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DYNAMIC FACTOR GRAPHS –  
A NEW WIND POWER FORECASTING APPROACH 

 
 

ABSTRACT 
 
Wind energy production is characterized by high uncertainty due to the random nature of wind 
speed, which is weather dependent. Thus, in power systems with a significant penetration of 
wind generators, the problem of studying the impact of wind farms on the performance of these 
systems has to be considered in detail and requires the availability of accurate wind power 
forecasting methods. In addition, the time horizons to be taken into account as references for 
such studies are becoming more and more variable (from a few hours to a few days) due to the 
needs of liberalized electricity markets. 
 
This report presents a short outline of a new methodology for modeling and forecasting wind 
power generation on a very short-term time scale (up to 6 hours). The class of dynamic factor 
graph (DFG) models is described jointly with the algorithm for conducting fitting, inference, and 
forecasting within this framework. The DFG model class encompasses the well-known state-
space models (sometimes referred to as Kalman filters) and allows a host of generalizations 
(e.g., higher Markov orders, as well as nonlinear state and observational functions). 
 
Several experimental DFG models were applied to the problem of forecasting wind power 
generation for the very short term. The performance of these models was assessed against a 
benchmark persistence model and the best autoregressive model (autoregressive integrated 
moving average [ARIMA] model). In our preliminary experiments with DFGs, we observed that 
the lower Markov orders (namely, Markov order 1) achieved better results in terms of root mean 
square error (RMSE) and mean absolute error (MAE) improvements (relative to the persistence 
benchmark and to the ARIMA class) and fitting accuracy. 
 
We present results for a forecast horizon of 0–6 hours for two actual wind farms in the Midwest 
United States (Wind Farm A [WFA] and WFB datasets) and for a wind farm in the South Central 
United States (WFC dataset). Data from WFA, WFB, and WFC were originally recorded at 
10-minute time steps, but we also ran experiments at lower data frequencies. The tables that 
follow summarize the results for forecasting 0 to 6 hours ahead in terms of improvements over 
the persistence and ARIMA models for MAE and RMSE. 
 
 

 
Average Improvement (0–6 hours) 

for DFG Model w.r.t 
Persistence Benchmark Model MAE RMSE 

 
Time Resolution 10 min 30 min 60 min 10 min 30 min 60 min 

WFA 32.4% 32.3% 23.7% 28% 29.6% 20.7% 
WFB 34.3% 34.5% 30.1% 31.3% 29.9% 29.7% 
WFC 34.4% 29% 33.7% 30.6% 25.9% 30.7% 

1 



2 

 
Average Improvement (0–6 hours) 

for DFG Model w.r.t. 
ARIMA Model MAE RMSE 

 
Time Resolution 10 min 30 min 60 min 10 min 30 min 60 min 

WFA 3.8% 3.8% 7.6% 1.8% 1.6% 5.2% 

WFB 2.5% 6.2% 15.9% 0.9% 2.5% 13.9% 

WFC 3.5% 5.7% 12.6% 1.3% 3.1% 9% 

 
 
According to both the RMSE and MAE measures, the improvement obtained by the first-order 
DFG models with respect to (w.r.t.) the ARIMA model class for the WFA, WFB, and WFC 
datasets recorded at a 60-minute frequency was always positive. This indicates that the DFG 
models provide superior forecasting performance when compared to the classical ARIMA 
approach. At a 30-minute data frequency, the average improvement obtained by the first-order 
DFG models w.r.t. the ARIMA model class for WFA, WFB, and WFC datasets was also always 
positive. However, some individual time horizons did lead to negative improvement values w.r.t. 
the ARIMA class. For the WFA dataset, those points were 30 minutes ahead (forecasting time 
step [h] = 1), 60 minutes ahead (h = 2), and 90 minutes ahead (h = 3) for the RMSE measure; 
they were 60 minutes (h = 2), 90 minutes (h = 3), and 120 minutes ahead (h = 4) for the MAE 
measure. For the WFB dataset recorded at a 30-minute frequency, only two time horizons led to 
negative improvement values w.r.t. the ARIMA class:  h = 1 and h = 6 (30 and 180 minutes 
ahead) for the RMSE measure. Finally, for the WFC dataset, only one point led to negative 
improvement values w.r.t. persistence: h = 2 (60 minutes ahead) for the RMSE measure. 
 
For the high-frequency datasets (10-minute time resolution), the advantage of the DFG approach 
over the classic ARIMA time series models was also consistent for all three wind farms. Strictly 
speaking, the average improvement w.r.t. the ARIMA class obtained by the DFG models was 
always positive for both measures (RMSE and MAE). However for some particular forecasting 
horizons, the ARIMA models outperformed the DFG ones. For the WFA dataset, those points 
were h = 1, 2, and 3 for the RMSE measure and h = 1 and 2 for the MAE measure. For the WFB 
dataset, those points were h = 2, 5, 6, 14, 30, and 31 (20, 50, 60, 140, 300, 310 minutes ahead) 
for the RMSE measure and h = 2 for the MAE measure. For the WFC dataset, no DFG failure 
point was found; that is, the DFG models outperformed the ARIMA class for all forecast 
horizons. 
 
For the Midwest WFA dataset, we had access to external variables: numerical weather 
predictions (NWPs), which included U (east-west) and V (north-south) wind speed components 
measured at 10 and 80 m aboveground and pressure. Following previous studies, we selected the 
wind velocity components as explanatory variables to be introduced in the first-order DFG 
models, particularly the wind speed components measured 80 m aboveground. We combined the 
U and V wind speed components as a bivariate explanatory variable and measured the resulting 
improvement compared to the simplest DFG model (without external variables). For both RMSE 
and MAE measures, the improvement values increased for the first three forecast horizons. We 



3 

also introduced the wind speed modulus into the first-order DFG model; again we observed, for 
the first three forecast horizons, a significant increase in the forecast improvement. 
 
Due to the lack of continuity in the NWP data and for comparison purposes, we used a wind to 
power (W2P) model in order to test the performance of the NWPs. Based on WFA experiments, 
we could affirm that even when the NWPs are not good enough to provide, by themselves, 
accurate wind power predictions for the very short term, they are able to increase the 
improvement of time-series-based models. We also tested the W2P model with NWP data for a 
second wind farm in the South Central United States (WFD), and we obtained better results than 
those for WFA. 
 
In this study, we reached the following overall conclusions on the basis of our experiments with 
wind power forecasting for a very short-term time horizon: 
 

• The DFG model was adapted in order to be applied to the very short-term wind power 
forecasting problem (0–6 hours). The DFG is within the general class of state-space 
models, and it provides more flexibility in representing time patterns (i.e., it enables the 
description of more complex time series patterns) than do the traditional time series 
models such as the ARIMA models. The results obtained for three real wind farms in the 
United States show that DFG models consistently outperform persistence and ARIMA 
models. Therefore, we recommend the adoption of state-space models like DFG for this 
type of problem. 

 
• The inclusion of NWPs, combined with the past values of the time series, resulted in a 

slight improvement in the forecast accuracy (compared to that of a DFG model without 
NWPs) for the first three lead time steps. Nevertheless, we must emphasize that in our 
experiments, the main contribution to the improvement over persistence and ARIMA 
comes from using past values from the time series as input to the DFG model and not 
from the use of NWPs. 

 
• The addition of NWP inputs, at the level of quality available for this study, to a W2P 

model, was not able to provide, by itself, enough improvement to the forecast accuracy 
over the level offered by a persistence model, for the first 5 hours for WFA and for the 
first 2 hours for WFD. 
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1  INTRODUCTION 
 
 
With the current focus on the environmental sustainability of energy production, efficient 
integration of renewable energy sources into the electric power systems is becoming increasingly 
important. In Europe, several countries already have a high penetration of wind power (e.g., it 
ranges from 7% to more than 20% of electricity consumption in countries such as Germany, 
Spain, Portugal, and Denmark). The rapid growth in installed wind power capacity is expected to 
continue in the United States as well as in Europe [1]. 
 
However, as is well known, wind energy production is characterized by high uncertainty due to 
the random nature of the wind speed, which is weather dependent [2, 3]. Thus, in transmission 
and distribution systems with a significant penetration of wind generators, the problem of 
studying the impact of wind farms on the performance of these systems has to be considered in 
detail and requires the availability of accurate wind power forecasting methods. In addition, the 
time horizons to be taken into account as references for such studies are becoming more and 
more variable (from only a few hours to a few days) due to the needs of liberalized markets 
[4, 5, 6]. 
 
The variability inherent in wind makes wind power a fluctuating source of energy. Therefore, as 
the penetration of wind power in the electric power grid increases, the development of accurate 
forecasting tools to predict wind power is crucial for all electricity market participants, in order 
to reduce the economic and technical risks associated with the uncertainty in the production of 
wind power. In fact, wind power forecasting models enable better power system planning and 
operation (e.g., with regard to dispatch, scheduling, and unit commitment) and more competitive 
market trading [7, 8]. Because these activities have different time scales, their forecasting time 
period dictates the design of the prediction system. Accordingly, wind power forecasting (WPF) 
techniques are typically focused on three distinct time scales: very short term (up to 6 hours), 
short term (up to 2–3 days), and medium term (up to a week). 
 
The relevant literature that has been published recently shows that many research projects have 
been conducted for the purpose of developing reliable wind-forecasting methods. These efforts 
have produced methods with different levels of accuracy for different applications. In general, 
the existing methods can be broadly classified as physical methods, statistical methods and 
approaches based on artificial neural networks (ANNs), and hybrid approaches [9]. 
 
The physical methods use the physical information involved (e.g., wind conditions at the height 
of turbine hubs, turbine power curves, weather conditions) to obtain an estimate of the wind 
power. These methods can also use meteorological information provided by complex numerical 
weather prediction models [1]. 
 
The statistical methods forecast either a wind-speed/power value (“point-forecast” methods) or a 
wind-speed/power probability density function (“pdf-forecast” methods). Both are obtained from 
statistical analyses of time series data. The ANN methods likewise try to determine the 
relationship between current wind power and past time series data [1]. 
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Finally, hybrid approaches are combinations of different methods (e.g., physical and statistical 
approaches or alternative statistical methods). In general, physical methods are characterized by 
significant computational complexity and guarantee good performance mainly for short-term 
wind-power forecasting (i.e., several hours to a few days ahead). On the other hand, for very 
short-term (VST) wind-power forecasting (i.e., a few hours ahead only), statistical methods can 
provide accurate results while requiring significantly less computational effort [6]. The choice of 
a wind power forecasting method should be made by taking into account both the considered 
application and the related time horizon that is needed. 
 
An extended review of the state of the art of wind power forecasting methods and, more 
specifically, of ways to deal with the VST time-scale problem can be found in References [1] 
and [10], respectively. 
 
This report focuses on the VST time scale and proposes a novel WPF method based on a new 
class of statistical time-series models based on factor graphs. We test the new forecasting 
algorithms and evaluate the forecast accuracy compared with that of other methods at three wind 
farms in the United States. We also investigate how high-resolution weather forecasts, such as 
the ones from the U.S. National Oceanic and Atmospheric Administration (NOAA) High-
Resolution Rapid Refresh (HRRR) model,1 produced for the U.S. Department of Energy (DOE) 
Wind Forecast Improvement Project (WFIP),2 may contribute to improved VST wind power 
forecasts. 
 
