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ABSTRACT 
LAMMPS "Large-scale Atomic/Molecular Massively Parallel 
Simulator" is an open-source molecular dynamics package from 
Sandia National Laboratories.   Significant performance 
improvements in strong-scaling and time-to-solution for this 
application on IBM's Blue Gene/Q have been achieved through 
computational optimizations of the OpenMP versions of the short-
range Lennard-Jones term of the  CHARMM force field and the 
long-range Coulombic interaction implemented with the PPPM 
(particle-particle-particle mesh) algorithm, enhanced by runtime 
parameter settings controlling thread utilization.  Additionally, 
MPI communication performance improvements were made to the 
PPPM calculation by re-engineering the parallel 3D FFT to use 
MPICH collectives instead of point-to-point.   Performance 
testing was done using an 8.4-million atom simulation scaling up 
to 16 racks on the Mira system at Argonne Leadership Computing 
Facility (ALCF).  Speedups resulting from this effort were in 
some cases over 2x.   

General Terms 

Performance. 
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1. INTRODUCTION 
LAMMPS is a classical molecular dynamics code, and an 
acronym for Large-scale Atomic/Molecular Massively Parallel 
Simulator.  LAMMPS has potentials for soft materials 
(biomolecules, polymers) and solid-state materials (metals, 
semiconductors) and coarse-grained or mesoscopic systems. It can 
be used to model atoms or, more generically, as a parallel particle 
simulator at the atomic, meso, or continuum scale.[1]  It has an 
extensive user base, and may be favored over other packages 
because of its extensive array of force fields, particularly in the 
domain of material science research.  During the production 
readiness effort for the 48-rack Blue Gene/Q system named Mira 
at Argonne National Laboratory it was identified as an application 
with sufficiently high user demand but strong-scaling deficiencies 
to warrant a performance optimization effort.  A benchmark was 
identified using the short-range Lennard-Jones term of the 
CHARMM force field (hereafter referred to as the pairlist 
computation) and the long-range Coulombic interactikon 
implemented with the PPPM algorithm (hereafter referred to as 
the PPPM computation) which, if successfully optimized, could 
benefit a significant user base, effectively making the scope of the 
project the strong-scaling optimization of these two force fields.  
I/O optimization was not part of  this project. 

2. BUILDING AND RUNNING LAMMPS 
ON BLUE GENE/Q 
All building and testing of LAMMPS for this optimization effort 
was done on Blue Gene/Q software release V1R2M0.  The 
LAMMPS code base is C++, therefore the XL C++ cross-
compiler for Blue Gene/Q version 12.1 was used to compile all 
the modules.  Compiler optimization level 3 (-O3) was used for all 
modules, including the -qhot (performs high-order loop analysis 
and transformations ) and -qunroll (tells the compiler to more 
aggressively search for opportunities for loop unrolling) 
optimization options.  The multi-threading is all done via 

OpenMP so the -qsmp=omp option was also specified to the 
compiler to enable it.  The PPPM computation uses fast Fourier 
transforms (FFTs) with functions from the single-precision 
version of FFTW3 (http://www.fftw.org/), therefore the fftw3f 
library is linked in to build the stand-alone binary.  All 
communication is done with MPI, and MPICH-2 is the current 
standard supported on Blue Gene/Q V1R2M0.  All benchmarks 
were run with the stand-alone LAMMPS binary, which takes a 
parameter file and various runtime arguments detailing the 
simulation based on data files existing in the current working 
directory.  Since I/O was not part of this performance 
optimization project, no checkpoint or restart  files were utilized 
after the start of the simulation.  

