Core With Our Assembly ... 22	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	

	
 iii	
 ANL/MCS-­‐TM/354ANL/MCS-­‐TM/354	

6	
 Meshing .. 23	

6.1	
 File Formats .. 23	

6.2	
 What Makes A Good Mesh .. 23	

6.3	
 RGG Preferences .. 26	

6.4	
 Generating a Mesh .. 27	

6.5	
 Displaying the Mesh ... 28	

6.5.1	
 Volumes ... 29	

6.5.2	
 Boundary .. 29	

6.5.3	
 Surfaces .. 29	

6.5.4	
 Neumann Sets .. 29	

6.5.5	
 Dirichlet Sets .. 29	

6.5.6	
 Material Sets .. 30	

6.6	
 Boundary Layer Generation ... 30	

7	
 Other Core Types and Features .. 30	

7.1	
 ATR and Other Lattice Types .. 31	

7.2	
 MeshKit Based Computational ModelBuilder Tool ... 31	

8	
 MeshKit Algorithms and Documentation .. 32	

8.1	
 Algorithms .. 32	

8.2	
 Doxygen Based Documentation ... 33	

9	
 Installation .. 35	

9.1	
 Linux ... 35	

9.2	
 Mac ... 35	

9.3	
 Windows ... 35	

10	
 Conclusions .. 36	

Acknowledgments .. 37	

References .. 37	

Appendix A.	
 Few Actual Reactor Models Created Using RGG GUI 38	

Appendix B.	
 Westinghouse Four Loop PWR Core ... 38	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	
 iv	

LIST	
 OF	
 FIGURES	

Figure 1 Layout of main window. ... 8	

Figure 2(a) The assemblies tab shows the core, assembly, pin, and duct hierarchy. (b) The

materials tab shows available materials. .. 9	

Figure 3 Mesh tab for the controlling mesh visualization. .. 10	

Figure 4 Assembly lattice tab. ... 10	

Figure 5. Core lattice tab ... 11	

Figure 6. 3D View ... 12	

Figure 7(a) The 2D View. (b) The 3D View, bottom of the window highlights the view

selected. .. 13	

Figure 8 Rectangular lattice with three unit cell parameters for specification. 13	

Figure 9(a) Select the option to create rectilinear assembly duct. (b) Initial rectangular

core(c) Setting the global duct parameters 14	

Figure 10(a) Setting the material of the duct. (b) Final product. .. 15	

Figure 11(a) Create pin option (b) Fuel pin parameters (c) Final fuel pin 15	

Figure 12(a) Empty duct in the assembly view. (b) Right click to organize the assembly. 16	

Figure 13 Final control product. .. 17	

Figure 14 Final assembly .. 17	

Figure 15 Hex cores: full, 1/12th, 1/6th hex flat, 1/6th hex vertex (clockwise order).

Alphabets showing the arrangement of assemblies with respect to ring numbers. 18	

Figure 16 Creating a full hex core. .. 19	

Figure 17 Initial view after creating a full hex core. ... 19	

Figure 18 Updating the number of layers (rings) of the core. ... 19	

Figure 19(a) Select water as material. (b) Confirm cylinder configuration. (c) Change the

material to be a control rod. (d) Name label and cell material for a pin. 20	

Figure 20 Creating a duct. ... 21	

Figure 21 After adding the cylinder. ... 21	

Figure 22(a) 2D view selecting pin for assembly. (b) 2D view selecting assembly for

core. .. 22	

Figure 23(a) Final 2D view. .. 22	

Figure 24(a) Example of a 100 unit tall core with axial size of 20. (b) Axial size of 50. 23	

Figure 24(c) Example of a hexagonal core meshes with the edge interval 20 unit. (d)

Edge interval of 50 units. ... 24	

Figure 25 Two assemblies with different radial mesh sizes. The one on the left has a

radial mesh size of 0.1, while the one on the right has a radial mesh size of 0.3. 25	

Figure 26 (a) Non-conforming mesh – note how vertices touch edges and edges touch

vertices along the border between the blue and hexes. .. 25	

Figure 27 Specifying system preferences (a) Using packaged MeshKit tools

AssyGen/CoreGen. (b) Using user installed AssyGen/CoreGen. 26	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	

	
 v	
 ANL/MCS-­‐TM/354ANL/MCS-­‐TM/354	

Figure 28 Opening the run MeshKit/RGG dialog. ... 27	

Figure 29(a) The Run MeshKit RGG dialog. (b) Verifying successful meshing. (c)

Running meshing. .. 27	

Figure 30 Meshing controls (material checkboxes). .. 28	

Figure 31 Available mesh views .. 29	

Figure 32 Boundary layer insertion (lower left). Based on material, intervals, thickness

and bias. ... 30	

Figure 33 Visualization and manipulation of BRep geometry in CMB 32	

Figure 34Algorithms and tools available in MeshKit. ... 33	

Figure 35 MeshKit page, showing navigation to documentation and other relevant link. 34	

Figure 36 MeshKit documentation page consisting of users, developers guide and

examples with pictorial results. ... 34	

Figure 37(a) Windows build dialog for start menu selection. (b) Windows installer

message. ... 35	

 Figure 38 RGG installation for windows. ... 36	

Figure 39 Highlights of CPU time taken along with models details for MONJU, 1/4th

PWR, 1/6th VHTR and XX09 (EBR2 core) assembly. .. 38	

Figure 40. (a) 2D layout of the four-loop reactor core (editable using RGG GUI) (b)

CoreGen geometric core creation is shown with homogenized assemblies, (c)
Geometric model with 193 hetrogenous assemblies and outer core vessel
(assemblies have 17x17 pins). ... 39	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

6	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

1 Introduction	

MeshKit’s RGG application uses a novel three-stage approach [1], in the first
AssyGen stage, the reactor assembly geometry is generated and Cubit meshing script is
created. In the second stage, meshing of assembly geometry can be performed optionally by
using the CUBIT script generated in the AssyGen stage or by using MeshKit algorithms or
external meshing tools. In the third stage, the CoreGen program creates the reactor mesh by
arranging all the assembly and interstices meshes into a core lattice. The RGG GUI tool
developed by Kitware Inc. in collaboration with Argonne National Laboratory is based on
AssyGen, CoreGen algorithms in MeshKit and uses Cubit to generate models and meshes of
the nuclear reactor core. RGG encapsulates the workflow of creating reactor core geometry
ready for computational analysis. Designed with the nuclear engineer in mind, RGG guides
the engineer through the process of designing fuel pins, ducts, and assemblies, and then the
layout of the reactor core and mesh generation process. The usage of RGG provides a good
balance of automation for nuclear reactor core meshing without sacrificing the usability for
analysts to make iterative design changes. Fully heterogeneous reactor core models can be
very large and may involve several billion-mesh elements. Generation of such models without
parallel processing would require massive memory and computational resources. Current
workstations don’t have enough memory to model such large memory intensive meshes. A
parallel version of CoreGen has been used to create large meshes for MONJU, VHTR,
HTGR, EBRII and PWR reactor types in amenable wall clock times. The parallel scalability
studies of CoreGen on several rectangular and hexagonal reactor models through the
assembly partitioning technique was carried out on large clusters and yielded several orders of
speedup as compared to directly meshing the complex models using CUBIT or STAR-CCM+
tools. Our paper [2] details the speedup and timing results of some of the geometry and mesh
models created using RGG toolkit.