This report is organized as follows. Section 2 gives a brief introduction to time series modeling. 
Section 3 describes the theory of dynamic factor graphs (DFGs). Section 4 describes the 
modeling assumptions of the DFG approach applied to the wind power forecast problem. 
Sections 5 through 8 present the results for real wind farms. Finally, Section 9 presents the 
concluding remarks and future work.  

                                                 
1 http://ruc.noaa.gov/hrrr/. 
2 http://www.esrl.noaa.gov/psd/psd3/wfip/. 
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2  TIME SERIES 
 
 
2.1  TIME SERIES MODELING WITHOUT HIDDEN VARIABLES 
 
Time series modeling is motivated by a wealth of interesting problems; examples include 
forecasting (e.g., WPF), recovering missing data points (e.g., noisy signals in electrical 
engineering), learning a dynamic system (system identification), classifying subsequences, and 
estimating the likelihood of a sequence. This section provides a brief introduction to time series 
modeling. For a general discussion of the main concepts mentioned here, see Reference [11] or 
[12], for example. 
 
One approach that is frequently used to model time series data is to assume that the current value 
௧ܻ of a given time series is a function f of the p previous values of Y up to some zero-mean 

random noise; that is, 
 

௧ܻ ൌ ݂൫ ௧ܻିଵ, ௧ܻିଶ,⋯ , ௧ܻି௣൯ ൅  ௧ߝ
    Eq. 1 

 
The main limitation of this approach is that the “memory” of the model only goes as far as the 
number of p previous values used. This means that there is no memory of the full time series or 
of the long-term dependencies. This class of models may be satisfactory for handling time series 
that present simple stationary behavior, but it is usually not capable of capturing long-range 
dynamics. Models of this type are built under the so-called Markov assumption; that is, that the 
random variable ௧ܻ conditional on the sequence ௧ܻିଵ, ௧ܻିଶ,⋯ , ௧ܻି௣ is independent from any 
random variable ఛܻ with τ ൏ ݐ െ  An issue that is immediately relevant is the choice of the .݌
order p for a particular time series. The traditional solution to this problem consists in choosing 
the order that minimizes some type of information criteria (e.g., the Bayesian information 
criterion or the Akaike information criterion). 
 
 
2.2  TIME SERIES MODELING WITH HIDDEN VARIABLES 
 
Traditional statistical time series models can be classified as one of two mutually exclusive 
classes: (1) models defined by observations or (2) parameter-driven models. Parameter-driven 
models are characterized by the presence of latent (or hidden) variables. Hidden variables Z are a 
way to summarize the history of a time series Y. A model with system memory or state 
information can be developed by the use of hidden variables. This memory is introduced as a 
dynamic relationship between the consecutive values … , ,௧ିଵݖ ,௧ݖ ,௧ାଵݖ … of the hidden variables. 
The observed time series Y is considered to be generated by the hidden variables Z; that is, the 
observed variables are the result of the hidden process Z. 
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Two examples may clarify this discussion. The classical autoregressive moving average 
(ARMA) time series model 
 

௧ܻ ൌ ܿ ൅ ௧ߝ ൅෍ߙ௜ ௧ܻି௜

௣

௜ୀଵ

൅෍ߠ௜ߝ௧ି௜

௤

௜ୀଵ

 

    Eq. 2 
 
is an example of an observation-driven model. On the other hand, the class of state-space models 
adequately illustrates the general concept of parameter-driven models: 
 

൜
ܼ௧ ൌ ݂ሺܼ௧ିଵሻ ൅ ௧ߝ
௧ܻ ൌ ݄ሺܼ௧ሻ ൅ ߱௧

 

     Eq. 3 
 
The use of hidden variables is a natural way of handling the inherent incompleteness of time 
series data. There are three reasons why time series measurements are, in essence, incomplete. 
First, the observations are recorded at (discrete) sampling points, although the system being 
observed often evolves continuously over time. Second, almost invariably, all that is measured is 
merely a subset of the variables involved in the problem. Third, the process generating the 
observed time series may not be time-invariant (i.e., the mechanism generating the observations 
may be evolving through time). If this evolution is not so irregular as to render useless any 
attempt at forecasting, then it will almost certainly be necessary to keep track of the time 
trajectory of the system. In other words, a model with memory will be required. As mentioned, 
such a model can be obtained by including hidden variables. 
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3  DYNAMIC FACTOR GRAPHS 
 
 
3.1  FORMALISM 
 
A factor graph is a bipartite graph with two types of nodes, variables Y and Z, and factors h and f 

(which are functions of variables). The edges in a factor graph are such that each variable node 
can be directly connected only to factor nodes, and each factor node can be directly connected 
only to variable nodes. 
 
Dynamic factor graphs or DFGs [13] are factor graphs specially tailored for handling sequences 
of random variables. The architecture of a DFG describing the structure of a general state-space 
model, like the one in Eq. 3, is presented in Figure 1. 
 
 

 

FIGURE 1  Architecture of a DFG that describes the 
structure of a general state-space model [13] 

 
 
DFGs are more flexible than state-space models, however, because they allow for any 
conceivable dependence structure between observed and hidden variables. For example, consider 
the DFG architecture presented in Figure 2. 
 
 

 

FIGURE 2  Architecture of a DFG with a more 
complex structure [13] 
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This architecture corresponds to the structure of the following class of time series models: 
 

൜
ܼ௧ ൌ ݂ሺܼ௧ିଵ, ௧ܻିଵሻ ൅ ௧ߝ
௧ܻ ൌ ݄ሺܼ௧, ௧ܻିଵሻ ൅ ߱௧

	

     Eq. 4 
 
where f and h are given functions and ߝ௧ and ߱௧ are noise processes. 
 
 
3.2  FACTORS USED 
 
DFG models may also handle a situation in which one time series Y is considered the output of a 
system subject to an input sequence X. A particular architecture for such a case is presented in 
Figure 3. 
 
 

 

FIGURE 3  DFG structure for a case in which the 
time series Y is considered the output of a system [13] 

 
 
This corresponds to time-series regression models and the study of the input-output relationship 
between two observed time series. This architecture describes the structure of the following class 
of time series models: 
 

൜
ܼ௧ ൌ ݂ሺܼ௧ିଵ, ܺ௧ሻ ൅ ௧ߝ

௧ܻ ൌ ݄ሺܼ௧ሻ ൅ ߱௧
	

            Eq. 5 
 
The functions for all kind of factors (observational, dynamic, or exogenous) can be linear or 
nonlinear. A nonlinear function can help us obtain a more accurate description of the real world 
problem, but the nonlinearity increases the computational complexity and therefore the 
computational effort. 
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3.3  MAXIMUM LIKELIHOOD ENERGY-BASED INFERENCE 
 
Once we have defined the architecture of the model involving hidden variables, inference on the 
historical sequence of hidden variables Z can be conducted. The aim is to find the Z sequence 
that optimally represents the observed variable Y (and X, if relevant) under the model. 
 
 
3.3.1  Energy as Negative Log-Likelihood 
 
Let us introduce the notion of energy, which is reviewed in 
References [14] and [15]. The notion of energy can be 
understood as resulting from the total prediction error, 
represented as	ܧሺܽ௧,  ௧ሻ in Figure 4. Using the factor graph݋
formalism in the logarithmic domain, the energy of the whole 
sequence of observed and hidden variables is a sum of energies 
of all the factors and is denoted as ܧሺܻ, ܼ; ܺሻ. Making the 
model parameters W explicit in the energy term, we 
write	ܧሺܻ, ܼ; ܺ,Wሻ. 
 
The total energy associated with the DFG is made proportional 
to the joint log-likelihood of observed and latent variables Y and 
Z given the inputs X: 
 

,ሺܻܧ ܼ; ܺ,ܹሻ ∝ െ ݃݋݈ ܲሺܻ, ܼ|ܺ,ܹሻ ൅ 	ݐݏ݊݋ܿ
    Eq. 6 

 
Note that the energy presented does not by itself define a probability distribution because the 
normalization terms are unknown. To solve that problem, one would need to resort to the so-
called Boltzmann distribution [14]: 
 

ܲሺܻ, ܼ|ܺ,ܹሻ ൌ
݁ିఉாሺ௒,௓;௑,ௐሻ

׬ ׬ ݁ିఉாሺ௒ᇲ,௓ᇲ;௑,ௐሻܻ݀ᇱܼ݀ᇱ஽ೋ஽ೊ

	

    Eq. 7 
 

ൌ
݁ିఉாሺ௒,௓;௑,ௐሻ

௒,௓ሺܺ,ܹሻ߁
	

      Eq. 8 
 
This distribution provides the maximum entropy distribution that is still compatible with the 
observations. The normalization constant ߁௒,௓ሺܺ,ܹሻ is called the partition function. 
 
  

FIGURE 4  General 
description of a factor linking 
variables ࢚ࢇ and ࢚࢕ through 
function	ࢍ, with energy 
term ,࢚ࢇሺࡱ   ሻ [13]࢚࢕
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In order to evaluate the observed sequence Y, one has to marginalize ܲሺܻ, ܼ|ܺ,Wሻ and Eq. 6 
over all the values that the hidden sequence Z can take: 
 

ܲሺܻ|ܺ,ܹሻ ൌ න ܲሺܻ, ܼ|ܺ,ܹሻ
஽ೋ

ܼ݀	

    Eq. 9 
 

ൌ න
݁ିఉாሺ௒,௓;௑,ௐሻ

௒,௓ሺܺ,ܹሻ߁
஽ೋ

ܼ݀	

    Eq. 10 
 
The evaluation of the integrals in Eq. 10 over all observed and hidden sequences is intractable 
for continuous variables under non-Gaussian distributions, or even when the distributions are 
Gaussian but the factors are nonlinear. 
 
The use of the Maximum A Posteriori (MAP) approximation, proposed in Reference [2], which 
foregoes the full distribution in favor of its mode, permits one to derive:  
 

i. ܧሺܻ; ܺ,ܹሻ ൌ ௓݊݅݉݃ݎܽ ,ሺܻܧ ܼ; ܺ,ܹሻ     Eq. 11 
 

ii. ܽ݊݅݉݃ݎ௓ ,ሺܻܧ ܼ; ܺ,ܹሻ ൌ ௓ݔܽ݉݃ݎܽ ܲሺܼ|ܺ, ܻ,ܹሻ    Eq. 12 
 
The proof for this MAP approximation is given in Appendix A. 
 
