

ANL/NE-15/17 (Rev 1.0)

User Manual for the PROTEUS Mesh Tools

 Revision 1.0

Nuclear Engineering Division

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE’s SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/NE-15/17

User Manual for the PROTEUS Mesh Tools

Revision 1.0

prepared by
Micheal A. Smith and Emily R. Shemon
Nuclear Engineering Division, Argonne National Laboratory

June 01, 2015

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 i ANL/NE-15/17

ABSTRACT

PROTEUS is built around a finite element representation of the geometry for visualization.
In addition, the PROTEUS-SN solver was built to solve the even-parity transport equation on
a finite element mesh provided as input. Similarly, PROTEUS-MOC and PROTEUS-NEMO
were built to apply the method of characteristics on unstructured finite element meshes.
Given the complexity of real world problems, experience has shown that using commercial
mesh generator to create rather simple input geometries is overly complex and slow. As a
consequence, significant effort has been put into place to create multiple codes that help assist
in the mesh generation and manipulation.

There are three input means to create a mesh in PROTEUS: UFMESH, GRID, and
NEMESH. At present, the UFMESH is a simple way to generate two-dimensional Cartesian
and hexagonal fuel assembly geometries. The UFmesh input allows for simple assembly mesh
generation while the GRID input allows the generation of Cartesian, hexagonal, and regular
triangular structured grid geometry options. The NEMESH is a way for the user to create their
own mesh or convert another mesh file format into a PROTEUS input format.

Given that one has an input mesh format acceptable for PROTEUS, we have constructed
several tools which allow further mesh and geometry construction (i.e. mesh extrusion and
merging). This report describes the various mesh tools that are provided with the PROTEUS
code giving both descriptions of the input and output. In many cases the examples are
provided with a regression test of the mesh tools. The most important mesh tools for any user
to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former
allows the conversion between most mesh types handled by PROTEUS while the second
allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the
mesh generation process is recursive in nature and that each input specific for a given mesh
tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed
in this manual.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 ii

TABLE OF CONTENTS

Abstract .. i
Table of Contents .. ii
List of Figures .. iii
List of Tables.. iv
1. Introduction ... 5
2. MT_ApplyACRtoMesh: A Mesh Tool to Restrict the Element Block Size 8
3. MT_BuildAxialMesh.x: A Mesh Tool to Extrude 2D meshes to 3D meshes 10
4. MT_ChangeFEbasis.x: A Mesh Tool to Alter the Basis Order of a Mesh 12
5. MT_Extrude2Dto3D.x: A Mesh Tool to Extrude 2D meshes to a 3D slice 14
6. MT_FixCUBITHex27Issue.x: A Mesh Tool to Fix CUBIT 27 Node Hexahedrons 15
7. MT_IdentifyVertices.x: A Mesh Tool to Identify Vertices in a Mesh 17
8. MT_MeshRestrictForBGP.x: A Mesh Tool to Restrict Element Block Sizes 19
9. MT_MeshToBGPmesh.x: A Mesh Tool to Create a Pre-Partitioned Mesh 20
10. MT_MeshToHDF5.x: A Mesh Tool to Create a VISIT readable HDF5 File 22
11. MT_MeshToMesh.x: A Mesh Tool to Convert Between Mesh Formats 23
12. MT_MeshToVTK.x: A Mesh Tool to Create a VISIT Readable VTK File 24
13. MT_RadialLattice.x: A Mesh Tool to Merge Meshes on a Radial Grid 25
14. MT_Refine2Dmesh.x: A Mesh Tool to Automatically Refine a 2D Mesh 29
15. MT_ModifyMesh.x: A Mesh Tool to Rotate and Translate a Mesh....................................... 30
16. MT_DataToVTK.x: A Mesh Tool to Plot Solution data Via a VTK File 32
17. Summary ... 34
References ... 35
Appendix A. UFmesh: A User Friendly Mesh Format ... 36
Appendix B. Grid: A File Format Specification for Structured Grid Input 45
Appendix C. NEMESH: A PROTEUS File Format for Finite Element Mesh Input 56

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 iii ANL/NE-15/17

LIST OF FIGURES

Figure 1. ATR Mesh from CUBIT (left) with 20 cm3 (middle) and 1 cm3 (right) “acvolume”
Restrictions. .. 9
Figure 2. Example MT_BuildAxialMesh.x Extrusion of a 2D Pin-cell Mesh. 11
Figure 3. Example MT_ChangeFEbasis.x Change from a Linear (left) to Quadratic (right)
Mesh. .. 12
Figure 4. Example MT_Extrude2Dto3D.x Change from a 2D (left) to a 3D (right) Mesh. 14
Figure 5. Example MT_ FixCUBITHex27Issue.x Correction of a Bad Hex 27 Element (left).
 .. 15
Figure 6. Example MT_IdentifyVertices.x Box Selection of a Pin in the ATR Mesh (right). 17
Figure 7. Example MT_IdentifyVertices.x Output. ... 18
Figure 8. Example MT_MeshToBGPmesh.x Vertex Rank (left) and Element Rank (right). . 21
Figure 9. Example MT_MeshToVTK.x Coloring of the ATR Mesh. 24
Figure 10. Example MT_RadialLattice.x Mesh Demonstrating Complete Problem Creation. 28
Figure 11. Example MT_ Refine2Dmesh.x Barycenter Refinement of a 2D Mesh. 29
Figure 12. Example MT_DataToVTK.x Plot of an Element Vector Field. 32
Figure 13. Example MT_DataToVTK.x Data File Containing Seven Fields. 33
Figure 14. Face (outside) and Sector (inside) Numbering for Cartesian (left) and hexagonal
(right) Geometry... 40
Figure 15. Example Cartesian Assembly UFmesh File ... 41
Figure 16. Example Hexagonal Assembly UFmesh File ... 41
Figure 17. Example Hexagonal Homogeneous Pin-cell UFmesh File 42
Figure 18. Example Hexagonal Sector and Face Meshing Control UFmesh File 42
Figure 19. Example Cartesian Sector and Face Meshing Control UFmesh File 43
Figure 20. Example Hexagonal Pin-cell Lattice without a Duct Restriction on the Geometry 44
Figure 21. Example Two-Dimensional Cartesian Grid File .. 51
Figure 22. Example Three-Dimensional Cartesian Grid File .. 52
Figure 23. Example Three-Dimensional Hexagonal Grid File .. 53
Figure 24. Example Three-Dimensional Regular Triangular Grid File 54
Figure 25. Grid Finite Element Meshing Schemes (Regular Triangular shows 6 nodes) 55

User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 iv

LIST OF TABLES

Table 1. Possible Customizations in PROTEUS_Preprocess.h ... 6
Table 2. Command Line Options for the MT_ApplyACRtoMesh.x Mesh Tool 8
Table 3. Command Line Options for the MT_BuildAxialMesh.x Mesh Tool 10
Table 4. Control Input for the MT_BuildAxialMesh.x Mesh Tool ... 10
Table 5. Command Line Options for the MT_ChangeFEbasis.x Mesh Tool 12
Table 6. Command Line Options for the MT_Extrude2Dto3D.x Mesh Tool 14
Table 7. Command Line Options for the MT_FixCUBITHex27Issue.x Mesh Tool 15
Table 8. Command Line Options for the MT_IdentifyVertices.x Mesh Tool 17
Table 9. Command Line Options for the MT_MeshRestrictForBGP.x Mesh Tool 19
Table 10. Command Line Options for the MT_MeshToBGPmesh.x Mesh Tool 20
Table 11. Command Line Options for the MT_MeshToHDF5.x Mesh Tool 22
Table 12. Example Color Map for the ATR Mesh... 22
Table 13. Command Line Options for the MT_MeshToMesh.x Mesh Tool 23
Table 14. Command Line Options for the MT_MeshToVTK.x Mesh Tool 24
Table 15. Command Line Options for the MT_RadialLattice.x Mesh Tool 25
Table 16. Control Input for the MT_RadialLattice.x Mesh Tool .. 27
Table 17. Control Input of the hex01.axial File for the MT_RadialLattice.x Example 27
Table 18. UFmesh Input of the hex01.ufmesh File for the MT_RadialLattice.x Example 27
Table 19. Command Line Options for the MT_Refine2Dmesh.x Mesh Tool 29
Table 20. Command Line Options for the MT_ModifyMesh.x Mesh Tool 30
Table 21. Command Line Options for the MT_MeshToVTK.x Mesh Tool 32
Table 22. Keyword Input Options for the UFmesh File Format .. 39
Table 23. Keyword Input Options for the GRID File Format.. 49

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 5 ANL/NE-15/17

1. Introduction

The PROTEUS code system [1] has a built in finite element library which provides multiple
options. The finite element library is defined by its data structure setup which consists of a serial
instance called NTmesh and a parallel instance called PNTmesh. The latter of these contains the
parallel details of a given mesh which maps the locally visible mesh information into the global
quantities on the parallel system. For PROTEUS-SN, one needs to provide a mesh as input and
while mesh generation tools such as CUBIT [2] are available, they can be considerably
complicated to use for simple geometries. In this report, we cover all of the mesh utility tools that
are provided with the PROTEUS package which can be used to reduce the difficulties of using
the commercial mesh tools.

There are three input means to create a mesh in PROTEUS: UFMESH, GRID, and NEMESH.
At present, the UFMESH is a simple way to generate two-dimensional Cartesian and hexagonal
fuel assembly geometries. The description of the UFmesh input is given in Appendix A. The
GRID input is a simple way to generate conventional homogenized geometries for structured grid
codes like PROTEUS-NODAL and contains options for Cartesian, hexagonal, and regular
triangular geometry options. The input description of GRID is given in Appendix B and because
it does its visualization using the finite element method, one can use the GRID input to construct
a finite element mesh of the domain. The NEMESH is a way for the user to create their own mesh
or convert another mesh file format into a PROTEUS input format. The input description of
NEMESH is given in Appendix C. Other than these three input options, one must provide a mesh
obtained from a commercial mesh generator in the EXODUS format for which we provide a
convertor with PROTEUS [1].

These input options form the base of any mesh generation tool that is described in this manual.
Given that one has an input mesh format acceptable for PROTEUS, Table 1 lists the mesh tools
available to the user to assist in further mesh construction. As can be seen, there are numerous
codes, some of which are more important than others. We discuss each code in a separate section
along with its input. For visualization, we suggest using the VISIT [3] software which has an
HDF5 [4] plugin that is compatible with the PROTEUS code package [1]. As an alternative, one
can use the VTK file format which is supported by all tools to look at any step of the mesh
construction or manipulation process. Each time a VTK file is exported, an additional
“regionmap” file is created which is meant to easily be modified into a colormap file. The
MT_MeshToVTK.x code explains how to setup a colormap file each time it is executed without a
valid colormap file and we suggest consulting that section of the report for details of this mesh
code. Note that the mesh generation process is recursive in nature and that each input specific for
a given mesh tool (such as .axial or .merge) can be used as mesh input for any of the mesh tools.

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 6

Table 1. Possible Customizations in PROTEUS_Preprocess.h
PROTEUS Mesh Tool Purpose Common Use

MT_ApplyACRtoMesh.x
Constrain the number of elements
placed into each block to a fixed

volumetric size

When using the sub-group
API or coupling, this tool

allows the mesh to be
partitioned into smaller

pieces

MT_BuildAxialMesh.x Take a 2D mesh and build a 3D
extruded mesh

Most often used to get around
the poor performance of 3D

mesh generators

MT_ChangeFEbasis.x

Take any mesh and alter the FE
basis. This introduces (or

removes) the extra points needed
to define a higher order mesh

Test the impact of spatial
basis order on the solution

accuracy. Can also be used to
test for bad elements in a

mesh

MT_Extrude2Dto3D.x Take a 2D mesh and create a one
element tall 3D mesh

Typically used as optional
prestep to BuildAxialMesh

MT_FixCUBITHex27Issue.x Fix badly generated hexahedron-
27 elements created by CUBIT

All CUBIT meshes with this
type of element and

curvilinear geometry need to
be corrected

MT_IdentifyVertices.x
Identify the set of vertices that lie

within a given box of the
geometric domain

Usually used to identify
specific vertices for a fixed

source definition

MT_MeshRestrictForBGP.x

Reduce the number of elements in
each block to reduce the

communication costs on Blue
Gene/P

Only appropriate for Blue
Gene/P and thus outmoded

MT_MeshToBGPmesh.x
Create a parallel partitioned mesh

which reduces the load time on
Blue Gene/P

Appropriate for any large
scale computing machine

MT_MeshToHDF5.x
Take a PROTEUS mesh file and
generate the native HDF5 format

readable by CUBIT

Typically used to check the
HDF5 setup of a given user

mesh

MT_MeshToMesh.x

Take a PROTEUS mesh file in
one format and convert it to one

of the formats available in
PROTEUS

Typically used to check a
UFMESH or GRID mesh
before using in PROTEUS

MT_MeshToVTK.x
Take a PROTEUS mesh file and

generate a VTK file with a
specific region color assignment

Using the regionmap output,
one can easily construct the
colormap table which allows
easy visualization in VISIT

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 7 ANL/NE-15/17

PROTEUS Mesh Tool Purpose Common Use

MT_RadialLattice.x
Take a series of meshes and
merge them in a Cartesian or

hexagonal grid pattern

To build a complete 3D
reactor geometry given a set

of assembly meshes

MT_Refine2Dmesh.x Perform a triangular mesh
refinement on a given 2D mesh

Only usable on 2D meshes
and only done to study spatial

mesh refinement issues

MT_ModifyMesh.x Perform a Rotation or Translation
of a mesh

Used to translate meshes
produced by CUBIT so that

merge can easily be used

MT_DataToVTK.x

Take an element or vertex sized
vector field from a data file and

create a VTK file that allows it to
be plotted

Used to circumvent HDF5
problems and allow other

physics codes to plot
solutions or error

distributions on a given mesh

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 8

2. MT_ApplyACRtoMesh: A Mesh Tool to Restrict the Element Block Size
The focus of this section is the MT_ApplyACRtoMesh code which only has command line

input. Table 2 shows the command line input options that are required for this mesh tool to
operate which are relatively simple.