MeshKit models the general meshing problems as a directed graph-based process,
with graph nodes representing individual steps in the process and graph edges representing
dependencies between those steps [3]. RGG tools AssyGen and CoreGen described above
also adhere to the graph-based mesh generation process. MeshKit is implemented as a library
to allow its use in both interactive and non-interactive applications. Due to the complex
dependencies of MeshKit on the SIGMA stack and external tools, the configuration and build
process is complex albeit benefits due to the flexibility alleviate user productivity concerns.
MeshKit includes interfaces to external meshing packages such as CAMAL for triangle
meshing, paver and tetrahedral meshing algorithms, Triangle for Delaunay triangle meshing,
NetGen and TetGen for tetrahedral meshing etc.

Section 2 to section 7 of this report focus on RGG GUI, while section 8 provides
documentation of code and briefly describes other algorithms in MeshKit. Section 9 gives
detailed instruction on installation of RGG GUI application. Section 10 gives the conclusions.
Appendix A and B highlight some of the models created using MeshKit RGG GUI.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 7	

ANL/MCS-­‐TM/354	

2 Conceptual	
 Overview	
 and	
 Terminology	

Several concepts associated with RGG that must be understood before the user
interface or workflow will seem sensible.

2.1 Cores	

The highest-level unit that RGG constructs is the core itself. Cores can have either a
rectilinear or hexagonal geometry to them. This helps define their lattice, or the grid on to
which assemblies can be placed. Cores are made up of assemblies arranged in a particular
manner on the core lattice. These cores can be translated into a mesh by MeshKit’s
AssyGen/CoreGen algorithms.

2.2 Assemblies	
 	
 	
 	

As stated above, assemblies comprise cores. Assemblies specify an arrangement of
pins and ducts on their own lattice. Assemblies can be thought of as a configuration or
specification of pins and ducts.

2.3 Same	
 As	
 Assembly	

There are times where the user wants to have an assembly with different material set
and boundary conditions but same configuration. This is accomplished by a “SameAs”
Assembly, which links the desired assembly with different parameters as specified.

2.4 Pins

Pins are cylinders or frustums that model fuel pins, control rods, and the like. They
have a name, a label, a material or set of materials, and other dimensional properties.

2.5 Ducts	

Ducts are what surround the fuel pins – in combination, they define the material
composition of the space between pins in the lattice cells.

2.6 Materials	

Materials describe physical properties of a pin or duct. Materials are assigned to pins
and ducts in order to produce a mesh that can be used to accurately perform simulations.

2.7 Meshes	

A mesh is a tetrahedral (triangular pyramid) or hexahedral (rectangular prism)
representation of the core at a level of granularity sufficient for accurate simulation. In RGG,
MeshKit produces them automatically based on a few parameters specified by the user.
Typically, the mesh is then fed into some other analytical software to perform the requested
simulation. Geometric models of assembly and core can also be produced for Monte Carlo

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

8	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

and other simulation techniques that use geometry models as input. . Now that we’ve covered
some high-level concepts, we’re ready to look at an overview of the user interface.

3 Basic	
 User	
 Interface	
 Overview	

3.1 Main	
 Window	
 Layout	

All user interaction takes place within the main window. The main window is
comprised of several movable widgets that can moved around or floating, depending on what
best facilitates the work flow. The main movable widgets are input,	
 properties	
 panel,	
 3D	

view,	
 2D	
 view,	
 and Mesh	
 view.	
 At start 3D	
 view,	
 2D view,	
 and Mesh	
 view	
 are combined
together in the visualization area, selectable by tab, but they can be moved. There are two
non-movable widgets. The first non-movable widget is the toolbar,	
 located above the input	

and has icons for often-used actions and the z-scaling controls. The second non-movable
widget is the menu,	
 located above the toolbar.	
 Refer to Figure 1 to see these pictorially.

	

Figure	
 1	
 Layout	
 of	
 main	
 window.	

3.2 Input	
 Panel	

The input	
 panel	
 has three tabs: the assemblies	
 tab,	
 the materials	
 tab,	
 and the mesh	

tab.	
 The assemblies	
 tab	
 shows the hierarchal nature of the core, assemblies, pins and ducts.
Recall that a core is composed of assemblies which are placed in the core’s lattice, and that
these assemblies are in turn composed of pins and ducts that are placed in the assembly
lattice. One can check to see if the core or an assembly has had changes made to it since the
last save. A pencil	
 icon	
 (as shown in Figure 2 (a)) indicates that edits have been made since
the file was last saved. A green	
 box	
 icon	
 indicates that the file is up to date.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 9	

ANL/MCS-­‐TM/354	

 (a) (b)

Figure	
 2(a)	
 The	
 assemblies	
 tab	
 shows	
 the	
 core,	
 assembly,	
 pin,	
 and	
 duct	
 hierarchy.	
 (b)	
 The	

materials	
 tab	
 shows	
 available	
 materials.	

You can also see the status of mesh files here. An x	
 icon	
 (as shown, to the right of the
pencil	
 icon) indicates that mesh files have not been generated (or haven’t been recreated since
edits to the associated core or assembly), while green	
 box	
 icons	
 indicate that they are up to
date.

3.2.1 Materials	
 Tab	

The materials	
 tab	
 (Figure 2 (b)) details the list of available materials, their associated
colors, and whether or not they are viewable. You can use this tab to create, remove, import,
and export materials, as well as edit the labels and colors of materials and toggle whether or
not they are shown in the 3D	
 view	
 or Mesh view.	
 You can also filter the list based on
materials used in the core or currently displayed in either the 3D view	
 or Mesh	
 view.

