

ANL/MCS-TM/344

Mathematics and Computer Science Division

2014 MeshKit Release

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357.
The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about
Argonne and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991
documents are available free via DOE’s SciTech Connect (http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandra, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency
thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and
opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National
Laboratory, or UChicago Argonne, LLC.

	

	

ANL/MCS-TM/344

Rajeev Jain and Vijay Mahadevan
Mathematics	 and	 Computer	 Science	 Division,	 Argonne	 National	 Laboratory	

	
	
September	 30,	 2014	

2014 MeshKit Release

	

	

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	

1http://www.sigma.mcs.anl.gov	
	 	 i	 ANL/MCS-‐TM/344	

SUMMARY	

MeshKit v1.2 was released on July 25th 2014 as part of SIGMA1 v1.0 (Scalable
Interfaces for Geometry and Mesh-Based Applications). SIGMA consists of CGM, MOAB,
Lasso and MeshKit developed and managed at Argonne National Laboratory. This release of
MeshKit focuses on documentation and adding support for developing RGG (Reactor
Geometry (and mesh) Generator GUI along with fixes and new enhancements to the RGG
tools AssyGen and CoreGen. Several important and user required code enhancements and
fixes are a part of this release. A new scheme for distributing the component assemblies
forming the reactor core in parallel CoreGen has improved the overall computational time
taken by CoreGen to assemble the reactor core from it’s component assemblies. Verdict mesh
quality library has been integrated and is being used by quad mesher and post mesh boundary
layer algorithm. Development of interfaces to NetGen and GRUMMP tri mesher are under
active development. Various reactor types such as ABTR, PWR, MONJU etc. were modeled
using MeshKit. These models applied to individual and coupled physics solvers such as
Nek5000, PROTEUS, Diablo and SHARP.

2014	 MeshKit	 Release	
	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	 ii	

TABLE	 OF	 CONTENTS	

Summary ... i	

Table of Contents ... ii	
List of Figures ... iv	

List of Tables .. v	
1	 Introduction .. 6	

1.1	 Algorithms and Tools ... 7	
1.2	 Reactor Geometry (and mesh) Generator: RGG ... 9	

2	 Code Development ... 11	
2.1	 Build System ... 12	
2.2	 RGG Enhancement and Fixes ... 12	

2.2.1	 Introduction of Common Input File ... 12	
2.2.2	 New Parallel CoreGen Scheme .. 13	
2.2.3	 Material and Neumann Set Shifting in CoreGen .. 13	
2.2.4	 Fixes in SIGMA Components .. 14	
2.2.5	 Other MeshKit Fixes .. 15	

2.3	 Make watertight .. 16	
2.4	 Sweep Mesh Generation ... 16	
2.5	 Verdict Integration .. 18	
2.6	 Tri Mesh Generator ... 19	
2.7	 Quad Mesh Cleanup .. 19	

3	 Meshing Activities ... 21	

3.1	 ABTR .. 21	
3.1.1	 ABTR Single Assembly Model .. 21	
3.1.2	 ABTR 7-Assembly Model .. 23	
Key Assumptions and Requirements .. 23	
7-Assembly Core with Four Different Assemblies ... 24	
7-assembly Core with All Fuel Assemblies .. 26	
3.1.3	 ABTR Full Core ... 27	

3.2	 Meshes Created For CoreGen Scalability Study .. 28	
3.2.1	 Fine ABTR Core Model ... 28	
3.2.2	 1/6th VHTR Core .. 28	
3.2.3	 MONJU Reactor ... 30	

3.3	 VERA Benchmark Problems .. 32	

4	 Documentation ... 33	
5	 RGG GUI 1.0 Release and Collaboration with Kitware .. 33	

6	 Conclusions .. 38	
Acknowledgments ... 39	

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	

	 iii	 ANL/MCS-‐TM/344ANL/MCS-‐TM/344	

References .. 39	
Appendix A.	 Autotools Based Configure/Build/Installation of MeshKit 40	

Appendix B.	 CMake-Based Builds: RGG Nuclear GUI Repository (SBIR: Kitware) 42	
Appendix C.	 Input File for a Fuel Assembly with 24 Axial Regions 44	

Appendix D.	 Input File for a Fuel-only Mini-core with Restraint Rings 46	

2014	 MeshKit	 Release	
	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	 iv	

LIST	 OF	 FIGURES	

Figure 1 Algorithms available in MeshKit ... 7	
Figure 2 Algorithms available in MeshKit (Contd.) ... 8	
Figure 3 RGG Workflow .. 9	
Figure 4. (a) CoreGen MeshOp di-graph. (b) Internal nodes created during setup-phase of

CoreGen, shown in box. (c) 2-processor digraph for CoreGen MeshOp. 11	
Figure 5. Common.inp file for AssyGen. These are core-level parameters, the same for all

assemblies. ... 13	
Figure 6. CoreGen input file demonstrating the use of “same_as” for 7-assembly ABTR. 14	
Figure 7. Input and output geometry to make watertight algorithm. .. 16	
Figure 8. Flowchart of surface mesh generation based on edge patch imprinting. 16	
Figure. 9. A real part from Caterpillar: (a) a geometric model; (b) source surface meshes;

(c) partitioned source and target surfaces by imprinting edge patches; (d) target
surface meshes by morphing. ... 17	

Figure. 10. Example of generating surface meshes and matching the source and target
surfaces by imprinting edge patches: (a) geometric model; (b) partitioned
source and target surfaces; (c) source surface meshes; (d) 3D-view surface
meshes; (e) target surface meshes by morphing. ... 17	

Figure 11. Surface mesh generation for crankshaft by imprinting: (a) geometric model
with imprinted edge patches (denoted by blue curves); (b) target surface meshes
by morphing. .. 18	

Figure 12. Graph-based tetrahedral mesh generation. .. 19	
Figure 13. Tetrahedral mesh created by NGTetMesher MeshOp. .. 19	
Figure 14. Input and output to quad cleanup operation (a) original mesh. (b) final mesh

after quad-cleanup. ... 20	
Figure 15. (a) Detailed (nonhomogenized ABTR fuel assembly); (b) Three homogenized

fuel assemblies showing the Above Core Load Pad (ACLP), Top Load Pad
(TLP), and outlet plenum regions. ... 21	

Figure 16. Section of metal fuel pin showing dimensions in cold condition. 22	
Figure 17. (a) Control assembly absorber region containing two ducts; (b) Inlet of actual

control assembly with homogenized control pins (magenta), two ducts (red),
and half of inter-assembly sodium gap (green). ... 22	

Figure 18. Minicore assembly: (a) configuration; (b) numbering scheme of assemblies
(red). ... 24	

Figure 19. Minicore mesh: (a) elements and blocks; .. 25	
(b) internal assembly blocks used in PROTEUS; (c) power distribution. 25	
Figure 20. Composition map for fuel-only minicore. ... 26	
Figure 21. Assembly structural components: (a) restraint rings; (b) load pads on fuel

assemblies; ... 27	

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	

	 v	 ANL/MCS-‐TM/344ANL/MCS-‐TM/344	

(c) gap between assemblies and restraint rings ACLP (0.0235 cm, gray) and TLP
(1.2025 cm, green). .. 27	

Figure 22. ABTR full-core configuration: (a) with lines of constant logical I,J assembly
regions; (b) with homogenized assemblies, outer covering, and restraint rings at
TLP and ACLP locations ... 27	