Table 2. Command Line Options for the MT_ApplyACRtoMesh.x Mesh Tool

Command Line Option Purpose

acvolume The max volume of all elements stored in any given block

Input File The mesh input file

Output File The mesh output file

Example: ./MT_ApplyACRtoMesh.x 1.0 ATR.ascii ATR_1.0.ascii

The only input that needs to be explained in Table 2 is the “acvolume” input. In the base
CUBIT [2] geometry, the ATR [6] is very complex and it is unrealistic to define every plate as a
different region, especially if the composition is the same. Figure 1 can help to understand the
impact that the acvolume has on the mesh where we give every storage block of elements a color
assignment. From Figure 1, the original CUBIT mesh is observed to have 41 different regions
(and thus the user must define 41 compositions to map to the ATR geometry). The use of the
mesh tool with an acvolume setting of 20 cm3 increases the number of blocks to 4026 while the
acvolume setting of 1 cm3 yields 21780 blocks. Clearly it is unmanageable to require the user to
input 21780 compositions and the mapping information for it, let alone create a CUBIT geometry
with 21780 regions. What actually happens inside of PROTEUS is that all of these new blocks are
named the same as the originating blocks and thus the user’s original 41 compositions and
assignments remain the same. Internally, each block is given its own cross section storage and
thus this tool allows the user to set the granularity of the cross section assignment external to
PROTEUS and visualize it much like we have done here.

It is important to note that with a fixed cross section methodology like that typically used for
fast spectrum reactors, the use of this mesh tool is not needed. The sub-group API is where we
anticipate this functionality to be most useful whether it be applied externally to PROTEUS like
this mesh tool allows, or directly within PROTEUS which we are working on.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 9 ANL/NE-15/17

Figure 1. ATR Mesh from CUBIT (left) with 20 cm3 (middle) and 1 cm3 (right) “acvolume” Restrictions.

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 10

3. MT_BuildAxialMesh.x: A Mesh Tool to Extrude 2D meshes to 3D meshes
The focus of this section is the MT_BuildAxialMesh code which has both command line input

and a control input file. Table 3 shows the command line input options that are required for this
mesh tool to operate. Table 4 shows the description and an example of the control input for this
mesh tool where the NTmesh recognized input for this file is *.axial or “control.axial.”

Table 3. Command Line Options for the MT_BuildAxialMesh.x Mesh Tool

Command Line Option Purpose

Input File The control input file

Output File The mesh output file

Example: ./MT_BuildAxialMesh.x ATR.ascii ATR_1.0.ascii

Table 4. Control Input for the MT_BuildAxialMesh.x Mesh Tool

Input Keyword Format Purpose

MESH_FILE <input mesh file name> Set the input
mesh file name

BLOCK_ALIAS <mesh region name> <new region name> Rename mesh
regions

AXIAL_MESH <lower Z> <Upper Z> <Meshes> <Block Name> Define the axial
extrusion

Example
MESH_FILE unstructured.ascii
BLOCK_ALIAS REGION_000000001 FUEL
BLOCK_ALIAS REGION_000000002 MODERATOR
BLOCK_ALIAS REGION_000000003 CLADDING
AXIAL_MESH 0.0 2.0 1 AA
AXIAL_MESH 2.0 8.0 2 AB
AXIAL_MESH 16.0 23.2343 2 AC
AXIAL_MESH 23.2343 25.0 1 AD
AXIAL_MESH 8.0 16.0 2 AE

As can be seen, there are only three control inputs for this mesh tool one of which is naming the
mesh input file. While we could have done this as another command line input, we kept it this
way to have consistent coding with the radial lattice program discussed later in this report. This
approach allows one to combine multiple mesh tools together without having to string together
numerous command line input options. It is important to note that this mesh can be two-
dimensional or a three-dimensional slice which has clearly defined upper and lower axial planes.

Another key input option in this control file is the ability to rename the region names. In both
CUBIT and the exodus format, the various geometrical regions are given numbers rather than
names and thus the user must track an additional index of numbers to cross reference the more

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 11 ANL/NE-15/17

logical use of named regions and compositions. Using this mesh tool, one can replace the
numbers generated by the mesh tool with names for downstream usage.

The final control input option is the axial mesh specification. The first two values are
obviously the region size specification where the third one is the number of actual meshes to
place in each region. The last input on this line is only two letters long and serves as the
addendum to any of the existing blocks in the mesh. In the example shown, the regions in the
domain that are renamed to “fuel” will upon the extrusion exist as FUELAA, FUELAB,
FUELAC, etc… It is important to note that the region names in PROTEUS are limited to 16
characters and thus the alias operation allowed by BLOCK_ALIAS is limited to at most 14
characters. Figure 2 shows an example extrusion of a 2D pin-cell mesh where the region coloring
is not necessarily meaningful as the region ordering is not necessarily preserved from the two-
dimensional mesh.

Figure 2. Example MT_BuildAxialMesh.x Extrusion of a 2D Pin-cell Mesh.

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 12

4. MT_ChangeFEbasis.x: A Mesh Tool to Alter the Basis Order of a Mesh
The focus of this section is the MT_ChangeFEbasis.x code which only has command line

input. Table 5 shows the command line input options that are required for this mesh tool to
operate. Unlike the previous mesh tools, there is an optional command line option which we
indicate with the brackets []. Figure 3 shows an example of how the number of mesh vertices is
altered by this mesh tool.

Table 5. Command Line Options for the MT_ChangeFEbasis.x Mesh Tool

Command Line Option Purpose

New FE Order The new order of the FE basis functions

Input File The mesh input file

Output File The mesh output file

[Mesh Check] Optional check to verify the mesh transformation

Example: ./MT_ChangeFEbasis.x 2 input.ascii out.pntmesh yes

Figure 3. Example MT_ChangeFEbasis.x Change from a Linear (left) to Quadratic (right) Mesh.

From Figure 3, it appears as though the number of elements has increased dramatically,

however, in this case VISIT plots all higher order elements as if they were made of more lower
order elements and thus the additional elements are an indication that more vertices are present
than those necessary just to define the original element. In our example, we use the mesh tool to
change from a linear mesh to a quadratic finite element mesh. For this problem, the quadratic
mesh has 38979 vertices while in the linear mesh only had 10946 vertices noting that the number
of actual elements is the same in both meshes.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 13 ANL/NE-15/17

The second and third command line options are standard mesh input and output file
definitions. The fourth command line input option can be rather important as it performs a check
of the incoming and outgoing meshes to ensure that the volume of the two meshes does not
change. It also can be used to check for twisted or poorly defined elements before proceeding to
the PROTEUS code.

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 14

5. MT_Extrude2Dto3D.x: A Mesh Tool to Extrude 2D meshes to a 3D slice
The focus of this section is the MT_Extrude2Dto3D.x code which only has command line

input which is given in Table 6. Given that the command line input only consists of the input and
output mesh file names, there is nothing really to discuss. This mesh tool is one of the simplest
and only extrudes a 2D mesh into a 3D planer mesh. Figure 4 shows the transformation in the
mesh performed by this mesh tool noting that the final axial dimension is always 1.0 cm thick
where the lower axial plane is at 0 cm and the upper plane is at 1 cm. It is important to note that
linear hexahedrons in VISIT are plotted as a series of triangles (right picture) when using the
VTK format while the quadrilaterals are plotted as the correct boxes (left picture) in two-
dimensions. This can be confusing, but note that when we changed the basis order, the higher
order quadrilaterals are also plotted using triangles in VISIT thus giving the same appearance.
There is no difference in the visualization of linear and quadratic hexahedrons in VISIT when
using the VTK input.

Table 6. Command Line Options for the MT_Extrude2Dto3D.x Mesh Tool

Command Line Option Purpose

Input File The mesh input file

Output File The mesh output file

Example: ./MT_Extrude2Dto3D.x input.ascii out.pntmesh

Figure 4. Example MT_Extrude2Dto3D.x Change from a 2D (left) to a 3D (right) Mesh.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 15 ANL/NE-15/17

6. MT_FixCUBITHex27Issue.x: A Mesh Tool to Fix CUBIT 27 Node Hexahedrons
The focus of this section is the MT_FixCUBITHex27Issue.x code which only has command

line input that is given in Table 7. Much like the extrusion mesh tool, the command line input
only consists of the input and output mesh file names and there is nothing really to discuss.

This mesh tool is very simple and targets a problem in the CUBIT software where curvilinear
hexahedron 27 (hex27) elements are generated with an invalid set of points. The PROTEUS code
will detect these elements as having bad shapes and thus will refuse to run if they are present. The
problem with these elements in CUBIT is that the final 7 points added to the hexahedron 20
element (Hex20) are computed using a barycenter algorithm. In the case of the 27th vertex which
is supposed to lie at the center of the element, for a significantly curved element (cladding), the
barycenter can lie outside of the element. Similarly, for the other 6 vertices, the points are placed
on the local barycenter of the surface which is not on the actual surface. This mesh tool corrects
these mistakes by interpolating them from the hex20 element such that it exactly preserves the
volume of the hex20 meshes.

An example verification test problem is included in the regression test which shows how
invalid hex27 meshes are corrected for which we show a single element alteration in Figure 5.

Table 7. Command Line Options for the MT_FixCUBITHex27Issue.x Mesh Tool

Command Line Option Purpose

Input File The mesh input file

Output File The mesh output file

Example: ./MT_FixCUBITHex27Issue.x input.ascii out.pntmesh

Figure 5. Example MT_ FixCUBITHex27Issue.x Correction of a Bad Hex 27 Element (left).

It is important to note that this was done using the HDF5 file as VISIT does not support the
hex27 element in VTK. We encourage users to use the MT_ChangeFEbasis.x mesh tool to check

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 16

any hexahedron 27 meshes coming out of CUBIT to determine if their mesh is affected and use
the MT_FixCUBITHex27Issue.x mesh tool to correct them as necessary.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 17 ANL/NE-15/17

7. MT_IdentifyVertices.x: A Mesh Tool to Identify Vertices in a Mesh
The focus of this section is the MT_IdentifyVertices.x code which is used to identify a set of

vertices within a box of a given mesh. Table 8 shows the command line input options that are
required for this mesh tool to operate along with the example we display results for. Figure 6
shows the ATR mesh and a selected region of the mesh for which we want to know the vertices
of.

Table 8. Command Line Options for the MT_IdentifyVertices.x Mesh Tool

Command Line Option Purpose

Input File The mesh input file

X minimum The lower X coordinate of the search box

X maximum The upper X coordinate of the search box

Y minimum The lower Y coordinate of the search box

Y maximum The upper Y coordinate of the search box

Z minimum The lower Z coordinate of the search box

Z maximum The upper Z coordinate of the search box

Example: ./MT_IdentifyVertices.x ATR.ascii -14.6 -13.1 -4.8 -3.0 0.0 1.0

Figure 6. Example MT_IdentifyVertices.x Box Selection of a Pin in the ATR Mesh (right).

Much like the other mesh tools, the command line input for this mesh tool is straightforward as
it consists of the input mesh and the box boundaries that surround the target region of interest.
Figure 7 shows the output in this case which lists the box of interest along with all vertices that lie
within the box. Note how the vertex numbering is not sequential, but that there are significant

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 18

jumps in the numbering. The cited vertex number is the desired output as this vertex numbering is
preserved in both serial and parallel implementations of PROTEUS. The most common use of
this mesh tool is to identify a vertex to assign a point source to and with complicated meshes like
the ATR [6], this can be considerably difficult. In this case, the VTK export of the mesh was used
followed by VISIT to identify a box which surrounded the pin of interest.

