

ANL/ALCF-14/3

LAMMPS strong scaling performance optimization on
Blue Gene/Q

Leadership Computing Facility

 About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under
contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South
Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE’s SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce National
Technical Information Service 5301 Shawnee
Rd
Alexandra, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the Office
of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or
UChicago Argonne, LLC

ANL/ALCF-14/3

LAMMPS strong scaling performance optimization on Blue
Gene/Q

 Paul Coffman Wei Jiang Nichols A. Romero
 IBM Argonne National Laboratory Argonne National Laboratory
 3605 Hwy 52N Lemont, IL 60439 Lemont, IL 60439
 Rochester, MN 55901 630-252-8688 630-252-3441

 608-519-0874 wjiang@alcf.anl.gov naromero@alcf.anl.gov
 pkcoff@us.ibm.com

Leadership Computing Facility

November 10, 2014

November 10, 2014

N

N

ABSTRACT
LAMMPS "Large-scale Atomic/Molecular Massively Parallel
Simulator" is an open-source molecular dynamics package from
Sandia National Laboratories. Significant performance
improvements in strong-scaling and time-to-solution for this
application on IBM's Blue Gene/Q have been achieved through
computational optimizations of the OpenMP versions of the short-
range Lennard-Jones term of the CHARMM force field and the
long-range Coulombic interaction implemented with the PPPM
(particle-particle-particle mesh) algorithm, enhanced by runtime
parameter settings controlling thread utilization. Additionally,
MPI communication performance improvements were made to the
PPPM calculation by re-engineering the parallel 3D FFT to use
MPICH collectives instead of point-to-point. Performance
testing was done using an 8.4-million atom simulation scaling up
to 16 racks on the Mira system at Argonne Leadership Computing
Facility (ALCF). Speedups resulting from this effort were in
some cases over 2x.

General Terms

Performance.

Keywords

LAMMPS, performance, strong-scaling, PPPM.

1. INTRODUCTION
LAMMPS is a classical molecular dynamics code, and an
acronym for Large-scale Atomic/Molecular Massively Parallel
Simulator. LAMMPS has potentials for soft materials
(biomolecules, polymers) and solid-state materials (metals,
semiconductors) and coarse-grained or mesoscopic systems. It can
be used to model atoms or, more generically, as a parallel particle
simulator at the atomic, meso, or continuum scale.[1] It has an
extensive user base, and may be favored over other packages
because of its extensive array of force fields, particularly in the
domain of material science research. During the production
readiness effort for the 48-rack Blue Gene/Q system named Mira
at Argonne National Laboratory it was identified as an application
with sufficiently high user demand but strong-scaling deficiencies
to warrant a performance optimization effort. A benchmark was
identified using the short-range Lennard-Jones term of the
CHARMM force field (hereafter referred to as the pairlist
computation) and the long-range Coulombic interactikon
implemented with the PPPM algorithm (hereafter referred to as
the PPPM computation) which, if successfully optimized, could
benefit a significant user base, effectively making the scope of the
project the strong-scaling optimization of these two force fields.
I/O optimization was not part of this project.

2. BUILDING AND RUNNING LAMMPS
ON BLUE GENE/Q
All building and testing of LAMMPS for this optimization effort
was done on Blue Gene/Q software release V1R2M0. The
LAMMPS code base is C++, therefore the XL C++ cross-
compiler for Blue Gene/Q version 12.1 was used to compile all
the modules. Compiler optimization level 3 (-O3) was used for all
modules, including the -qhot (performs high-order loop analysis
and transformations) and -qunroll (tells the compiler to more
aggressively search for opportunities for loop unrolling)
optimization options. The multi-threading is all done via

OpenMP so the -qsmp=omp option was also specified to the
compiler to enable it. The PPPM computation uses fast Fourier
transforms (FFTs) with functions from the single-precision
version of FFTW3 (http://www.fftw.org/), therefore the fftw3f
library is linked in to build the stand-alone binary. All
communication is done with MPI, and MPICH-2 is the current
standard supported on Blue Gene/Q V1R2M0. All benchmarks
were run with the stand-alone LAMMPS binary, which takes a
parameter file and various runtime arguments detailing the
simulation based on data files existing in the current working
directory. Since I/O was not part of this performance
optimization project, no checkpoint or restart files were utilized
after the start of the simulation.