Figure 23. One-sixth of a VHTR core model generated by using CoreGen (left); closeup
of assembly mesh in this model (right). ... 29	

Figure 24. Log scale results from Table 2 vs. number of processors for 1/6 VHTR reactor
core. .. 30	

Figure 25. Full-core MONU reactor; closeup area in red rectangular region is highlighted
from left to right. .. 30	

Figure 26. Log scale results from Table 3 vs number of processors plot for MONJU
reactor core. .. 31	

Figure 27. Simple pincell model. (left: coarse, right: refined) .. 32	
Figure 28. 17x17 PWR assembly model ... 32	
Figure 29. Pin being edited using RGG’s pin cell editor. ... 34	
Figure 30. Simple duct being designed that consists of two materials. One material forms

the walls of the subassembly, while water is assigned as the inside material. 35	
Figure 31. Example reactor assembly in RGG ... 35	
Figure 32. A simple hexagonal reactor core modeled in RGG. .. 36	
Figure 33. An example of a nuclear reactor core mesh generated using RGG. 37	
Figure 34. 199 Assembly ABTR created using RGG. .. 37	
Figure 35. A PWR reactor core with five different types of assemblies modeled using

RGG. .. 38	

LIST	 OF	 TABLES	

Table 1. Properties of input and output mesh to the quad cleanup algorithm. 20	
Table 2. CPU time in minutes and maximum memory in gigabytes used for 1/6 VHTR

core ... 29	
Table 3. CPU time in mins and maximum memory in GB used for MONJU core 31	

	 2014	 MeshKit	 Release	
6	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

1 Introduction	

The MeshKit library provides a robust parallel infrastructure for developers and a
scheme for algorithm users for various mesh generation functionality. It is implemented in
C++ and provides a traditional C++-based API for interactions with other codes. A Python
interface is also provided for interactive access to the library. MeshKit relies on geometry and
mesh libraries developed as a part of the SIGMA (Scalable Interfaces for Geometry and
Mesh-Based Applications) [1] libraries developed at Argonne National Laboratory; SIGMA
v1.0 was released on July 25, 2014, and MeshKit v1.2 was a part of SIGMA v1.0 release. The
SIGMA component CGM (Common Geometry Module) [2] provides functions for
constructing, modifying, and querying geometric models in solid model-based and other
formats. CGM can evaluate geometry from two underlying geometry engines: ACIS [3], with
preliminary support for Open Cascade–based [4] version. Finite-element mesh and mesh-
related data are stored in the SIGMA component MOAB (Mesh-Oriented database) [5].
MOAB provides query, construction, and modification of finite-element meshes, plus
polygons and polyhedra. Various options are available for writing and visualizing the final
meshes produced by meshing algorithms. MOAB uses an HDF5-based file format, which can
be visualized by using a ParaView plugin that is implemented by the MOAB library. The
Visit visualization tool can also be configured and built with MOAB to provide a similar
import capability. The overall goal of MeshKit is to develop a complete package for
generating reactor core models, while at the same time being general enough to serve as a
platform for geometry and mesh generation research and tool development. External users
from United States (ORNL, GE, Westinghouse), Scotland (University of Glasgow), Germany
(SIMSCALE, University of Stuttgart) and China (Xiangtan University) are now using
MeshKit.

The MeshKit library uses a graph-based process for specifying the overall meshing
approach, with graph nodes representing meshing and other operation, and with graph edges
as dependencies between those operations. The graph-based approach supports the traditional
BREP-driven (BREP stands for boundary representation) meshing process, which usually
proceeds by meshing BREP entities in increasing topological dimension, first with vertices,
then edges, and so on. However, a graph-based process also enables meshing tasks not
possible with a strict BREP-based approach. First, not every meshing process needs or has a
geometric model representing the entire domain to be meshed. The best example is the
Reactor Geometry (and mesh) Generator (RGG) tool, in which individual assembly types
have geometric models but are then copied/moved into a lattice of assembly models forming a
reactor core. Second, a meshing procedure may not involve only a once-through meshing of
each BREP entity; again, RGG is a good example, in which the first part of the process
involves meshing BREP models but the last step involves copy/moving mesh subsets into a
larger core lattice. Third, the procedure-driven approach to meshing represented by most
CAD-based meshing tools fails to capture the parallelism and dependency structure that can
be found in most meshing problems (including BREP-based ones); representing and
exploiting this richer structure provide more flexibility while still being applicable to BREP-
based problems.

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 7	

ANL/MCS-‐TM/344	

Design details and a description of all the algorithms available in MeshKit were given
in our FY13 milestone report [6]. During the past year several important algorithms and
applications have been developed using MeshKit. The infrastructure provided by MeshKit is
robust and has been applied in various serial and parallel meshing related activities. This
report is structured as follows. In the remainder of this section we list of all the algorithms
currently available and also describes the RGG tool. Section 2 deals with code development
over the past fiscal year. Mesh generation activities including scalability studies of parallel-
enabled RGG are given in Section 3. Section 4 provides the details of MeshKit documentation
work. Collaboration with Kitware for RGG GUI development is highlighted in Section 5. The
report is concludes in Section 6 with an outline of future work.

1.1 Algorithms	 and	 Tools	

The SIGMA v1.0 libraries provide robust infrastructure for developing geometry and
mesh algorithms and applications. Indeed, in a short span of time, several algorithms and
applications in MeshKit have been developed and published. MeshKit’s algorithms that are
described in separate papers published elsewhere has been listed here.

 	 	 	 	 	 	 	 	 (a)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (b)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (c)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Figure	 1	 Algorithms	 available	 in	 MeshKit	

Algorithms available in MeshKit can be categorized in several ways, such as the
dimension of entities, type of mesh elements, or application. Here, we categorize the
algorithms based on MeshKit usage. Traditional meshing algorithms are 2D and 3D
algorithms for developing tri/tet and quad/hex meshes. Figure 1(a) lists some of the primitive
algorithms developed in MeshKit, for structured mesh generation, an embedded boundary
mesher [9] and block mesher were developed. For unstructured mesh generation, a quad
mesher [7] and one-to-one sweep [8] were developed. Other algorithms required for
traditional meshing were integrated as external algorithms (Figure 2(b)) by leveraging

TradiKonal	 NaKve	
Algorithms	

• UNSTRUCTURED	
MESHING:	
• 2D	 Quad	 Mesher:	
Jaal	 QuadMesher	

• OneToOneSweep	

• STRUCTURED	
MESHING	
• Embedded	 Boundary	
Mesher:	 EBMesh	

• Block	 Mesher	 or	
SCDMesh	 MeshOp	 	

Mesh	 Handling/
ModificaKon	

• Post	 Mesh	 Boundary	
Layer	 GeneraKon:	
PostBL	

• Quad	 Mesh	 Cleanup	

• MergeMesh	

Support	 Algorithms	

•  Interval	 Matching	
Algorithm:	
IntervalAssignment	

• Mesh-‐Based	
Geometry	
ModificaKons:	
MBGeomOp,	
MBSplitOp,	 MBVolOp	

	 2014	 MeshKit	 Release	
8	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

existing state-of-art existing meshing packages. Several traditional algorithms use helper
algorithms listed in Figure 2(f). Papers have been published in peer-reviewed journal that
include the details results and implementation details of quad mesher, one-to-one sweep and
embedded boundary meshing. The mesh modifications algorithms listed in Figure 1(b) were
also developed from scratch in MeshKit; implementation details along with results for post
mesh boundary layer and interval matching algorithms have been published last year [10]
[11], respectively. Supports algorithms that are used by several other algorithms are listed in
Figure 1(c). Interval matching algorithms works closely with all other algorithms in MeshKit
to assign the sizes on geometric entities when meshing a complicated geometry. Mesh-based
geometry modification operations listed in Figure 1(c) were developed for building
hexahedral meshes and associated geometry of ice sheets models from latitude and longitude
data obtained from satellites.