3.2.2 Mesh	
 Tab	

The mesh	
 tab	
 (Figure 3) allows you to control the viewing of the mesh. It is only
available when a mesh is loaded. It has the options to control what shows up in the Mesh	

view,	
 including the ability to show volumes, boundaries, surfaces, Neumann sets, Dirichlet
sets, Material sets, show mesh edges, and to colorize the different volumes. More information
on this tab is given in Section 7.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

10	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

Figure	
 3	
 Mesh	
 tab	
 for	
 the	
 controlling	
 mesh	
 visualization.	

3.2.3 Properties	
 Panel	

The properties panel changes depending on the current state of the input panel's
assemblies tab. If you're clicking on a core, it will display three the lattice tab, the configure
tab, and the assembly defaults tab. If you're clicking on an assembly, it will display the lattice
tab and configure tab. Note that the assembly has a different lattice tab and configure tab from
the core. If you're clicking on a duct, it will display the duct tab. If you're clicking on a pin, it
will display the pin tab.

Figure	
 4	
 Assembly	
 lattice	
 tab.	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 11	

ANL/MCS-­‐TM/354	

3.2.4 	
 Lattice	
 Tab	

The lattice tab controls the number of layers (in a hexagonal core) or the dimensions
(in a rectilinear core) to get the desired lattice geometry. For cores, it also controls the Reactor
Vessel and Boundary Layers. For assemblies, there is a checkbox to allow for auto-centering
the pins. Also for assemblies, this tab controls the 2D view color and label. There are also
controls for assembly rotation and the duct used. See Figure 4.

Figure	
 5.	
 Core	
 lattice	
 tab	

3.2.5 	
 Configure	
 Tab	

This tab allows you to customize other meshing parameters from MeshKit files, mesh
sizes in radial, axial and long the top edges of the assembly can be specified. See Section 7.3
for detailed information on how to mesh your core.

3.2.6 	
 Assembly	
 Defaults	
 Tab	

The assembly defaults tab allows you to specify general meshing information. You
can set whether the mesh you want to generate will be tetrahedral or hexahedral, and also
change the default dimensions of the ducts comprising your core. Changing these values will
propagate all the way down to every component, so you can change it all in one place instead
of adjusting the height of every duct in every assembly.

3.2.7 	
 Duct	
 Tab	

The duct tab exposes the different configuration options for a duct piece. You can
change the position and dimensional settings towards the top, the duct pitch, and the duct
material (with associated normalized thickness, if desired).

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

12	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

3.2.8 	
 Pin	
 Tab	

The pin tab allows you to change the key color of the pin, specify the pin material(s),
and create, remove, or edit pin pieces.

3.3 3D	
 View	

The 3D view (Figure 6) displays a representation of the current component. You can
use the following controls to interact with it

• To rotate, click with the left mouse button.

• To pan, either shift-click with the left mouse button or use the middle mouse
button.

• To zoom, click with the right mouse button.

Similar to the properties panel, the 3D view changes depending on what is selected in
the assemblies tab of the input panel.

• If you're clicking on a core, it will display the entire core.

• If you're clicking on an assembly or a duct, it will display the assembly.

• If you're clicking on a pin, it will display the pin.

Figure	
 6.	
 3D	
 View	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 13	

ANL/MCS-­‐TM/354	

3.4 2D	
 View	

The 2D view (Figure 7(a)) provides a 2d schematic of the core or assembly depending
on which is selected. Each assembly or pin represented here will be filled with its
corresponding key color.

You can edit this information by moving you mouse over the cell you want to edit and
then right-click on each cell to select the desired assembly or pin. In the pop-up menu, there
are options to Replace All With and Fill Ring With. Replace All With replaces every cell that is
same component with the desired assembly or pin. Fill Ring With fills every cell in the ring
with the desired assembly or pin. Alternatively, you can drag and drop an existing component
onto the cell.

 (a) (b)

Figure	
 7(a)	
 The	
 2D	
 View.	
 (b)	
 The	
 3D	
 View,	
 bottom	
 of	
 the	
 window	
 highlights	
 the	
 view	
 selected.	

3.5 Mesh	
 View	

The Mesh view (Figure 7(b)) is only visible if a mesh has been loaded. The Mesh Tab
controls what is displayed here.

4 Building	
 Rectangular	
 Cores	

In a rectangular lattice, there are two lattice pitches, Px and Py, one each in the logical
X and Y directions. The extent of a rectangular lattice is given by the number of unit cells in
the X and Y directions, Nx and Ny.

Figure	
 8	
 Rectangular	
 lattice	
 with	
 three	
 unit	
 cell	
 parameters	
 for	
 specification.	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

14	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

4.1 Creating	
 an	
 Assembly	
 Duct	

First, create a new rectilinear core, and add a new duct to the assembly by following
Figure 9(a). This results in a core with a single assembly with a duct of unknown material
shown in Figure 9(b). Now, to adjust the size of the duct, select the “Assembly Defaults “ tab
in Core's Properties Panel. In this example, we are going to set the “Duct Thickness “ to 15
(Figure 9(c)). Next adjust the material of the Duct. In the Inputs Panel, select the Duct, in this
case Duct 1. Then, in the Duct's Properties Panel, select the first Duct Segment. This
populates Material Layers with the Duct Segments materials. Now, select water in the
material drop down box drop (Figure 10(a)). Then press Apply. The result should look like
Figure 10(b).

(a)

(c)

(b)
Figure	
 9(a)	
 Select	
 the	
 option	
 to	
 create	
 rectilinear	
 assembly	
 duct.	
 (b)	
 Initial	
 rectangular	
 core(c)	

Setting	
 the	
 global	
 duct	
 parameters	
 .	

Common errors: When finishing editing properties, make sure to hit apply before
switch to another component in the Assemblies tab.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 15	

ANL/MCS-­‐TM/354	

(a)

A

(b)

Figure	
 10(a)	
 Setting	
 the	
 material	
 of	
 the	
 duct.	
 (b)	
 Final	
 product.	

(a)

(c)

(b)

Figure	
 11(a)	
 Create	
 pin	
 option	
 (b)	
 Fuel	
 pin	
 parameters	
 	
 (c)	
 Final	
 fuel	
 pin	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

16	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

4.2 Creating	
 Fuel	
 Pin	

Right-click on the assembly and choose “Create Pin” (Figure 11(a)). Changing the
Parameters: Choose the dimensions of the pin to correspond to the dimensions of your duct.
In our case we have used a length of 10, corresponding to the height of the duct. Changing the
key color and label is recommended, because later this will make the fuel pin more
recognizable while organizing the assembly. Using the “Add Before” button, you can create a
fuel pin with different layers of materials (See Appendix for fuel pins with more than 10
different materials along z-axis). Refer to Figure 11(c) for the parameters used for our
example, and Figure 11(b) to view the final product. Note also the option to toggle the fuel
pin's shape between a cylinder and a frustum. The “Cutaway view “ helps to view how the
different materials are distributed within the fuel pin. Control rods are used to control nuclear
fission. They are made out of materials, which can easily absorb neutrons without undergoing
fission themselves such as certain isotopes of boron, silver, or cadmium. This is created using
largely the same process as creating the fuel pin. You can use the “control rod” material. Once
again, it's beneficial to change the key color to green. Refer to Figure 13 for the final product.
It must be noted that the convention is to have the height along the z-axes and top and the
bottom surfaces are along x-y axes.