3. LAMMPS AND THE  BLUE GENE/Q 
ARCHITECTURE 
Blue Gene/Q is the follow-on to Blue Gene/P in the family of 
supercomputers from IBM and the next step toward exascale 
computing in price performance, scalability, power efficiency, and 
system reliability.  The Blue Gene/Q Compute chip is a 
SystemonChip (SoC) design combining CPUs, caches, network, 
and a messaging unit on a single chip. [2]  There are 16 64-bit 
PowerPC A2 cores available for application usage, each running 4 
hardware threads which can be oversubscribed with up to 5 
software threads.  Additionally, each core has a SIMD quad 
floating point unit (Quad Processor eXtension, QPX), an L1 
prefetching unit (L1P) supporting both linear stream and list  
(perfect) prefetching, and a wake-up unit to reduce certain thread-
to-thread interactions. [2]  Each core has its own 16 KB L1 data 
cache and shares a 2MB slice of L2 cache connected by a crossbar 
which supports transactional memory and speculative execution at 
the hardware level. The memory hierarchy latency is as follows: 
L1 is 6 cycles, L1P is 24 cycles, L2 is 84 cycles, and main 
memory is 346 cycles.  [3]  The A2 core runs at 1.6 GHz and if 
the QPX is fully utilized allows for 4 FMAs per cycle, translating 
to a peak performance per core of 12.8 GFlops, or 204.8 GFlops 
for the chip. [2]  Each node contains a compute chip and 16 GB of 
DDR3 memory.  32 nodes compose a node board, 16 node boards 
compose a midplane, and 2 midplanes compose a rack, totalling 
1024 nodes.  Node-to-node communication is facilitated by a 5-d 
torus network, and each compute node has 10 communication 
links with a peak total bandwidth of 40 GB/second.[2]. 

From an MPI perspective an application can partition each node 
from 1 to 64 MPI ranks (ranks-per-node) by multiples of 2.   Intra-
node communication between ranks is done via shared memory 
whereas node-to-node communication utilizes the messaging unit 
and torus.  The less ranks-per-node means a greater number of 
hardware threads available per rank, so rank-per-node/number-of-
hardware-thread permutations equal 64, ie 1/64, 2/32,4/16,8/8, 
16/4, 32/2 and 64/1.  The multi-threading code in LAMMPS does 
not lend itself to make effective use of thread oversubscription, so 
the number of software threads must match the number of 
available hardware threads within each rank for optimum 
performance.  As the proceeding sections will illustrate, from the 
outset it became apparent the main bottleneck to strong-scaling 
performance with large multi-rack block sizes was going to be 
MPI communication.  Baseline measurements also indicated the 
optimum ranks-per-node/number-of-threads ratio decreased as the 
block size increased, beyond 4 racks the baseline ran optimally at 
1  rank-per-node and 64 threads.  In the scope of the domain 
decomposition of this application, one way to minimize the 
communication bottleneck is to run with fewer ranks-per-node, 



thereby lessening communication between the ranks at the 
expense of computation within the ranks.  Therefore, the focus of 
the performance effort became maximizing performance running 
at 1 rank-per-node and 64 threads, which then also meant 
maximizing the computational scaling of multiple threads on the 
chip and making optimal use of the chip archetecture described 
above. 

4. LAMMPS BENCHMARK 
The benchmark chosen for this performance optimization effort 
was an 8.4 million atom brush structure simulation of poly-iso-
propyl-acrylamide (PNIPAM).  The CHARMM force field 
implemented by the pairlist computation is well-suited for this 
material simulation and is one of the most accurate all-atom 
parameter force fields for biological and material molecular 
dynamics simulations - it contains complete additive bonded 
(bond, angle, dihedral and improper dihedral) and nonbonded 
(Lennard-Jones and Coulombic) interaction terms.[4]   PNIPAM 
is a temperature sensitive polymer that undergoes a coil-to-
globule transition as the temperature is raised. Investigating such a 
large scale conformational change is one of the most challenging 
tasks in soft condensed matter simulations.[5] PNIPAM requires 
accurate all-atom force fields whose interaction types must cover 
all atomic length scales, making the long-range scalability of the 
Coulombic PPPM computation of critical importance. A structural 
material simulation of PNIPAM utilizing the CHARMM force 
field is more scientifically relevant than many existing benchmark 
systems utilizing simplified force fields, and presents a highly 
non-trivial as well as accurate all-atom benchmark system upon 
which to investigate the performance of LAMMPS.  Unless 
ottherwise noted, all investigation, data and results are in the 
context of the benchmark described above running at 1 
rankpernode using 64 OpenMP threads. 