[MeshTools]...Searching for vertices between X(-14.600000: -13.100000)
[MeshTools]...Searching for vertices between Y(-4.800000: -3.000000)
[MeshTools]...Vertex 6787 is within box at position -1.446940000E+01 -4.598293020E+00 0.000000000E+00
[MeshTools]...Vertex 6788 is within box at position -1.362443940E+01 -4.695364890E+00 0.000000000E+00
[MeshTools]...Vertex 6789 is within box at position -1.361945460E+01 -4.644730250E+00 0.000000000E+00
[MeshTools]...Vertex 6790 is within box at position -1.446940000E+01 -4.547351930E+00 0.000000000E+00
[MeshTools]...Vertex 7507 is within box at position -1.446940000E+01 -4.272292580E+00 0.000000000E+00
[MeshTools]...Vertex 7508 is within box at position -1.359253760E+01 -4.371315880E+00 0.000000000E+00
[MeshTools]...Vertex 7509 is within box at position -1.358755300E+01 -4.320685860E+00 0.000000000E+00
[MeshTools]...Vertex 7510 is within box at position -1.446940000E+01 -4.221359700E+00 0.000000000E+00
[MeshTools]...Vertex 8227 is within box at position -1.446940000E+01 -3.946342780E+00 0.000000000E+00
[MeshTools]...Vertex 8228 is within box at position -1.356063730E+01 -4.047295360E+00 0.000000000E+00
[MeshTools]...Vertex 8229 is within box at position -1.355565310E+01 -3.996669570E+00 0.000000000E+00
[MeshTools]...Vertex 8230 is within box at position -1.446940000E+01 -3.895417420E+00 0.000000000E+00
[MeshTools]...Vertex 8947 is within box at position -1.446940000E+01 -3.620439370E+00 0.000000000E+00
[MeshTools]...Vertex 8948 is within box at position -1.352873860E+01 -3.723300950E+00 0.000000000E+00
[MeshTools]...Vertex 8949 is within box at position -1.352375460E+01 -3.672679040E+00 0.000000000E+00
[MeshTools]...Vertex 8950 is within box at position -1.446940000E+01 -3.569520900E+00 0.000000000E+00
[MeshTools]...Vertex 9667 is within box at position -1.446940000E+01 -3.294578550E+00 0.000000000E+00
[MeshTools]...Vertex 9668 is within box at position -1.349684130E+01 -3.399330510E+00 0.000000000E+00
[MeshTools]...Vertex 9669 is within box at position -1.349185750E+01 -3.348712160E+00 0.000000000E+00
[MeshTools]...Vertex 9670 is within box at position -1.446940000E+01 -3.243666420E+00 0.000000000E+00
[MeshTools]...Vertex 10388 is within box at position -1.346494530E+01 -3.075382120E+00 0.000000000E+00
[MeshTools]...Vertex 10389 is within box at position -1.345996160E+01 -3.024767060E+00 0.000000000E+00
[MeshTools]...Vertex 38369 is within box at position -1.447180810E+01 -4.636319330E+00 0.000000000E+00
[MeshTools]...Vertex 38372 is within box at position -1.362999070E+01 -4.733059500E+00 0.000000000E+00
[MeshTools]...Vertex 38390 is within box at position -1.446681190E+01 -4.509339180E+00 0.000000000E+00
[MeshTools]...Vertex 38391 is within box at position -1.447157950E+01 -4.310334610E+00 0.000000000E+00
[MeshTools]...Vertex 38393 is within box at position -1.361424940E+01 -4.606982040E+00 0.000000000E+00
[MeshTools]...Vertex 38394 is within box at position -1.359790090E+01 -4.409038930E+00 0.000000000E+00
[MeshTools]...Vertex 38412 is within box at position -1.446687050E+01 -4.183343160E+00 0.000000000E+00
[MeshTools]...Vertex 38413 is within box at position -1.447135220E+01 -3.984399710E+00 0.000000000E+00
[MeshTools]...Vertex 38415 is within box at position -1.358240910E+01 -4.282929280E+00 0.000000000E+00
[MeshTools]...Vertex 38416 is within box at position -1.356581340E+01 -4.085046290E+00 0.000000000E+00
[MeshTools]...Vertex 38434 is within box at position -1.446692480E+01 -3.857397430E+00 0.000000000E+00
[MeshTools]...Vertex 38435 is within box at position -1.447112600E+01 -3.658510440E+00 0.000000000E+00
[MeshTools]...Vertex 38437 is within box at position -1.355056740E+01 -3.958905090E+00 0.000000000E+00
[MeshTools]...Vertex 38438 is within box at position -1.353372780E+01 -3.761079220E+00 0.000000000E+00
[MeshTools]...Vertex 38456 is within box at position -1.446697510E+01 -3.531497780E+00 0.000000000E+00
[MeshTools]...Vertex 38457 is within box at position -1.447090090E+01 -3.332663060E+00 0.000000000E+00
[MeshTools]...Vertex 38459 is within box at position -1.351872460E+01 -3.634907090E+00 0.000000000E+00
[MeshTools]...Vertex 38460 is within box at position -1.350164420E+01 -3.437135640E+00 0.000000000E+00
[MeshTools]...Vertex 38478 is within box at position -1.446702170E+01 -3.205640450E+00 0.000000000E+00
[MeshTools]...Vertex 38479 is within box at position -1.447067670E+01 -3.006854250E+00 0.000000000E+00
[MeshTools]...Vertex 38481 is within box at position -1.348688070E+01 -3.310933140E+00 0.000000000E+00
[MeshTools]...Vertex 38482 is within box at position -1.346956220E+01 -3.113213670E+00 0.000000000E+00

Figure 7. Example MT_IdentifyVertices.x Output.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 19 ANL/NE-15/17

8. MT_MeshRestrictForBGP.x: A Mesh Tool to Restrict Element Block Sizes
The focus of this section is the MT_MeshRestrictForBGP.x code which has a similar impact as

the MT_ApplyACRtoMesh.x. Table 2 shows the command line input options that are required for
this mesh tool to operate along with an example. The first two options are again the input and
output mesh file names which do not need to be discussed. The third input is optional where the
default is 10. The origin of this mesh tool is the Blue Gene/P architecture which had considerable
memory constraints. The purpose of this tool is to restrict the memory size of the data stored in
each element block. The memory size constraint is placed upon the element connectivity list that
is stored in the mesh data structure and the outcome of the code is a mesh where any large blocks
of element data are broken into smaller blocks. Unlike the MT_ApplyACRtoMesh.x tool, this
code constrains the memory size rather than the volume of the block and thus this tool only
applies to really large meshes. Because the base ATR mesh is a two-dimensional mesh, this code
makes no change to the block setup even when using a 1 MB input constraint.

Table 9. Command Line Options for the MT_MeshRestrictForBGP.x Mesh Tool

Command Line Option Purpose

Input File The mesh input file

Output File The mesh output file

[memory size limit] The memory size limit (in MB) to apply where the default
is 10 MB.

Example: ./ MT_MeshRestrictForBGP.x ATR.ascii ATR.pntmesh 20

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 20

9. MT_MeshToBGPmesh.x: A Mesh Tool to Create a Pre-Partitioned Mesh
The focus of this section is the MT_MeshToBGPmesh.x code which builds a pre-partitioned

mesh for use on the Blue Gene/P computer. In most cases there is no need to apply this mesh tool
although it can improve performance and reduce time in the mesh load process. Table 10 shows
the command line input options that are required for this mesh tool to operate noting that two of
them are optional.

Table 10. Command Line Options for the MT_MeshToBGPmesh.x Mesh Tool

Command Line Option Purpose

Input File The mesh input file

Output File The mesh output file (should end with a .bgpmesh)

Spatial decomposition The number of pieces to decompose the spatial mesh into

Ghosting type Use one ring of “VERTEX” or “ELEMENT” around mesh

[Domains per process] The number of domains assigned to each process

[vtk output file] An option to export a VTK file showing the decomposition

Example: ./MT_MeshToBGPmesh.x ATR.ascii ATR.bgpmesh 8 VERTEX 1 ATR.vtk

As mentioned, the main point of this mesh tool is to pre-partition the mesh which was needed
on the Blue Gene/P architecture as the memory resources were constrained and the time required
to load and partition large meshes could be considerable. The first two command line inputs are
similar to those of other mesh tools, but one should note that the .bgpmesh extension should be
used on the output file. The third command line input is by far the most important as it specifies
the number of pieces that the mesh is to be decomposed into. This must match the settings used in
PROTEUS. The ghosting type is specific to the actual solution algorithm being implemented. For
some solution methodologies one must obtain a single ring of ghosted vertex data while other
methodologies require a single ring of element data. This input must be specified and we note that
PROTEUS-SN requires the VERTEX setting.

The fifth command line input is optional and should always be set to 1. The basic intent of this
input is to give more than one piece of the mesh to each process and originated from our research
into the MOC solver. In the MOC case, it was necessary to assign several pieces of the mesh to
each process to get a better load balance which one should intuitively understand will yield more
communication. However, since the MOC algorithm is compute bound rather than
communication bound, the assignment of more sub-domains actually improves the load balancing
and thus yielded better parallel scaling.

The sixth command line input can be rather invaluable. Unlike the VTK files that are produced
by a simple mesh conversion (aka MT_MeshtoMesh.x), the parallel partitioning information is

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 21 ANL/NE-15/17

stored on the VTK file produced by the MT_MeshtoBGPmesh.x tool. Figure 8 shows the
ATR.vtk file that results from the example input applied to the ATR mesh. As can be seen, there
are 8 distinct colors assigned to the mesh. The left hand picture shows the parallel vertex
assignment and the interpolation occurs because of ghosted elements between two adjacent
processors. The right hand picture is more useful as it shows the element assignment to each
processor. In the element assignment case, there is no interpolation along shared element borders
but distinct boundaries.

Figure 8. Example MT_MeshToBGPmesh.x Vertex Rank (left) and Element Rank (right).

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 22

10. MT_MeshToHDF5.x: A Mesh Tool to Create a VISIT readable HDF5 File
The focus of this section is the MT_MeshToHDF5.x code which has command line input and

an optional input file to assign specific colors to each region. Table 11 shows the command line
input options that are required for this mesh tool to operate where the first two are again the mesh.

Table 11. Command Line Options for the MT_MeshToHDF5.x Mesh Tool

Command Line Option Purpose

Input File The mesh input file

Output File The mesh output file which should end with .h5

[region to color map file] A file which assigns colors to each region name

Example: ./MT_MeshToHDF5.x ATR.ascii ATR.h5 colormap.inp

Table 12. Example Color Map for the ATR Mesh
REGION_000000111 1
REGION_000000112 1
REGION_000000113 1
REGION_000000114 1
REGION_000000115 1
REGION_000000116 1
REGION_000000117 1
REGION_000000118 1
REGION_000000119 1
REGION_000000120 1
REGION_000000121 1
REGION_000000122 1
REGION_000000123 1
REGION_000000124 1
REGION_000000125 1
REGION_000000126 1
REGION_000000127 1
REGION_000000128 1
REGION_000000129 1
REGION_000000130 1
REGION_000000131 41
REGION_000000133 40
REGION_000000141 7
REGION_000000143 7
REGION_000000145 20
REGION_000000147 5
REGION_000000151 31
REGION_000000157 38
REGION_000000169 22
REGION_000000171 23
REGION_000000173 40
REGION_000001130 7
REGION_000001133 7
REGION_000001143 7
REGION_000001147 11
REGION_000001151 7
REGION_000002130 7
REGION_000002133 7
REGION_000002143 7
REGION_000003133 7
REGION_000004133 7

The colormap file is a structured input file and the HDF5 file that results can be used to look at
the mesh and block numbering. An output example is deferred until later in this report.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 23 ANL/NE-15/17

11. MT_MeshToMesh.x: A Mesh Tool to Convert Between Mesh Formats
The focus of this section is the MT_MeshToMesh code which only has the command line

input shown in Table 13. This particular mesh tool is quite useful for quickly converting between
different mesh formats and testing out GRID, NEMESH, and UFMESH inputs.

Table 13. Command Line Options for the MT_MeshToMesh.x Mesh Tool

Command Line Option Purpose

Input File The mesh input file

Output File The mesh output file

Example: ./MT_MeshToMesh.x input.ascii out.pntmesh

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 24

12. MT_MeshToVTK.x: A Mesh Tool to Create a VISIT Readable VTK File
The MT_MeshToVTK code is similar to the MT_MeshToHDF5 in that its purpose is to create

a visualization of the mesh only. Table 14 shows the command line input options that are required
for this mesh tool to operate. The color table description was given earlier in Table 12 and Figure
9 shows the impact of using the coloring upon the ATR mesh [6].

Table 14. Command Line Options for the MT_MeshToVTK.x Mesh Tool

Command Line Option Purpose

Input File The mesh input file

Output File The mesh output file which should end with .h5

[region to color map file] A file which assigns colors to each region name

Example: ./MT_MeshToVTK.x ATR.ascii ATR.vtk colormap.inp

Figure 9. Example MT_MeshToVTK.x Coloring of the ATR Mesh.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 25 ANL/NE-15/17

13. MT_RadialLattice.x: A Mesh Tool to Merge Meshes on a Radial Grid
The MT_RadialLattice.x code is used to merge existing two-dimensional or three-dimensional

meshes together on a structured grid and has both command line and a control input. Table 15
shows the command line input options for this mesh tool while Table 16 shows the control input
for the radial lattice code noting that *.merge is the NTmesh recognized extension. For a thorough
test of the various mesh tools and their integration, we utilize the merge routine to completely
build a homogeneous reactor problem.

Table 15. Command Line Options for the MT_RadialLattice.x Mesh Tool

Command Line Option Purpose

Control Input File The control input for the mesh tool

Output File The mesh output file

[use P or A names] A switch to preface the region name with a P(in) or A(ssembly). A is
used by default.

[output vtk] An option to build a VTK file

[debug] Yes/No flag to generate debug output for the merging process

Example: ./MT_RadialLattice.x merge.inp merge.ascii P merge.vtk no

The command line input is not much different from the other mesh tools. The optional P or A
names will be discussed shortly. The debug input should not be used unless the user has intimate
knowledge of the mesh merging algorithm. The output vtk eliminates the need to run this mesh
tool (or any other) when creating a VTK file to visualize and check the mesh merging process.
One easy way to do this is to look at the “NumberOfSurfaceTags” vector exported on the mesh.
Any distinct mesh that is created by a user must have valid boundary conditions before merging
even though they are not to be included in the final geometry. When the merging process fails, the
mesh will appear to have internal boundary conditions that are not valid for neutronics work.

From Table 16 we can see that the radial lattice code has only three keyword input lines. The
“radial_lattice” keyword input is by far the most important and must appear first. This keyword
input allows the user to specify the type of geometrical grid of which Cartesian and hexagonal are
supported. Given that these are structured grids the user must also provide a pitch where in the
Cartesian case, the x and y pitch are assumed identical in the merge program. One can use the
MT_MeshModify.x program to alter the y location of meshes that do not obey this mesh merging
rule. The last two numbers on this line specify the size of the grid data map and must be
consistent with the gridline_data keyword input to work. In the example shown, we are going to
build a hexagonal grid of meshes with a pitch of 8.0 cm and grid size of 13 x 13.