4.3 Adding	
 Fuel	
 Pins	
 to	
 the	
 Assembly	

	
 	
 	
 	

 (a) (b)

Figure	
 12(a)	
 Empty	
 duct	
 in	
 the	
 assembly	
 view.	
 (b)	
 Right	
 click	
 to	
 organize	
 the	
 assembly.	

Now we want to add the pins we've created back to the assembly. Click back on
“Assy_0” in the assemblies view in order to see the assembly layout. You should once again
be able to see the water duct you created, and it should still be empty. Compare your view
with Figure 12(a). Right click on each square and choose which pin to assign to it. For the
fuel rod, we want it to fill the center ring, so we select fuel in Fill Ring With. Alternatively,
you can drag and drop pins already placed onto new squares.

In the end you should end up with configuration shown in Figure 14. Remember to
click “Apply” in order to see your changes in the render window, or save them before
navigating to another tab or pin.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 17	

ANL/MCS-­‐TM/354	

Figure	
 13	
 Final	
 control	
 product.	

	

	
 	

Figure	
 14	
 Final	
 assembly	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

18	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

5 Building	
 Hexagonal	
 Cores	
 	
 	
 	
 	

5.1 Types	
 of	
 Hexagonal	
 Cores	

RGG has built-in support for a variety of hexagonal-based cores, including full
hexagonal cores, 1/6th hexagonal flat cores, 1/6th hexagonal vertex cores, and 1/12th hexagonal
cores. In this example we will construct a full hexagonal core.

Figure	
 15	
 Hex	
 cores:	
 full,	
 1/12th,	
 1/6th	
 hex	
 flat,	
 1/6th	
 hex	
 vertex	
 (clockwise	
 order).	
 	
 Alphabets	

showing	
 the	
 arrangement	
 of	
 assemblies	
 with	
 respect	
 to	
 ring	
 numbers.	

5.2 Simple	
 Hexagonal	
 Flat	
 Core	
 	

Create a full hexagonal core as shown in Figure 16. The two panels on the left of the
application will change along with the 2D and 3D views. We'll now see that the inputs panel
contains an item named “Core” with a subitem “Assy_0.” The core panel should show a
hexagon labeled “Assy_0.” The 2D and 3D view will contain the initial core. Confirm that
your application looks similar to what's shown in Figure 17. Figure 18: Updating the number
of layers of the core. Figure 5.4: The apply button. Next, we'll specify how many layers we'd
like our lattice to have. In the core panel, either type in the number of desired layers or use the
buttons to the right of the field to increment and decrement the number. The panel should look
something like what's displayed in Figure 18. Be sure to click the apply button below to see
apply changes.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 19	

ANL/MCS-­‐TM/354	

	

Figure	
 16	
 Creating	
 a	
 full	
 hex	
 core.	

Figure	
 17	
 Initial	
 view	
 after	
 creating	
 a	
 full	
 hex	
 core.	

Figure	
 18	
 Updating	
 the	
 number	
 of	
 layers	
 (rings)	
 of	
 the	
 core.	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

20	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

5.3 Configure	
 Duct	

We now need to configure the duct. In the inputs panel, select the duct. This will
change the lower panel to show the materials of the duct control panel. Next select the only
segment in the “Duct Segment” table. This will populate the “Material Layers”. For this duct,
we'll stay simple and make the material water. Change the material type to water by clicking
the drop-down and selecting “water” (Figure 19(a)). Final duct appears as shown in Figure 20.

(a)

(b)

(c)

(d)
Figure	
 19(a)	
 Select	
 water	
 as	
 material.	
 (b)	
 Confirm	
 cylinder	
 configuration.	
 (c)	
 Change	
 the	
 material	

to	
 be	
 a	
 control	
 rod.	
 (d)	
 Name	
 label	
 and	
 cell	
 material	
 for	
 a	
 pin.	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 21	

ANL/MCS-­‐TM/354	

Figure	
 20	
 Creating	
 a	
 duct.	

5.4 Adding	
 a	
 Pin	

To create a pin in the assembly, right click on the name of the assembly and select
“Create Pin”.

You can edit the name, label, and cell material of the pin. Refer to Figure 19(d) to see
how to change them. We will leave them to the defaults. We now need to add pieces of the
pin. There are two kinds of pin pieces: frustums and cylinders. On creation of the pin, a
cylinder piece is added. This can be changed to frustum using the drop-box. Then, confirm
that our segment type is a cylinder, and that the sum of the length of the segments is equal to
the length of the duct (10) (Figure 19(b)). Now, we're going to modify the material of this
cylinder (Figure 19(c)). We'll make this a control rod, so we'll change the material to match.
Be sure to press apply to ensure your changes go into effect. We should see a screen like
Figure 21 the after we're done.

Figure	
 21	
 After	
 adding	
 the	
 cylinder.	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

22	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

5.5 Populating	
 Assembly	
 With	
 Our	
 Pin	

Next, we need to add this pin to our assembly lattice. Make sure you select “Assy 0”
in the inputs menu. Click the lattice tab in the lower panel, and right click on the hexagon to
bring up a list of available pins. Select our pin (Figure 22(a)).

Figure	
 22(a)	
 2D	
 view	
 selecting	
 pin	
 for	
 assembly.	
 (b)	
 2D	
 view	
 selecting	
 assembly	
 for	
 core.	

Click the apply button to save your changes.

5.6 Populating	
 Core	
 With	
 Our	
 Assembly	

Click on our assembly (“Assy 0”) in the inputs pane. In the lower pane, click on the
lattice tab. To add the assembly to any of the cells, right click to bring up a list of available
assemblies, and then click on the assembly you'd like (Figure 22(b)). We'll select Assy 0
because that's the name of the assembly we'd like. In this case, we want to replace all
remaining empty cells with Assy 0, so we use the Replace All With. Make sure to click the
apply button to make sure that the changes we've made are applied. Your screen should look
like Figure 23 when you're done.