	
 	 	 	 	 	 	 	 	 (d)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (e)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (f)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Figure	 2	 Algorithms	 available	 in	 MeshKit	 (Contd.)	

Tools that are part of MeshKit are listed in Figure 2(d). The RGG tools AssyGen and
CoreGen are described in Section 1.2 and developments in make watertight algorithms used
for sealing facet-based geometries are reported in Section 2.3. Tools developed using
MeshKit library may be a part of MeshKit or exist as an external library; all these algorithms
and tools mentioned in Figure 1 and Figure 2 adhere to the graph-based design that MeshKit
uses. MeshKit takes advantage of other open and closed source meshing libraries by
providing a consistent interface. Interface to Gmsh and the NetGen tri mesher library are
currently under development and in the testing phase. Several traditional algorithms use
helper algorithms listed in Figure 2. Helper algorithms such as Vertex and Edge mesher are
used by higher-dimensional algorithms and are often automatically created by the graph-based
design of MeshKit. The RGG tool uses copy/move/merge/extrude algorithms and set
operations for copy/expand/extrude tag specified during the copy/move/extrude process
respectively.

Integrated	 Tools	

• RGG: 	 	
• Nuclear	 Reactor	
Modeling:	 Assembly	
Geometry	 CreaFon	 Tool:	
AssyGen	

• Nuclear	 Reactor	
Modeling:	 Core	 Mesh	
and	 Geometry	 CreaFon	
Tool:	 CoreGen	

• Sealing	 Facet	 Based	
Geometry:	
MakeWaterTight	

External	 Algorithms	

• Triangle	

• CAMAL/CUBIT	
• Tri	 Mesher	
• Quad	 Mesher	
• Tet	 Mesher	

• NetGen	
• Tri	 Mesher	
• Tet	 Mesher	

• Mesquite	

• Gmsh	

Helper	 Algorithms	

• TFIMapping	

• QSlimMesher	

• Vertex	 Mesher	

• Edge	 Mesher	

• Extrude	 Mesh	

• Copy	 Mesh/Geom	
OperaKon	

• Set	 OperaKons:	 Copy/
Expand/Extrude	

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 9	

ANL/MCS-‐TM/344	

1.2 Reactor	 Geometry	 (and	 mesh)	 Generator:	 RGG	

A nuclear reactor core consists of uranium fuel rods, instrumentation rods, control
rods, ducts, coolant, grid spacers, load pads, restraint ring systems, and other supporting
structure. Although these core models are quasi-2.5-dimensional, modeling of interassembly
gaps forming the whole core model from the component assemblies can get cumbersome and
difficult to manage by using scripts or traditional meshing packages. Creating a fully detailed
reactor core model with a few million elements can take a few days. Moreover, constructing
these models on typical desktop computers can require large runtimes, and for large models
such efforts may not succeed at all because of memory constraints. Analysts require a parallel
modeling tool that can generate large core models in a few hours and can simplify the overall
process of generating reactor core models.

RGG methodology involves three steps; the overall workflow is highlighted in Figure
3. First, AssyGen reads an input file describing a reactor assembly lattice and generates an
ACIS or OCC-based geometry file, along with a template script for generating a mesh for the
assembly using the Cubit meshing toolkit [12]. For the Core Mesh shown in Figure 1,
AssyGen was run twice to generate the two types of assemblies shown. AssyGen supports
several features, such as axial numbering material and boundary conditions, sectioning,
rotation, and information about location of pins. These have been described in a paper
presented at the International Meshing Roundtable [13].

The second step is meshing, where the user may choose to perform meshing using the
Cubit mesh script generated by AssyGen or using meshing algorithms in MeshKit. The RGG
GUI app developed by Kitware Inc. is available for download from the website:
http://www.computationalmodelbuilder.org/download/

Figure	 3	 RGG	 Workflow	

	 2014	 MeshKit	 Release	
10	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

A single reactor assembly may comprise several thousand geometric regions if one
considers the materials and axially varying properties of the assembly. One possible approach
for parallelizing AssyGen involves having each processor create a region based on the
location of the pin it obtains from the master processor. The problem with this approach is
that the subtraction of regions from the outermost duct is a serial process. Because of the
unavailability of parallel subtraction of geometry from components, this feature has not been
developed. Instead, we are developing in MeshKit a parallel meshing algorithm that partitions
geometry created by AssyGen and meshes these chunks in different processors to create the
assembly mesh.

Once all the assembly and core input files are created, the third step of the workflow
occurs: the CoreGen program is invoked. This tool reads an input file describing the reactor
core arrangement and generates the reactor core mesh or geometry from its component
assemblies. CoreGen uses the CopyMesh, ExtrudeMesh, CopyGeom, and MergeMesh
algorithms in MeshKit. Figure 1 shows the two assembly meshes and an interstice mesh file
that form a 19-assembly reactor core. A makefile is generated by CoreGen to automate the
whole process from geometry creation. This makefile can be invoked in parallel by using the
“-j” option of the “make” command to run the geometry creation and mesh generation of
individual assemblies in different CPU cores. Thus, while the creation of individual assembly
geometry and the meshing of individual assemblies are not parallel, the generation of all
assemblies needed for a given core is parallelized, by using the basic parallel execution
facilities of the standard make process. Since complicated reactor cores often use more then
ten different assembly types, and since hundreds of assembly meshes along with interstices
meshes such as grid spacers and restraint rings form a complete reactor core mesh, the models
can involve several billion mesh elements. Generation of such models in serial is a time-
consuming process, and parallelization can therefore be a tremendous boon.

The parallel CoreGen algorithm comprises seven steps:

1. On each processor, read CoreGen input file, parse, and determine assembly
copies assigned to this processor based on a round-robin distribution.

2. Locally read assembly meshes for assemblies determined in step 1.

3. Perform assembly copy/move operations assigned to this processor.

4. Perform local merge of on-processor mesh.

5. Perform parallel merge of mesh between processors.

6. Parallelize the expand/extrude/copy set (metadata) handling.

7. Save output mesh.

A simple graph constructed by the user for running CoreGen is shown in Figure 4(a).
In the setup traversal phase, CoreGen adds two nodes, “CopyMesh” and “MergeMesh”
(shown in the box), to the graph. In the execute phase, based on a user specified input file, the
assembly meshes are copy/moved and then merged. After populating the material and

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 11	

ANL/MCS-‐TM/344	

boundary conditions for the core model, CoreGen saves the desired core model. Note that in
serial CoreGen, CopyMesh does the copy/move of all the assemblies. Consider the graph with
two processors in Figure 4(c). All the operations—copy/move, merge, boundary/material
conditions, setup, and mesh saving—are parallelized, thereby making CoreGen MeshOp truly
parallel and enabling creation of large reactor models. Indeed, parallel-enabled CoreGen has
been used to create large meshes such as MONJU, VHTR, HTGR, EBRII, and PWR for
different reactor simulation codes. Speedup results for VHTR and MONJU reactors using the
parallel version of CoreGen can be found in Section 3.4.