The second keyword input in Table 16 is geometry_data which is used to specify specific
meshes to load. The first character input is an alias naming to make the gridline_data input easier

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 26

to read. In the example, we have four geometry_data input lines each of which load four such
meshes and alias them as A1 through A4. It is important to note that in each case we load a
MT_BuildAxialMesh.x control input file described earlier. Table 17 shows the hex01.axial file
referenced in the Table 16 example and Table 18 shows the hex01.ufmesh file referenced in
Table 17. As one can see, the UFmesh is rather simplistic and one can understand how far more
complicated geometries and meshes can be built.

To finalize the description of the merge input, we look at the gridline_data in Table 16 and see
that we constructed a hexagonal core. We are not technically required to use the
MT_RadialLattice.x to construct the final mesh as any of the mesh tools can be used so long as
the input in Table 16 ends with a .merge extension. Figure 10 shows the resulting geometry and
mesh that this example input builds. It is important to note that the pictures were made using
CUBIT and a VTK file from MT_MeshToMesh.x. If one uses the actual MT_RadialLattice.x
code, then the block region names can be altered. This is particularly important if one wants to
assign different compositions to each assembly without having to build separate meshes for each
assembly.

To use the auto-renaming scheme, one must simply provide the assignment files which was
not done with the example shown in Table 16. In this case, the mapping between regions and
compositions will be maintained, but when the copy process is done to duplicate the given
assembly mesh in the lattice, the region names and composition names are updated with a Axxyy
preface where “xx” is the radial X position and “yy” is the radial Y position. If the user specifies
the optional P on the command line input, this will be Pxxyy corresponding to a specific pin
position. If one uses the merge operation to build each assembly with pin names Pxxyy and then
to merge assemblies, the final names will be AxxyyPxxyy and the compositions appearing in the
final assignment file will also have the same information. If desired, one should use the
MT_BuildAxialMesh code after creating each assembly mesh as it will append the two letters to
the end to create names PxxyyAA, PxxyyAB, … consistent with the example shown in that
section. Combining the assembly meshes would then lead to names AxxyyPxxyyAA,
AxxyyPxxyyAB, … which uses the maximum size of the character string at this time.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 27 ANL/NE-15/17

Table 16. Control Input for the MT_RadialLattice.x Mesh Tool

Input Keyword Format Purpose

RADIAL_LATTICE
<type> <pitch> <x size> <y size>

<Type> = <hexagonal> or <Cartesian>

Specify the type of grid, its
pitch, and number of x and

y dimensions

GEOMETRY_DATA <alias> <input mesh> [input assignment]
Specify an input mesh and
assignment file and assign

them both an alias

GRIDLINE_DATA <y position> <x1> <x2> … <xN> Define the axial extrusion

Example
RADIAL_LATTICE Hex 8.0 13 13
GEOMETRY_DATA A1 ./hex01.axial
GEOMETRY_DATA A2 ./hex02.axial
GEOMETRY_DATA A3 ./hex03.axial
GEOMETRY_DATA A4 ./hex04.axial
GRIDLINE_DATA 13 O A3 A3 A3 A3 A3 O O O O O O O
GRIDLINE_DATA 12 A3 A3 A3 A3 A3 A3 A3 A3 O O O O O
GRIDLINE_DATA 11 A3 A3 A4 A2 A2 A2 A4 A3 A3 O O O O
GRIDLINE_DATA 10 A3 A3 A2 A2 A2 A2 A2 A2 A3 A3 O O O
GRIDLINE_DATA 9 A3 A3 A2 A2 A4 A1 A4 A2 A2 A3 A3 O O
GRIDLINE_DATA 8 A3 A3 A2 A2 A1 A1 A1 A1 A2 A2 A3 A3 O
GRIDLINE_DATA 7 O A3 A4 A2 A4 A1 A4 A1 A4 A2 A4 A3 O
GRIDLINE_DATA 6 O A3 A3 A2 A2 A1 A1 A1 A1 A2 A2 A3 A3
GRIDLINE_DATA 5 O O A3 A3 A2 A2 A4 A1 A4 A2 A2 A3 A3
GRIDLINE_DATA 4 O O O A3 A3 A2 A2 A2 A2 A2 A2 A3 A3
GRIDLINE_DATA 3 O O O O A3 A3 A4 A2 A2 A2 A4 A3 A3
GRIDLINE_DATA 2 O O O O O A3 A3 A3 A3 A3 A3 A3 A3
GRIDLINE_DATA 1 O O O O O O O A3 A3 A3 A3 A3 O

Table 17. Control Input of the hex01.axial File for the MT_RadialLattice.x Example
MESH_FILE hex01.ufmesh
AXIAL_MESH 0.0 20.0 3 A
AXIAL_MESH 20.0 40.0 3 B
AXIAL_MESH 40.0 60.0 3 C
AXIAL_MESH 60.0 70.0 2 D
AXIAL_MESH 70.0 80.0 2 E
AXIAL_MESH 80.0 90.0 2 F
AXIAL_MESH 90.0 100.0 2 G
AXIAL_MESH 100.0 110.0 2 H
AXIAL_MESH 110.0 130.0 3 I
AXIAL_MESH 130.0 150.0 3 J
AXIAL_MESH 150.0 170.0 3 K

Table 18. UFmesh Input of the hex01.ufmesh File for the MT_RadialLattice.x Example
GRID_TYPE HEXAGONAL 1 1
GRID_PITCH 8.0
!MESH_ROTATE 30.0
ELEMENT_ORDER 1
PINCELL_REGIONS A1 INNERCORE
PINCELL_MESHES A1 2
GRID_MAP 1 A1
PINCELL_AZIMUTHAL 2

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 28

Figure 10. Example MT_RadialLattice.x Mesh Demonstrating Complete Problem Creation.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 29 ANL/NE-15/17

14. MT_Refine2Dmesh.x: A Mesh Tool to Automatically Refine a 2D Mesh
The MT_Refine2Dmesh code only applies to two-dimensional linear finite element meshes at

this time. Its purpose is to make a uniform refinement in a given mesh. This mesh code has very
basic command line inputs as shown in Table 19. Figure 11 shows an example refinement of the a
2D mesh where the right hand picture is the result of the refinement. As can be seen, the
algorithm places a single point at the barycenter of each existing finite element and sub-divides
the element into triangles. This approach quickly leads to poor aspect ratio elements. An
alternative idea is to split each surface of the existing element into two pieces thereby breaking
each triangle into four elements and each quadrilateral into four elements. Given the rare use of
this mesh tool, this alternative scheme has not been implemented. Based upon the poor mesh
quality that results, one should consider using the mesh tools discussed in this report or the
commercial mesh generator to produce a more refined mesh.

Table 19. Command Line Options for the MT_Refine2Dmesh.x Mesh Tool

Command Line Option Purpose

Input File The mesh input file

Output File The mesh output file

Example: ./MT_Refine2Dmesh.x input.ascii out.pntmesh

Figure 11. Example MT_ Refine2Dmesh.x Barycenter Refinement of a 2D Mesh.

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 30

15. MT_ModifyMesh.x: A Mesh Tool to Rotate and Translate a Mesh
The MT_ModifyMesh code can be used to rotate a given mesh around the coordinate axis and

translate it. This mesh code has rather complicated command line input as shown in Table 20.
From this table, one should understand that there are actually four different command line input
options that are accepted. To understand them, one must understand that the actual rotation for
every vertex r in the mesh given as:

'r R r= ⋅
 (1)

In this form, the matrix R is a 3x3 matrix which is generic in its usage, but should be normalized
to unity in practice. Looking at the first example, the usage only specifies the rotation angle
which yields a rotation matrix of the form:

cos() sin() 0
sin() cos() 0

0 0 1
R

θ θ
θ θ

−
 =

 (2)

where the angle θ is computed from the entry in degrees.

Table 20. Command Line Options for the MT_ModifyMesh.x Mesh Tool

Command Line Option Purpose

Input File The mesh input file

Output File The mesh output file

Rotation Angle The X-Y plane counter clockwise rotation to apply

X movement The translation to apply in the X direction

Y movement The translation to apply in the Y direction

Z movement The translation to apply in the Z direction

RI,J component The (i,j) matrix value of the rotation matrix R

Option 1: <input mesh> <output mesh> <rotation>

Option 2: <input mesh> <output mesh> <X move> <Y move> <Z move>

Option 3: <input mesh> <output mesh> <rotation> <X move> <Y move> <Z move>

Option 4: <input mesh> <output mesh> <R11> <R12> <R13> <R21> … <R33>

Example 1: ./MT_ModifyMesh.x input.ascii out.pntmesh 30

Example 2: ./MT_ModifyMesh.x input.ascii out.pntmesh 2 2 2

Example 3: ./MT_ModifyMesh.x input.ascii out.pntmesh 30 2 2 2

Example 4: ./MT_ModifyMesh.x input.ascii out.pntmesh .4 .2 0 .1 .3 0 0 0 1.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 31 ANL/NE-15/17

In the second input option and associated example, the input only focuses on the translation of a
given mesh. The third input option combines the first two and thus allows a rotation followed by
a translation of a given mesh. The fourth input option only deals with rotation where the user can
specify a complete rotation matrix. This input option actually allows the user to not only
arbitrarily rotate a mesh, but also skew the mesh when the vectors are not normalized. One should
be very careful when using this approach as the overall volume may not be preserved.

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 32

16. MT_DataToVTK.x: A Mesh Tool to Plot Solution data Via a VTK File
The MT_DataToVTK code is similar to the MT_MeshToVTK file in that its purpose is to

create a visualization of the mesh. Table 21 shows the command line input options that are
required for this mesh tool to operate. The color table description was given earlier in Table 12
and Figure 12 shows an example of loading a flux vector field and plotting it on a mesh.

Table 21. Command Line Options for the MT_MeshToVTK.x Mesh Tool

Command Line Option Purpose

Input File The mesh input file

Data File The data file that is to be plotted

Output File The mesh output file which should end with .h5

[Element/Vertex] (E)lement or (V)ertex Flag Indicating Field Type

[region to color map file] A file which assigns colors to each region name

Example: ./MT_MeshToVTK.x bench08.ascii bench08.data bench08.vtk e color.inp

Figure 12. Example MT_DataToVTK.x Plot of an Element Vector Field.

The primary difference in this mesh tool is the “Data File” of which Figure 13 shows an

example. This file should have no header comment lines and the first column must contain the

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 33 ANL/NE-15/17

element or vertex index position to place the vector data. As can be seen, the ordering of the data
is not important, only that the index does not go out of the bounds of the mesh (i.e. number of
mesh vertices or mesh elements). The vector data will be labeled CellWiseXXXX for element
data and VertexWiseXXXX for vertex data where the XXXX is the column index (i.e. 0001 to
0007 in the example). The mesh tool uses the PROTEUS free format reader and thus one can
include comments at the end of each line, but it will detect any input line of data that does not
have the same number of columns as the first line and flag it as an error.

 9569 2.929E-3 3.915E-3 2.160E-3 1.003E-3 7.756E-4 2.345E-3 6.232E-3
 9570 2.847E-3 3.764E-3 2.066E-3 9.601E-4 7.391E-4 2.204E-3 5.769E-3
 9590 2.761E-3 3.669E-3 2.008E-3 9.339E-4 7.170E-4 2.118E-3 5.488E-3
 9591 2.786E-3 3.637E-3 1.991E-3 9.281E-4 7.128E-4 2.109E-3 5.466E-3
 9592 3.387E-3 5.224E-3 3.018E-3 1.411E-3 1.116E-3 3.772E-3 1.098E-2
 9593 3.373E-3 5.047E-3 2.898E-3 1.353E-3 1.069E-3 3.568E-3 1.031E-2
 9594 3.310E-3 4.833E-3 2.754E-3 1.283E-3 1.010E-3 3.315E-3 9.466E-3
10765 3.253E-3 4.608E-3 2.603E-3 1.212E-3 9.514E-4 3.069E-3 8.644E-3
10766 3.179E-3 4.369E-3 2.446E-3 1.137E-3 8.885E-4 2.802E-3 7.739E-3
10767 3.061E-3 4.141E-3 2.301E-3 1.069E-3 8.311E-4 2.568E-3 6.962E-3
10768 2.865E-3 3.350E-3 1.738E-3 8.028E-4 6.023E-4 1.630E-3 3.860E-3
10769 2.672E-3 3.186E-3 1.645E-3 7.614E-4 5.668E-4 1.496E-3 3.393E-3
 411 2.583E-3 3.069E-3 1.582E-3 7.348E-4 5.439E-4 1.413E-3 3.129E-3
 412 2.590E-3 3.021E-3 1.559E-3 7.255E-4 5.373E-4 1.400E-3 3.104E-3
 427 3.802E-3 5.883E-3 3.415E-3 1.596E-3 1.270E-3 4.366E-3 1.285E-2
 428 3.700E-3 5.489E-3 3.158E-3 1.473E-3 1.168E-3 3.946E-3 1.149E-2
 429 3.581E-3 5.070E-3 2.873E-3 1.338E-3 1.055E-3 3.473E-3 9.944E-3
 430 3.422E-3 4.588E-3 2.562E-3 1.190E-3 9.327E-4 2.971E-3 8.318E-3
 431 3.128E-3 4.108E-3 2.253E-3 1.044E-3 8.093E-4 2.460E-3 6.640E-3
 432 3.000E-3 3.660E-3 1.946E-3 8.994E-4 6.855E-4 1.960E-3 4.987E-3
 433 3.116E-3 4.151E-3 2.298E-3 1.071E-3 8.287E-4 2.448E-3 6.497E-3
 434 3.043E-3 4.006E-3 2.204E-3 1.027E-3 7.909E-4 2.304E-3 6.021E-3
 435 2.962E-3 3.921E-3 2.150E-3 1.001E-3 7.686E-4 2.220E-3 5.736E-3
 436 2.951E-3 3.908E-3 2.142E-3 9.976E-4 7.656E-4 2.216E-3 5.723E-3
 437 3.014E-3 3.968E-3 2.181E-3 1.015E-3 7.813E-4 2.289E-3 5.974E-3
 …
 1437 3.014E-3 3.968E-3 2.181E-3 1.015E-3 7.813E-4 2.289E-3 5.974E-3

Figure 13. Example MT_DataToVTK.x Data File Containing Seven Fields.