5. PROFILING AND ANALYSIS TOOLS, 
METHODOLOGIES AND 
ENVIRONMENTS 
To minimize computational resource utilization and maximize 
turnaround, an abbreviated version of the benchmark was 
provided which would run sufficiently on 256 nodes in the IBM 
development lab where the primary author has easy access, so a 
majority of the profiling and tuning effort was done on  this small 
scale and then applied to the large scale  benchmark running on 
multi-rack blocks on Mira at the ALCF.  LAMMPS provides it's 
own set of internal performance profiling metrics which are  
printed out  after the results at the end of the simulation, including  
the actual wall-time and the percent of total calculation.  These 
metrics were  used as the first level of profiling.  The code was 
then compiled, linked and run with -pg to instrument the GNU-
profiler, which gave a decent profile of the serial functional 
components but a less-than-useful profile of the multi-threaded 
functional components.  Beyond that was the use of internally 
developed profiling libraries using PMPI for the MPI 
communication and hardware performance counters for the 

computation, which provided a very insightful view of 
computational issues within the threads.  Finally, manual timebase 
instrumentation of the code, consisting of collecting the data in 
structures throughout the simulation and then printing out the 
values at the end proved very valuable in terms of determining the 
overall wall-time contribution of various functions to the overall 
benchmark time across all timesteps in the simulation. 

6. OPTIMIZATION INVESTIGATION 
6.1 LAMMPS internal profiling initial 
analysis 
LAMMPS provides it's own set of internal performance profiling 
metrics which is printed after the results at the end of the 
simulation, including the actual wall-time and the percent of total 
calculation.  The 2 metrics of interest for this project were the 
‘Pair’ metric which was the total cumulative time for the pairlist 
computation across all timesteps and the ‘Kspce’ time which, for 
this benchmark, was the PPPM computation time 

A baseline analysis of the MPI communication scaling was 
accomplished by holding the number of threads at 64 and running 
at 1 rank-per-node and then scaling the number of nodes from 1 to 
16 racks (wall times are in  seconds): 

Table 1. MPI communication scaling of force fields baseline 

Number 
of Racks 

Pairlist 
wall time 

Pairlist 
percent 

PPPM 
wall time 

PPPM 
percent 

1  117.04 38.32   136.47 44.69  
2  59.72 31.53  92.16 48.65  
4 31 23.88 72.8 56.13 
8 17 14.8 74 64.72 
16 9.48 9.01 74.18 70.52 

 

This data indicated the pairlist mpi communication was scaling 
pretty well, but the PPPM mpi communication was not.  Beyond 4 
racks scaling completely stopped, as the wall time was staying 
basically the same, but the percent of the total simulation time 
increased.  

A baseline analysis of the algorithmic thread scaling was 
accomplished using the abbreviated version of the benchmark 
running on a fixed number of nodes (256) and running at 1 rank-
per-node, scaling from 1 to 64 threads (wall time is in seconds): 

Table 2. Multi-threaded scaling of force fields baseline: 

Number of 
threads 

Pairlist wall time PPPM 
wall time 

1 524.03 123.81 
2 265.05 66.49 
4 133.88 38.49 
8 67.97 22.32 
16 34.78 15.04 
32 18.59 12.72 
64 11.47 19.39 

 

Analysis of this data again showed the pairlist multi-threaded 
computation was scaling pretty well, but the PPPM was not, and 
actuallly got worse at 64 threads.  Therefore, to get stronger 
scaling of the benchmark, the PPPM MPI communication and 
multi-threaded computation needed to scale better, and 
additionally the overall time-to-solution could be improved if the 
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serial code within the threads of the pairlist computation was 
better optimized. 