(a)

(b)

(c)

Figure	 4.	 (a)	 CoreGen	 MeshOp	 di-‐graph.	 (b)	 Internal	 nodes	 created	 during	 setup-‐phase	 of	 CoreGen,	
shown	 in	 box.	 (c)	 2-‐processor	 digraph	 for	 CoreGen	 MeshOp.	

2 Code	 Development	 	

This section focuses on the code development in MeshKit over the past year. We
moved the repository from subversion version control system to git version control system on
Bitbucket, which is a free web-hosting service for projects that use git. Git is a relatively new
distributed revision control and source code management system that has already become the
most widely adopted version control system for software development. Total time required
and the quality and efficiency of code development have improved after moving to git. We
have spent considerable effort cleaning up the code (removed all warnings), the library is
tested with various configurations of dependencies and compiler nightly on our buildbot
system [14]. The error messages and warnings are reported using this system. This system is
very helpful in ensuring the robustness and workability of the code. We have also added
several new builds and compilers, including the clang compiler (used on Mac OSX), to the
suite of builds that are run nightly.

	 2014	 MeshKit	 Release	
12	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

Discussed in this section are efforts to simplify the overall build system, RGG
enhancements and fixes, make watertight algorithm, sweep mesh generation, verdict
integration, trimesh generation and quad mesh cleanup.

2.1 Build	 System	

MeshKit has three mandatory dependencies—CGM, MOAB, and Lasso (each having
its own dependencies, such as HDF5, NetCDF, libCCMIO, Zoltan, CUBIT, and
OpenCascade)—and several options dependencies, including Triangle, CAMAL, NetGen,
IPOPT, MPI, and Mesquite. Because of these dependencies, the packaging and build system
for applications using MeshKit can get cumbersome. We have two efforts under way to make
these steps easy for the end user: CMake and Autotools.

MeshKit v1.2 supports serial CMake-based builds. The CMake-based build system
also allows the user to build an RGG GUI App developed by Kitware Inc. and all the SIGMA
tools: CGM, MOAB, Lasso, and MeshKit. It provides options to use system installed or
perform a fresh download and install for all dependencies. This effort is in collaboration with
Kitware, the makers of the CMake build system. We also have a script tailored to download
and compile SIGMA v1.0 from scratch.

All SIGMA tools from their inception have used the Autotools build system, and it
continues to be supported. We are also working on scripting the Autotools build system to
make it easier for the user to build and install all dependencies with one command. See
Appendix A and B for details on building MeshKit using Autotools and CMake, respectively.

Our build systems provides very efficient infrastructure for development. When a
collaborator or developer creates algorithms or tools in MeshKit, they submit a “pull request”
that is peer-reviewed, tested and fine tuned before adding the code to the master branch.
Development branches and pull requests can be tested using our buildbot system
(http://gnep.mcs.anl.gov:8010/waterfall?category=meshkit) for a variety of configurations of
MeshKit.

2.2 RGG	 Enhancement	 and	 Fixes	

Various enhancements and bug fixes were applied to the RGG code. The following
subsections cover the major developments incorporated in this release.

2.2.1 Introduction	 of	 Common	 Input	 File	 	

Nuclear reactor cores usually consist of multiple assemblies and each assembly has
several properties that remain same for all the assemblies. Our experience has shown that
most of the AssyGen input file (discussed in Section 1.2) has several common variables such
as mesh type, geometry engine, geometry type, merge tolerance, edge interval, radial mesh
size, height of ducts and axial mesh size. This common.inp file is read by default along with
each assembly input (see Figure 5).
	
	

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 13	

ANL/MCS-‐TM/344	

Figure	 5.	 Common.inp	 file	 for	 AssyGen.	 These	 are	 core-‐level	 parameters,	 the	 same	 for	 all	
assemblies.	

2.2.2 New	 Parallel	 CoreGen	 Scheme	

During a parallel CoreGen run there is no master processor; each processor analyzes
the overall workload and decides the mesh file(s) that it must load. During this task
distribution phase three different cases (A, B, and C) may occur, where nA is the total number
of different assembly mesh files, np is the number of processors, and nT is the total number of
assemblies in the reactor core.

A. np < nA

B. nA < np < nT

C. np > nT

In case A, each processor loads one or more assembly mesh files and solely performs
the copy/move operation associated with that assembly for the entire core. In case B, some
mesh files are loaded into multiple processors, and the copy/move task is distributed among
them. Two schemes have been developed for selecting mesh files for copy/move task
distribution. Scheme 1 is based on the frequency or the number of occurrence of that mesh file
in the core; the assembly type that appears the most number of times in the core is assigned to
multiple processors in a round-robin fashion. Scheme 2 is based on recursive analysis of load
on each processor after each mesh file load has been decided. Scheme 2 leads to better load
balancing of meshes among processors and faster overall completion time when compared
with scheme 1. Another scheme based on the size of the mesh file and a combination of
scheme 1 and 2 is under development. In case C, there are more processors than available
work units, so only nT processors can take part in this parallel algorithm.

Results for the MONJU reactor are detailed in Section 3.4.3. In this case the round-
robin distribution scheme leads to highly unbalanced load among processors, causing the
problem to not fit in the available CPU memory. Therefore, the reactor uses scheme 2 for
copy/move task distribution.

2.2.3 Material	 and	 Neumann	 Set	 Shifting	 in	 CoreGen	

In several reactors such as the ABTR the only difference between different assemblies
is the name or ids of material and boundary conditions. Creating different mesh files for all
such assemblies is time consuming and wasteful of resources. Consider the ABTR core in

MeshType Tet ! Specifies the mesh type
GeomEngine ACIS ! Specifies geometry engine
GeometryType Rectangular ! Shape of assembly geometry
TetMeshSize 2.0 ! Size of tetrahedral mesh
CreateSideset No ! Turn on/off boundary creation
MergeTolerance 1e-6 ! Merge tol for nodes b/w assemblies
Info on ! Generate CSV with pin locations
END ! Marks the end of this file

	 2014	 MeshKit	 Release	
14	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

Section 3.3, in which all the 199 assemblies that form the core are different, each assembly
having its own material and boundary condition. We therefore create only distinct assemblies,
and we use the “same_as” CoreGen keyword to create the core model by duplicating the
nodes and elements and shifting or reassigning the material and Neumann sets for the new
assembly. Consider the 7-assembly input file shown in Figure 6, in which only two mesh files
are created: assm_mesh.exo and assm_mesh22.exo; other assemblies, namely 1123000.exo
1124000.exo, are specified by using the “same_as” keyword. After specifying this keyword,
the name of the assembly mesh file, material set start id, and Neumann set start id are
specified.

	

Figure	 6.	 CoreGen	 input	 file	 demonstrating	 the	 use	 of	 “same_as”	 for	 7-‐assembly	 ABTR.	

2.2.4 Fixes	 in	 SIGMA	 Components	

MeshKit is a part of SIGMA tools and relies on other SIGMA components: CGM,
MOAB, and Lasso. Changes in these components may result in changes in the MeshKit
interface, and similarly fixes or issues in MeshKit often cause a fix in one of these
components. Various fixes and additions to SIGMA components that directly affect MeshKit
include the following:

1. Addition of CMake support for CGM, MOAB, and Lasso.

2. Mesquite-related build fixes in CGM that were causing a failure in MeshKit build.

3. Fixes to OpenCascade subtraction; pin subtraction from duct of a rectangular PWR
assembly that took 64 minutess dropped to 29 minutes after this fix.