3. LAMMPS AND THE BLUE GENE/Q
ARCHITECTURE
Blue Gene/Q is the follow-on to Blue Gene/P in the family of
supercomputers from IBM and the next step toward exascale
computing in price performance, scalability, power efficiency, and
system reliability. The Blue Gene/Q Compute chip is a
SystemonChip (SoC) design combining CPUs, caches, network,
and a messaging unit on a single chip. [2] There are 16 64-bit
PowerPC A2 cores available for application usage, each running 4
hardware threads which can be oversubscribed with up to 5
software threads. Additionally, each core has a SIMD quad
floating point unit (Quad Processor eXtension, QPX), an L1
prefetching unit (L1P) supporting both linear stream and list
(perfect) prefetching, and a wake-up unit to reduce certain thread-
to-thread interactions. [2] Each core has its own 16 KB L1 data
cache and shares a 2MB slice of L2 cache connected by a crossbar
which supports transactional memory and speculative execution at
the hardware level. The memory hierarchy latency is as follows:
L1 is 6 cycles, L1P is 24 cycles, L2 is 84 cycles, and main
memory is 346 cycles. [3] The A2 core runs at 1.6 GHz and if
the QPX is fully utilized allows for 4 FMAs per cycle, translating
to a peak performance per core of 12.8 GFlops, or 204.8 GFlops
for the chip. [2] Each node contains a compute chip and 16 GB of
DDR3 memory. 32 nodes compose a node board, 16 node boards
compose a midplane, and 2 midplanes compose a rack, totalling
1024 nodes. Node-to-node communication is facilitated by a 5-d
torus network, and each compute node has 10 communication
links with a peak total bandwidth of 40 GB/second.[2].

From an MPI perspective an application can partition each node
from 1 to 64 MPI ranks (ranks-per-node) by multiples of 2. Intra-
node communication between ranks is done via shared memory
whereas node-to-node communication utilizes the messaging unit
and torus. The less ranks-per-node means a greater number of
hardware threads available per rank, so rank-per-node/number-of-
hardware-thread permutations equal 64, ie 1/64, 2/32,4/16,8/8,
16/4, 32/2 and 64/1. The multi-threading code in LAMMPS does
not lend itself to make effective use of thread oversubscription, so
the number of software threads must match the number of
available hardware threads within each rank for optimum
performance. As the proceeding sections will illustrate, from the
outset it became apparent the main bottleneck to strong-scaling
performance with large multi-rack block sizes was going to be
MPI communication. Baseline measurements also indicated the
optimum ranks-per-node/number-of-threads ratio decreased as the
block size increased, beyond 4 racks the baseline ran optimally at
1 rank-per-node and 64 threads. In the scope of the domain
decomposition of this application, one way to minimize the
communication bottleneck is to run with fewer ranks-per-node,

thereby lessening communication between the ranks at the
expense of computation within the ranks. Therefore, the focus of
the performance effort became maximizing performance running
at 1 rank-per-node and 64 threads, which then also meant
maximizing the computational scaling of multiple threads on the
chip and making optimal use of the chip archetecture described
above.