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 34

17. Summary
In the preceding sections, each mesh tool that is provided with PROTEUS is described. In all

cases, command line input of some form is expected if not required. In the case of
MT_BuildAxialMesh.x and MT_RadialLattice.x, an additional control input file is required that
describes how the final mesh is to be constructed. For the MT_MeshToVTK.x and
MT_MeshToHDF5.x codes, an additional region to color map file is optionally required to create
a user defined color setup, but this can greatly assist in the visualization and understanding of the
mesh materials.

All of these mesh tools are tested routinely with a series of meshes that have known results. In
most cases they run in a few milliseconds with the only exception being the creation of meshes
with >>1 million vertices. In these cases the run times can be on the order of a minute. Compared
with a commercial mesh generator, these times are virtually negligible and further, given that the
mesh tools provide user friendly naming conventions rather than abstract numbers, they are vastly
more convenient to use. In most cases, the bulk of the time is spent writing the mesh or VTK file
to the disk rather than performing operations. In time, we anticipate the UFmesh capability being
a more rigorously used option for generating reactor lattice geometries as a consequence.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 35 ANL/NE-15/17

References
1. Emily R. Shemon, Micheal A. Smith, Changho Lee, and Abel Marin-Lafleche, “PROTEUS-

SN User Manual,” ANL/NE-14/6 Technical Report, November 19, 2014.
2. CUBIT Web page, www.cubit.sandia.gov.
3. VisIt User’s Manual, Version 1.5, UCRL-SM-220449, October 2005.
4. The HDF Group. Hierarchical Data Format, version 5, 1997-2014.

http://www.hdfgroup.org/HDF5/.
5. VTK Web page, www.vtk.org.
6. S.S. Kim, et al., “Advanced Test Reactor: Serpentine Arrangement of Highly Enriched Water-

Moderated Uranium-Aluminide Fuel Plates Reflected by Beryllium.” NEA/NSC/DOC(95)-
03/II, HEU-MET-THERM-22. Idaho National Laboratory, 2005.

http://www.hdfgroup.org/HDF5/
http://www.vtk.org/

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 36

Appendix A. UFmesh: A User Friendly Mesh Format
The UFmesh format was recently added to the PROTEUS code to assist in the creation of

meshes for pin-cells and better control the meshing behavior than what is practical in CUBIT. In
this appendix, we cover the input options for the UFmesh and give several examples of how to
create input geometries.

To begin, the UFmesh is a keyword-based input description where the keywords are given in
Table 22. The current UFmesh capability only supports Cartesian and Hexagonal geometries
where Figure 14 shows the reference face numbering and sector numbering for both of these
geometries. To understand the input in Table 22, it is easiest to look at the example inputs
provided in Figure 15 through Figure 19. In each figure we include the resulting plot of the region
naming (arbitrary color) associated with each UFmesh file. It is extremely important to note that
UFmesh only creates linear two-dimensional meshes of circular geometries and thus curvilinear
surfaces are always represented using faceted surfaces. Thus all cylinders are linearly tessellated
and the radius of each cylinder is adjusted to give the correct volume. While the input does allow
the conversion to higher order basis functions (refer to the MT_ChangeFEbasis.x mesh tool for a
description of this operation), the cylindrical surfaces are always based upon the linear
tessellation. To create 3D meshes, one should study how to use the MT_BuildAxialMesh.x mesh
tool to create a three-dimensional mesh from each two-dimensional UFmesh file. An example of
this was given in the MT_RadialLattice.x mesh code section.

For any UFmesh file, the Grid_Type keyword input must be listed first as it specifies the type
of geometry being constructed and how large it is. For example, Figure 15 and Figure 16 both
define 5 x 5 grids while in Figure 17, a 1 x 1 grid problem is specified. For hexagonal geometries,
one MUST use an odd number of I and J positions, which correspond to an assembly of hex pins
laid out in rings. The corresponding pictures with the first two examples show a 5 x 5 grid while
the third example has only a single hex. The second keyword input should be the Grid_Pitch as it
must be known to define the size of pin-cells. This quantity is simply the pin pitch and should be
set appropriately such that the grid of pins does not exceed the inner most duct wall (or assembly)
pitch.

To specify an assembly pitch larger than the grid of pins, one must include the Assembly_Sizes
keyword input. In Figure 15, a single value is given for Assembly_Sizes which indicates the final
assembly pitch. In this case the assembly pitch is not that important, but it is error-checked to
ensure that the grid of pin-cells is not larger than the assembly pitch.

In Figure 16, two values are given for Assembly_Sizes, the first value indicating the location of
an assembly duct region named DUCT1, and the second value indicating the assembly pitch.
From the associated picture, one can see a thin red region surrounding the domain which
corresponds to the DUCT1 region that was defined. Looking closely at the resulting mesh, we see
that the creation of this duct causes a warping of the pin-cell mesh algorithm for those pin-cells
on the border such that the gaps between the pin-cells and the inner duct wall are filled. To

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 37 ANL/NE-15/17

prevent poor quality meshes, one should not specify a duct region that is extremely far away from
the pin edges (which is the case for this example problem). It is suggested to include an additional
fake duct wall closer to the pin cells if necessary to get a good mesh.

The Assembly_Meshes input is required in Figure 16 to define the number of radial meshes in
the duct region. The Assembly_Regions input is also required in order to name the resulting duct
region. The Assembly_Meshes and Assembly_Regions inputs are not required in the Figure 15 or
Figure 16 examples because there is no duct present.

Both the Figure 15 and Figure 16 examples have pin-cells and thus include the Pincell_Radii,
Pincell_Regions, and Pincell_Meshes keywords. The order of these inputs is not important, only
that they appear after the Grid_Type keyword input. Referencing Table 22, one can see that the
first input on each of these keyword inputs is an alias name for the pin-cell itself. This is done to
identify the same pin cell across multiple keywords and also for later use in the Grid_Map input.
Focusing on Figure 15, one can see that three distinct pin-cells are defined. The first one, A1,
specifies that there are three rings named Fuel1, Fuel1, and Clad1 surrounded by a region named
moderator. The first two region names are set to be the same to demonstrate that boundary layer
meshing can be applied by simply including additional radii with identical region names. The
second pin-cell, A2, specifies 5 radial rings where the same Fuel1 and Moderator region names
from A1 were used but additional names for cladding and poison were added. Because all of the
pin-cells have the same central region names and moderator region names, the coloring in the
picture is identical between these regions. The last pin-cell in Figure 15 does not specify any
radial rings and is an example of defining a missing pin which can occur in some types of fuel
assemblies.

A quick comparison of the pin-cell information in Figure 16 to Figure 15 indicates an exact
duplication of the input. This was done to show the differences in output between the two
examples. A comparison of the mesh pictures provided in both example inputs shows a base 8
region meshing scheme in the Cartesian case and a 12 region geometrical meshing scheme. Note
that this matches the sector geometry definitions in Figure 14. The default value of
Pincell_Azimuthal input is 1 mesh per sector where the sectors are shown in Figure 14. The
addition of the Pincell_Azimuthal input in Figure 16 results in a much finer representation of the
pin-cells where each surface of the pin-cell is split into 8 meshes (each pin-cell surface has 2
sectors each of which is split into 4 meshes by the Pincell_Azimuthal input). This pattern can
more easily be seen in Figure 17 where Pincell_Azimuthal is set to 2 and 24 (6 surfaces x 2
sectors x 2 azimuthal segments) total meshes are created along the border of the hex pin-cell.

The last input to consider is the Grid_Map input which specifies the layout of pin-cells in the
grid. For the Cartesian case in Figure 15, the corners of the 5 x 5 grid are filled with the letter “O”
or word “NULL” which are interpreted by the input to be non-meshed regions of the domain. The
picture shows the same loading pattern as the ascii input noting that the grid_map input is reverse
ordered with respect to Y in order for the picture and grid map to match. This infers that the 1,1
index position of I-J is at the origin and that any higher values of I or J lead to increases in the x

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 38

or y position. The hexagonal input of Figure 16 shows a similar case, but here, there are six total
pin-cells that are set as NULL to get the desired hexagonal pattern. If one does not specify any
ducts and fills the complete lattice of pin-cells, then one obtains a full hex lattice of pins like that
shown in Figure 20. Note that the Assembly_Sizes input was left off of this example in order to
prevent it from creating an outer hexagonal boundary around the lattice of pins. If one provides
these extra pin-cells and Assembly_Sizes input, then the code will fail with errors if the lattice of
pins intersects the boundary or produce a very poor mesh if the lattice of pins does not intersect
the innermost boundary (i.e. do not use this approach). It is important to note that one should
avoid providing mesh input that produces very poor quality meshes for PROTEUS-SN.

The final two example problems demonstrate fine-grained control of the meshing scheme.
Figure 18 shows how to use sector and face meshing controls for hexagonal geometries while
Figure 19 shows how to use sector and face meshing controls for Cartesian geometries. Unlike
the other examples, the Pincell_Azimuthal input has 12 inputs for Figure 18 and 8 inputs for
Figure 19 (as opposed to a single input). In Figure 18, sectors 1 and 2 of each pin-cell are more
finely meshed then the remaining sectors (4 versus a 1). Looking at the mesh picture itself, one
sees that because we include a pin-cell lattice, the program is forced to make sectors 7 and 8
match the mesh settings in 1 and 2 such that the entire problem can be meshed. Note that this is
just an example mesh and should not in practice be used.

To control the meshing along the assembly border such that assemblies can later be merged
into a core layout, the Assembly_Border input in Figure 18 is specified to produce 16 meshes per
surface. One should understand that without this input there would be 11 or 21 meshes per
surface. The restriction to 16 meshes requires the addition of a fake “duct” region around the pin
lattice which is triangle meshed rather than quad meshed. The triangle mesh can be very poor
quality if the number of intervals is considerably different. Looking at Figure 19, we again use the
Pincell_Azimuthal and Assembly_Border inputs to alter the behavior. In this case we see a much
better quality mesh as the number of intervals is more comparable between the pins and the duct
surface.

Overall, the UFmesh capability allows users to quickly define meshes for reactor problems.
The only real question that remains that is not covered by the example problems is how to merge
assembly meshes together that have different sizes and numbers of pins. To merge several
assemblies together, we strongly recommend using the Assembly_Border combined with the
Pincell_Azimuthal input to define the mesh.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 39 ANL/NE-15/17

Table 22. Keyword Input Options for the UFmesh File Format
Key Word Format Purpose

Grid_type <name> <I size> <J size>

Define the type of geometry being setup and its grid size in both I
and J directions.

Name = {hexagonal, Cartesian}

Note: I and J must be odd for hexagonal type grids

Grid_pitch <I pitch> <J pitch> Defines the spatial pitch of the grid being constructed (pin-cell
pitch)

Element_order <integer order> Defines the basis order of the finite element mesh

Mesh_rotate <rotation angle> Defines an optional rotation of the mesh. The counter-clockwise
rotation angle is consistent with the MT_ModifyMesh.x code.

Mesh_translate <X movement> <Y movement> Defines an optional X and Y translation of the mesh

Assembly_sizes <duct FTF 1> … <duct FTF N> <Assembly pitch> Defines any duct flat-to-flat pitches and the assembly flat-to-flat
pitch

Assembly_regions <duct name 1> … <duct name N> Defines the region names of each consecutive duct

Assembly_meshes <meshes 1> … <meshes N> Defines the number of radial meshes in each duct region

Assembly_border <integer value> [integer value] …

Sets the number of intervals on each face of a hexagonal (6
inputs) or Cartesian (4 inputs) assembly. A single input can be
given to set all faces to the same value. Mesh symmetry is
imposed in multi-pin cases.

Pincell_radii <alias name> <radius 1>…<radius R> Defines the radius setup of the pin-cell given by the alias name

Pincell_regions <alias name> <name 1>…<name R> Defines the region name of each radial ring in the pin-cell given
by the alias name

Pincell_meshes <alias name> <meshes 1>…<meshes R> Defines the number of radial meshes in each radial ring for the
pin-cell given by the alias name

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 40

Pincell_azimuthal <integer value> [integer value] …

Defines the number of azimuthal meshes per half face of a
hexagonal (12 inputs) or Cartesian (8 inputs). A single input can
be given to set all half-faces to the same value. Mesh symmetry is
imposed in multi-pin cases. Sector ordering is given in Figure 14.

Grid_map <Index J> <name 1> …<name X size> Defines the layout of the pin-cells in the assembly grid.