4. Release of CGM v14.0 to use CUBIT v14.0; the previous release of MeshKit v1.0
used CUBIT v12.2.

! ##
! Homogenized 7-assembly ABTR Core Model, Demo of same_as keyword for
! shifting material and neumann set id's
! ###

Geometry Volume ! 'Geometry' can be volume or surface
Symmetry 1 ! symmetry in the model
GeometryType HexFlat ! Various hex types or rectangular
Assemblies 4 14.598 ! assembly mesh files and their pitch
assm_mesh.exo 1121
assm_mesh22.exo 1122
1123000.exo 1123 same_as assm_mesh.exo 1123000 1123000
1124000.exo 1124 same_as assm_mesh22.exo 1124000 1124000
Lattice 2
 1121 1124 &
 1122 1123 1121 &
 1122 1124
NeumannSet Top 1
NeumannSet Bot 2 ! Values 'top', 'bot' and 'side' are acceptable
OutputFileName sc.h5m
END

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 15	

ANL/MCS-‐TM/344	

5. Fixes to MOAB’s CUBIT file reader that were causing failure in CoreGen.

6. Build system fixes to Zoltan mesh partitioner that was causing linking issues in
MeshKit.

7. Fixes to parallel merge mesh routine, including a new parameter to turn on/off skin
entities creation in MOAB and a test for parallel merge mesh in MOAB.

8. Fixes to NetCDF writer (2D sidesets weren’t getting converted as expected).

2.2.5 Other	 MeshKit	 Fixes	

Major additions to the build system are discussed in Section 2, and documentation-
related changes are discussed in Section 4. Several other important additions and fixes to
MeshKit are listed below:

1. DAGMC library dependencies in MOAB and examples for make watertight.

2. Bug fix reported by Kitware in rectangular assembly creation during CoreGen step
of RGG.

3. Compiler-related fixes for newer version of OSX and Linux.

4. Fixes to get_entities_by_dimension and get_entities_by_handle. These functions
will now return ModelEnts of dimension 4 if requested. If the dimension passed in
is -1, the function will return all ModelEnts in the MeshKit instance.

5. Correction to the ModelEnt constructor for iGeom EntSets.

6. RGG AssyGen feature to “CreateFiles” and “CreateMatFiles.”

7. Fixes to quadmesher, removed dependency on BOOST library.

8. Fixes to PostBL along with addition of methods to create mixed element meshes.

9. RGG enhancements for creating superblocks, automated multiple file creation,
automatic mesh size specification.

10. AssyGen script added support for scheme hole surfaces for automatic meshing of
concentric pins in an assembly.

11. Fixes to parallel HDF5 reader and writer used by CoreGen.

12. Some bugs and changes in external packages: Zoltan, NetCDF and OpenCascade
were reported to their respective developers lists.

	 2014	 MeshKit	 Release	
16	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

2.3 Make	 watertight	

Make watertight algorithms have been implemented in the graph-based scheme of
MeshKit. Also, the robustness of the algorithm [15] has been improved for large and complex
geometries. The sealing process developed in this algorithm has been successful implemented
in the DAGMCNP workflow, resulting in no lost particles for several ITER models. Figure 7
shows the unsealed original ITER blanket lite model on the left and the completely sealed
model on the right.

Figure	 7.	 Input	 and	 output	 geometry	 to	 make	 watertight	 algorithm.	

2.4 Sweep	 Mesh	 Generation	

One of the most robust and widely used algorithms for all-hexahedral meshes is the
sweeping algorithm [8]. For multisweeping, however, the most difficult problems are the
surface matching and interval assignment for edges on the source and target surfaces. A new
method to generate surface meshes by imprinting edge patches between the source and target
surfaces is proposed. The edge patch imprinting is based on a cage-based morphing of edge
patches on the different sweeping layers where deformed and undeformed cages are extracted
by propagating edge patches on the linking surfaces. As a result of the imprinting, the source
or target surfaces will be partitioned with the imprinted edge patches. After partitioning, every
new source surface should be matched to a new specific target surface where surface mesh
projection from one-to-one sweeping based on harmonic mapping can be applied. In addition,
3D edge patches are projected onto 2D computational domains where every sweeping level is
planar in order to increase the robustness of imprinting.

Figure	 8.	 Flowchart	 of	 surface	 mesh	 generation	 based	 on	 edge	 patch	 imprinting.	

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 17	

ANL/MCS-‐TM/344	

Figure 8 shows a flowchart of our proposed algorithm. It starts with volumes without
any surface mesh. The parametric space fi, kg, and vertex types on the linking surfaces should
be provided. This does not imply that all the boundary edges have to be meshed; no restriction
is made on the number of points on the boundary edges. Prior to imprinting, the sweeping
layer number for each source and target surface should be identified in the sweeping direction.
Next, edge patch imprinting between the source and target surfaces is performed, including
edge patch extraction, edge patch propagation, cage-based morphing, and intersection
processing. The surfaces then are split to make a one-to-one matching between the source and
target surfaces. Finally, quad meshes on the source surfaces are mapped onto the target
surface by morphing.

Shown in Figures 9, 10, and 11, respectively, are three examples of source and target
surface meshes that have been generated by using the edge patch imprinting algorithm and
morphing algorithm. Users can manually match edge patches. Otherwise, the imprinting
algorithm will use the cage-based morphing to propagate edge patches, partition the source
and target surfaces, and match edges between the source and target surfaces. Note that
volumes are not decomposed and that only surfaces are partitioned in order to match the
source and target surfaces. The reason rests with the inherent characteristics of the sweeping
algorithm: every quad element on the source surfaces has its corresponding quad element on
the target surfaces. The great disadvantage for decomposing volumes is that interior nodes
cannot be moved from one subvolume to another subvolume if poor volume mesh quality is
produced.

Figure.	 9.	 A	 real	 part	 from	 Caterpillar:	 (a)	 a	 geometric	 model;	 (b)	 source	 surface	 meshes;	 (c)	

partitioned	 source	 and	 target	 surfaces	 by	 imprinting	 edge	 patches;	 (d)	 target	 surface	 meshes	 by	
morphing.	

Figure.	 10.	 Example	 of	 generating	 surface	 meshes	 and	 matching	 the	 source	 and	 target	 surfaces	 by	
imprinting	 edge	 patches:	 (a)	 geometric	 model;	 (b)	 	 partitioned	 source	 and	 target	 surfaces;	 (c)	
source	 surface	 meshes;	 (d)	 3D-‐view	 surface	 meshes;	 (e)	 target	 surface	 meshes	 by	 morphing.	

	 2014	 MeshKit	 Release	
18	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

Figure	 11.	 Surface	 mesh	 generation	 for	 crankshaft	 by	 imprinting:	 (a)	 geometric	 model	 with	
imprinted	 edge	 patches	 (denoted	 by	 blue	 curves);	 (b)	 target	 surface	 meshes	 by	 morphing.	