6.2 Thread control environment variable 
tuning 
There are several environment variables that control OpenMP and 
thread utilization, all of which were thoroughly investigated.  The 
following combination had the greatest positive effect on 
performance,particularly at 64 threads: 

 Table 3. Optimum thread control settings: 

Environment variable name Value 
BG_SMP_FAST_WAKEUP YES 
OMP_WAIT_POLICY ACTIVE 
BG_THREADLAYOUT 1 

 

The explanation for this is the LAMMPS code is interspersed with 
serial and multi-threaded code fragments all within the same 
timestep, so the combination of 
BG_SMP_FAST_WAKEUP=YES and 
OMP_WAIT_POLICY=ACTIVE settings effectively hold the 
threads in a barrier during the serial execution sections as opposed 
to having to respawn them when a multi-threaded code section is 
again entered.  Furthermore, for 64 threads the 
BG_THREADLAYOUT=1 setting changes how the threads are 
assigned to the processor, going depth-first within the cores 
instead of the default breadth-first across the cores, resulting in 
different data being accessed by threads on the same core which 
in turn happened to have less contention for L1 and L2 cache (ie 
less cache evictions of one thread's data by another's), an 
explanation the performance counter data seemed to support. [6] 
[7] 

6.3 Transactional Memory investigation 
The OpenMP code was analyzed to see if any areas could benefit 
from the utilization of Transactional Memory (TM).  BG/Q 
implements hardware support for memory speculation. It is 
controlled by the shared multi-versioning L2-cache. During 
memory speculation, the L2 cache tracks state changes caused by 
the speculative thread, and keeps them separate from the main 
memory state. [7]   The only areas of shared data (omp critical 
sections) among threads was for the memory management of 
thread data,  so TM was attempted in these cses but was not 
successful in that the performance did not improve. 

6.4 Thread data reduction optimization 
The algorithmic methodology of the multi-threaded 
implementation is to replicate all the atomic-level data for the  
multi-threaded  functions within the pairlist and PPPM 
computations into a one-dimensional array strided by the thread 
id, so that as each thread runs it updates its own copy of data.  
When the function completes, the separate data from each thread 
is brought together and reduced.  The time to perform this thread 
data reduction increased with the number of threads, so at 64 
threads this amount of time was considerable and contributed 
significantly to the loss of multi-threaded scaling.  Data reduction 
for the pairlist and PPPM computations were handled by the 
global function 'data_reduce_thr' and additionally the charge 
density discretization within the PPPM computation was handled 
by the global function 'data_reduce_fft'.  Optimizations of these 
functions were based on the architecture of the Blue Gene/Q chip 

- the L1 data cache line is 2x64 bytes wide, so 64 contiguous 
bytes are loaded at a time.  The thread data is an array of double-
precision floating point numbers, which are 8-bytes wide.  
Therefore, the first optimization was to manually unroll the loops 
to access and process the data 8 elements at a time.  Although this 
code change was made to match the Blue Gene/Q architecture, 
many other architectures would benefit from this code, or some 
slight permutation of it.  Additionally, the xlC built-in L1 register 
prefetching function __prefetch_by_load was utilized a key points 
in the loop.  These optimizations in the context of the thread 
runtime options discussed in Section 6.2 moved the data access  
for the cpu’s further up the memory latency hierarchy and thereby 
improved performance.  Performance counter analysis revealed 
the effect of the optimizations running on 4 racks - this sample is 
for the ‘data_reduce_thr’ function on rank 0 but the data is similar 
on other  ranks and for the ‘data_reduce_fft’ function  as well: 

Table 4. Performance counter metrics for thread data 
reductions 

Metric Baseline value Optimized value 
Average cycles 12.37 billion 7.54 billion 
L1P Misses 4.77 billion 3.38 billion 
L2 Misses 327.88 million 105.14 million 
L2 lines loaded 
from memory 

318.64 million 294.76 million 

L2 lines stored to 
memory 

190.22 million 157.55 million 

 

This performance counter analysis indicates that the optimized 
function uses 39% fewer cycles because there are about 10% less 
loads and stores to main memory, 68% less L2 cache misses and 
29% less L1P misses 