Figure	
 23(a)	
 Final	
 2D	
 view.	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 23	

ANL/MCS-­‐TM/354	

6 Meshing	
 	

MeshKit’s AssyGen tool is carefully designed to automate the meshing process.
Selected few parameters are exposed to the user for keeping close control of the mesh. No
prior knowledge of meshing tools or scripting language is required for using this tool. The
focus of this outline the GUI usage for generating high quality meshes, theoretical details on
parallel merge mesh and parallel mesh generation algorithms in RGG are reported in other
papers.

6.1 File	
 Formats	

RGG GUI uses an XML based file format called RXF. It allows maintenance of states
not stored in Meshkit's INP file format. The GUI is capable of import and export INP files
through the file tab on the top left. At the time of mesh generation, the user is asked for the
directory of the INP files if these have not been exported yet.

6.2 What	
 Makes	
 A	
 Good	
 Mesh	

In general, there are four different parameters that drive the meshing process. We can
specify the mesh type or the simple geometric differential we'd like to use to model the core
with, like tetrahedrals (triangular pyramids) and hexahedrons (rectangular prisms).

Tip: All other parameters equal, it always takes more tetrahedrons to mesh a model
than hexahedrons. While this means that it has the potential to be better for analysis than a
hexahedral mesh, it also means that it takes more computer resources like memory or disk
space to store or manipulate a tetrahedral mesh.

	

Figure	
 24(a)	
 Example	
 of	
 a	
 100	
 unit	
 tall	
 core	
 with	
 axial	
 size	
 of	
 20.	
 (b)	
 Axial	
 size	
 of	
 50.	

(a)

(b)

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

24	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

Additionally, we can control how many layers tall we want the mesh to be. We specify
this by setting the axial mesh size, which is the unit length of each mesh layer in the vertical
direction. For example, a core that is 100 units high with an axial mesh size of 20 would
produce 5 layers down the side of the mesh. If you were to change the axial mesh size to 50,
two layers would be down the side. As with mesh type, a core must have the same axial mesh
size in order to be conforming (Figure 24(c)). We also can specify how many edges we'd like
along an edge of a hexagonal or rectilinear pin. We specify this by declaring the edge interval,
or the number of mesh edges we'd like per model edge (Figure 24(d)).

(C)

(d)

Figure	
 24(c)	
 Example	
 of	
 a	
 hexagonal	
 core	
 meshes	
 with	
 the	
 edge	
 interval	
 20	
 unit.	
 (d)	
 Edge	
 interval	

of	
 50	
 units.	

Figure 25: These two assemblies have two different radial mesh sizes. The one on the
left has a radial mesh size of 0.3, while the one on the right is 0.1. Lastly, we can control how
coarse or fine the mesh is by specifying the radial mesh size, or the length of the square or
triangle used in the top-down projection of the 3D mesh (Figure 25). In practice, it does not
make sense to choose a radial mesh size larger than the size of the smallest feature you would
like to preserve in an assembly, as that would mean that that is not captured in the resulting
mesh. Not all meshes are created equal. Meshes used for analysis must be conforming; that is,
vertices of mesh polygons or polyhedra must only touch other vertices, edges must only touch
other edges, and faces must only contact other mesh faces. That means that we must ensure
that the mesh type, axial mesh size, and edge interval all match in the core. If they are
different in each assembly, the resulting mesh may not always be conforming. RGG ensures
that they match by only letting you specify them at the core level, in the assembly defaults

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 25	

ANL/MCS-­‐TM/354	

Figure	
 25	
 Two	
 assemblies	
 with	
 different	
 radial	
 mesh	
 sizes.	
 The	
 one	
 on	
 the	
 left	
 has	
 a	
 radial	
 mesh	

size	
 of	
 0.1,	
 while	
 the	
 one	
 on	
 the	
 right	
 has	
 a	
 radial	
 mesh	
 size	
 of	
 0.3.	

These two assemblies have two different radial mesh sizes. The one on the left has a
radial mesh size of 0.3, while the one on the right is 0.1. It must be noted that edge interval on
the assemblies are set to be equal for a conformal mesh (Figure 25).

Figure	
 26	
 (a)	
 Non-­‐conforming	
 mesh	
 –	
 note	
 how	
 vertices	
 touch	
 edges	
 and	
 edges	
 touch	
 vertices	

along	
 the	
 border	
 between	
 the	
 blue	
 and	
 hexes.	

Figure 26 shows a non-conforming mesh. Note how vertices touch edges and edges
touch vertices along the border between the blue and the hexes.

However, the radial mesh size is not required to be the same for each assembly. Refer
to Figure 25; even though two different assemblies side by side have different radial mesh
sizes, it is still conforming. You can change the radial mesh size and specify a different level
of coarseness or firmness on a per-assembly basis without suffering bad consequences. RGG
gives you this ability by making radial mesh size accessible from an assembly's configure tab.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

26	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

RGG ships AssyGen and CoreGen from MeshKit 1.2. RGG allows you to provide paths to
Cubit (Figure 27(a) and Figure 27(b)).

Figure	
 27	
 Specifying	
 system	
 preferences	
 (a)	
 Using	
 packaged	
 MeshKit	
 tools	
 AssyGen/CoreGen.	
 (b)	

Using	
 user	
 installed	
 AssyGen/CoreGen.	

6.3 RGG	
 Preferences	

In order for RGG to mesh an INP file, we utilize AssyGen, CoreGen, and Cubit. On
Linux and Mac, we package AssyGen and CoreGen with RGG. However, RGG needs an
external Cubit for meshing. RGG will look for Cubit 14.0 in the normal location. However,
we provide a means to manually set Cubit and also point to a different AssyGen and CoreGen
than what is shipped. Access the system preferences window by clicking on the edit menu of
the toolbar on Linux and Windows. On Mac, click on the preferences item of the RGG
Nuclear menu. This brings up the system preferences window. By default, we use the
packaged AssyGen and CoreGen, so we only provide a section to set Cubit (Figure 27(a)). By
checking “Use Custom MeshKit,” one is provided sections to direct RGG toward the desired
AssyGen/CoreGen (Figure 27(b)). To add one, click the browse button in the section that
corresponds to the desired executable. Locate the executable and click the open button to get
back to the system preferences window. Note the advance checkbox in the AssyGen and
CoreGen sections. If either of these executable require shared libraries in non-standard
locations, you can click this checkbox to activate the library paths textbox. You can specify
directories where the shared libraries are, with each line being another location. We also run

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 27	

ANL/MCS-­‐TM/354	

multiple AssyGen and Cubits in parallel decrease the wait time for a mesh. “Number of
Processors” controls the number of parallel jobs.