2.5 Verdict	 Integration	

In finite-element analysis, the shape of individual elements can significantly affect the
accuracy of a simulation. Several metrics for each cell type (shape) exist; which one is most
closely related to the accuracy of a simulation is application-specific. VERDICT, a separate
module providing these quality criteria, has been developed by Sandia/Kitware to help
standardize these quality metrics. MeshKit integrates the Kitware Inc. version of VERDICT,
which has a BSD licensed version for VTK that is based on Sandia’s version of
VERDICT. Quality measures for triangular, quadrilateral, tetrahedral, and hexahedral cells
are available. The filter will compute the value of one quality metric per cell and allows the
user to choose this metric on a per-cell-type basis. For example, one might compute the radius
ratio for triangular cells and the Frobenius aspect for tetrahedral cells.

MeshKit tools can now compute the summary information for the entire mesh
including the following:

• Average value of some quality metric per cell type (e.g., the average over all
tetrahedral cells)

• Variance of some quality metric per cell type

• Minimum and maximum quality metric values per cell type

• Number of cells of each type.

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 19	

ANL/MCS-‐TM/344	

VERDICT documentation from Kitware contains the mathematical definition of each
quality metric as well as implementation details. It also has documentation on implementation
and definition of all the quality metrics provided by VERDICT [16].

2.6 Tri	 Mesh	 Generator	 	

Simple pyramid geometry is meshed with tetrahedral elements by using an external
meshing library NetGen, which has been integrated with MeshKit for tet mesh generation.
The graph setup by the user is shown in Figure 12(a). During the setup phase of the graph, a
tri-mesher MeshOp is created. This MeshOp further creates EdgeMesher and VertexMesher
graph nodes. Figure 12(b) shows the nodes created during setup traversal phase in a box.
Note that different tri-meshers can be selected with NGTetMesher. Detailed documentation
for this example is available in MeshKit doxygen page [17]. Final mesh output from the
algorithm is shown in Figure 13.

(a)

(b)

Figure	 12.	 Graph-‐based	 tetrahedral	 mesh	 generation.	

Figure	 13.	 Tetrahedral	 mesh	 created	 by	 NGTetMesher	 MeshOp.	

In order for a truly open-source solution to meshing problems, MeshKit needs a robust
tri-mesher for open-cascade geometries. This tetrahedral mesh example uses the CAMAL Tri
Mesher, which is closed source. We are working on getting AssyGen geometry to mesh with
our native or the NetGen tri mesher.

2.7 Quad	 Mesh	 Cleanup	

QuadMesher (presented in our previous report [6] and International Meshing
Roundtable paper [7]) internally cleans up the quad mesh generated in the algorithm. This

	 2014	 MeshKit	 Release	
20	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

quad cleanup algorithm is available as an independent algorithm that reads a quad mesh and
produces a mesh with better node-valence, shape quality, and so forth. The options available
include the following:

• Removal of interior doublets
• Removal of boundary singlets
• Removal of diamonds
• Vertex degree reduction
• Laplace smoothing
• Advancing front edge swapping
• Shape optimization
• Shifting of irregular nodes inside domain
• Automation of everything

Figure 14(a) shows a mesh before quad cleanup, and Figure 14(b) shows the final
mesh after using the automatic option of quad cleanup. The model has a total of 7k nodes.
Quad cleanup removes all the singlets and 4 diamonds in the model; 845 edges are swapped.
The final model has better valence and fewer irregular nodes. This example can be found in
the Meshkit repository. Table 1 lists some of the properties of input and output mesh.

Table	 1.	 Properties	 of	 input	 and	 output	 mesh	 to	 the	 quad	 cleanup	 algorithm.	
Property Input Mesh Output Mesh
Nodes with degree > 8 24 1
Nodes with degree = 4 2946 4292
Irregular nodes 3708 3276

(a)	 Input	

	
(b)	 Output	

Figure	 14.	 Input	 and	 output	 to	 quad	 cleanup	 operation	 (a)	 original	 mesh.	 (b)	 final	 mesh	 after	 quad-‐
cleanup.	

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 21	

ANL/MCS-‐TM/344	

3 Meshing	 Activities	

MeshKit tools and algorithms in conjunction with CUBIT were used to complete
several reactor-meshing tasks listed in the following subsections. Some of the tasks were
performed at Argonne, while others were at Oak Ridge. All the meshes discussed in this
section were also tested with STARCCM+. This section is divided into three parts covering
the three different types of mesh activities. The Advanced Breeder Test Reactor (ABTR) was
modeled as a part of the ARC project in order to demonstrate SHARP coupled physics
simulations.

3.1 ABTR	

This section discusses the geometry, mesh, boundary conditions, and other RGG-
related parameters involved during the development of models for this study.

3.1.1 ABTR	 Single	 Assembly	 Model	

The detailed fuel assembly (nonhomogenized) is shown in Figure 15(a). The detailed
fuel assembly geometry model with varying material specification for a fuel element cross-
sections contains of over 15k geometric volumes. It takes AssyGen ~20 minutes to create the
nonhomogenized geometric model. Hex meshes for the assemblies are obtained by specifying
the intervals on the edges, followed by meshing the surfaces, and extruding the surface
mesh.Load pads are modeled by specifying separate material along the duct at ACLP (Above
Core Load Pad) and TLP (Top Load Pad) locations shown in Figure 15(b). Interassembly gap
regions are divided in two equal parts and modeled with every assembly. All the
interassembly gaps are merged when CoreGen assembles the individual assembly meshes to
create the core model. Outlet plenums are modeled on top of each assembly for specifying
outlet boundary conditions in thermohydraulics simulations. The assembly consists of 217
fuel pins.

(a) (b)

Figure	 15.	 (a)	 Detailed	 (nonhomogenized	 ABTR	 fuel	 assembly);	 (b)	 Three	 homogenized	 fuel	
assemblies	 showing	 the	 Above	 Core	 Load	 Pad	 (ACLP),	 Top	 Load	 Pad	 (TLP),	 and	 outlet	 plenum	

regions.	

Lower
str

N
os

ep
iec

e
50

.24
 cm

U
pp

er
 ga

s
 p

len
um

w
ith

 bo
nd

 so
d

ium
19

.76
 cm

Upper Structure
(assumed homogeneous

mixture of lower reflector
material)

Lo
w

er
 re

fle
ct

o
r

60
.30

 cm
Fu

e
l

84
.41

 cm
U

pp
er

 ga
s

 p
len

um
96

.80
 cm

Lower
str

C C’

A A’

B B’

H
an

d
lin

g
 so

ck
et

30
.15

 cn

Lower Structure
(assumed homogeneous
mixture of sodium (70 %) and

structure (30%))

Fuel Pin Assembly

Section of AA’

Section of BB’

Section of CC’

38
.1
9

	 2014	 MeshKit	 Release	
22	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

The dimensions of a single fuel pin are shown in Figure 16. Each pin for a particular
axial height consists of four geometric volumes.

The control assembly has an additional duct and sodium layer compared with fuel,
shield, and reflector assemblies. The inner and outer ducts of the control rod assembly are
shown in Figure 17(a). Figure 17(b) shows the coarse homogenized control assembly mesh.
The AssyGen input file used for creating the fuel assembly can be found in Appendix C.
Since all assemblies that form the ABTR core (Section 3.1.2 and Section 3.1.3) have varying
properties in the axial direction, a common axial configuration must be determined in order to
have coincident nodes along the height of all eight assemblies that form this 199-assembly
core model. This configuration leads to a conformal mesh that is fit for simulations.

Figure	 16.	 Section	 of	 metal	 fuel	 pin	 showing	 dimensions	 in	 cold	 condition.	