Figure 14. Face (outside) and Sector (inside) Numbering for Cartesian (left) and hexagonal (right) Geometry

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 41 ANL/NE-15/17

GRID_TYPE CARTESIAN 5 5
GRID_PITCH 2.0 2.0
ELEMENT_ORDER 1
ASSEMBLY_SIZES 10.0
PINCELL_RADII A1 0.1 0.5 0.75
PINCELL_REGIONS A1 FUEL1 FUEL1 CLAD1 MODERATOR
PINCELL_MESHES A1 1 2 1 2
PINCELL_RADII A2 0.1 0.5 0.6 0.7 0.75
PINCELL_REGIONS A2 FUEL1 FUEL1 INNERCLAD2 POISON2 OUTERCLAD2 MODERATOR
PINCELL_MESHES A2 1 2 1 1 1 2
PINCELL_REGIONS A3 MODERATOR
PINCELL_MESHES A3 3
GRID_MAP 5 O A1 A1 A1 O
GRID_MAP 4 A1 A2 A2 A2 A1
GRID_MAP 3 A1 A2 A3 A2 A1
GRID_MAP 2 A1 A2 A2 A2 A1
GRID_MAP 1 O A1 A1 A1 NULL

Figure 15. Example Cartesian Assembly UFmesh File

GRID_TYPE HEXAGONAL 5 5
GRID_PITCH 2.0
ELEMENT_ORDER 2
ASSEMBLY_SIZES 10.20 10.3
ASSEMBLY_REGIONS DUCT1
ASSEMBLY_MESHES 1
PINCELL_RADII A1 0.1 0.5 0.75
PINCELL_REGIONS A1 FUEL1 FUEL1 CLAD1 MODERATOR
PINCELL_MESHES A1 1 2 1 2
PINCELL_RADII A2 0.1 0.5 0.6 0.7 0.75
PINCELL_REGIONS A2 FUEL1 FUEL1 INNERCLAD2 POISON2 OUTERCLAD2 MODERATOR
PINCELL_MESHES A2 1 2 1 1 1 2
PINCELL_REGIONS A3 MODERATOR
PINCELL_MESHES A3 3
GRID_MAP 5 A1 A1 A1 O O
GRID_MAP 4 A1 A3 A2 A1 NULL
GRID_MAP 3 A1 A2 A1 A2 A1
GRID_MAP 2 O A1 A2 A3 A1
GRID_MAP 1 O O A1 A1 A1
PINCELL_AZIMUTHAL 4

Figure 16. Example Hexagonal Assembly UFmesh File

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 42

GRID_TYPE HEXAGONAL 1 1
GRID_PITCH 8.0
!MESH_ROTATE 30.0
ELEMENT_ORDER 1
PINCELL_REGIONS A1 OUTERCORE
PINCELL_MESHES A1 2
GRID_MAP 1 A1
PINCELL_AZIMUTHAL 2

Figure 17. Example Hexagonal Homogeneous Pin-cell UFmesh File

GRID_TYPE HEXAGONAL 5 5
GRID_PITCH 1.0
ELEMENT_ORDER 1
ASSEMBLY_REGIONS DUCT1
ASSEMBLY_MESHES 1
ASSEMBLY_SIZES 4.5 4.6
PINCELL_RADII A1 0.4
PINCELL_REGIONS A1 DRAP DILUENT
PINCELL_MESHES A1 1 1
GRID_MAP 5 A1 A1 A1 O O
GRID_MAP 4 A1 A1 A1 A1 NULL
GRID_MAP 3 A1 A1 A1 A1 A1
GRID_MAP 2 O A1 A1 A1 A1
GRID_MAP 1 O O A1 A1 A1
PINCELL_AZIMUTHAL 4 4 1 1 1 1 1 1 1 1 1 1
ASSEMBLY_BORDER 16 16 16 16 16 16

Figure 18. Example Hexagonal Sector and Face Meshing Control UFmesh File

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 43 ANL/NE-15/17

GRID_TYPE CARTESIAN 5 5
GRID_PITCH 2.0 2.0
ELEMENT_ORDER 1
ASSEMBLY_SIZES 10.0 11.0 12.0
ASSEMBLY_REGIONS DUCT1 DUCT2
ASSEMBLY_MESHES 1 2
PINCELL_RADII A1 0.1 0.5 0.75
PINCELL_REGIONS A1 FUEL1 FUEL1 CLAD1 MODERATOR
PINCELL_MESHES A1 1 2 1 2
PINCELL_RADII A2 0.1 0.5 0.6 0.7 0.75
PINCELL_REGIONS A2 FUEL1 FUEL1 INNERCLAD2 POISON2 OUTERCLAD2 MODERATOR
PINCELL_MESHES A2 1 2 1 1 1 2
PINCELL_REGIONS A3 MODERATOR
PINCELL_MESHES A3 3
GRID_MAP 5 A2 A1 A1 A1 A2
GRID_MAP 4 A1 A2 A2 A2 A1
GRID_MAP 3 A1 A2 A3 A2 A1
GRID_MAP 2 A1 A2 A2 A2 A1
GRID_MAP 1 A3 A1 A1 A1 A3
PINCELL_AZIMUTHAL 3 4 3 4 3 4 3 4
ASSEMBLY_BORDER 22 18 22 18

Figure 19. Example Cartesian Sector and Face Meshing Control UFmesh File

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 44

Figure 20. Example Hexagonal Pin-cell Lattice without a Duct Restriction on the Geometry

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 45 ANL/NE-15/17

Appendix B. Grid: A File Format Specification for Structured Grid Input
This section discusses the GRID file format which is meant for the PROTEUS-NODAL code

but can be used for the PROTEUS-SN code as mesh generation. As is the case for much of the
rest of PROTEUS, the GRID input specification is a keyword input where all available keywords
are defined in Table 23. Unlike the ufmesh format, the keyword input for the grid format does not
have to be in any particular order. We provide four example problems noting that there are
several verification problems that demonstrate the usage of the grid input format.

Unlike other structured grid based codes, the geometrical input of grid is always a three-
dimensional array of size (I,J,K). As a consequence, all of the grid inputs will be three
dimensional in the X-Y-Z coordinate system and one uses the Slice_at_* inputs to actually select
a lower dimensional portion of the 3D geometry. The definition of the third dimension (K) is
done using the “assembly” keyword input which defines a 1D array of region names and region
dimensions. The two-dimensional geometry (I,J) is then a simple mapping of each assembly into
an I-J matrix position. Based upon experience, this maximizes the readability of conventional
assembly homogenization schemes and minimizes the input required to define a 3D domain. It
can be a considerable increase in information for 2D and 1D geometries.

We start by looking at the extensive keyword input noting that only a small fraction of the
inputs are actually needed for a mesh to be built. The most important keyword is the geometry
type declaration as this one defines how all of the rest of the input is interpreted. The options
include the three basic Cartesian geometries (X, X-Y, and X-Y-Z), two hexagonal geometries,
and two regular triangular geometries. In the case of 1D Cartesian, one constructs a three-
dimensional input and uses slice_at_x and slice_at_y to select a particular “assembly.” One can
alternatively use slice_at_x and slice_at_z to select a particular radial portion of the assemblies.
Figure 21 through Figure 24 show examples of a 2D Cartesian geometry, 3D Cartesian geometry,
3D hexagonal geometry, and 3D regular triangular geometry, respectively. Figure 21 is the only
example of the use of Slice_at_z to reduce the 3D input to a 2D one. The picture on the right hand
side of Figure 21 shows the region number (random color assignment) of each finite element in
the mesh. The geometry orientation of the hexagonal and regular triangular lattice is such that the
first hexagon ring always extends down the X axis. The regular triangular meshing scheme shown
in Figure 25 shows the X-Y coordinate directions noting that the central hex will always be
centered at 0-0 by default. This orientation is -30 degrees from most structured grid hexagonal or
regular triangular codes of note, but is extremely easy to work with.

The next keyword input of note is the locate_origin one which can be used to translate the user
geometry to any coordinate position in the physical space. This is most useful if during a multi-
physics calculation, the coordinate location of an existing neutronics problem needs to be
translated to match another physics codes coordinate system. The next four keyword inputs,
Ritz_xy, Ritz_z, Ritz_source, and Ritz_surface are inputs to set the spatial approximation in the

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 46

PROTEUS-NODAL code and thus beyond the scope of this report as they do not impact the mesh
creation.

The element_order, element_type, and element_scheme are the most important control
parameters for the mesh generation. The element_order is rather straightforward as it allows the
selection of linear, quadratic, etc… basis functions. The element_type input only has three input
options of serendipity, lagrangian, and gauss-lobatto. The linear order of these three element
types is identical and the main differences start at quadratic order basis functions. For a detailed
explanation, consult the element information that is provided with the PROTEUS-SN or a book
on finite elements. The element_scheme is by far the most vague of the three and only has the
three options of BOXES, PRISMS, and ALTBOX. Figure 25 shows the meshing scheme for a
grid point in the Cartesian and hexagonal geometry option. Note that the minimal triangular
geometry grid must contain six triangles and thus we show the meshing of six meshes in that grid
geometry. As can be seen in this figure, the PRISMS case generally yields more elements than the
BOXES approach. In practice it also leads to more vertices in the final mesh. The ALTBOX
scheme was added to produce better meshes for geometries with certain symmetry and periodic
distributions. For the regular triangular geometry, only the prism meshing scheme is available at
this time although the addition of a BOXES approach has been discussed.

The next keyword inputs in Table 23 are hex_pitch, tri_pitch, xgrid, ygrid, and zgrid. All of
the input on these lines is interpreted as cm. This input is read independent of the rest of the grid
input and is used as necessary. As an example, if XY geometry is specified and a hex_pitch is
given, then the hex_pitch will be ignored. Similarly, if a Hex geometry is specified and xgrid
input is given, then the xgrid input will be ignored. For all geometries, one should include a zgrid
specification although it is not required. This input is the only way to easily control the mesh size
without having to add additional region boundaries in the assembly input. The xgrid and ygrid
inputs are required for any Cartesian geometry as the input options to specify the I-J grid
fundamentally has no dimensions. For hex geometries, one does not need xgrid or ygrid, but must
provide a hex_pitch which is the flat to flat distance for a hexagon. Similarly, regular triangular
geometries do not need xgrid or ygrid input and one must provide a tri_pitch. The tri_pitch size is
equivalent to the hex_pitch and represents the height of two triangular elements. For xgrid, ygrid,
and zgrid, the lower and upper coordinates of a desired mesh are given which are considered a
“coarse” grid. The last integer specifies any subdivision of each coarse meshes which are
considered a “fine” grid. If either the zgrid boundaries given or those resulting from the finer
meshes are not present in the assembly geometry they will all be added.

As mentioned, the assembly keyword input in Table 23 is a one dimensional geometry
definition and must have four inputs per line. The first input is the assembly ‘name’ which is not
preserved in the either the mesh or grid geometry. The second input is the region name which is
preserved in the mesh and grid geometry. This region name is used when mapping compositions
to regions of the geometry and thus has identical meaning for PROTEUS-Nodal and PROTEUS-
SN. The last two inputs on the assembly keyword are the lower z and upper z coordinate over

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 47 ANL/NE-15/17

which the region name is to be applied. This input is overlay type input such that the latest line
overrules all previous assignments of region names to geometry. Figure 22 shows the best
example of its usage where region R_WATER is used to overwrite the region R_UO2 in
assembly P_UO2 between 2.0 and 5.0 cm. Note how all of the assembly definitions in the
example problems have the same overall z dimensions. This is required to define a structured grid
problem and any inconsistencies in total assembly geometry will be flagged as a fatal error.

There are two main ways to define the I-J grid of assembly input for the X-Y plane. The
position input is the first way, the first option of which allows the user to set the assembly
definition in every i-j position in the domain. The first input on the position input is the assembly
name followed by the integer value of the I and J coordinate. For Cartesian geometries only, the
number of i-j positions should exactly match the number of coarse grid specifications given on
the xgrid and ygrid inputs. For hexagonal and regular triangular geometry, the extent of the i-j
position input option will invoke the creation of an appropriately sized I-J grid. In both hexagonal
and regular triangular geometries, the domain is checked to be convex and appropriate failure
messages are given if the domain is not convex.

For convenience, we provide an alternate input for hexagonal and regular triangular
geometries which is the second option of the position input. In this case the first input is the
assembly name while the second is the hexagonal ring. The hex rings are number conventionally
noting that the maximum hexagonal ring will invoke the creation of an I-J grid that is large
enough to fit a full core hex map. The third and fourth input specify the starting and ending hex
position along the ring. The maximum hex position of any ring is computed to be (R-1)*6. Much
like the assembly keyword input, an overlay approach is taken where each consecutive line
overwrites the information given on previous input lines. Setting these values to 0 and 0 will
cause the entire ring to be filled with the stated assembly. The fifth input is optional and only
meaningful for triangular geometries. In this case the triangle numbering that is given in Figure
25 shows how to assign assembly compositions to specific triangles. Note that the coordinate
access directions are given for appropriate orientation. If one uses the optional triangle input, one
would have to include six different lines to assign different compositions to each triangle. If a
triangular grid is desired, we strongly suggest using the gridmap input or I-J position input as
alternatives.