 
3.3.2  Inference of Latent Variables 
 
For a given configuration of the parameters, the latent variables inference in a MAP setting is 
equivalent to finding the optimum of ܧሺܻ, ܼ; ܺ,ܹሻ, which is the solution to the equation: 
 

	
,ሺܻܧ߲ ܼ; ܺ,ܹሻ

߲ܼ
ൌ 0		

     Eq. 13 
 
This can be achieved by using the well-known gradient descent algorithm. The gradients are 
back-propagated [16] from the energy modules in both directions, and each ݖ௧ is updated by 
summing up the contributions coming from all the factors to which it is connected. Until a 
convergence criterion is achieved, the gradient step is repeated. 
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3.4  EXPECTATION MAXIMIZATION-BASED LEARNING OF DFGS 
 
 
3.4.1  Expectation Maximization Algorithm 
 
Reference [17] first introduced the expectation maximization (EM) algorithm for the iterative 
computation of maximum-likelihood estimates when the observations can be viewed as 
incomplete data. The EM algorithm is directed at finding the parameters that maximize the 
objective function given an observed time series sequence. EM alternates between parameter 
estimation/learning (M-step) and latent variables inference (E-step), and can be understood as a 
gradient ascent algorithm applied to the likelihood. The main limitation of the EM algorithm is 
that it is only assured to converge to a local maximum (i.e., there is no guarantee that it will 
always achieve the global maximum).  
 
The EM algorithm aims at maximizing the joint likelihood ܲሺܻ, ܼ|ܺ,ܹሻ of the complete data 
(i.e., observed plus hidden variables) specified by a model parameterized by the unknown 
vector	ܹ. Because the variables Z are latent, it tries to maximize the expectation of the log-
likelihood with respect to the hidden data. The first step (E-step) consists in evaluating 
ሺlogܧ ܲሺܻ, ܼ|ܺ,ܹሺ௞ሻሻሻ given the current estimate ܹሺ௞ሻ of the parameters. The second step  
(M-step) consists in maximizing that quantity with respect to (w.r.t.) the parameters	ܹ; that 
is, assigning 	ܹሺ௞ାଵሻ ൌ argmax୛ ሺlogܧ ܲሺܻ, ܼ|ܺ,ܹሺ௞ሻሻሻ. 
 
In Reference [18], an alternative justification of the EM algorithm is presented, in terms of free 
energy and entropy. In particular, the distribution	ܲሺܻ, ܼ|ܺ,ܹሻ, which is unknown, is replaced 
by an approximate distribution ܳሺܻ, ܼ|ܺ,ܹሻ that is known, and during the E-step, instead of 
maximizing the expectation of	ܲሺܻ, ܼ|ܺ,ܹሻ, one maximizes the logarithm of	ܳሺܻ, ܼ|ܺ,ܹሻ, 
which is proven to be a lower bound for the log-likelihood logܲሺܻ, ܼ|ܺ,ܹሻ [19]. 
 
 
3.4.2  Simplification and Approximation 
 
Following Reference [13], we make use of the MAP approximation to the full 
distribution	ܲሺܻ, ܼ|ܺ,ܹሻ. Therefore, maximizing the conditional likelihood of the hidden 
variables is equivalent to minimizing the energy, as set out in Eq. 12. 
 
 
3.4.3  Alternated E-Step and M-Step Procedure 
 
The learning process in a DFG consists of adjusting the parameters W in order to minimize the 
sum of energies at each factor. It is possible to consider the introduction of the regularization 
terms ܴ௓ሺܼሻ for constraining the Z sequence and ܴሺܹሻ for regularizing the W factors, and, 
eventually, an	ܴ஼ோሺܼሻ term for penalizing the dependency between each pair of Z components. 
This leads from the energy function to the loss function defined in Eq. 14. 
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ࣦሺܻ, ܼ; ܺ,ܹሻ ൌ෍ሺܧߙௗሺݐሻ ൅ ሻݐ௢ሺܧߚ ൅ ௓ܴ௓ሺܼሻߛ ൅ ௐܴሺܹሻߛ ൅ ஼ோܴ஼ோሺܼሻሻߛ
்

௧ୀଵ

 

 Eq. 14 
 
where Edሺtሻ  and Eoሺtሻ  refer to the dynamic and observational energies defined in Eq. 15 and 
Eq. 16, respectively. 
 

ሻݐௗሺܧ ൌ ௗ൫ܧ ௗܹ, ௧ି௣ݖ
௧ିଵ, ሻ൯ݐሺݖ ൌ ሻݐሺ̅ݖ‖ െ ሻ‖ଶݐሺݖ

ଶ 

    Eq. 15 
 

ሻݐ௢ሺܧ ൌ ௢ሺܧ ௢ܹ, ,ሻݐሺݖ ሻሻݐሺݕ ൌ ሻݐതሺݕ‖ െ ሻ‖ଶݐሺݕ
ଶ	

   Eq. 16 
 
According to Eq. 12 and Eq. 15, the iterative procedure can be written as: 
 

ࣦሺܻ, ܼ; X,Wሻ ൌ෍ሺܧߙௗሺݐሻ ൅ ሻݐ௢ሺܧߚ ൅ ௓ܴ௓ሺܼሻߛ ൅ ௐܴሺWሻߛ ൅ ஼ோܴ஼ோሺܼሻሻߛ
்

௧ୀଵ

 

  Eq. 17 
 

۳ െ 	:۾۳܂܁ ෨ܼ ൌ ݊݅݉݃ݎܽ
௓

ࣦ൫ܻ, ܼ; ܺ,W෩ ൯ 

    Eq. 18 
 

െࡹ 	:ࡼࡱࢀࡿ ෩ܹ ൌ ݊݅݉݃ݎܽ
ௐ

ࣦ൫ܻ, ෨ܼ; ܺ,ܹ൯ 

    Eq. 19 
 
Minimization of the loss function is done iteratively in an EM-like fashion, in which the state 
vector Z plays the role of auxiliary variables. The inference described in Eq. 18 can be 
considered as the E-step (state update) of a deterministic gradient-based version of the EM 
algorithm. During the parameter-adjusting M-step (weight update) described by Eq. 19, the latent 
variables are frozen. This means that we are back into the nonhidden variable framework and 
that we perform any kind of optimization to adjust W. 
 
 
3.5  FEATURES 
 
If the DFG model is given by the following: 
 

ቊ
ܼ௧ ൌ ݂൫ܼ௧ିଵ,⋯ , ܼ௧ି௣; ܺ௧; ஽ܹ൯ ൅ ௧ߝ

௧ܻ ൌ ݃ሺܼ௧; ௢ܹሻ ൅ ߱௧
	

            Eq. 20 
 
where ߝ௧ and ߱௧ are the innovation processes (or noise), then the structure of the loss function is 
as shown in the following.  
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The dynamic energy at time t is given by 
 

ሻݐௗሺܧ ൌ ฮܼ௧ െ ݂ሺܼ௧ିଵ,⋯ , ܼ௧ି௣; ܺ௧; ஽ܹሻฮଶ
ଶ
	

   Eq. 21 
 
The contemporary observational energy is 
 

ሻݐ௢ሺܧ ൌ ‖ ௧ܻ െ ݃ሺܼ௧; ௢ܹሻ‖ଶ
ଶ	
    Eq. 22 

 
The regularization term on Z can take several different forms, but it can be specified, in 
particular, as a quadratic variation penalty to enforce smoothness on the latent sequence: 
 

ܴ௓ሺܼሻ ൌ෍ሺܼ௧ െ ܼ௧ିଵሻଶ
்

௧ୀଵ

	

    Eq. 23 
 
The parameter regularization term can be specified as ܴሺܹሻ ൌ ‖ ைܹ‖ଵ ൅ ‖ ௫ܹ‖ଵ ൅
∑ ฮ ௗܹ಴ฮଵ
#௖௢௠௣௢௡௘௡௧௦
௖ୀଵ . 

 
If the Z sequence variable has more than one hidden component, then a correlation term or 
dependency penalty term could be introduced; it is given as follows: 
 

ܴ஼ோሺܼሻ ൌ෍ ෍ หܿݎݎ݋൫ݖ௜ሺݐሻ, ሻ൯หݐ௝ሺݖ

#௖௢௠௣௢௡௘௡௧௦

௜ஷ௝

்

௧ୀଵ

	

   Eq. 24 
 
where ܿݎݎ݋ሺ. ሻ corresponds to the linear correlation coefficient between each pair of components 
of the hidden variable Z. 
 
 
3.6  PERFORMANCE MEASURES 
 
After we have trained the DFG (by using the training set), the trained DFG is used to generate 
forecasts over a distinct test (or validation) set. The forecasting performance can be assessed in 
both absolute and relative terms by using several different measures. The performance measures 
used here for WPF are (1) the evaluation of the prediction error using both the mean absolute 
error (MAE) and root mean square error (RMSE), (2) the computation of the standard deviation 
of the prediction error, and (3) the generation of nonparametric confidence intervals at a level of 
at least 75%. 
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4  APPLICATION TO TIME SERIES MODELS AND DYNAMIC SYSTEMS 
 
 
This section outlines the numerical experiments that were used to perform the training and to test 
the DFG models. The empirical results of these experiments are reported in Section 5. 
 
As depicted in Eq. 4 and 5, a DFG model is expressed by two equations as in a state-space 
model. In the general case, there is: 
 

ቊ
௧ݕ ൌ ݄ሺܼ௧; ௢ܹሻ ൅ ߱௧

௧ݖ ൌ ݂൫ܼ௧ିଵ,⋯ , ܼ௧ି௣; ܺ௧, ஽ܹ, ௑ܹ൯ ൅ ௧ߝ
	

            Eq. 25 
 
where ܼ௧ refers to the hidden/dynamic variable at time t; ܺ௧ is the explanatory/exogenous vector 
at time t; and ௢ܹ, ஽ܹ, and ௑ܹ are the model parameters corresponding to the observational, 
dynamic, and regression components. ߱௧ and ߝ௧ are the noise processes corresponding to the 
observational and state equations. 
 
At present, we consider both the observational and dynamic functions to be linear. Most of our 
dataset is made up of wind power measurements recorded at time steps of 10, 30, and 
60 minutes.  
 
Combining the different elements mentioned yields the following system: 
 

൜
௧ݕ ൌ ௢ܹܼ௧ ൅ ߱௧

ܼ௧ ൌ ௗܹଵܼ௧ିଵ ൅ ௗܹଶܼ௧ିଶ ൅ ⋯൅ ௗܹ௣ܼ௧ି௣ ൅ ௫ܹܺ௧ ൅ ௧ߝ
	

   Eq. 26 
 
The loss function in the more general case is as follows: 
 

ࣦሺܻ, ܼ; ܺ,ܹሻ ൌ ෍ ቌߙ෍ܧௗሺݐሻ
்

௧ୀଵ

൅ ሻݐ௢ሺܧ෍ߚ
்

௧ୀଵ

൅ ௭ܴ௓ሺܼሻߛ ൅ ௐܴሺܹሻቍߛ

#௖௢௠௣௢௡௘௡௧௦

௖ୀଵ

	

Eq. 27 
 
The algorithm for training the DFG model and conducting inference in this context uses the 
gradient descent algorithm. It is therefore necessary to obtain the gradient of the loss function. 
 