4. LAMMPS BENCHMARK
The benchmark chosen for this performance optimization effort
was an 8.4 million atom brush structure simulation of poly-iso-
propyl-acrylamide (PNIPAM). The CHARMM force field
implemented by the pairlist computation is well-suited for this
material simulation and is one of the most accurate all-atom
parameter force fields for biological and material molecular
dynamics simulations - it contains complete additive bonded
(bond, angle, dihedral and improper dihedral) and nonbonded
(Lennard-Jones and Coulombic) interaction terms.[4] PNIPAM
is a temperature sensitive polymer that undergoes a coil-to-
globule transition as the temperature is raised. Investigating such a
large scale conformational change is one of the most challenging
tasks in soft condensed matter simulations.[5] PNIPAM requires
accurate all-atom force fields whose interaction types must cover
all atomic length scales, making the long-range scalability of the
Coulombic PPPM computation of critical importance. A structural
material simulation of PNIPAM utilizing the CHARMM force
field is more scientifically relevant than many existing benchmark
systems utilizing simplified force fields, and presents a highly
non-trivial as well as accurate all-atom benchmark system upon
which to investigate the performance of LAMMPS. Unless
ottherwise noted, all investigation, data and results are in the
context of the benchmark described above running at 1
rankpernode using 64 OpenMP threads.

5. PROFILING AND ANALYSIS TOOLS,
METHODOLOGIES AND
ENVIRONMENTS
To minimize computational resource utilization and maximize
turnaround, an abbreviated version of the benchmark was
provided which would run sufficiently on 256 nodes in the IBM
development lab where the primary author has easy access, so a
majority of the profiling and tuning effort was done on this small
scale and then applied to the large scale benchmark running on
multi-rack blocks on Mira at the ALCF. LAMMPS provides it's
own set of internal performance profiling metrics which are
printed out after the results at the end of the simulation, including
the actual wall-time and the percent of total calculation. These
metrics were used as the first level of profiling. The code was
then compiled, linked and run with -pg to instrument the GNU-
profiler, which gave a decent profile of the serial functional
components but a less-than-useful profile of the multi-threaded
functional components. Beyond that was the use of internally
developed profiling libraries using PMPI for the MPI
communication and hardware performance counters for the

computation, which provided a very insightful view of
computational issues within the threads. Finally, manual timebase
instrumentation of the code, consisting of collecting the data in
structures throughout the simulation and then printing out the
values at the end proved very valuable in terms of determining the
overall wall-time contribution of various functions to the overall
benchmark time across all timesteps in the simulation.

6. OPTIMIZATION INVESTIGATION
6.1 LAMMPS internal profiling initial
analysis
LAMMPS provides it's own set of internal performance profiling
metrics which is printed after the results at the end of the
simulation, including the actual wall-time and the percent of total
calculation. The 2 metrics of interest for this project were the
‘Pair’ metric which was the total cumulative time for the pairlist
computation across all timesteps and the ‘Kspce’ time which, for
this benchmark, was the PPPM computation time

A baseline analysis of the MPI communication scaling was
accomplished by holding the number of threads at 64 and running
at 1 rank-per-node and then scaling the number of nodes from 1 to
16 racks (wall times are in seconds):

Table 1. MPI communication scaling of force fields baseline

Number
of Racks

Pairlist
wall time

Pairlist
percent

PPPM
wall time

PPPM
percent

1 117.04 38.32 136.47 44.69
2 59.72 31.53 92.16 48.65
4 31 23.88 72.8 56.13
8 17 14.8 74 64.72
16 9.48 9.01 74.18 70.52

This data indicated the pairlist mpi communication was scaling
pretty well, but the PPPM mpi communication was not. Beyond 4
racks scaling completely stopped, as the wall time was staying
basically the same, but the percent of the total simulation time
increased.

A baseline analysis of the algorithmic thread scaling was
accomplished using the abbreviated version of the benchmark
running on a fixed number of nodes (256) and running at 1 rank-
per-node, scaling from 1 to 64 threads (wall time is in seconds):

Table 2. Multi-threaded scaling of force fields baseline:

Number of
threads

Pairlist wall time PPPM
wall time

1 524.03 123.81
2 265.05 66.49
4 133.88 38.49
8 67.97 22.32
16 34.78 15.04
32 18.59 12.72
64 11.47 19.39

Analysis of this data again showed the pairlist multi-threaded
computation was scaling pretty well, but the PPPM was not, and
actuallly got worse at 64 threads. Therefore, to get stronger
scaling of the benchmark, the PPPM MPI communication and
multi-threaded computation needed to scale better, and
additionally the overall time-to-solution could be improved if the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

serial code within the threads of the pairlist computation was
better optimized.