The other I-J geometry input option is to specify a gridmap. The keyword input description
from Table 23 consists of a J index position followed by I total ‘name’ values. These ‘names’ are
intended to be the assembly names defined from the Assembly keyword input but for
convenience, an ALIAS keyword option was added to the grid input such that an alternative name
can be used for the assembly when giving the gridmap input. Figure 23 shows an excellent
example of a gridmap and alias keyword input for hexagonal geometry. Looking at the picture in
this figure, one can see that the gridmap input specifies a 5 ring hexagonal geometry. The
gridmap of course specifies a 9 x 9 array of input which is the minimal required to contain a full 5
ring hexagonal geometry. For each position that does not have an assembly assigned to it, the

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 48

keyword “O” is used where “NULL” is a valid alternative. Note that one could have defined a 20
x 20 grid and still only have filled a 9 x 9 portion of the domain. The Cartesian gridmap input is
rather straightforward to understand and Figure 22 shows an easy to follow example. The regular
triangular geometry is rather difficult to understand using the gridmap input and the example in
Figure 24 is basically a duplicate of the hexagonal geometry gridmap input. The resulting picture
is rather difficult to understand, but a close inspection shows that each J row of the gridmap input
yields a row of triangles in the picture. If one fills the entire map with assembly names instead of
using the “O” null settings, one would see a parallelogram of triangles that is 9 triangles wide and
9 rows of triangles high. Conventionally, using the hex geometry position input option, one
would find the triangular grid would have twice as many I positions as J positions in order to
store the full grid.

The last part of each example input are the boundary condition specifications which consist of
periodic_bc, z_periodic_bc, symmetry_bc, and boundary_condition. The periodic_bc and
symmetry_bc should both not be included as they infer different treatments to the same geometry.
The periodic boundary conditions, if given a valid I-J grid, will impose 90 degree periodicity in
Cartesian geometries and 60, 120, or 180 degree periodicity in hexagonal or regular triangular
geometries. Remember that the full map is built in all cases and that this input option only
enforces a grid assembly specification that has the rotational periodicity. The symmetry_bc
keyword has a similar impact in that it imposes 45 degree symmetry in Cartesian or 30, 60, and
90 degree symmetry in hexagonal and regular triangular geometries. The z_periodic_bc is a
special case of periodicity that is allowed in the z direction and thus only appropriate for 3D
Cartesian, hexagonal, or regular triangular geometries. The boundary_condition keyword input is
the actual way in which the boundary conditions are specified. The position name input specifies
the surface of the domain and is always considered the boundary conditions applied to the full
geometry. The boundary types supported are either reflected or void (vacuum) which are
conventional for neutronics. From the four example problems, one can see that the boundary
condition setup are all appropriately defined for each given geometry in that X,Y,Z are used in
Cartesian and hex000 through hex300 are given for hexagonal and +Z and –Z for the axial
boundary conditions. For regular triangular geometries, one uses the same boundary conditions as
for the hexagonal geometry as the interfaces are identical. One should note that all boundary
conditions for hex should always be given as are all boundary conditions X,Y,Z for Cartesian.

Overall, the preceding grid library input should provide a convenient way to define a
conventional structured grid homogenized assembly input geometry. While this geometry was
envisioned for use within the PROTEUS-Nodal code, the geometry and meshing are available to
the mesh library of the PROTEUS code and thus any component of PROTEUS can use this
geometry option as a way to define mesh input. The four examples here should be sufficient to
explain how to use the grid input and control the meshing schemes that are available for it.

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 49 ANL/NE-15/17

Table 23. Keyword Input Options for the GRID File Format
Key Word Format Purpose

Geometry <Name>
Specify the type of grid being constructed

<X, XY, XYZ, Hexagonal, Hexagonal-Z, Triangular,
Triangular-Z>

Slice_at_x <x position> For 1D domains, you give it a 3D domain and tell it to
pick this X plane for evaluation

Slice_at_y <y position> For 1D domains, you give it a 3D domain and tell it to
pick this Y plane for evaluation

Slice_at_z <z position> For 2D domains, you give it a 3D domain and tell it to
pick this Z plane for evaluation

Locate_origin <axis name> <value> Input option to translate the domain

<axis name> = <X> <Y> <Z>
Ritz_xy <integer value> PROTEUS-Nodal x-y spatial approximation

Ritz_z <integer value> PROTEUS-Nodal z spatial approximation

Ritz_source <integer value> PROTEUS-Nodal source spatial approximation

Ritz_surface <integer value> PROTEUS-Nodal leakage spatial approximation

Element_order <integer value> Order of the FE basis to build

Element_type <basis type> Type of FE element to use

<Serendipity, lagrangian, Gauss-lobatto>

Element_scheme <scheme name> Type of meshing scheme to use

<boxes, prisms, altbox>
Hex_pitch <value> Defines the hexagonal pitch of the structured grid

Tri_pitch <value> Defines the triangular pitch of the structured grid

Xgrid <lower x> <upper x> <subintervals> Used to define coarse X grid dimensions and meshing

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 50

Key Word Format Purpose

Ygrid <lower y> <upper y> <subintervals> Used to define coarse Y grid dimensions and meshing

Zgrid <lower z> <upper z> <subintervals> Used to define coarse Z grid dimensions and meshing

Assembly <name> <region name> <lower z> <upper z> Defines a 1D geometry of regions or the 3D aspects of
a homogenized assembly

Position <name> <I position> <J position>

<name> <Hex ring> <Start Hex> <End Hex> [triangle]

Two options are supported noting that [triangle] input
is ignored for hexagonal geometries. For each input
line, the assembly name to be loaded at the indicated
position is given. <Start Hex> and <End Hex> are used
to define a range of hexes on a particular hex ring.
Triangular geometry can be given as either input option

Alias <alias name> <assembly name> Each assembly name can be given a smaller name to
make the gridmap input more compact

gridmap <index J> <Alias 1> <Alias 2>…<Alias I> Used to specify a 2D map of data which indicates how
assemblies are to be loaded into the structured grid

Periodic_bc <angle to apply periodicity>
Used to automatically fill a structured grid with
periodic loading of assemblies.
<60, 90, 120, 180> are supported

Z_periodic_bc <yes/no> Used to indicate that the axial direction is periodic

Symmetry_bc <angle to impose symmetry>
Used to automatically fill a structured grid with
symmetric loading of assemblies
<30, 45, 60, 90> are supported

Boundary_condition <position name> <boundary type>

Main path to define boundary conditions
<position> = <-X,+X,-Y,+Y,-Z,+Z>
<position> = <hex000, hex060, hex120,…hex300>
<boundary type> = <reflective, void>

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 51 ANL/NE-15/17

Element_Order 2
Element_Scheme BOXES
GEOMETRY XY
SLICE_AT_Z 0.5
RITZ_XY 10
RITZ_Z 10
RITZ_SURFACE 4
ASSEMBLY P_UO2 R_UO2 0.0 1.0
ASSEMBLY P_MOX8 R_MOX8 0.0 1.0
ASSEMBLY P_MOX7 R_MOX7 0.0 1.0
ASSEMBLY P_MOX4 R_MOX4 0.0 1.0
ASSEMBLY P_GTubFisC R_GTub 0.0 1.0
ASSEMBLY P_WATER R_WATER 0.0 1.0
XGRID 0.0 2.0 1
XGRID 2.0 4.0 1
XGRID 4.0 6.0 1
XGRID 6.0 8.0 1
XGRID 8.0 12.0 1
YGRID 0.0 2.0 1
YGRID 2.0 4.0 1
YGRID 4.0 6.0 1
YGRID 6.0 8.0 1
YGRID 8.0 12.0 1
ZGRID 0.0 1.0 1
POSITION P_WATER 1 1
POSITION P_UO2 2 1
POSITION P_WATER 3 1

POSITION P_MOX8 4 1
POSITION P_WATER 5 1
POSITION P_UO2 1 2
POSITION P_GTubFisC 2 2
POSITION P_UO2 3 2
POSITION P_MOX7 4 2
POSITION P_WATER 5 2
POSITION P_WATER 1 3
POSITION P_UO2 2 3
POSITION P_WATER 3 3
POSITION P_MOX4 4 3
POSITION P_WATER 5 3
POSITION P_MOX8 1 4
POSITION P_MOX7 2 4
POSITION P_MOX4 3 4
POSITION P_UO2 4 4
POSITION P_WATER 5 4
POSITION P_WATER 1 5
POSITION P_WATER 2 5
POSITION P_WATER 3 5
POSITION P_WATER 4 5
POSITION P_WATER 5 5
PERIODIC_BC 90
BOUNDARY_CONDITION -X REFLECTIVE
BOUNDARY_CONDITION +X VOID
BOUNDARY_CONDITION -Y REFLECTIVE
BOUNDARY_CONDITION +Y VOID

Figure 21. Example Two-Dimensional Cartesian Grid File

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 52

Element_Order 2
Element_Scheme BOXES
GEOMETRY XYZ
RITZ_XY 4
RITZ_Z 4
RITZ_SURFACE 1
ASSEMBLY P_UO2 R_UO2 0.0 10.0
ASSEMBLY P_UO2 R_WATER 2.0 5.0
ASSEMBLY P_MOX8 R_MOX8 0.0 10.0
ASSEMBLY P_MOX7 R_MOX7 0.0 10.0
ASSEMBLY P_MOX4 R_MOX4 0.0 10.0
ASSEMBLY P_GTubFisC R_GTub 0.0 10.0
ASSEMBLY P_WATER R_WATER 0.0 10.0
XGRID 0.0 2.0 1
XGRID 2.0 4.0 1
XGRID 4.0 6.0 1
XGRID 6.0 8.0 1
XGRID 8.0 12.0 1
YGRID 0.0 2.0 1
YGRID 2.0 4.0 1
YGRID 4.0 6.0 1
YGRID 6.0 8.0 1

YGRID 8.0 12.0 1
ZGRID 0.0 1.0 1
ZGRID 1.0 2.0 1
ZGRID 2.0 5.0 3
ZGRID 5.0 10.0 5
ALIAS A1 P_UO2
ALIAS A2 P_MOX8
ALIAS A3 P_MOX7
ALIAS A4 P_MOX4
ALIAS A5 P_GTubFisC
ALIAS A6 P_WATER
GRIDMAP 5 A6 A6 A6 A6 A6
GRIDMAP 4 A2 A3 A4 A1 A6
GRIDMAP 3 A6 A1 A6 A4 A6
GRIDMAP 2 A1 A5 A1 A3 A6
GRIDMAP 1 A6 A1 A6 A2 A6
BOUNDARY_CONDITION -X REFLECTIVE
BOUNDARY_CONDITION +X VOID
BOUNDARY_CONDITION -Y REFLECTIVE
BOUNDARY_CONDITION +Y VOID
BOUNDARY_CONDITION -Z REFLECTIVE
BOUNDARY_CONDITION +Z REFLECTIVE

Figure 22. Example Three-Dimensional Cartesian Grid File

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 53 ANL/NE-15/17

Element_Order 1
Element_Scheme prisms
GEOMETRY HEXAGONAL-Z
RITZ_XY 2
RITZ_Z 2
RITZ_SURFACE 0
ASSEMBLY P_UO2 R_UO2 0.0 10.0
ASSEMBLY P_MOX8 R_MOX8 0.0 10.0
ASSEMBLY P_MOX7 R_MOX7 0.0 10.0
ASSEMBLY P_MOX4 R_MOX4 0.0 10.0
ASSEMBLY P_GTubFisC R_FisC 0.0 10.0
ASSEMBLY P_WATER R_WATER 0.0 10.0
HEX_PITCH 3.0
ZGRID 0.0 2.0 1
ZGRID 2.0 10.0 3
ALIAS A1 P_UO2
ALIAS A2 P_MOX8
ALIAS A3 P_MOX7
ALIAS A4 P_MOX4

ALIAS A5 P_GTubFisC
ALIAS A6 P_WATER
GRIDMAP 9 A6 A6 A6 A6 A6 o o o o
GRIDMAP 8 A6 A1 A1 A1 A1 A6 o o o
GRIDMAP 7 A6 A1 A4 A6 A4 A1 A6 o o
GRIDMAP 6 A6 A1 A6 A2 A3 A6 A1 A6 o
GRIDMAP 5 A6 A1 A4 A3 A5 A2 A4 A1 A6
GRIDMAP 4 o A6 A1 A6 A2 A3 A6 A1 A6
GRIDMAP 3 o o A6 A1 A4 A6 A4 A1 A6
GRIDMAP 2 o o o A6 A1 A1 A1 A1 A6
GRIDMAP 1 o o o o A6 A6 A6 A6 A6
PERIODIC_BC 120
BOUNDARY_CONDITION HEX000 VOID
BOUNDARY_CONDITION HEX060 VOID
BOUNDARY_CONDITION HEX120 VOID
BOUNDARY_CONDITION HEX180 VOID
BOUNDARY_CONDITION HEX240 VOID
BOUNDARY_CONDITION HEX300 VOID
BOUNDARY_CONDITION -Z REFLECTIVE
BOUNDARY_CONDITION +Z REFLECTIVE

Figure 23. Example Three-Dimensional Hexagonal Grid File

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 54

Element_Order 1
Element_Scheme prisms
GEOMETRY TRIANGULAR-Z
RITZ_XY 2
RITZ_Z 2
RITZ_SURFACE 0
ASSEMBLY P_UO2 R_UO2 0.0 10.0
ASSEMBLY P_MOX8 R_MOX8 0.0 10.0
ASSEMBLY P_MOX7 R_MOX7 0.0 10.0
ASSEMBLY P_MOX4 R_MOX4 0.0 10.0
ASSEMBLY P_GTubFisC R_FisC 0.0 10.0
ASSEMBLY P_WATER R_WATER 0.0 10.0
HEX_PITCH 3.0
ZGRID 0.0 2.0 1
ZGRID 2.0 10.0 3
ALIAS A1 P_UO2
ALIAS A2 P_MOX8
ALIAS A3 P_MOX7
ALIAS A4 P_MOX4