6.5 Pairlist computation optimization 
Given the need to run the application with multiple threads for 
optimum scaling, the multi-threaded (as opposed to the serial) 
version of the pairlist computation was the focus of the 
optimization effort.  A previous performaance engineering effort 
at Sandia National Laboratory had optimized the serial version of 
this code, so the first step was to apply the serial optimizations 
done as part of that effort to the OpenMP version.[8]  Once those 
optimizations were in place, further tuning was investigated.   The 
manual insertion of qpx vector instructions were investigated, but 
their successful implementation was prohibited due to the 
structure of the data and the algorithm.  Also due to the non-
sequential  nature of the data access from the atomic data arrays, 
the L1P was highly ineffective – therefore uilization of the xlC 
built-in L1 register prefetching function __prefetch_by_load  was 
successfully utilized at key points in the computational loops 
which, in combination with Sandia optimizations and the thread 
runtime options discussed in Section 6.2,  moved the data access  
for the cpu’s further up the memory latency hierarchy and thereby 
improved performance.  Performance counter analysis revealed 
the effect of the optimizations running on 4 racks - this sample is 
from rank 0 but the data is similar on other  ranks: 

Table 5. Performance counter metrics for pairlist computation 

Metric Baseline value Optimized value 
Average cycles 40.84 billion 35.35 billion 
L1P Misses 26.9 billion 23.97 billion 
L2 Misses 186.52 million 142.79 million 



L2 lines loaded 
from memory 

190.16 million 145.97 million 

L2 lines stored to 
memory 

146.52 million 91.81 million 

 

This performance counter analysis indicates that the optimized 
function uses about 14% fewer cycles because there are about 
57% less loads and stores to main memory, 24% less L2 cache 
misses and 11% less L1P misses. 

6.6 PPPM computation optimization 
Multi-threaded scaling issues in the PPPM computation were 
addressed in several ways.  The optimization of the 
'data_reduce_fft'  thread data reduction function described 
previously had a significant effect.  Additionally, during the 
discretization of the charge density to the 3-D spatial grid 
decomposition, there were many nested loops in the computation, 
and at key points the L1 data cache block touch function (__dcbt) 
was utilized to improve the L1 data cache utilization.  Finally, 
there is an smp version of FFTW3 which uses OpenMP which 
was analyzed and tested for performance, however the actual 
amount of data and time spent in each FFTW call was insufficient 
to make adequate use of additional threads. 

MPI communication scaling issues were addressed by re-
engineering the parallel Fast-Fourier Transform (FFT) 
implementation to use an MPICH collective instead of point-to-
point communication.  The PPPM implementation utilizes a 
parallel 3D-FFT methodology for calculating the net force of 
long-range Coulombics on individual atoms.   The algorithm first 
discretizes the charge density for the  unit cells into single points 
on a 3-D spatial grid decomposition, and then this discretized 
charge density is moved to an FFT-decomposition where each 
rank owns a set of 1-D columns of the 3-D FFT mesh. This 
requires each rank to send all of its grid data to a handful of 
different ranks.  Similarly each rank will fill in its FFT columns 
with the data received from several other ranks.[9]  The plan for 
the exchange of data between ranks is created during PPPM 
initialization in a structure called 'remap_plan_3d '  and is used 
unchanged for each timestep .  During the PPPM computation for 
each timestep, 3 separate 1-D FFTs are performed using the 
FFTW3 package.   Interleaved with the 1-D FFT calls are 
transposes of the 3-D grid to bring new sets of columns onto the 
processors by calling a function named  'remap_3d'  which uses 
information in the precomputed 'remap_plan_3d '.  The existing 
'remap_3d' code  accomplished this by using point-to-point 
communication with an MPI_Irecv / MPI_Send  / MPI_Waitany 
loop with information from the 'remap_plan_3d ' structure telling 
it what data to exchange where.  Performance analysis revealed 
that most of the time was spent in the 'remap_3d' function and 
very little relative time was spent in the actual FFTW3 calls.  
Further analysis revealed that the list of ranks were fully 
connected communication rings, where every rank within the ring 
exchanges data with every other rank in the ring.  This was a case 
where an MPI_alltoallv collective could replace the MPI_Irecv / 
MPI_Send  / MPI_Waitany loop much more efficiently.  This was 
accomplished with changes to the ‘remap_3d_create_plan’ 
function during the PPPM initialization within which the  
'remap_plan_3d'  structure was populated and then later utilized 
during the PPPM computation in the 'remap_3d' function.  During 
plan creation, an MPI sub-communicator was created based off an 
MPI_Group composed of the ranks within the send and receive 
lists for the original plan.  The send and receive lists were then 

altered to include the originating rank and sorted, so all ranks 
sharing the sub-communicator would have the same data in the 
same order from which the same buffer displacements could be 
computed.  Then in the 'remap_3d' function, the send and receive 
buffers, counts and displacements could all be computed off these 
same lists and an MPI_Alltoallv collective could be used in place 
of the MPI_Irecv / MPI_Send  / MPI_Waitany loop.  PMPI 
analysis isolated to the PPPM computation revealed the effect of 
the collective running on 4 racks (total times are in seconds). 