,ሺܻࣦߘ ܼ; ܺ,ܹሻ ൌ ൬
߲ࣦ
߲ܻ

,
߲ࣦ
߲ܼ

;
߲ࣦ
߲ ஽ܹ

,
߲ࣦ
߲ ைܹ

,
߲ࣦ
߲ ௑ܹ

൰	

    Eq. 28 
 
Note that the gradient of the loss function does not have any component expressing variation 
with respect to the exogenous variable X. This is because all inference is conducted conditionally 
on the observed values of X. The derivation of the gradient and initializations of the latent 
variable can be found in Appendix B. 
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The gradient descent algorithm is used for updating the estimates of both the model parameters 
W and the latent variables Z: 
 

൞
ܼሺ௞ାଵሻ ൌ ܼሺ௞ሻ െ ௓ߟ

߲ࣦ
߲ܼ

ܹሺ௞ାଵሻ ൌ ܹሺ௞ሻ െ ௐߟ
߲ࣦ
߲ܹ

	

            Eq.29 
 
A successful update depends largely on the value used for the 
learning coefficient represented as ߟ௓ and ߟௐ in Eq. 29. Typical 
values for the learning coefficient lie in the range	ሾ0,0.3ሿ, 
depending on the total range of the data in use. We implement a 
reduction in the learning rates ߟ௓ and ߟௐ in order to guarantee a 
fast convergence and also to avoid cases of divergence. 
 
There are several degrees of freedom (i.e., parameters) in this 
algorithm that have an impact on its convergence. The main 
parameters are presented in Table 1 jointly with the selected 
values. We arrived at these values by trial and error over many 
experiments; we started our trials on the basis of the 
suggestions made in Reference [13]. 
 
After training a particular DFG model with a specific Markov 
order, we tested its forecasting ability by using several relevant 
metrics: RMSE improvement compared with other 
methodologies (e.g., persistence and ARIMA class models), error bias, standard deviation, and a 
nonparametric confidence interval for the prediction error. In presenting the results, we 
concentrate mostly on the improvement achieved w.r.t. both the persistence and ARIMA models: 
 

ݐ݊݁݉݁ݒ݋ݎ݌݉ܫ ൌ 100 ൈ
ሻܣܯܫܴܣ	ݎ݋	݁ܿ݊݁ݐݏ݅ݏݎ݁݌ሺܧܵܯܴ െ ሻܩܨܦሺܧܵܯܴ

ሻܣܯܫܴܣ	ݎ݋	݁ܿ݊݁ݐݏ݅ݏݎ݁݌ሺܧܵܯܴ
	

 Eq. 30 
 
where RMSE is defined as: 
 

ܧܵܯܴ ൌ ඩ
1
ܰ
෍ሺ݂ݐݏܽܿ݁ݎ݋ሺ݅ሻ െ ሺ݅ሻሻଶ݀݁ݒݎ݁ݏܾ݋
ே

௜ୀଵ

	

 Eq. 31 
 
  

TABLE 1  Parameters and 
their values 

 
Parameter Value 

 ߚ ,ߙ 0.5 

 ௐߛ 1 

 ஼ோߛ 0 or 10 

 ௓ߛ 1 

Epochs  10 

 ௐ஽ߟ 0.001 

 ௐ௑ߟ 0.01 

 ௓ߟ 0.1 

 ௜௡௡௢௩௔௧௜௢௡	ௗ௬௡௔௠௜௖ߪ 1 
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The improvement can also be computed with respect to the MAE measure, where MAE is 
defined as: 
 

ܧܣܯ ൌ
1
ܰ
෍|݂ݐݏܽܿ݁ݎ݋ሺ݅ሻ െ |ሺ݅ሻ݀݁ݒݎ݁ݏܾ݋
ே

௜ୀଵ

 

 Eq. 32 
 
 
4.1  MODEL TRAINING APPROACH 
 
The model training approach employed makes use of a large initial training dataset for estimating 
the hidden sequence Z. Then the forecast for the next 6 hours (the test set) is made. The new 
training set is then considered to be the test set used in the previous estimation, and the necessary 
initial conditions are taken to be the last previously estimated values of the Z sequence. This 
represents “online” learning with a sliding-window approach. The forecast for the next 6-hour 
test set is again performed. This process is repeated until the entire dataset is exhausted. 
 
In our experiments, we use an initial training set that covers between 1 month and 3.5 months of 
observations (depending on the total amount of data in the available datasets). 
 
From our initial experiments with DFG models, we were able to observe that the best RMSE and 
MAE improvements (w.r.t. the persistence benchmark and to the ARIMA models) were obtained 
by models with low Markov orders. Accordingly, the experiences presented here use DFG 
models with Markov order p = 1. 
 
Two training approaches (original and new) were developed and tested in this project. Both 
approaches have the following main steps: 
 
Step 1: The training dataset with N data points of observations is chosen (1 month to 
3.5 months). A forecast for the following 6 hours (test set) is made. The estimated Z sequence is 
fixed. 
 

 
 
  

6-hours-ahead 
forecast N observations 

Training set Test set 
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Step 2: The training set is now the fixed sequence of Z from the former training set plus the new 
observation (i.e., N + 1 observations). The initial conditions for the Z process over the training 
set are obtained from the estimated (fixed) Z sequence, and the Z value for the N + 1 observation 
is calculated. The forecast for the next 6 hours is made. 
 
 

 

 

 

 

 

 

Note that for the original training algorithm, instead of simply estimating one new value for the Z 
sequence, it is necessary to estimate N + 1 values (re-estimating the complete Z sequence over 
the previous training set and estimating the new values over the new training set). This is very 
time consuming, since the size of the training set is continuously increasing. Therefore, in this 
report, we propose a new training approach that is computationally more efficient. 
 
Step 3: Repeat step 2 until the entire test dataset is used. 
 
The next three sections (5, 6, and 7) present the performance of the DFGs against both the well-
known ARIMA class and the persistence benchmark over three datasets: Midwest Wind Farms A 
and B (WFA and WFB) and the South Central Wind Farm C (WFC). 
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5  EMPIRICAL RESULTS: MIDWEST WIND FARM A (WFA) 
 
 
The wind power data used in this chapter are from a large wind farm located in flat terrain in the 
Midwest United States. The wind farm was divided in two “sub-wind farms” named Wind Farm 
A (WFA) and Wind Farm B (WFB). Data from both were originally recorded in 10-minute time 
steps. In this section, only the data from WFA are used. Results for WFB are presented in 
Section 6. 
 
In order to empirically test this new modeling methodology, we fit the first-order linear DFG 
described in the previous section to three time series of WFA wind power generation recorded at 
sampling frequencies of 10, 30, and 60 minutes, respectively. The DFG model was updated for 
every time step (i.e., 10, 30, and 60 minutes) as new observations of wind power generation were 
made available by the supervisory control and data acquisition (SCADA) system. 
 
The complete dataset (i.e., generated power as measured by the wind farm’s SCADA) made 
available for this project corresponds to the period between January 2, 2009, and 
February 20, 2010. 
 
In order to assess the behavior of the multi-step-ahead prediction error generated by the DFG, we 
ran the training algorithm as described in Subsection 4.1. From the 10-minute-frequency dataset, 
we took 5,000 data points (1 month of observations) as an initial training set. From the 
30-minute-frequency (re-sampled from the 10-minute time series by calculating the average) 
dataset, we selected an initial training set with 5,000 observations (approximately 3.5 months of 
observations). Finally, from the dataset recorded at a sampling frequency of 1 hour (re-sampled 
from the 10-minute time series by calculating the average), we used 2,000 data points 
(i.e., around 3 months of observations) as an initial training set. The multi-step-ahead, out-of-
sample forecasting horizon covers 6 hours (i.e., 36, 12, and 6 data points for the 10-, 30-, and  
60-minute-frequency datasets, respectively). Before fitting the DFG model, we applied 
differences to the original wind power measurements first, and then we normalized the resulting 
data. The normalization was done by subtracting the sample mean and dividing the resulting 
differences by their standard deviation. The ARIMA models were fitted to the same transformed 
data. Unless otherwise stated in the text, the remaining period of the dataset was used to test and 
compare the forecasting models. 
 
 
5.1  10-MINUTE-FREQUENCY DATASET 
 
The original time series of wind power production contains 59,688 data points. From these, we 
selected an initial training set of 5,000 data points. Using this wind power dataset, we estimated a 
first-order DFG model and subsequently generated a multi-step, out-of-sample forecast over a 
horizon of 36 data points (6 hours). We compared the resulting forecasting errors with what can 
be achieved by using the so-called persistence model (i.e., using the last observation as the 
prediction for the next point — the optimal forecasting strategy for a Martingale process) as well 
as the best ARIMA class (obtained using the “auto.arima” function of the “forecast” package for 
the R language [20]). 
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Figure 5 shows the average RMSE improvement w.r.t. the persistence benchmark that was 
attained by the estimated DFG model. The DFG model with Markov order 1 presents a mean 
improvement of 28.03% over the 6-hour forecasting window. 
 
 

 

FIGURE 5  WFA for 10-minute- time step: RMSE improvements 
w.r.t persistence for the DFG models with Markov order 1 and 
the ARIMA model, with an initial training set with 1 month of 
observations (5,000 data points) 

 
 
Figure 6 presents the MAE improvement w.r.t. the persistence benchmark that was attained by 
the estimated DFG model. The DFG model with Markov order 1 presents a mean improvement 
across the 6-hour forecasting window of 32.43%. 
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FIGURE 6  WFA for 10-minute time step: MAE improvements 
w.r.t. persistence for the DFG models with Markov order 1 and the 
ARIMA model, with an initial training set with 1 month of 
observations (5,000 data points) 

 
 
Besides comparing the forecasting performance of the DFG models with the persistence 
benchmark, we decided to use a less trivial class of time series models to help further assess the 
behavior of this new forecasting approach. Accordingly, we employed the class of autoregressive 
integrated moving average (ARIMA) models. By using the same training approach and after 
applying the same data transformation as used for the DFG models, we selected the ARIMA 
model that minimizes the Akaike information criterion (AIC). This particular ARIMA model 
was then used to forecast the next 36 observations over the test set. We conducted a search 
among all ARIMA models, starting from a pure white noise ARIMA(0,0,0) model up to an 
ARIMA(12,0,12) model. The “best” model was an ARIMA (3,0,1) model. 
 
In addition to indirectly comparing the forecasting improvement of the DFG and ARIMA classes 
w.r.t. the persistence model, we show the direct improvement achieved by the DFG w.r.t. the 
ARIMA class in Figures 7 and 8. Figure 7 focuses on the RMSE, and Figure 8 focuses on the 
MAE. As could be expected after seeing the results from Figures 5 and 6, the RMSE 
improvement of the DFG models w.r.t. the best ARIMA model is positive from the fourth 
forecasting step until the thirty-sixth forecasting step. Similarly, the MAE improvement is 
positive from the third forecasting step onward. The maximum RMSE improvement was around 
3.6% and was achieved for the forecasting step h = 6 (i.e., 1 hour ahead). With respect to the 
MAE improvement, its maximum (of around 6.4%) was also achieved at h = 6. 
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FIGURE 7  WFA for 10-minute time step: RMSE 
improvements w.r.t. ARIMA class for the DFG models 
with Markov order 1 

 
 

 

FIGURE 8  WFA for 10-minute time step: MAE 
improvements w.r.t. ARIMA class for the DFG models 
with Markov order 1 
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5.2  30-MINUTE-FREQUENCY DATASET 
 
This dataset contains 19,895 data points and was obtained by aggregating the original dataset 
recorded at a 10-minute frequency. As we did for the first dataset, we initialized the State 
Sequence Z with a large training set: namely, 2,000 data points (i.e., 1 month of observations) for 
a DFG with Markov order p = 1. Again, we compared the forecasting performance of the DFG 
models with both the persistence benchmark and the minimum AIC ARIMA model. 
 