6.4 Generating	
 a	
 Mesh	

Figure	
 28	
 Opening	
 the	
 run	
 MeshKit/RGG	
 dialog.	
 	

Now that the system preferences have been adjusted to include AssyGen, Cubit, and
CoreGen, you can generate a mesh though the Run MeshKit RGG dialog accessed through the
tools menu (Figure 28). Note the “x” icon in the third column of the assemblies and core in
the inputs panel. This designates that RGG believes that these components need to be meshed.

You will be prompted for an output directory if one has not been set. The dialog
should be populated with the assemblies that need to be re-meshed automatically (Figure
29(a)). In the example below, two assemblies need to be meshed, which also means that the
core must be remeshed. If “Keep Going on Error” is checked, RGG will process all possible
Assembly Files after an error occurs. Any job that depends on the erred job will not be run. If
it is not checked, RGG will quit processing after the first error. Checking “Keep Going on
Error” is advised if there are a large number of files to be processed.

 (a) (b)

(c)

Figure	
 29(a)	
 The	
 Run	
 MeshKit	
 RGG	
 dialog.	
 (b)	
 Verifying	
 successful	
 meshing.	
 (c)	
 Running	
 meshing.	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

28	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

One can force the generation of meshes regardless of their current state by using the
force process assemblies checkbox and the force process core checkbox for an assembly or
core, respectively. To mesh both the core and assemblies, check both boxes and use the
process all button. This is useful in cases where the exporting executables have changed. A
window that gives you the status of the processing should come up, similar to the shown in
Figure 29(c): You can see the output of AssyGen, CoreGen, and Cubit by clicking on the
view output checkbox. To cancel the current export, click the cancel button. To verify that the
assemblies and core have been meshed, confirm that the “x” icons seen previously are now
green square icons, as shown in Figure 29(c). Note that the mesh needs to be loaded in after
MeshKit creates it. During this process, the tools menu is inaccessible.

6.5 Displaying	
 the	
 Mesh	

Upon successful creation of a mesh, you either need to load it in manually via the open
MOAB file dialog accessed from the open MOAB file item in the file menu, or, if you've just
meshed an INP file you had loaded in previously, the mesh will load in automatically.

To control viewing the mesh, be sure to click on the mesh tab of the inputs panel.
RGG allows you to six different options to control the Mesh view of the mesh inside a drop
down box (Figure 30), listed below:

• Volumes

• Boundary

• Surfaces

• Neumann Sets

• Dirichlet Sets

• Material Sets
Figure	
 30	
 Meshing	
 controls	
 (material	
 checkboxes).	

More detail on these views is provided below. When available, we allow you to select
a subsection for the selected option. When selected, only that part is displayed in the Mesh
View. Also, using the checkboxes, one can hide a subsection (Figure 30). Additionally, you
can check the show edges checkbox to view the mesh superimposed on the Mesh View and
check the color checkbox to colorize the different pieces of the view based on the option
you've selected. Clicking different volumes in the volumes option shows all the volumes of
the mesh. Checking the color checkbox will colorize all of the distinct volumes in different
colors.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 29	

ANL/MCS-­‐TM/354	

Figure	
 31	
 Available	
 mesh	
 views	

6.5.1 Volumes	

Clicking the volumes option shows all the volumes of the mesh. Checking the color
checkbox will colorize all of the distinct volumes in different colors.

6.5.2 Boundary	

When the Boundary option is selected, RGG displays only the boundary conditions.
Checking the color checkbox will colorize all of the distinct volumes in different colors.

6.5.3 Surfaces	

When the surfaces option is selected, RGG displays only the surfaces of the mesh.

6.5.4 Neumann	
 Sets	

Clicking the Neumann Sets option will show the natural boundary conditions on sides
of domains.

6.5.5 Dirichlet	
 Sets	

Clicking the Dirichlet Sets option will show the essential boundary conditions on
points of domains.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

30	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

6.5.6 Material	
 Sets	

The material sets option displays all the volumes of the mesh, but colorizes them on a
per material basis. Additionally, you can toggle the visibility of materials by checking and
unchecking them in the materials tab of the inputs panel.

6.6 Boundary	
 Layer	
 Generation	

RGG offers interfaces to add boundary layer around a particular material with a user
specified thickness, intervals and tolerance. RGG utilizes the PostBL algorithm [4] to add
boundary layers after the final core model has been generated by CoreGen tool.

Figure	
 32	
 Boundary	
 layer	
 insertion	
 (lower	
 left).	
 Based	
 on	
 material,	
 intervals,	
 thickness	
 and	
 bias.	

7 Other	
 Core	
 Types	
 and	
 Features	

RGG GUI is fully relies on MeshKit tools AssyGen and CoreGen. Various features,
parameters and options available in the GUI are a subset of all features offered by AssyGen
and CoreGen. AssyGen can be enhanced to include new types of core such as circular cores,
cores with varying geometry types and cores that don’t conform to geometry can be supported
by CoreGen tool. Current work is focused on getting more open source meshing algorithms as
a part of MeshKit, these algorithms will enable creating of mesh only models without
geometry. Geometry creation and partitioning of geometries of efficient and scalable mesh

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 31	

ANL/MCS-­‐TM/354	

generation is hard. SIGMA has other tools developed for mesh smoothing and geometry
based on mesh generation, RGG tools in MeshKit would utilize those for creation of arbitrary
cores along with support via GUI based design.

7.1 ATR	
 and	
 Other	
 Lattice	
 Types	

ATR uses a circular pattern, which can be described as a lattice, RGG currently does
not support ATR modeling. Section 7.2 describes the general geometry and meshing tool that
is currently under development and can be used for modeling and meshing of ATR and other
non-symmetric types reactor core models.

7.2 MeshKit	
 Based	
 Computational	
 ModelBuilder	
 Tool	

The ModelBuilder [5] is a general purpose tool for refining and developing input models for
computational simulation and serves as an useful tool for refining the problem setup in the
computational workflow shown CMB utilizes CGM interfaces to perform volume creation,
manipulation internally and provides a GUI with the following key features

• Refines a BRep model to provide topology suitable for boundary condition (BC) and
material assignment.

• Provides split, merge, intersect and grow selection operations.

• Provides grouping mechanism for both domains and boundary surfaces.

• Provides the ability to extract an initial BRep from existing meshes using CGM interfaces.

• Displays the faceted CAD representation of the geometry models

• Interfaces with Omicron/TetGen mesher (MeshKit integration in progress) to produce
volumetric meshes suitable for the simulation.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

32	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

Figure	
 33	
 Visualization	
 and	
 manipulation	
 of	
 BRep	
 geometry	
 in	
 CMB	

CMB is under active development by Kitware, Inc., and the implementation of the
client-server GUI architecture to simplify distributed problem set up and parallel job
launching capabilities on large-scale systems are being added.