6.2 Thread control environment variable
tuning
There are several environment variables that control OpenMP and
thread utilization, all of which were thoroughly investigated. The
following combination had the greatest positive effect on
performance,particularly at 64 threads:

 Table 3. Optimum thread control settings:

Environment variable name Value
BG_SMP_FAST_WAKEUP YES
OMP_WAIT_POLICY ACTIVE
BG_THREADLAYOUT 1

The explanation for this is the LAMMPS code is interspersed with
serial and multi-threaded code fragments all within the same
timestep, so the combination of
BG_SMP_FAST_WAKEUP=YES and
OMP_WAIT_POLICY=ACTIVE settings effectively hold the
threads in a barrier during the serial execution sections as opposed
to having to respawn them when a multi-threaded code section is
again entered. Furthermore, for 64 threads the
BG_THREADLAYOUT=1 setting changes how the threads are
assigned to the processor, going depth-first within the cores
instead of the default breadth-first across the cores, resulting in
different data being accessed by threads on the same core which
in turn happened to have less contention for L1 and L2 cache (ie
less cache evictions of one thread's data by another's), an
explanation the performance counter data seemed to support. [6]
[7]

6.3 Transactional Memory investigation
The OpenMP code was analyzed to see if any areas could benefit
from the utilization of Transactional Memory (TM). BG/Q
implements hardware support for memory speculation. It is
controlled by the shared multi-versioning L2-cache. During
memory speculation, the L2 cache tracks state changes caused by
the speculative thread, and keeps them separate from the main
memory state. [7] The only areas of shared data (omp critical
sections) among threads was for the memory management of
thread data, so TM was attempted in these cses but was not
successful in that the performance did not improve.

6.4 Thread data reduction optimization
The algorithmic methodology of the multi-threaded
implementation is to replicate all the atomic-level data for the
multi-threaded functions within the pairlist and PPPM
computations into a one-dimensional array strided by the thread
id, so that as each thread runs it updates its own copy of data.
When the function completes, the separate data from each thread
is brought together and reduced. The time to perform this thread
data reduction increased with the number of threads, so at 64
threads this amount of time was considerable and contributed
significantly to the loss of multi-threaded scaling. Data reduction
for the pairlist and PPPM computations were handled by the
global function 'data_reduce_thr' and additionally the charge
density discretization within the PPPM computation was handled
by the global function 'data_reduce_fft'. Optimizations of these
functions were based on the architecture of the Blue Gene/Q chip

- the L1 data cache line is 2x64 bytes wide, so 64 contiguous
bytes are loaded at a time. The thread data is an array of double-
precision floating point numbers, which are 8-bytes wide.
Therefore, the first optimization was to manually unroll the loops
to access and process the data 8 elements at a time. Although this
code change was made to match the Blue Gene/Q architecture,
many other architectures would benefit from this code, or some
slight permutation of it. Additionally, the xlC built-in L1 register
prefetching function __prefetch_by_load was utilized a key points
in the loop. These optimizations in the context of the thread
runtime options discussed in Section 6.2 moved the data access
for the cpu’s further up the memory latency hierarchy and thereby
improved performance. Performance counter analysis revealed
the effect of the optimizations running on 4 racks - this sample is
for the ‘data_reduce_thr’ function on rank 0 but the data is similar
on other ranks and for the ‘data_reduce_fft’ function as well:

Table 4. Performance counter metrics for thread data
reductions

Metric Baseline value Optimized value
Average cycles 12.37 billion 7.54 billion
L1P Misses 4.77 billion 3.38 billion
L2 Misses 327.88 million 105.14 million
L2 lines loaded
from memory