For this sampling frequency, the advantage of the DFG models w.r.t. the best ARIMA model is 
less significant; the first 3 or 4 (out of 12) forecasting steps present a negative improvement. 
Figure 9 shows that the DFG model provides a larger RMSE improvement w.r.t. persistence than 
does the ARIMA model for the forecasting steps between 4 and 12. The average MAE 
improvement w.r.t. persistence obtained by the DFGs was larger than its ARIMA counterpart for 
all the forecasting steps except for the second and third (i.e., 1 hour and 1.5 hours ahead), as 
shown in Figure 10. 
 
 

 

FIGURE 9  WFA for 30-minute time step: RMSE 
improvements w.r.t. persistence for the DFG models 
with Markov order 1 and ARIMA 
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FIGURE 10  WFA for 30-minute time step: MAE 
improvements w.r.t. persistence for the DFG models 
with Markov order 1 and ARIMA 

 
 
Figures 11 and 12 show the improvement obtained by the DFG models w.r.t. the best ARIMA 
model. For most of the forecasting steps, that improvement is positive, reaching a maximum of 
4.5% for h = 8 for the RMSE measure and 6.6 % for h = 11 for the MAE measure.  
 

 

FIGURE 11  WFA for 30-minute time step: RMSE 
improvements w.r.t. ARIMA class for the DFG 
models with Markov order 1 
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FIGURE 12  WFA for 30-minute time step: MAE 
improvements w.r.t. ARIMA class for the DFG models 
with Markov order 1 

 
 
5.3  1-HOUR-FREQUENCY DATASET 
 
The last wind power dataset contains 9,947 data points and was similarly obtained by time 
aggregation. The size of the initial training set was 2,000 data points, which corresponds to 
approximately 2.8 months of observations. For this sampling frequency, the results show a clear-
cut advantage of the DFG approach over the ARIMA class of time series models. The average 
RMSE improvement w.r.t. persistence obtained by the DFG model, 20.71%, surpassed what 
could be achieved by using the AIC-minimizing ARIMA (16.35%). Likewise, w.r.t. the average 
MAE improvement over persistence, the DFG model (with 23.73%) surpassed the best ARIMA 
model (with 17.48%). The comparison between the RMSE improvements (w.r.t. persistence) 
obtained by the DFG and ARIMA models is shown in Figure 13, while Figure 14 shows the 
corresponding comparison between MAE improvements. 
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FIGURE 13  WFA for 60-minute time step: RMSE 
improvements w.r.t. persistence for the DFG models 
with Markov order 1 and ARIMA 

 
 

 

FIGURE 14  WFA for 60-minute time step: MAE 
improvements w.r.t. persistence for the DFG models 
with Markov order 1 and ARIMA 
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Figure 15 presents the direct RMSE improvement achieved by the DFG model over the best 
ARIMA model, and Figure 16 shows a similar picture with regard to the MAE improvement 
measure. The improvement of the DFG models w.r.t. the best ARIMA model is positive for all 
the forecasting horizons for both the RMSE and MAE measures. 
 
 

 

FIGURE 15  WFA for 60-minute time step: RMSE 
improvements w.r.t. ARIMA class for the DFG 
models with Markov order 1 

 
 

 

FIGURE 16  WFA for 60-minute time step: MAE 
improvements w.r.t. ARIMA class for the DFG 
models with Markov order 1 
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5.4  MIDWEST WIND FARM A FOR ANOTHER TIME PERIOD 
 
This subsection presents results for the same wind farm (WFA) but at a more recent time period 
for which we have access to numeric weather predictions (NWPs) from the HRRR model. The 
wind farm dataset now corresponds to the period between September 1, 2010, and August 31, 
2012. Hence, the wind power dataset contains 17,079 data points measured at a 60-minute 
frequency. We have NWPs for only 6,372 hourly wind power measurements, however.  In order 
to test the explanatory variables included in the DFG model, we based our results on the subset 
with 6,372 data points from December 1, 2011, to August 31, 2012. For this subset, we used an 
initial training set of 4,000 data points, which covers approximately 5.6 months of observations. 
The trained DFG model was then used to obtain forecasts up to 6 hours ahead. The DFG model 
still had a first Markov order (p = 1). 
 
Here the results are presented first without considering the explanatory NWP variable. 
Figures 17 and 18 show the improvement of the DFG and ARIMA models over the persistence 
benchmark, which is positive for both methods. However, the DFG model obtained larger mean 
improvements: 25.48% for the DFG and 22.92% for the ARIMA under the RMSE measure 
(Figure 17), and 30.7% for the DFG and 24.12% for the ARIMA under the MAE measure 
(Figure 18).   
 
 

 

FIGURE 17  WFA for 1-hour time step: RMSE 
improvements w.r.t. persistence for the DFG models with 
Markov order 1 and ARIMA 
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FIGURE 18  WFA for 1-hour time step: MAE 
improvements w.r.t. persistence for the DFG models with 
Markov order 1 and ARIMA 

 
 
Figures 19 and 20 present the improvement results for the DFG over the ARIMA model. These 
are positive for all forecasting steps, with a maximum of 5.4% for h = 6 for the RMSE measure 
and 11.9% for h = 5 for the MAE measure. The DFG model is clearly more accurate than the 
persistence benchmark and ARIMA models. 
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FIGURE 19  WFA for 1-hour time step: RMSE 
improvements w.r.t. ARIMA class for the DFG models 
with Markov order 1 

 
 

 

FIGURE 20  WFA for 1-hour time step: MAE 
improvements w.r.t. ARIMA class for the DFG models 
with Markov order 1 
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5.4.1  Including Explanatory Variables 
 
To study the effect of additional explanatory variables in the DFG model, we introduced two 
different explanatory variables. First, we considered the U (east-west) and V (north-south) 
components of the wind from the NWPs produced by the HRRR model for DOE’s WFIP. 
Second, we considered the forecasted wind speed modulus (i.e., calculated from the U and V 
components). 
 
When the explanatory variables were first introduced into the DFG models, there were numerical 
instability and convergence problems. We found that the number of data measurements of the 
initial training set could not be made as large as the ideal desirable number because the 
computational problems were not manageable. Therefore we used 12 days and 12 hours (or 
300 hourly data points) as the initial training set. Since the initial training set was not large 
enough, the update of the W factors constraint (see Subsection 4.1) was relaxed. 
 
Figures 21 and 22 compare the improvement w.r.t. persistence for the first-order DFG model 
with no explanatory variables with that for the first-order DFG model with the NWP wind speed 
components and wind speed modulus introduced separately into the model. The figures show 
that both explanatory variables lead to an increase in the DFG improvement up to time horizon 
h = 4 for both RMSE and MAE measures. Hence, the use of these explanatory variables 
increases the accuracy of wind power forecasts up to 4 hours ahead. 
 
 

 

FIGURE 21  WFA for 1-hour time step: RMSE 
improvements w.r.t. persistence for the DFG models with 
Markov order 1 using the two components of the wind 
speed and the wind speed modulus as explanatory 
variables 
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FIGURE 22  WFA for 1-hour time step: MAE 
improvements w.r.t. persistence for the DFG models with 
Markov order 1 using the two components of the wind 
speed and the wind speed modulus as explanatory 
variables 

 
 
We varied the number of data points used in the initial training set. However, the best framework 
that obtained the maximum improvement was for 300 initial data points with Z factors being 
updated, as explained in Subsection 4.1 (results are shown in Figures 21 and 22). 
 
Finally, it is important to stress that the DFG model with NWPs also uses the past values of the 
time series; thus, this model can be seen as an autoregressive model with exogenous input. These 
results show that NWPs combined with past values can provide some improvements in forecast 
accuracy. Again, this empirical finding corroborates the previous result, pointing to the short 
memory and volatile nature of the wind speed. However, these results should be validated with 
data from other wind farms. 
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6  EMPIRICAL RESULTS: MIDWEST WIND FARM B (WFB) 
 
 
The wind power dataset used in this section is also from the large-scale wind farm located in flat 
terrain in the Midwest United States. This section concentrates on the data from the second part 
of the wind farm analyzed in the previous section, labeled Wind Farm B (WFB). The dataset 
(i.e., generated power as measured by the wind farm’s SCADA) corresponds to the period 
between January 2, 2009, and February 20, 2010. A striking feature of the time series that is 
analyzed here is that it involves long periods of time when the wind power output was not 
measured. Missing information is a common feature of wind power data and could be caused by 
several factors, including equipment failures, communication problems, and outages. To 
overcome this problem, the DFG model was applied only to periods without missing data; the 
blank periods were ignored. 
 
 
6.1  10-MINUTE-FREQUENCY DATASET 
 
The WFB dataset contains 21,999 data points. We used an initial training set of 5,000 data 
points, which corresponds to 1 month of observations. The trained DFG model was used to 
forecast for 36 data points (i.e., 6 hours ahead). The following results are from a DFG with 
Markov order 1. 
 
The results for WFB are shown in Figures 23 through 26. The DFG models with Markov order 
݌ ൌ 1 attained a larger average RMSE improvement than what was achieved by the best ARIMA 
model: 31.26% versus 30.62%, respectively. With regard to MAE improvement, these values 
were 34.26% and 32.54%, respectively.  
 
 

 

FIGURE 23  WFB for 10-minute time step: RMSE 
improvements w.r.t. persistence for the DFG models 
with Markov order 1 and ARIMA 
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FIGURE 24  WFB for 10-minute time step: MAE 
improvements w.r.t. persistence for the DFG models 
with Markov order 1 and ARIMA 

 
 

 

FIGURE 25  WFB for 10-minute time step: RMSE 
improvements w.r.t. ARIMA class for the DFG models 
with Markov order 1 
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FIGURE 26  WFB for 10-minute time step: MAE 
improvements w.r.t. ARIMA class for the DFG models with 
Markov order 1 

 
 
In Figures 25 and 26, it is possible to see the DFG improvement w.r.t. ARIMA model for each 
forecasting step. With regard to the RMSE measure (Figure 25), for the forecasting steps h = 2, 
5, 6, 30, and 31, the DFG model leads to a negative improvement w.r.t. the ARIMA model. With 
regard to the MAE measure (Figure 26), the forecasting step h = 2 was the single case for which 
the DFG model could not outperform the ARIMA model. So, in general terms, these results 
show that for this dataset, the DFG approach outperforms the best ARIMA model, although the 
improvements are less significant than the improvements for WFA are for this frequency. 
 