New keywords “NumSuperBlocks” and “SuperBlocks” were introduced to combine
material blocks for different physics. “NumSuperBlocks” specifies the number of
superblocks, and “SuperBlocks” specifies the blocks to be merged to form the new
superblock. For example, neutronics models each fuel pin with tens of materials along the
height, whereas thermohydraulics models consider all the fuel pins to be one material. These
keywords help in the creation of one-mesh files that can be used by all physics simulations.
Material and boundary conditions that are not required by a particular physics are ignored. We
note that superblocks are not required when modeling meshes for individual physics
separately. The clock time to create the homogenized geometry and mesh for this fuel
assembly is 2 minutes. The mesh has 2.5k hex elements.

	
(a)	

	
(b)	

Figure	 17.	 (a)	 Control	 assembly	 absorber	 region	 containing	 two	 ducts;	 (b)	 Inlet	 of	 actual	
control	 assembly	 with	 homogenized	 control	 pins	 (magenta),	 two	 ducts	 (red),	 and	 half	 of	

inter-‐assembly	 sodium	 gap	 (green).	

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 23	

ANL/MCS-‐TM/344	

3.1.2 ABTR	 7-‐Assembly	 Model	

This section highlights the two minicore models for testing standalone and coupled
physics simulations. The assumptions and requirements listed below are applicable to core
models detailed in this Section, Section 3.1.3, and Section 3.2.1.

Key	 Assumptions	 and	 Requirements	

Several meshing restrictions and assumptions were made for modeling the ABTR
assemblies, restraint-ring, and full core mesh. Moreover, physics codes: PROTEUS/Diablo
and Nek5000 impose certain features and required characteristics on the mesh:

1. Geometry models are created using dimensions when the reactor is cold.

2. The model is homogenized; pins and other instrumentation inside the
assemblies are not modeled.

3. All 199 assemblies are modeled with different material and boundary
conditions in order to specifically identify and prescribe inlet/outlet boundary
conditions to a particular assembly. Each assembly is numbered.

4. The axial and radial mesh size is coarse to keep the element count low.

5. The nosepiece region at the bottom of each assembly is not modeled.

6. Additional axial materials are created for modeling fuel regions in PROTEUS.

7. Nek5000’s spectral element solver requires hex27 elements.

8. Nek5000 requires a plenum region that connects all the coolant flowing
through the individual assemblies at the top of the reactor. The axial height of
outlet plenum is 30 cm.

9. Diablo and Nek5000 model fuel elements as a uniform “mush” across all the
axial fuel regions.

10. PROTEUS needs only 3 boundary conditions: top, bottom, and side of the
entire core.

11. Boundaries modeled for Nek5000 and Diablo are as follows:

a. Inner/outer walls of the restraint rings

b. Wall of gap between assemblies and restraint rings

c. Inlet for whole core and each assembly

d. Outlet for whole core and each assembly

	 2014	 MeshKit	 Release	
24	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

e. Wall of TLP for each assembly

f. Wall of ACLP for each assembly

7-‐Assembly	 Core	 with	 Four	 Different	 Assemblies	

This minicore consists of 7 assemblies surrounded by a restraint ring. The core
contains 3 inner core fuel assemblies, 2 reflector assemblies, 1 shield assembly, and 1 central
control assembly (Figures 18(a) and (b)). This case was intended to test four of the assembly
types (fuel, reflector, shield, control) present in the ABTR geometry.

The small problem size allowed for easier debugging of the mesh via both
visualization and manual inspection of input/output. During the specification of this problem,
conventions were agreed upon for the mesh block ordering, which was instrumental to
streamlining the input generation for the full-core case. All the assemblies used in this model
are same as those described for the 199-assembly core (Section 3.3).

Each of the four types of assemblies has a material and boundary condition names
prefixed with IIJJ (Figure 18(b)). To overcome the problem of manually creating three
separate AssyGen files for fuel assemblies, the “CreateMatFiles” keyword was introduced.
This keyword creates AssyGen files with name “IJ”.inp and sets the start material and
boundary condition numbers based on “IJ.” This is important for the 199-assembly core
model, where tens of files of each kind are present. One AssyGen run on the base file that
describes all required “IJ”.inp files via CreateMatFiles keyword generates all the input files
corresponding to that particular assembly. This enables a numbering scheme that is
manageable and helps prescribe temperature, flow rate, and so forth for a particular assembly
easily. Figure 19 shows the final mesh along with power distribution plots.

(a)

(b)

Figure	 18.	 Minicore	 assembly:	 (a)	 configuration;	 (b)	 numbering	 scheme	 of	 assemblies	 (red).	

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 25	

ANL/MCS-‐TM/344	

(a)

(b)

(c)

Figure	 19.	 Minicore	 mesh:	 (a)	 elements	 and	 blocks;	 	
(b)	 internal	 assembly	 blocks	 used	 in	 PROTEUS;	 (c)	 power	

distribution.	

	 2014	 MeshKit	 Release	
26	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

7-‐assembly	 Core	 with	 All	 Fuel	 Assemblies	

A second minicore consisting of 7 fuel assemblies surrounded by a restraint ring was
created to provide a more realistic model, while keeping the problem size small (Figure 20).
The CoreGen input file for creating the mesh for the all-fuel minicore can be found in
Appendix D.

Figure 21 highlights the ACLP and TLP regions. The gap between assemblies and
restraint ring is kept the same as the full-core restraint ring model (these gaps are same for the
full core model shown in Section 3.3). In Figure 21(c), three of the load pads on fuel
assemblies are highlighted. These load pads are present in all assemblies outside the structural
steel covering. The sodium flow region between the load pads of individual assemblies is
divided in half and modeled with each assembly separately.

Figure	 20.	 Composition	 map	 for	 fuel-‐only	 minicore.	

(a)

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 27	

ANL/MCS-‐TM/344	

(b)

(c)

Figure	 21.	 Assembly	 structural	 components:	 (a)	 restraint	 rings;	 (b)	 load	 pads	 on	 fuel	 assemblies;	 	
(c)	 gap	 between	 assemblies	 and	 restraint	 rings	 ACLP	 (0.0235	 cm,	 gray)	 and	 TLP	 (1.2025	 cm,	

green).	

3.1.3 ABTR	 Full	 Core	

The 199-assembly full core with restraint ring consists of 60 fuel assemblies (24 inner,
30 outer, 6 test), 10 control assemblies, 48 shield assemblies, 78 reflector assemblies, and 3
material test assemblies (which are modeled like reflector assemblies). Figure 22(a) also
shows the detailed configuration with I-J numbering and the number of occurrences of each of
the assembly types. Horizontal lines represent J increasing from top to bottom, and slanted
vertical lines following the core arrangement represent I from left to right. All 199 assemblies
must be modeled independently with different materials in order to enable specification of
varying densities, inlet/outlet boundary conditions, and so forth for a particular assembly in
the core model. The core is modeled with four different assemblies: fuel, reflector, shield, and
control.