318.64 million 294.76 million

L2 lines stored to
memory

190.22 million 157.55 million

This performance counter analysis indicates that the optimized
function uses 39% fewer cycles because there are about 10% less
loads and stores to main memory, 68% less L2 cache misses and
29% less L1P misses

6.5 Pairlist computation optimization
Given the need to run the application with multiple threads for
optimum scaling, the multi-threaded (as opposed to the serial)
version of the pairlist computation was the focus of the
optimization effort. A previous performaance engineering effort
at Sandia National Laboratory had optimized the serial version of
this code, so the first step was to apply the serial optimizations
done as part of that effort to the OpenMP version.[8] Once those
optimizations were in place, further tuning was investigated. The
manual insertion of qpx vector instructions were investigated, but
their successful implementation was prohibited due to the
structure of the data and the algorithm. Also due to the non-
sequential nature of the data access from the atomic data arrays,
the L1P was highly ineffective – therefore uilization of the xlC
built-in L1 register prefetching function __prefetch_by_load was
successfully utilized at key points in the computational loops
which, in combination with Sandia optimizations and the thread
runtime options discussed in Section 6.2, moved the data access
for the cpu’s further up the memory latency hierarchy and thereby
improved performance. Performance counter analysis revealed
the effect of the optimizations running on 4 racks - this sample is
from rank 0 but the data is similar on other ranks:

Table 5. Performance counter metrics for pairlist computation

Metric Baseline value Optimized value
Average cycles 40.84 billion 35.35 billion
L1P Misses 26.9 billion 23.97 billion
L2 Misses 186.52 million 142.79 million

L2 lines loaded
from memory

190.16 million 145.97 million

L2 lines stored to
memory

146.52 million 91.81 million

This performance counter analysis indicates that the optimized
function uses about 14% fewer cycles because there are about
57% less loads and stores to main memory, 24% less L2 cache
misses and 11% less L1P misses.

6.6 PPPM computation optimization
Multi-threaded scaling issues in the PPPM computation were
addressed in several ways. The optimization of the
'data_reduce_fft' thread data reduction function described
previously had a significant effect. Additionally, during the
discretization of the charge density to the 3-D spatial grid
decomposition, there were many nested loops in the computation,
and at key points the L1 data cache block touch function (__dcbt)
was utilized to improve the L1 data cache utilization. Finally,
there is an smp version of FFTW3 which uses OpenMP which
was analyzed and tested for performance, however the actual
amount of data and time spent in each FFTW call was insufficient
to make adequate use of additional threads.

MPI communication scaling issues were addressed by re-
engineering the parallel Fast-Fourier Transform (FFT)
implementation to use an MPICH collective instead of point-to-
point communication. The PPPM implementation utilizes a
parallel 3D-FFT methodology for calculating the net force of
long-range Coulombics on individual atoms. The algorithm first
discretizes the charge density for the unit cells into single points
on a 3-D spatial grid decomposition, and then this discretized
charge density is moved to an FFT-decomposition where each
rank owns a set of 1-D columns of the 3-D FFT mesh. This
requires each rank to send all of its grid data to a handful of
different ranks. Similarly each rank will fill in its FFT columns
with the data received from several other ranks.[9] The plan for
the exchange of data between ranks is created during PPPM
initialization in a structure called 'remap_plan_3d ' and is used
unchanged for each timestep . During the PPPM computation for
each timestep, 3 separate 1-D FFTs are performed using the
FFTW3 package. Interleaved with the 1-D FFT calls are
transposes of the 3-D grid to bring new sets of columns onto the
processors by calling a function named 'remap_3d' which uses
information in the precomputed 'remap_plan_3d '. The existing
'remap_3d' code accomplished this by using point-to-point
communication with an MPI_Irecv / MPI_Send / MPI_Waitany
loop with information from the 'remap_plan_3d ' structure telling
it what data to exchange where. Performance analysis revealed
that most of the time was spent in the 'remap_3d' function and
very little relative time was spent in the actual FFTW3 calls.
Further analysis revealed that the list of ranks were fully
connected communication rings, where every rank within the ring
exchanges data with every other rank in the ring. This was a case
where an MPI_alltoallv collective could replace the MPI_Irecv /
MPI_Send / MPI_Waitany loop much more efficiently. This was
accomplished with changes to the ‘remap_3d_create_plan’
function during the PPPM initialization within which the
'remap_plan_3d' structure was populated and then later utilized
during the PPPM computation in the 'remap_3d' function. During
plan creation, an MPI sub-communicator was created based off an
MPI_Group composed of the ranks within the send and receive
lists for the original plan. The send and receive lists were then