 
6.2  30-MINUTE-FREQUENCY DATASET 
 
This dataset contains 7,332 data points and was obtained by aggregating the original dataset. For 
this case, we used an initial training set with 5,000 data points (equivalent to approximately 
3.5 months of data). Similar to what was seen for the same dataset recorded at the 10-minute 
frequency, it is possible to see that a significant advantage is associated with using the DFG 
approach over the best ARIMA model. Figures 27 and 28 show that the improvement over the 
persistence benchmark attained by the best ARIMA model is significantly smaller than the 
improvement attained by the DFG approach. This is true for both the RMSE and MAE measures. 
Nevertheless, some forecasting horizons had lower RMSE improvement rates: namely the 
forecasting horizons h = 1 and h = 6. 
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FIGURE 27  WFB for 30-minute time step: RMSE 
improvements w.r.t. persistence for the DFG models 
with Markov order 1 and ARIMA 

 
 

 

FIGURE 28  WFB for 30-minute time step: MAE 
improvements w.r.t. persistence for the DFG models 
with Markov order 1 and ARIMA 

 
 
Accordingly, when both the RMSE and MAE improvements for the DFG model w.r.t. the best 
ARIMA model are computed, Figures 29 and 30 show that the corresponding values are positive 
in general, except for the forecasting steps h = 1 and h = 6 for the RMSE measure. Under the 
MAE measure, there is an improvement for all forecasting time steps. 
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FIGURE 29  WFB for 30-minute time step: RMSE 
improvements w.r.t. ARIMA class for the DFG 
models with Markov order 1 

 
 

 

FIGURE 30  WFB for 30-minute time step: MAE 
improvements w.r.t. ARIMA class for the DFG 
models with Markov order 1 
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6.3  1-HOUR-FREQUENCY DATASET 
 
The last wind power dataset of the WFB dataset contains 3,665 data points and was obtained in a 
similar fashion, by the time aggregation of the dataset recorded at a 10-minute frequency. For 
this time series, we used an initial training set that covers approximately 2.8 months, or 
2,000 data points. 
 
The DFG model yielded a larger average RMSE improvement over the persistence benchmark 
than did the best ARIMA model (29.71% for the first-order DFG, and 18.21% for the best 
ARIMA; see Figure 31), and it likewise yielded a larger average MAE improvement (30.11% for 
the first-order DFG, and 16.84% for the best ARIMA; see Figure 32). The advantage of the DFG 
model over the best ARIMA is clear across the 6-hour forecast horizons; it can be seen in 
Figures 33 and 34. Similar to what happened for the WFA dataset recorded at a 1-hour 
frequency, the DFG approach clearly outperformed the class of ARIMA models; the relative 
improvement is even more pronounced for WFB. The DFG forecasts are, for the most part, 
smoother than the observed time series and ARIMA forecasts. Hourly data show less variability 
than do their higher-frequency counterparts, making their results more predictable. In general, 
the observed advantage of DFG models over ARIMA models confirms that the former are more 
flexible than the latter. 
 
 

 

FIGURE 31  WFB for 60-minute time step: RMSE 
improvements w.r.t. persistence for the DFG models 
with Markov order 1 
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FIGURE 32  WFB for 60-minute time step: MAE 
improvements w.r.t. persistence for the DFG models 
with Markov order 1 

 
 

 

FIGURE 33  WFB for 60-minute time step: RMSE 
improvements w.r.t. ARIMA class for the DFG models 
with Markov order 1 
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FIGURE 34  WFB for 60-minute time step: MAE 
improvements w.r.t. ARIMA class for the DFG models 
with Markov order 1 

 
 
Finally, note that we did not perform experiments with NWP explanatory variables for WFB 
because there were frequent gaps and missing data in the HRRR weather predictions to which we 
had access from the WFIP. The missing NWP data made it difficult to conduct experiments with 
statistical forecasting algorithms, since such models require relatively long periods of consistent 
data for both training and testing. 
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7  EMPIRICAL RESULTS: SOUTH CENTRAL WIND FARM C (WFC) 
 
 
The wind power data used in this section are from a wind farm located in the South Central 
United States. The complete dataset available for WFC corresponds to the period between 
September 1, 2009, and August 31, 2012. In order to empirically test the new DFG forecasting 
methodology, we fit the first-order linear DFG to three time series of WFC wind power 
generation recorded at sampling frequencies of 10, 30, and 60 minutes, respectively. The results 
are presented in the following subsections. 
 
 
7.1  10-MINUTE-FREQUENCY DATASET 
 
The time series sequence of the wind power data for WFC contains 105,263 data points. For this 
dataset, we used an initial training set of 5,000 data points, which covers 1 month of 
observations. The trained DFG model was used to forecast the 36 data points ahead (i.e., the next 
6 hours). The following results were obtained from a DFG model with Markov order p = 1. 
 
The DFG approach achieved very good results for 6-hour-ahead forecasting for WFC: For all the 
forecasting steps, the DFG model had a higher improvement than did the ARIMA class. 
Figures 35 and 36 show that the improvement over the persistence benchmark attained by the 
best ARIMA model is surpassed by the DFG approach. Accordingly, Figures 37 and 38 show 
that the improvement of the DFG over the ARIMA class is positive for all forecasting steps. This 
result is in contrast to the results for the WFA and WFB datasets recorded at the 10-minute 
frequency, for which the best ARIMA model outperformed DFG for some forecasting time steps. 
Hence, DFG performed very well for WFC at the 10-minute frequency.  
 
 

 

FIGURE 35  WFC for 10-minute time step: RMSE 
improvements w.r.t. persistence for the DFG models 
with Markov order 1 and ARIMA 
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FIGURE 36  WFC for 10-minute time step: MAE 
improvements w.r.t. persistence for the DFG models with 
Markov order 1 and ARIMA 

 
 

 

FIGURE 37  WFC for 10-minute time step: RMSE 
improvements w.r.t. ARIMA class for the DFG models with 
Markov order 1 
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FIGURE 38  WFC for 10-minute time step: MAE 
improvements w.r.t. ARIMA class for the DFG models 
with Markov order 1 

 
 
7.2  30-MINUTE-FREQUENCY DATASET 
 
This dataset contains 35,087 data points. Here we used an initial training set of 2,000 data points, 
or approximately 1.4 months of observations. Our objective is to forecast the next 6 hours of 
production data (i.e., 12 data points into the future). The results that follow are from a DFG 
model with Markov order p = 1. 
 
The results for this dataset are quite similar to what was obtained with the time series recorded at 
a 10-minute frequency. There is only one forecasting step (h = 2) for which the RMSE 
improvement achieved by the DFG model was lower than what the ARIMA model could 
achieve. The average RMSE improvement over the persistence benchmark was 25.87% for the 
DFG model and 23.43% for the ARIMA model (Figure 39). The MAE improvement was 
29.04% for the DFG and 24.77% for the ARIMA model (Figure 40). 
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FIGURE 39  WFC for 30-minute time step: RMSE 
improvements w.r.t. persistence for the DFG models with 
Markov order 1 and ARIMA 

 
 

 

FIGURE 40  WFC for 30-minute time step: MAE 
improvements w.r.t. persistence for the DFG models with 
Markov order 1 and ARIMA 

 
 
Figures 41 and 42 show the improvement of the DFG model w.r.t. the ARIMA class. In 
agreement with the improvement w.r.t. persistence attained by the DFG and ARIMA models, 
Figures 41 and 42 show positive improvements; the only exception is the forecasting step h = 2 
in the RMSE case. 
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FIGURE 41  WFC for 30-minute time step: RMSE 
improvements w.r.t. ARIMA class for the DFG models 
with Markov order 1 

 
 

 

FIGURE 42  WFC for 30-minute time step: MAE 
improvements w.r.t. ARIMA class for the DFG models 
with Markov order 1 
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7.3  1-HOUR-FREQUENCY DATASET 
 
This dataset contains 17,543 data points. Here we used an initial training set of 2,000 data points, 
which covers approximately 2.8 months of observations. The trained DFG model was used to 
forecast the next 6 data points (i.e., a 6-hour window). The following results are from a DFG 
model with Markov order p = 1. 
 
Again, the DFG approach proved to be the best forecasting technique, as it previously was for 
the WFA and WFB datasets recorded at this frequency. Figures 43 and 44 present the 
improvement w.r.t. the persistence benchmark. The average improvement was 30.70% for the 
DFG model and 23.99% for the ARIMA model for the RMSE measure; for the MAE measure, 
the average improvement was 33.7% for the DFG model and 24.44% for the ARIMA model. 
Figures 45 and 46 show that the improvement over the ARIMA model is always positive.  
 
 

 

FIGURE 43  WFC for 60-minute time step: RMSE 
improvements w.r.t. persistence for the DFG models with 
Markov order 1 and ARIMA 
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FIGURE 44  WFC for 60-minute time step: MAE 
improvements w.r.t. persistence for the DFG models with 
Markov order 1 and ARIMA 

 
 

 

FIGURE 45  WFC for 10-minute time step: RMSE 
improvements w.r.t. ARIMA class for the DFG models 
with Markov order 1 
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FIGURE 46  WFC for 10-minute time step: MAE 
improvements w.r.t. ARIMA class for the DFG models with 
Markov order 1 

 
 
Overall, we conclude that for the WFC dataset considering the 10, 30, and 60-minute 
frequencies, the DFG approach performed better than both the persistence and the best ARIMA 
model benchmarks. 
 
Finally, we did not conduct experiments with NWP explanatory variables for WFC either, again 
due to the frequent gaps in the available NWP data that made meaningful statistical forecasting 
experiments and comparisons very challenging. However, the next section describes a different 
approach we used to analyze the impact of NWPs on the accuracy of the wind power forecasts. 
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8  WIND TO POWER (W2P) MODEL WITH NWP RESULTS 
 
 
Due to the lack of continuity in the NWP data and for comparison purposes, we used a wind to 
power (W2P) model to test the impact of NWP forecasts on forecast performance. The W2P 
approach does not need the long sequence of continuous data required for time-series-based 
models. This section presents the results for the very short term wind power point forecasts 
obtained for the Midwest WFA and a second wind farm in the South Central United States 
labeled wind farm D (WFD). The experiments were performed by using wind power point 
forecast methods from the ARGUS-PRIMA (for “prediction intelligent machine”) software  
platform3 that we developed in previous work. ARGUS-PRIMA is used to test advanced 
statistical algorithms for short-term wind power forecasting. The platform, which consists of a 
set of statistical algorithms to generate wind power point and uncertainty forecasts, has been 
used for systematic testing and comparison of different computational learning algorithms [21]. 
For wind power point forecasting, ARGUS-PRIMA uses concepts from information theoretic 
learning (ITL) for training an ANN. A key feature of ITL is that it does not assume a Gaussian 
probability distribution for the forecasting errors. 
 
In the current study, we developed wind power predictions with 30-minute and 1-hour time 
resolutions by using the ANN model trained with NWPs (wind speed and direction) and the hour 
of the day (circular variable) as explanatory inputs. The results were compared to a persistence 
benchmark model.  
 
Where applicable, the ANN was trained with the maximum correntropy criterion (MCC) 
criterion, for both offline and online modes. All the W2P models were trained with the classic 
batch (offline) training, with the maximum number of epochs being the stop training criterion 
(800 epochs in these tests). The MCC learning rate is set to 0.1, the kernel size ߪெ஼஼ is 0.1 after 
the first 200 iterations, and for the remaining 600 epochs, a classic batch backpropagation 
training algorithm is used. A time-adaptive (online) training algorithm was also tested using a 
learning rate of 0.001 and momentum factor of 0.0.  
 