8 MeshKit	
 Algorithms	
 and	
 Documentation	

8.1 Algorithms	

There are several advanced mesh generation algorithms that have been developed
under the MeshKit graph-based framework for tackling general geometry representations and
few algorithms fine-tuned for specific applications. Details of all algorithms was highlighted
in our previous report [6].

1. The native isotropic quadrilateral mesher (Jaal) [7] utilizes recombination algorithms
to convert triangle to quadrilateral meshes.

2. The one-to-one sweep [8] algorithm generates an all-hexahedral mesh by sweeping the
source mesh to the target surface

3. The embedded boundary meshing [9] tool generates Cartesian meshes for solvers that
use embedded boundary algorithms

4. The post mesh boundary layer [4] generates boundary layer meshes for an already
existing mesh model (post-processing after mesh-generation), which has proven to be
powerful for several CFD applications.

5. Interval matching algorithm [10] works closely with all other algorithms in MeshKit
to assign sizes on geometric entities when meshing a complicated geometry.

6. Mesh-based geometry operations (MBGeomOp and MBSplitOp) were developed for
building hexahedral meshes for applications to resolve associated geometry of ice

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 33	

ANL/MCS-­‐TM/354	

sheets models, starting from bedrock and ice elevation radar data.
7. For faceted geometry representations, it is problematic if there are gaps and overlaps

present when neighboring surfaces are not the same, especially for non-manifold
models. The make-watertight algorithm [11] seals the faceted boundaries that can
occur between surfaces in order to avoid issues during meshing and ray tracing.

Figure	
 34Algorithms	
 and	
 tools	
 available	
 in	
 MeshKit.	

MeshKit includes interfaces to external meshing packages such as CAMAL for triangle
meshing, paver and tetrahedral meshing algorithms, Triangle for delaunay triangle meshing,
NetGen and TetGen for tetrahedral meshing, Mesquite for mesh smoothing and Gmsh
(under development).

8.2 Doxygen	
 Based	
 Documentation	

MeshKit uses doxygen for documentation (Figure 36), which consists of user and
developers guide, focussing on users looking to generate a mesh and developers looking to
extend or write new meshing algorithms. Doxygen pages also consist of detailed
documentation of all of MeshKit C++ classes, it is updated nightly, enabling the
documentation to go hand in hand with code development. Doxygen pages also detail
examples and tests for new users to start using MeshKit. Figure 35 shows the SIGMA web
page, a one stop shop for all MeshKit related announcements and key documents. Source
code is maintained on bitbucket and we use standard git based workflow for code
development, when a collaborator or developer creates algorithms or tools in MeshKit, they
submit a “pull request” that is peer-reviewed, tested and fine tuned before adding the code to
the master branch. Development branches and pull requests can be tested using our buildbot
system [12] for a variety of configurations of MeshKit.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

34	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

	

	
 Figure	
 35	
 MeshKit	
 page,	
 showing	
 navigation	
 to	
 documentation	
 and	
 other	
 relevant	
 link.	

Figure	
 36	
 MeshKit	
 documentation	
 page	
 consisting	
 of	
 users,	
 developers	
 guide	
 and	
 examples	
 with	

pictorial	
 results.	

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 35	

ANL/MCS-­‐TM/354	

9 Installation	

One click and very easy to use RGG binary installers, that include all dependencies
can be obtained at http://www.computationalmodelbuilder.org/download/ for all three major
operating systems: Windows, Mac OS X, and Linux. Detailed installation guides are detailed
below by platform.

9.1 Linux	

All SIGMA tools from their inception have used the Autotools build system, and it
continues to be supported. We are also working on scripting the Autotools build system to
make it easier for the user to build and install all dependencies with one command. CMake-
based build system is also under development.

Figure	
 37(a)	
 Windows	
 build	
 dialog	
 for	
 start	
 menu	
 selection.	
 (b)	
 Windows	
 installer	
 message.	

9.2 Mac	

We use a standard drag and drop installer on Mac. Simply mount the .dmg file and
drag the RGG app into the Applications folder alias.

9.3 Windows	

A security warning may come up and ask for permission to allow the installer to make
changes to your computer. Be sure to click “Yes”	
 to allow the installation process to continue.
This may require authentication by your computer’s administrator. A window like Figure
37(b) should come up. Click Next	
 to continue and agree to the license displayed. On the next
screen (shown below), either use the default install location or select one of your own. Click
Next.	
 	
 On the next window (Figure 37(a)), select whether or not you’d like a Start Menu
Folder to be created for RGG. If you would not link a Start Menu Folder to be created, select
the Do	
 not	
 create	
 shortcuts box.	
 Otherwise, confirm the Start Menu Folder name you’d like
to use. Click install to have the installer extract the binaries. A window should come up to
confirm that RGG has been successfully installed on your computer. At this point, you can
click Finish	
 to close this wizard.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

36	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

	

Figure	
 38	
 RGG	
 installation	
 for	
 windows.	

10 Conclusions	
 	
 	
 	
 	

Documentation guide and the GUI tool built around RGG and MeshKit make is
ideally suited for quickly generating accurate reactor cores meshes. MeshKit uses graph-based
modern C++ code design, which makes it interoperable and easy to use for development of
new meshing tools and algorithms. Simulation of complex systems such as nuclear reactors
requires detailed models that properly capture the geometric shape and have correct
specification of material and boundary conditions. Different physics such as neutron transport,
fluid flow, thermal expansion and heat transfer must be studied to fully understand the
performance and safety aspects of nuclear reactors. RGG application enables the creation of
detailed large and complicated reactor models for different physics simulations. Over the past
year several enhancements and fixes to AssyGen/CoreGen tools in RGG including
introduction of shifting material and Neumann set ids have been incorporated. With the
introduction of the new distribution scheme for CoreGen, we can currently create meshes
such as the finer ABTR core mesh (file on disk is 137GB and it consists of more than a 1
billion hexahedral elements). Such meshes are impossible to construct using serial meshing
processes on a standalone workstation. We plan to create fully detailed models and use
coupled physics solvers to analyze some interest nuclear reactor safety problems with these
models. Work is in progress for developing geometry partitioning-based meshing algorithms
to mesh the assemblies in parallel. Also, new schemes are being formulated for better load
balancing during copy/move task distribution. This scheme will be a combination of existing
schemes with more weightage given to meshes with larger element count. Future effort will
be invested to investigate open-source tool for reactor assembly mesh generation, parallel
AssyGen development, which would enable creation of individual pins/components in
parallel, resulting in substantially large speedup of mesh generation on very high core counts.
Ability to add spacer grids (LWR) and wire wraps for SFR will also be implemented to better
model the heterogeneity in the geometry for these reactors.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 37	

ANL/MCS-­‐TM/354	

Acknowledgments	

We thank the SIGMA group at Argonne, who maintain the libraries required by
MeshKit and Kitware Inc. for collaborating on the development of RGG GUI application.
This material was based on work supported in part by the U.S. Department of Energy, Office
of Nuclear Energy, Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program
and by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing
Research Program and by the U.S. Department of Energy’s Scientific Discovery through
Advanced Computing program, under Contract DE-AC02-06CH11357.