ALIAS A5 P_GTubFisC
ALIAS A6 P_WATER
GRIDMAP 9 A6 A6 A6 A6 A6 o o o o
GRIDMAP 8 A6 A1 A1 A1 A1 A6 o o o
GRIDMAP 7 A6 A1 A4 A6 A4 A1 A6 o o
GRIDMAP 6 A6 A1 A6 A2 A3 A6 A1 A6 o
GRIDMAP 5 A6 A1 A4 A3 A5 A2 A4 A1 A6
GRIDMAP 4 o A6 A1 A6 A2 A3 A6 A1 A6
GRIDMAP 3 o o A6 A1 A4 A6 A4 A1 A6
GRIDMAP 2 o o o A6 A1 A1 A1 A1 A6
GRIDMAP 1 o o o o A6 A6 A6 A6 A6
BOUNDARY_CONDITION HEX000 VOID
BOUNDARY_CONDITION HEX060 VOID
BOUNDARY_CONDITION HEX120 VOID
BOUNDARY_CONDITION HEX180 VOID
BOUNDARY_CONDITION HEX240 VOID
BOUNDARY_CONDITION HEX300 VOID
BOUNDARY_CONDITION -Z REFLECTIVE
BOUNDARY_CONDITION +Z REFLECTIVE

Figure 24. Example Three-Dimensional Regular Triangular Grid File

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 55 ANL/NE-15/17

 Cartesian Hexagonal Regular
Triangular

BOXES

PRISMS

ALTBOX

Figure 25. Grid Finite Element Meshing Schemes (Regular Triangular shows 6 nodes)

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 56

Appendix C. NEMESH: A PROTEUS File Format for Finite Element Mesh Input
This section specifies the PROTEUS-SN “nemesh” mesh file format. An example “nemesh”

input file is also provided. Ahiadf;lkjasd;flkjasdf;lkj;lkjdsjf;lkjasdf

C.1 File Format Description for “nemesh” mesh file

* *
* FILE FORMAT DESCRIPTION *
* *
* <<<< NEMESH >>>> *
* *
* Last updated: 06/18/2013 *
* nera-software@anl.gov *
* *

*** CARD TYPE DIRECTORY ***

==== ==============================
CARD CONTENTS
==== ==============================
 00 HEADER LINES
 01 CONTROL FLAGS
 02 BASIC MESH INFO
 03 ELEMENT LIST
 04 ELEMENT CONNECTIVITY
 05 VERTEX POSITION DATA
 06 BOUNDARY SURFACE LIST
 07 BLANK LINE

*** CARD TYPE DESCRIPTIONS ***

======================================
CARD TYPE 00: HEADER LINES
======================================
LINE NUMBERS: 1-9

FORMAT: N/A

DESCRIPTION:
The first nine lines of the input file must be blank or commented.
Do not place any other card data in lines 1-9 of the input file.

======================================
CARD TYPE 01: CONTROL FLAGS
=======================================
LINE NUMBER: 10

FORMAT: <Input Style Flag> <Debug Print Flag>

DESCRIPTION:
<Input Style Flag> : 0....Indexed Input (numbered elements and nodes)
 1....Not Indexed

<Debug Print Flag> : Integer....0-10 (0=no printing, 10=full debug printing)

======================================
CARD TYPE 02: BASIC MESH INFO
=======================================
LINE NUMBER: 11

FORMAT: <NumElements> <NumNodes> <unused integer> <NumBoundarySurfaces>

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 57 ANL/NE-15/17

DESCRIPTION:
<NumElements> : Integer....Number of elements in the mesh

<NumNodes> : Integer....Number of nodes (vertices) in the mesh

<unused integer> : 0.........(reserved for future use)

<NumBoundarySurfaces> : Integer....Number of boundary surfaces in the mesh

======================================
CARD TYPE 03: ELEMENT LIST
=======================================
LINE NUMBERS: 12+, with a total of NumElements lines

FORMAT: { [Optional Index] <ElementType> <MaterialBlock> };
 repeat for each element specified in <NumElements>

DESCRIPTION:
[Optional Index] : Integer.... Optional index of the element

<ElementType> : Integer from the following list
 1....1-D Bar Linear
 2....1-D Bar Quadratic
 5....2-D Triangular Linear
 6....2-D Triangular Quadratic
 10....2-D Quadrilateral Linear
 11....2-D Quadrilateral Quadratic
 15....3-D Tetrahedron Linear
 16....3-D Tetrahedron Quadratic
 20....3-D Tri. Prismatic Linear
 21....3-D Tri. Prismatic Quadratic
 25....3-D Hexadron Linear
 26....3-D Hexadron Quadratic
 31-39....1-D Bar Lagrangian (31 = linear, 39 = 9th order)
 41-49....2-D Triangular Lagrangian (41 = linear, 49 = 9th order)
 51-59....2-D Quadrilateral Lagrangian (51 = linear, 59 = 9th order)
 61-69....3-D Tetrahedron Lagrangian (61 = linear, 69 = 9th order)
 71-79....3-D Tri. Prismatic Lagrangian (71 = linear, 79 = 9th order)
 81-89....3-D Hexadron Lagrangian (81 = linear, 89 = 9th order)
 91-99....2-D Quadrilateral NonConforming (Lagrangian setup)
 101-109....3-D Hexadron NonConforming (Lagrangian setup)

<MaterialBlock> : Integer.... Material block for this element

======================================
CARD TYPE 04: ELEMENT CONNECTIVITY
=======================================
LINE NUMBERS: Immediately following last CARD TYPE 03, with a total of NumElements lines

FORMAT: { [Optional Index] <ConnectivityArray> };
 repeat for each element specified in <NumElements>

DESCRIPTION:
[Optional Index] : Integer.... Optional index of the element

<ConnectivityArray> : Array of integers read as CONNECTIVITY(J),J=1,ELEMENTVERTICES
 This array lists the indexed vertices which define the element.
 ELEMENTVERTICES is determined automatically from ElementType.
 For example ElementType 1 (1-D Bar Linear) has 2 vertices.

======================================
CARD TYPE 05: VERTEX POSITION DATA
=======================================
LINE NUMBERS: Immediately following last CARD TYPE 04, with a total of NumNodes lines

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 58

FORMAT: { [Optional Index] <X> [Y] [Z] };
 repeat for each node specified in <NumNodes>

DESCRIPTION:
[Optional Index] : Integer.... Optional index of the node

 <X> : Real....X-value of this node (always present)

 [Y] : Real....Y-value of this node (present only for 2D and 3D elements)

 [Z] : Real....Z-value of this node (present only for 3D elements)

======================================
CARD TYPE 06: BOUNDARY SURFACE LIST
=======================================
LINE NUMBERS: Immediately following last CARD TYPE 05, with a total of NumBoundarySurfaces lines

FORMAT: { [Optional Index] <ElementIndex> <ReferenceSurface> <BoundaryConditionFlag> };
 repeat for each node specified in <NumNodes>

DESCRIPTION:
[Optional Index] : Integer....Optional index of the boundary surface

<ElementIndex> : Integer....Index of the element with the boundary surface

<ReferenceSurface> : Integer....Reference element surface number corresponding to the boundary surface

<BoundaryConditionFlag> : 1..... Reflected
 Other....Void

======================================
CARD TYPE 07: BLANK LINE
======================================
LINE NUMBER: Last line in the file

FORMAT: blank line

DESCRIPTION:
A blank line must be placed at the end of the line in order to avoid "end of file" error upon reading.

* END OF FILE FORMAT DESCRIPTION *
* <<<< NEMESH >>> *

C.2 Example “nemesh” file
! ANL FINITE ELEMENT INPUT – NEMESH FILE DESCRIPTION - 9 HEADER LINES ALWAYS
! This example was taken from bench05 of the benchmarks directory
! Header line 3
! Header line 4
! Header line 5
! Header line 6
! Header line 7
! Header line 8
! Header line 9
0 0 ! CARD TYPE 1 control info - indexed input with no debug printing
16 45 0 12 ! CARD TYPE 2 mesh info - 16 elements, 45 nodes, 12 boundary surfs
 1 6 1 ! CARD TYPE 3 element info – first element is type 6 with material 1
 2 6 1
 3 6 1
 4 6 1
 5 6 1
 6 6 1
 7 6 1
 8 6 1
 9 6 1

User Manual for the PROTEUS Mesh Tools
June 01, 2015

 59 ANL/NE-15/17

10 6 7
11 6 7
12 6 7
13 6 7
14 6 7
15 6 7
16 6 7
 1 1 2 3 11 17 10 ! CARD TYPE 4 connectivity: element 1 is connected to
 2 3 4 5 13 19 12 ! vertices 1,2,3,11,17,10
 3 17 11 3 12 19 18
 4 17 18 19 24 28 23
 5 5 6 7 15 21 14
 6 5 14 21 20 19 13
 7 19 20 21 26 30 25
 8 28 24 19 25 30 29
 9 28 29 30 34 37 33
10 7 8 9 16 21 15
11 9 22 32 27 21 16
12 21 27 32 31 30 26
13 32 36 39 35 30 31
14 30 35 39 38 37 34
15 37 38 39 41 42 40
16 39 43 45 44 42 41
 1 0 0 ! CARD TYPE 5 node info: node 1 at (0.0,0.0)
 2 0.1023750000000001 0
 3 0.20475 0
 4 0.307125 0
 5 0.4094999999999999 0
 6 0.4747513185137461 0
 7 0.5400026370274923 0
 8 0.5850013185137463 0
 9 0.63 0
 10 0.07239005672397281 0.07239005672397281
 11 0.1891643342816859 0.07835443277675214
 12 0.291539334281686 0.07835443277675214
 13 0.4016315723251228 0.07988948686560449
 14 0.4655512466845283 0.06988148343414935
 15 0.5353828396092143 0.07048448799998519
 16 0.5758012466845285 0.06988148343414935
 17 0.1447801134479456 0.1447801134479455
 18 0.2615543910056587 0.1507444895007249
 19 0.3783286685633719 0.1567088655535044
 20 0.4499655809662141 0.1482359162109015
 21 0.5216024933690565 0.1397629668682987
 22 0.63 0.1050000000000001
 23 0.2171701701719185 0.2171701701719183
 24 0.3404868062378923 0.2275060104215271
 25 0.4229923351698838 0.2133550920336252
 26 0.4988973838518217 0.2066500626238805
 27 0.5758012466845285 0.1748814834341492
 28 0.2895602268958912 0.2895602268958912
 29 0.3786081143361436 0.2797807727048186
 30 0.4676560017763959 0.2700013185137462
 31 0.5488280008881977 0.2400006592568731
 32 0.63 0.2100000000000001
 33 0.3356998766983245 0.3356998766983244
 34 0.4284128958518366 0.3287327769853338
 35 0.5488280008881977 0.3450006592568731
 36 0.63 0.3150000000000001
 37 0.3818395265007578 0.3818395265007578
 38 0.5059197632503788 0.400919763250379
 39 0.63 0.4199999999999998
 40 0.4438796448755683 0.4438796448755683
 41 0.5679598816251895 0.4629598816251895
 42 0.5059197632503788 0.5059197632503788
 43 0.63 0.5249999999999998
 44 0.5679598816251895 0.5679598816251895
 45 0.63 0.63
 1 1 1 1 ! CARD TYPE 6 boundary data: the first boundary surface is on ele 1, ref. surf 1, refl bc

 User Manual for the PROTEUS Mesh Tools
June 01, 2015

ANL/NE-15/17 60

 2 1 3 1
 3 2 1 1
 4 4 3 1
 5 5 1 1
 6 9 3 1
 7 10 1 1
 8 11 1 1
 9 13 1 1
10 15 3 1
11 16 1 1
12 16 2 1

 ! MAKE CERTAIN THERE IS AN EXTRA BLANK LINE AFTER ALL OF THE INPUT TO PREVENT EOF ERROR

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Nuclear Engineering Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 208
Argonne, IL 60439-4842

www.anl.gov

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. MT_ApplyACRtoMesh: A Mesh Tool to Restrict the Element Block Size
	3. MT_BuildAxialMesh.x: A Mesh Tool to Extrude 2D meshes to 3D meshes
	4. MT_ChangeFEbasis.x: A Mesh Tool to Alter the Basis Order of a Mesh
	5. MT_Extrude2Dto3D.x: A Mesh Tool to Extrude 2D meshes to a 3D slice
	6. MT_FixCUBITHex27Issue.x: A Mesh Tool to Fix CUBIT 27 Node Hexahedrons
	7. MT_IdentifyVertices.x: A Mesh Tool to Identify Vertices in a Mesh
	8. MT_MeshRestrictForBGP.x: A Mesh Tool to Restrict Element Block Sizes
	9. MT_MeshToBGPmesh.x: A Mesh Tool to Create a Pre-Partitioned Mesh
	10. MT_MeshToHDF5.x: A Mesh Tool to Create a VISIT readable HDF5 File
	11. MT_MeshToMesh.x: A Mesh Tool to Convert Between Mesh Formats
	12. MT_MeshToVTK.x: A Mesh Tool to Create a VISIT Readable VTK File
	13. MT_RadialLattice.x: A Mesh Tool to Merge Meshes on a Radial Grid
	14. MT_Refine2Dmesh.x: A Mesh Tool to Automatically Refine a 2D Mesh
	15. MT_ModifyMesh.x: A Mesh Tool to Rotate and Translate a Mesh
	16. MT_DataToVTK.x: A Mesh Tool to Plot Solution data Via a VTK File
	17. Summary
	References
	Appendix A. UFmesh: A User Friendly Mesh Format
	Appendix B. Grid: A File Format Specification for Structured Grid Input
	Appendix C. NEMESH: A PROTEUS File Format for Finite Element Mesh Input