 
8.1  MIDWEST WIND FARM A (WFA) 
 
 
8.1.1  Input Data 
 
The complete set of input data available for the study discussed here for WFA corresponds to the 
period between December 1, 2011, and August 31, 2012. The data have two different temporal 
resolutions: 10 minutes for the SCADA data from the wind farm, and 15 minutes for the NWPs; 
the forecast time stamps chosen were 30 minutes and 1 hour. Preprocessing and aggregating the 
data consisted of calculating the 30-minute and 1-hour means, matching the corresponding time 
stamps, and filtering out the remainder of the data that would not be used in the forecasts.  
 

                                                 
3 http://www.anl.gov/technology/project/argus-prima-wind-power-prediction.  
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Due to the large number of influential parameters, several assumptions were made for the 
purpose of this report. With regard to the NWP data, there are 14 NWP points distributed 
geographically over the wind park, from which only one point was chosen. Furthermore, in order 
to train and evaluate the wind power forecasts, the complete set of available data was split into 
two datasets: a training data set with targets (desired values) known in advance, and a testing 
data set for which the realizations were predicted by the trained W2P model. Hence, the 
following data partition was implemented: 
 

• Training set: December 1, 2011–May 31, 2012, and  
• Testing set: June 1, 2012–August 31, 2012.  

 
Wind power forecasts were launched at each hour T of the day for the next 15 hours  
(i.e., T + 0–15 hours ahead) and compared to the respective wind power measurements between 
T and T + 15 hours. Since the predictions had a 30-minute or 1-hour temporal resolution, for 
each 15-hour-ahead forecast, there were 31 or 16 predictions, respectively. 
 
 
8.1.2  Results Performance Analysis 
 
This subsection presents the best results obtained by using the time-adaptive training algorithm 
with the MCC training criterion compared with the results of the persistence model. Figures 47 
through 50 show the normalized mean absolute error (NMAE), normalized root mean square 
error (NRMSE), normalized bias (NBIAS), and normalized standard deviation error (NSDE), 
respectively, for different forecast horizons. 
 
 

 

FIGURE 47  WFA: NMAE results comparison 
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FIGURE 48  WFA: NRMSE results comparison 
 
 

 

FIGURE 49  WFA: NBIAS results comparison 
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FIGURE 50  WFA: NSDE results comparison 
 
 
The results presented in Figures 47 through 50 indicate that using NWPs as input to the W2P 
model of the ARGUS-PRIMA platform in order to make very short term forecasts is not 
satisfactory with regard to obtaining good wind power point prediction results. In fact, this model 
can overcome persistence only after the first 3 to 4 hours (NMAE) and 5 to 6 hours (NRMSE). 
Other types of statistical models, like the DFG algorithms presented in Sections 3 and 4, are 
clearly better-suited for the 0- to 6-hour time frame. 
 
 
8.1.3  Evaluation of the Wind Speed NWPs 
 
This subsection presents a study on the quality of the wind speed prediction results from the 
NWP model, as a complementary means for evaluating the performance of the very short term 
wind power point forecasts presented above. The wind speed NWPs were averaged over 
30-minute data and 1-hour data in order to be used as inputs to the wind power prediction model. 
Thus, the quality analysis of the NWPs is divided into these two sets. For this study, we 
considered all the available data used to train and test the W2P model (from December 2011 to 
August 2012). 
 
 
30-Minute Data Results 
 
Figure 51 shows the power curve, comparing the dependence of the measured power to the 
predicted wind speed and the actual measured wind speed. The latter exhibits a typical sigmoid, 
whereas the first fills almost the whole domain of power and wind speed. 
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FIGURE 51  WFA: Power curve for 30-minute data with 
predicted and measured wind speeds 

 
 
Figures 52 through 57 exhibit the NWP error results for the 30-minute wind speed, normalized to 
the maximum wind speed value. Figures 52 through 57 show that for 30-minute averaged wind 
speed data, based on the NMAE and RMSE, the wind speed forecasts become better than the 
persistence results after 7 hours ahead, when the improvement varies between 0% and 25%. 
Moreover, the standard deviation of the forecasting errors varies by around 10% throughout the 
whole time horizon, overcoming the persistence model’s at 7 hours ahead (Figure 56). With 
regard to the NBIAS of the wind speed predictions, it increases during the first 4 hours, then 
levels out between –3% and –4.5%. In contrast, the bias of the persistence model is small, with 
limited variation along the horizon (Figure 57). 
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FIGURE 52  WFA: NMAE comparison between NWP wind speed 
and persistence forecasts for 30-minute data 

 
 

  

FIGURE 53  WFA: NMAE improvement over persistence for 
30-minute data 
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FIGURE 54  WFA: NRMSE comparison between NWP wind speed 
and persistence forecasts for 30-minute data 

 
 

 

FIGURE 55  WFA: NRMSE improvement over persistence for 
30-minute data 
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FIGURE 56  WFA: NSDE comparison between NWP wind speed and 
persistence forecasts for 30-minute data 

 
 

 

FIGURE 57  WFA: NBIAS comparison between NWP wind speed and 
persistence forecasts for 30-minute data 
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1-Hour Data Results 
 
We repeated the analysis by using wind speed data with a 1-hour resolution. Figure 58 shows the 
power curve, comparing the dependence of the measured power on the predicted and measured 
wind speed. Again, the latter exhibits a typical sigmoid, whereas the first covers a very large area 
in the power–wind speed domain. Figures 59 through 64 exhibit the NWP error results for the 
1-hour wind speed, normalized to the maximum wind speed value. 
 
Similar to the previous case, for the 1-hour averaged wind speed data, the NMAE, NRMSE, and 
standard deviation of the errors become better than those of the persistence benchmark after 
7 hours ahead. The metrics have only a limited variation, around 12%, 15%, and 10%, 
respectively. The normalized bias is always higher than the one for persistence, growing with the 
forecast horizon until –4.8% at 15 hours ahead. 
 
 

 

FIGURE 58  WFA: Power curve for 1-hour data 
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FIGURE 59  WFA: NMAE comparison between NWP wind speed 
and persistence forecasts for 1-hour data 

 
 

 

FIGURE 60  WFA: NMAE improvement over persistence for 1-hour 
data 
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FIGURE 61  WFA: NRMSE comparison between NWP wind speed 
and persistence forecasts for 1-hour data 

 
 

 

FIGURE 62  WFA: NRMSE improvement over persistence for 1-hour 
data 
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FIGURE 63  WFA: NSDE comparison between NWP wind speed and 
persistence forecasts for 1-hour data 

 
 

 

FIGURE 64  WFA: NBIAS comparison between NWP wind speed and 
persistence forecasts for 1-hour data 
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8.1.4  Summary of Results 
 
Results for the very short term wind power prediction using the ARGUS-PRIMA W2P point 
forecasting model for WFA show that the NMAE varies between 10% and 15% and the NRMSE 
varies between 15% and 20%. Moreover, online training improves the forecast performance. 
However, the W2P model surpasses the accuracy of the persistence model only after 3 hours 
(NMAE) and 5 hours (NRMSE). 
 
The analysis of the quality of the NWP wind speeds for the WFA location revealed they are not 
as accurate as expected. The errors lay between 12% and 16% (NMAE and NRMSE), and the 
NWP wind speed forecasts can beat the persistence forecast only for forecast horizons of 7 hours 
or more. Because NWPs are the main inputs of the wind power prediction model used in this 
section, it can be concluded that the relatively low accuracy of the NWP has compromised the 
performance of the very short term wind power forecasts. Therefore, although the adaptation of 
ARGUS-PRIMA to the very short term is not a satisfactory approach for obtaining good wind 
power point predictions, particularly for time horizons of less than 3 hours, the algorithm’s 
performance could be improved upon the retrieval of better NWPs. 
 
 
8.2  SOUTH CENTRAL WIND FARM D (WFD) 
 
 
8.2.1  Input Data 
 
The complete input dataset available for this study corresponds to the period between 
December 1, 2011, and March 17, 2012. It was delivered in two different temporal resolutions: 
10 minutes for the SCADA data, and 15 minutes for the NWPs. The forecast time stamps chosen 
were 30 minutes. Preprocessing and aggregating the data consisted of calculating the 30-minute 
means, matching the corresponding time stamps, and filtering out the remainder of the data that 
would not be used in the forecasts.  
 
Due to the large number of influential parameters, several assumptions were made for the 
purpose of this report. For the NWP data, there were 9 NWP points distributed geographically 
over the wind park, from which only 1 point was chosen. 
 
In order to train and evaluate wind power forecasts, the complete set of available data was split 
into two data sets: a training data set with targets (desired values) known in advance, and a 
testing data set where the realizations are predicted by the trained W2P model by using the 
ARGUS-PRIMA platform. Hence, the following data partition was implemented: 
 

 Training set: December 1, 2011–February 29, 2012, and  
 Testing set: March 1, 2012–March 17, 2012.  

 
Wind power forecasts were launched at each hour T of the day for the next 15 hours  
(i.e., T + 0–15 hours ahead) and compared to the respective wind power measurements between 
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T and T + 15 hours. Since the predictions have a 30-minute temporal resolution, for each launch 
time, there were 31 predictions. 
 
This subsection presents the results for the very short term wind power point forecasts obtained 
for WFD located in the South Central United States. The point forecasts were performed by 
using the ARGUS-PRIMA platform in two different configurations: an ANN trained with NWP 
inputs (wind speed and direction), and an ANN trained with the same NWP inputs but that also 
considered the last-known realization of wind power as an additional input. The study made 
30-minute step predictions, all of which were compared, with persistence as the benchmark 
model. 
 
Several tests were performed in order to identify the best ANN. Different neural networks were 
trained with MCC, mean square error (MSE), and combined MSE-MCC criteria. All these 
models were trained with the classic batch (offline) and the adaptive (online) training 
approaches, with the maximum number of epochs being the stop training criterion. The number 
of epochs was variable and treated as a parameter, as listed in Section 8.2.2. Several values of the 
MCC learning rate and the kernel size ߪெ஼஼ were also considered, in order to find the best 
weights for the ANN. The specific values for the different experiments are also listed in 
Section 8.2.2. 
 
 
8.2.2  Results Performance Analysis 
 
This subsection presents a comparison of performance between the wind power point predictions 
and persistence forecasts for the four best model configurations. 
 
 
Using Only the NWPs as Input 
 
The best ANN training criteria and the corresponding parameters for these inputs were found to 
be as follows: 
 

 R1: 3,000 epochs MCC, learning rate = 0.05, ߪெ஼஼ ൌ 0.01, and 
 R2: 3,000 epochs MSE. 

 
Figures 65, 66, and 67 show NMAE, NRMSE, and NBIAS, respectively, for results R1 and R2. 
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FIGURE 65  WFD: NMAE comparison between the two prediction 
models (R1, R2) and persistence 

 
 

 

FIGURE 66  WFD: NRMSE comparison between the two prediction 
models (R1, R2) and persistence 
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FIGURE 67  WFD: NBIAS comparison between the two prediction 
models (R1, R2) and persistence 

 
 

The improvements over the persistence model are presented in Figures 68 and 69. From the two 
graphs, it can be seen that the MSE training criterion (R2) performs better than the MCC training 
criterion (R1). In addition, the results show that the W2P model performs better than the 
persistence model after the first 1 or 2 hours for both training criteria. 
 