altered to include the originating rank and sorted, so all ranks
sharing the sub-communicator would have the same data in the
same order from which the same buffer displacements could be
computed. Then in the 'remap_3d' function, the send and receive
buffers, counts and displacements could all be computed off these
same lists and an MPI_Alltoallv collective could be used in place
of the MPI_Irecv / MPI_Send / MPI_Waitany loop. PMPI
analysis isolated to the PPPM computation revealed the effect of
the collective running on 4 racks (total times are in seconds).

Table 6. PMPI metrics for PPPM computation

MPI
Routine

Baseline
of calls

Baseline
total time

Optimize
of calls

Optimize
total time

MPI_Sen
d

2.64
million

6.84 558k 3.44

MPI_Irec
v

2.64
million

1.26 558k 0.39

MPI_Wai
t

49k 6.32 49k 4.75

MPI_Wai
tany

2.59
million

30.62 508k 4.73

MPI_Allr
educe

217 0.06 217 0.02

MPI_Allt
oallv

0 0 33k 10.63

Total
time 45.1 23.96

This data indicates that at 4 racks the effect of the collective
essentially cut in half the amount of time spent in MPI
communication for the PPPM computation, which has an even
greater effect as the application scales to larger and larger blocks

7. BENCHMARK RESULTS
Testing of the cumulative effect of the optimizations described in
Section 6 on the benchmark described in Section 4 was done on
Mira at the ALCF. This first chart chart depicts the results of
running the benchmark at 1 rank-per-node using 64 OpenMP
threads comparing the baseline to the optimized version of the
application, scaling from 1 to 16 racks:

Benchmark walltime results

0

1

2

3

4

5

6

7

8

1 2 4 8 16

Number of racks

10
0

tim
es

te
ps

(s
ec

on
ds

)

Baseline
Optimized

To further exemplify the speedup of the optimizations over the
baseline, this next chart depicts the speedup factor of the
optimizations on the application, scaling from 1 to 16 racks:

Benchmark optimization speedup
factors

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16

Number of racks

Sp
ee

du
p

fa
ct

or

Optimized

These results show that the effect of the optimization effort
significantly improves performance at any scale, and the
improvement gets larger as the application scales - the baseline
scaling slows to marginal amounts at 4 racks, whereas the
optimized version keeps scaling to a far greater extent to 16 racks,
albeit non-linearly.

Finally, this table depicts the optimized version MPI
communication scaling from 1 to 16 racks for comparison against
the baseline table in section 6.1 (wall times are in seconds):

Table 7. MPI communication scaling of force fields with
optimizations

Number
of Racks

Pairlist
wall time

Pairlist
percent

PPPM
wall time

PPPM
percent

1 98.50 41.91 101.43 43.16
2 50.75 37.30 61.74 45.37
4 25.70 33.53 38.10 49.71
8 13.41 24.11 31.27 56.19
16 7.18 17.52 25.10 61.27

This data indicates that pairlist computation time is still scaling
linearly but is simply faster at any acale, whereas the PPPM
computation keeps scaling past 4 racks instead of plateauing and
is also faster at any scale, however it is still the bottleneck.
Further performance optimization efforts could include creating
MPI mapping files to minimize the number of hops in the torus
between nodes that share the same communication ring within the
FFT ‘remap_3d’ calls