Table 6. PMPI metrics for PPPM computation 

MPI 
Routine 

Baseline 
# of calls 

Baseline 
total time 

Optimize
# of calls 

Optimize 
total time 

MPI_Sen
d 

2.64 
million 

6.84 558k 3.44 

MPI_Irec
v 

2.64 
million 

1.26 558k 0.39 

MPI_Wai
t 

49k 6.32 49k 4.75 

MPI_Wai
tany 

2.59 
million 

30.62 508k 4.73 

MPI_Allr
educe 

217 0.06 217 0.02 

MPI_Allt
oallv 

0 0 33k 10.63 

Total 
time   45.1   23.96 

 

This data  indicates that at 4 racks the effect of the collective 
essentially cut in half the amount of time spent in MPI 
communication for the PPPM computation, which has an even 
greater effect as the  application scales to larger and larger blocks 

7. BENCHMARK RESULTS 
Testing of the cumulative effect of the optimizations described in 
Section 6 on the benchmark described in Section 4 was done on 
Mira at the ALCF.  This first chart chart depicts the results of 
running the benchmark at 1 rank-per-node using 64 OpenMP 
threads comparing the baseline to the optimized version of the 
application, scaling from 1 to 16 racks: 
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To further exemplify the speedup of the optimizations over the 
baseline, this next chart depicts the speedup factor of the 
optimizations on the application, scaling from 1 to 16 racks: 
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These results show that the effect of the optimization effort 
significantly improves performance at any scale, and the 
improvement gets larger as the application scales - the baseline 
scaling slows to marginal amounts at 4 racks, whereas the 
optimized version keeps scaling to a far greater extent to 16 racks, 
albeit non-linearly. 

Finally, this table depicts the optimized version MPI 
communication scaling from 1 to 16 racks  for comparison against 
the baseline table in section 6.1 (wall times are in  seconds): 

Table 7. MPI communication scaling of force fields with 
optimizations   

Number 
of Racks 

Pairlist 
wall time 

Pairlist 
percent 

PPPM 
wall time 

PPPM 
percent 

1 98.50 41.91 101.43 43.16 
2 50.75 37.30 61.74 45.37 
4 25.70 33.53 38.10 49.71 
8 13.41 24.11 31.27 56.19 
16 7.18 17.52 25.10 61.27 

 

This data indicates that pairlist computation time is still scaling 
linearly but is simply faster at any acale, whereas the PPPM 
computation keeps scaling past 4 racks instead of plateauing and 
is also faster at any scale, however  it is still the bottleneck.  
Further performance optimization efforts could include creating 
MPI mapping files to minimize the number of hops in the torus 
between nodes that share the same  communication ring within the 
FFT ‘remap_3d’ calls 

8. SUMMARY 
The goal of this performance optimization effort was to analyze 
the computational performance of LAMMPS on Blue Gene /Q, 
and then, based off that analysis, make general changes to the 
application to exploit the Blue Gene/Q architecture but still be 
applicable to other architectures, which could then be contributed 
to the open source code base,  and then additionally make specific 
tuning changes to the code and runtime environment that were 
specific to the Blue Gene/Q architecture to further improve 



performance.  This paper detailed that process, including technical 
details of the Blue Gene/Q architecture and how it  was leveraged 
to improve performance.  Although the optimizations maximized 
performance the most when running at 1 rank-per-node and 64 
threads, significant improvements over the baseline were still 
measured at other ranks-per-node/number-of-thread 
configurations.  Final testing results showed significant optimized 
speedup factors over the baseline ranging from 1.3x to 2.56x, 
increasing as the application scaled. 
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