 

 

FIGURE 68  WFD: NMAE improvement over persistence for 
the two prediction models (R1, R2) 
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FIGURE 69  WFD: NRMSE improvement over persistence for 
the two prediction models (R1, R2) 

 
 
Using the Last-Known Realization as an Additional Input 
 
In the analysis presented next, we used the last known realization of wind power as an input in 
addition to the NWP inputs, with the following ANN parameters: 
 

 R3: 3,000 epochs MCC, learning rate = 0.05, ߪெ஼஼ ൌ 0.1, considering also the last- 
known realization as an input, and 

 R4: 3,000 epochs MSE, considering the last-known realization as an additional input. 
 
Figures 70, 71, and 72 show the NMAE, NRMSE, and NBIAS, respectively, for results R3 and 
R4, whereas Figures 73 and 74 show the relative performance compared to the persistence 
benchmark. 
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FIGURE 70  WFD: NMAE comparison between the two prediction 
models (R3, R4) and persistence 

 
 

 

FIGURE 71  WFD: NRMSE comparison between the two prediction 
models (R3, R4) and persistence 



69 

 

FIGURE 72  WFD: NBIAS comparison between the two prediction 
models (R3, R4) and persistence 

 
 

 

FIGURE 73  WFD: NMAE improvement over persistence for the two 
prediction models (R3, R4) 
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FIGURE 74  WFD: NRMSE improvement over persistence for the 
two prediction models (R3, R4) 

 
 
From the results presented in Figures 70, 71, and 72, note again that the MSE training criterion 
(R4) performs better than the MCC training criterion (R3). The NMAE varies between 10% and 
15%, and the NRMSE varies between 13% and 20% in the case of the pure W2P models. In the 
other case, with the use of the last-known wind power realization, the NMAE varies between 9% 
and 14%, and the NRMSE varies between 12% and 20%. Hence, the addition of the last- known 
realization as an input improves the performance of the W2P model. Again, the W2P model 
performs better than the persistence model after the first 1 to 2 hours for both training criteria. 
 
 
8.2.3  Summary of Results 
 
Results for the very short term wind power prediction using the ARGUS-PRIMA model for 
WFD show that, depending on the accuracy of the NWPs, a W2P model can perform well for 
very short term forecasting. However, it is very hard to beat the persistence model for very short 
horizons (i.e., less than 1 to 2 hours). The time-series-based models have better performance at 
the very short forecast horizon, as shown in Sections 5 to 7. Finally, the analysis in this section 
shows that the introduction of the last-known wind power realization improves the W2P model’s 
performance, so it overcomes the persistence model for shorter forecast time horizons. 
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9  CONCLUDING REMARKS 
 
 
This report demonstrates the capabilities of DFGs in modeling linear relationships between wind 
power and both its lagged values and external variables. The DFGs are shown to be a reliable 
tool for wind power forecasting. In particular, they outperform the class of ARIMA models 
because they are more flexible in describing time patterns. That added flexibility seems to pay 
off for the WPF application.  
 
However, the DFG approach has some limitations, particularly in computational terms. The 
processing time increases cubically with the number of points (N) in the training set; that is, the 
computational complexity of DFG models is of the order ΟሺNଷሻ. For the experiments presented 
in Sections 5, 6, and 7, the algorithms required an average computational time of around 8 to 
10 hours for N = 5,000 and 6 to 8 hours for N = 2,000. The DFG model structure implies that 
each time the training sample is enlarged by the addition of the previous test dataset, the entire Z 
sequence must be re-estimated. The associated computational load quickly becomes severe. We 
tried to bypass this limitation by developing the new data training approach presented in 
Subsection 4.1, which is based on the idea of fixing the estimated Z sequence from the initial 
training sample and estimating separately the new values over the previous test set.  
 
The experimental results in this report show the potential gain from using the DFG class of 
models for forecasting wind power generation. Our empirical findings indicate that there is a low 
level of predictability in wind speed (and therefore wind power). In other words, although wind 
speed is not a Martingale (the persistence model was outperformed even when the ARIMA 
approach was used), wind speed does seem to be fairly volatile and display a low level of 
memory. This report shows the results of applying first Markov order DFG models to three wind 
farms and also making use of NWP information when available. It concentrates on very short 
term forecasting horizons (i.e., those up to 6 hours ahead). 
 
From the results presented in Sections 5, 6, and 7, we can conclude that the DFG models were 
adequate, particularly for the datasets recorded at a 1-hour sampling frequency. The average 
RMSE improvements achieved by the DFG models w.r.t. the ARIMA class were 5.18% for the 
WFA dataset, 13.94% for the WFB dataset, and 9.00% for the WFC dataset. The corresponding 
average MAE improvements were 7.62%, 15.94%, and 12.60%, respectively. 
 
For the higher sampling frequency (10-minute time step), the DFG approach was also able to 
outperform the ARIMA models, except for the shorter time horizons. The average RMSE 
improvements achieved by the DFG models w.r.t. the ARIMA class were 1.79% for the WFA 
dataset, 0.88% for the WFB dataset, and 1.31% for the WFC dataset. The corresponding average 
MAE improvements were 3.82%, 2.51%, and 3.51%, respectively. 
 
For the 30-minute sampling frequency, the DFG approach outperformed the ARIMA models 
much more clearly than it did for the 10-minute sampling frequency. The average RMSE 
improvements achieved by the DFG models w.r.t. the ARIMA class were 1.64% for the WFA 
dataset, 2.54% for the WFB dataset, and 3.14% for the WFC dataset. The corresponding average 
MAE improvements were 3.84%, 6.20%, and 5.69%, respectively. 
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It was observed that the DFG forecasts tend to smooth out some of the variability in the time 
series. Hourly data show less variability than their higher-frequency counterparts, making hourly 
observations more predictable. This advantage of DFG models over ARIMA models confirms 
that the former are more flexible than the latter. 
 
Weather forecasts from a NWP model (i.e., the HRRR predictions developed for the WFIP) were 
also combined with past values from the wind power time series within the DFG framework for 
one wind farm (WFA). This resulted in a further increase in the improvement over the 
persistence model when compared to a DFG without NWP: an increase of around 4% in MAE 
and 10% in RMSE for the first lead time. This means that combining past values from the time 
series of actual wind power with NWP predictions can result in an improved power forecast. 
Nevertheless, for longer time horizons (i.e., more than two lead times), this improvement is 
marginal according to our results.  
 
Within the DFG framework, we also studied the possibility of exchanging the quadratic energy 
function with a cost function derived from ITL principles: the correntropy. We successfully 
applied this alternative cost function, but it did not lead to significantly better forecasting results. 
For most datasets, we obtained results similar to those derived from the quadratic energy cost 
function. For this reason, we did not report the results based on the alternative correntropy 
function in this report. 
 
Finally, we tested the quality of the NWPs by using them in a W2P model for WFA and WFD. 
We concluded that the addition of NWP inputs, at the level of quality available for this study, 
could not, by itself, improve the accuracy of the predictions over the level offered by a 
persistence model, for the first forecasting hours, particularly in the case of WFA. However, for 
WFD, the W2P approach with NWP did provide more accurate forecast results than those of the 
persistence model for forecast horizons beyond 1 to 2 hours. Also, from the experiments with 
WFA, we could affirm that even though the NWPs were not good enough to provide, by 
themselves, accurate predictions of very short term wind power with the W2P approach, NWPs 
may be used to increase the improvement offered by time-series-based models. 
 
 
9.1  FUTURE RESEARCH 
 
The DFG class of models allows for many different generalizations. In this study we limited the 
scope to the use of linear and dynamic functions. Thus, there are many different directions in 
which this study can be expanded. One relevant direction that should be explored would be to 
use nonlinear f and h functions. For instance, both of these functions could take the form of a 
nonparametric interpolator, such as an ANN. This extension has the potential to improve the 
forecast accuracy of DFG models and represents an important direction for future work. Another 
direction for further research would be to decrease the computational effort of the DFG 
approach. One possibility for improving the running time would be to develop new and efficient 
backpropagation algorithms for this type of model and/or to adopt recursive (or online) 
optimization techniques. Finally, testing should be conducted on more wind farms and by using 
different NWPs to confirm the findings in this study. 
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APPENDIX A: MAXIMUM A POSTERIORI (MAP) APPROXIMATION 
 
 
One definition of the “marginal” energy of the observed sequence Y that fits nicely into previous 
Eq. 9 is: 
 

;ሺܻܧ ܺ,ܹሻ ൌ െ
1
ߚ
݃݋݈ න ݁ିఉாሺ௒,௓;௑,ௐሻܼ݀

஽ೋ

 

    Eq. 33 
 

݁ିఉாሺ௒;௑,ௐሻ ൌ න ݁ିఉாሺ௒,௓;௑,ௐሻܼ݀
஽ೋ

 

    Eq. 34 
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     Eq. 35 
 
By the Bayes rule	ܲሺܻ, ܼ|ܺ,ܹሻ ൌ ܲሺܼ|ܺ, ܻ,ܹሻܲሺܻ|ܺ,ܹሻ, maximizing ܲሺܻ, ܼ|ܺ,ܹሻ w.r.t. to 
Z is akin to maximizing ܲሺܼ|ܺ, ܻ,ܹሻ w.r.t. Z since ܲሺܻ|ܺ,ܹሻ does not depend on Z. Then, 
using Eq. 6, ܽݔܽ݉݃ݎ௓ ܲሺܼ|ܺ, ܻ,ܹሻ ൌ ௓ݔܽ݉݃ݎܽ ݁ିఉாሺ௒,௓;௑,ௐሻ. Hence: 
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    Eq. 36 

 
Now, to prove that ܧሺܻ; ܺ,ܹሻ can be approximated by	ܽ݊݅݉݃ݎ௓ ,ሺܻܧ ܼ; ܺ,ܹሻ, consider the 
limit in ߚ of the Eq. 13. Assuming that energy ܧሺܻ, ܼ; ܺ,ܹሻ is positive and admits a zero 
minimum	ܼ଴: 
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As pointed out in reference [2], for an observed sequence Y and given a model parameterized by 
W, the result of the latent variable inference is the minimum energy state of the model for that 
sequence: 
 

;ሺܻܧ ܺ,ܹሻ ൌ ݊݅݉݃ݎܽ
௓

,ሺܻܧ ܼ; ܺ,ܹሻ 

    Eq. 37 
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APPENDIX B: DERIVATION OF THE GRADIENT FUNCTION 
 
 
The component of the gradient corresponding to the initializations of the latent variable can be 
written as: 
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 Eq. 38 

 
The components of the gradient corresponding to the autoregressive coefficients in the state 
equation are as follows: 
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 Eq. 39 
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   Eq. 40 
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            Eq.41 
 
where ‖. ‖ଵ corresponds to the L1-norm. 
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Finally, for the latent variable sequence Z, the gradient components are given by: 
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            Eq.42 

 
We make use of a numerical approximation to the gradient components of ࣦ corresponding to 
the Z sequence as well as to the parameters W. 
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