8. SUMMARY
The goal of this performance optimization effort was to analyze
the computational performance of LAMMPS on Blue Gene /Q,
and then, based off that analysis, make general changes to the
application to exploit the Blue Gene/Q architecture but still be
applicable to other architectures, which could then be contributed
to the open source code base, and then additionally make specific
tuning changes to the code and runtime environment that were
specific to the Blue Gene/Q architecture to further improve

performance. This paper detailed that process, including technical
details of the Blue Gene/Q architecture and how it was leveraged
to improve performance. Although the optimizations maximized
performance the most when running at 1 rank-per-node and 64
threads, significant improvements over the baseline were still
measured at other ranks-per-node/number-of-thread
configurations. Final testing results showed significant optimized
speedup factors over the baseline ranging from 1.3x to 2.56x,
increasing as the application scaled.

9. ACKNOWLEDGEMENTS
We would like to thank Bob Walkup and John Gunnels from the
IBM Watson Research Lab for their consultation on a variety of
topics related to this performance optimization effort. We would
also like to thank the staff of the ALCF for the reliable access to
the Mira system, and to the IBM Rochester development lab and
support staff for the reliable access to the development and test
systems located there. Finally, we would like to thank Steve
Plimpton from Sandia National Laboratories for his
correspondence on the re-engineering effort for the PPPM
computation.

10. REFERENCES
[1] Plimpton, S. (n.d.) LAMMPS Molecular Dynamics

Simulator. Retrieved April 21, 2013 from
http://lammps.sandia.gov/.

[2] Habib, S., Morozov, V., Finkel, H., Pope, A., Heitmann, K.,
Kumaran, K., Peterka, T., Insley, J., Daniel, D., Fasel, P.,
Frontiere, N., Luki, Z. (2012) The Universe at Extreme
Scale: Multi-Petaflop Sky Simulation on the BG/Q.
Retrieved March 4, 2013 from
http://conferences.computer.org/sc/2012/papers/1000a004.pd
f.

[3] Chung, I., Kim, C., Wen, H., Cong, G. (2012) Application
Data Prefetching on the IBM Blue Gene/Q Supercomputer.

Retrieved April 20, 2013 from
http://conferences.computer.org/sc/2012/papers/1000a075.pd
f.

[4] Brooks BR, Bruccoleri RE, Olafson BD, States DJ,
Swaminathan S, Karplus M (1983). CHARMM: A program
for macromolecular energy, minimization, and dynamics
calculations. J Comp Chem 4 (2): 187–217.
doi:10.1002/jcc.540040211.

[5] Schild, H. G. (1992) Poly(N-isopropylacrylamide):
experiment, theory and application. Progress in Polymer
Science, 17 (2), 163–249.

[6] IBM Corp. (n.d.) IBM XL C/C++ for Blue Gene/Q, V12.1
Compiler reference. Retrieved February 18, 2013 from
http://www-
01.ibm.com/support/docview.wss?uid=swg27027065&aid=1
.

[7] Gilge, M. (2012) IBM Blue Gene/Q Application
Development Redbook. Retrieved January 22, 2013 from
www.redbooks.ibm.com/redpieces/pdfs/sg247948.pdf.

[8] Fischer, J., Richie, D. and Natoli, V. (2006) PET Project
Report: Optimization of LAMMPS Molecular Dynamics
Code. Retrieved March 6, 2013 from
http://www.sandia.gov/CSRF_report_2007/References/Secti
on_14/malins_sec14_ref9_fischer_LAMMPS_june_2006.pdf
.

[9] Plimpton, S., Pollock R. and Stevens M. (1997) Particle-
Mesh Ewald and rRESPA for Parallel Molecular Dynamics
Simulations. Proceedings of the Eighth SIAM Conference
on Parallel Processing for Scientific Computing

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Leadership Computing Facility
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

 www.anl.gov