References	

1. Jain, Rajeev, and Tautges, T. J. (2014). Generating Unstructured Nuclear Reactor Core

Meshes in Parallel. In Proceedings of the 23nd International Meshing Roundtable (pp.
351-363). http://dx.doi.org/10.1016/j.proeng.2014.10.396

2. Tautges, T. J., and Jain, Rajeev (2012). Creating geometry and mesh models for nuclear
reactor core geometries using a lattice hierarchy-based approach. Engineering with
Computers, 28(4), 319–329.

3. Jain, Rajeev, Mahadevan, Vijay and O’bara, Robert. (2015). Simplifying workflow for
reactor assembly and full-core modeling. Joint International Conference on Mathematics
and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte
Carlo (MC) Method, Nashville, TN, USA.

4. Jain, Rajeev, and Tautges, T. J. (2014). PostBL: Post-mesh boundary layer generation tool.
In Proceedings of the 22nd International Meshing Roundtable (pp. 445-464).

5. Computational model builder and reactor geometry and mesh generator GUI application
from Kitware Inc.: http://www.computationalmodelbuilder.org/download/

6. Jain, R., and Mahadevan, Vijay. (2014). MeshKit 2014 Release v1.0. Report of US DOE,
Reactor Campaign. ANL/MCS-TM-344.

7. Verma, C. S., and Tautges, T. (2012). Jaal: Engineering a high quality all-quadrilateral
mesh generator. In Proceedings of the 20th International Meshing Roundtable (pp. 511–
530).

8. Cai, S., and Tautges, T. (2014). Robust one-to-one sweeping with harmonic ST mapping
and cages: Post-mesh boundary layer generation tool. In Proceedings of the 22nd
International Meshing Roundtable (pp. 118).

9. Kim, H., and Tautges, T. J. (2010). EBMesh: An embedded boundary layer meshing tool.
In Proceedings of the 19th International Meshing Roundtable (pp. 227–242).

10. Mitchell, S. (2014). Simple and fast interval assignment using nonlinear and piecewise
linear. In Proceedings of the 22nd International Meshing Roundtable (pp. 203–221).

11. Smith, B., Wilson, P., and Tautges, T. J. (2010). Sealing faceted surfaces to achieve
watertight CAD models. In Proceedings of the 19th International Meshing
Roundtable (pp. 177–194).

12. Buildbot: http://gnep.mcs.anl.gov:8010/ and MeshKit doxygen page:
http://ftp.mcs.anl.gov/pub/fathom/meshkit-docs/index.html

13. USNRC Technical Training Center, The Westinghouse PWR Technology manual, Rev
0195, Website: http://pbadupws.nrc.gov/docs/ML0230/ML023040131.pdf

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

38	
 	
 	
 	
 September	
 30,	
 2015	

ANL/MCS-­‐TM/354	

Appendix	
 A. Few	
 Actual	
 Reactor	
 Models	
 Created	
 Using	
 RGG	
 GUI	

Figure	
 39	
 Highlights	
 of	
 CPU	
 time	
 taken	
 along	
 with	
 models	
 details	
 for	
 MONJU,	
 1/4th	
 PWR,	
 1/6th	

VHTR	
 and	
 XX09	
 (EBR2	
 core)	
 assembly.	

Appendix	
 B. Westinghouse	
 Four	
 Loop	
 PWR	
 Core	

The Westinghouse pressurized water reactor nuclear power plant document available
online [13], describes the reactor core model shown in Fig. 5(a). The core model consists of
193 total assemblies, and geometrically there are three different types of assemblies. Core
model shown in Fig. 4(a) and 4(b) are formed with assemblies with fewer pincells (1x1, 3x3
and 4x4). In the actual model, each assembly is a 17x17 lattice (shown in Fig. 3(b)), the
complete reactor core model shown in Fig. 5(c). The final mesh model is hard to visualize
since the mesh size is too small for viewing and hence only the geometry and a simplified
model (Fig. 4) are shown here. The complete core creation for this model is automatic i.e.,
small changes in material, assembly or pin cell arrangement and the creation of the outer
vessel are automatically handled by RGG. It must however be noted that specialized
geometries such as grid spacer creation are not supported implicitly yet and must be modeled
separately. While modeling the outer vessel or other external meshes, the surfaces/curves
where the reactor assembly and external pieces meet must have coincident nodes for merge
process to work and conformal core mesh model. If this is not the case, the CoreGen process
will fail with appropriate error messages. On 192 CPU cores, the final mesh model for this
core containing 6M 3D hexagonal elements, which can be created in less than 10 mins from
scratch. A majority of this time is taken in the serial assembly and interstices mesh generation
process. Parallel CoreGen step takes only 90 seconds to assemble the core and create the final
mesh, where the majority of the time is taken by parallel merge and save steps. The maximum
memory used by a processor during the mesh generation process for this model was about
620MB.

Documentation	
 for	
 MeshKit	
 –	
 Reactor	
 Geometry	
 (and	
 mesh)	
 Generator	

Vijay	
 Mahadevan	
 	
 39	

ANL/MCS-­‐TM/354	

Figure	
 40.	
 (a)	
 2D	
 layout	
 of	
 the	
 four-­‐loop	
 reactor	
 core	
 (editable	
 using	
 RGG	
 GUI)	
 (b)	
 CoreGen	

geometric	
 core	
 creation	
 is	
 shown	
 with	
 homogenized	
 assemblies,	
 (c)	
 Geometric	
 model	
 with	
 193	

hetrogenous	
 assemblies	
 and	
 outer	
 core	
 vessel	
 (assemblies	
 have	
 17x17	
 pins).	

(a)

 (b) (c)

	

	

Mathematics	
 and	
 Computer	
 Science	
 Division	

Argonne	
 National	
 Laboratory	

9700	
 South	
 Cass	
 Avenue,	
 Bldg.	
 240	

Argonne,	
 IL	
 60439	

	

www.anl.gov	

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