	

	 	
(a)	 (b)	

Figure	 22.	 ABTR	 full-‐core	 configuration:	 (a)	 with	 lines	 of	 constant	 logical	 I,J	 assembly	 regions;	
(b)	 with	 homogenized	 assemblies,	 outer	 covering,	 and	 restraint	 rings	 at	 TLP	 and	 ACLP	 locations	

The final homogenized core model is created from assembly meshes (Section 3.1) and the
outer covering mesh. The mesh shown in Figure 22(b) consists of 800,000 hex elements. The
structural mechanics and thermal-hydraulics mesh consists of 1,500 material blocks, whereas
the neutronics mesh consists of 7,200 material blocks. The neutronics mesh requires more

	 2014	 MeshKit	 Release	
28	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

material blocks along the height of the fuel pins. It takes 30 minutes for CoreGen to create
this model on a Linux workstation using 32 processors.

RGG tools can handle changes in assembly/core dimensions and process only the parts
that are modified. Also, various arrangements of fuel and other assemblies can be simulated
very easily. For example, different outer rings with varying TLP and ACLP gaps can be
created by modifying the parameters that generates the restraint rings. The currently available
geometry tools are capable of generating a nonhomogenized assembly and core model, which
taxes readily available computing resources; therefore, simpler, homogenized models were
used in this ABTR demonstration.

3.2 Meshes	 Created	 For	 CoreGen	 Scalability	 Study	 	 	 	

Creating detailed geometry and meshes for reactors using commercial tools for expert
users require a large workstation (~1 TB RAM), and experienced users take months of time
just to create meshes for such reactor problems (~1 billion elements). In order to resolve the
detailed flow in the reactor, a mesh size of 5-10 billion cells might be required. The CoreGen
tool in MeshKit has been tested to work in parallel and create a few million element meshes.
The ability to quickly create detailed meshes enables studies of rod vibrations caused by cross
flow and turbulence vibration flows. Also, mesh convergence studies can be done for testing
and validating the physics involved. MeshKit uses parallel HDF5 reader/writer for handling
meshes; this feature is obtained from MOAB library that works closely with the HDF5 group.
This section further highlights some large mesh models and scalability results for CoreGen.

3.2.1 Fine	 ABTR	 Core	 Model	

CoreGen is run to create the final homogenized core model from assembly meshes and
this outer covering mesh. Two models were created for this ABTR core model:

1. Coarse model: The final mesh is shown in Figure 22(b), and details are given in Sectin
3.1.3. CoreGen takes 5 seconds to assemble the core using 128 processors. The
maximum memory used by a processor is 110 MB. The serial runtime for CoreGen is
45 seconds with 280 MB of memory used.

2. Fine model: Each assembly in this model consists of 5–10M hexahedral elements. The
final mesh size of the core model created is 1.2 billion hexahedral elements, the size
of this file on disk is 137GB. CoreGen on 200 processors (each processor loads one
mesh file: 199 assembly + 1 interstices mesh file) takes 30 mins to create this file of
which parallel save takes up 27 mins and parallel merge takes 1.7 mins. The
maximum memory used by a processor is 1.96GB.

3.2.2 1/6th	 VHTR	 Core	 	

The 1/6 Very High Temperature Reactor (VHTR) core model shown in Figure 23
consists of 19.6M hexahedral elements and 20.5M mesh vertices. The size of this mesh file on
disk is 2.2 GB.

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 29	

ANL/MCS-‐TM/344	

Figure	 23.	 One-‐sixth	 of	 a	 VHTR	 core	 model	 generated	 by	 using	 CoreGen	 (left);	 closeup	 of	 assembly	

mesh	 in	 this	 model	 (right).	

AssyGen took 10.5 minutes to generate the geometry, journal files, and run CUBIT in
order to mesh individual assemblies. The serial CoreGen program took 48 minutes to generate
the core model. When using 56 processors for running CoreGen, this model can be generated
in less than 3 minutes (2.1 minutes with 12 processors; 12 assemblies form this 58-assembly
model) from scratch. The AssyGen+CUBIT are run on 1, 4, 8, and 12 processors by using the
–j option of the makefile; the maximum number of processors is limited to 12 for this step.

Table 2 lists the AssyGen+CUBIT, copy/move, merge, parallel save, total time, and
the maximum memory used for various steps of the CoreGen stage, when using different
number of processors. Figure 24 shows these timing results and maximum memory used vs.
number of processors. Superlinear speedups are observed in almost all cases, because of the
job fitting in available memory. Mesh joining (or merge) is observed to be actually slow as
the number of processors increases from one to four; this result is probably due to the
communication overhead required in the parallel algorithm. At larger numbers of processors,
however, the joining time is reduced far below the serial time. As expected, the total time,
time taken to save, and maximum memory used by a processor decrease as the number of
processors increases.

Table	 2.	 CPU	 time	 in	 minutes	 and	 maximum	 memory	 in	 gigabytes	 used	 for	 1/6	 VHTR	 core	 	
Procs AssyGen+CUBIT Copy/Move Merge Save Total Memory

1 10.5 17.6 10.4 0.7 48.2 4.9
4 3.4 11.0 11.7 0.01 26.2 2.6
8 2.8 11.1 5.6 0.01 19.5 2.5

16 2.1 0.4 4.7 0.01 7.3 1.7
32 2.1 0.03 0.56 0.01 2.7 0.48
56 2.1 0.0005 0.31 0.005 2.43 0.33

	 2014	 MeshKit	 Release	
30	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

2

Figure	 24.	 Log	 scale	 results	 from	 Table	 2	 vs.	 number	 of	 processors	 for	 1/6	 VHTR	 reactor	 core.	

3.2.3 MONJU	 Reactor	 	

Figure 25 shows a full-core MONJU reactor, which comprises 8 assembly types and
consists of 715 assemblies. AssyGen and meshing take 5.5 minutes (8 processors using make
–j8 option) to mesh the 8 assemblies. CoreGen on 712 processors takes only 90 seconds. The
total wall-clock time required to generate this 101M hexahedral element model from scratch
is 8 minutes. The maximum memory used by a processor is only 196 MB. This model cannot
be run in serial because the problem does not fit in memory. The size of the mesh file on disk
is 14 GB.

Figure	 25.	 Full-‐core	 MONU	 reactor;	 closeup	 area	 in	 red	 rectangular	 region	 is	 highlighted	 from	 left	

to	 right.	

Using a round-robin scheme to establish the copy/move work for this reactor causes
the load on some processors to be larger than the available memory. Therefore, we use a
recursive load-balanced scheme, wherein after deciding every assembly load, the resulting
assembly copy/move work due to this load is analyzed and then the decision on the next
assembly load is made. Table 3 lists the AssyGen+CUBIT, copy/move, merge, parallel save,
total time, and maximum memory used with different numbers of processors.

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 31	

ANL/MCS-‐TM/344	

Table	 3.	 CPU	 time	 in	 mins	 and	 maximum	 memory	 in	 GB	 used	 for	 MONJU	 core	
#Procs AssyGen+CUBIT Copy/Move Merge Save Total Memory

16 5.5 35 163 3.8 207.64 4.2
64 5.5 0.03 61 9.01 76.7 1.04

128 5.5 0.03 293 15.5 315 0.532
256 5.5 0.03 291 24 321.5 0.244
320 5.5 0.002 0.45 16.5 22.8 0.233
512 5.5 0.002 0.49 3.85 9.99 0.233
712 5.5 0.002 0.18 2.3 7.89 0.196

Figure	 26.	 Log	 scale	 results	 from	 Table	 3	 vs	 number	 of	 processors	 plot	 for	 MONJU	 reactor	 core.	

Figure 26 shows the log scale results from Table 2 vs the number of processors used.
One can see the sudden jump in merge/save and total time for 128 and 256 processors. We
determined that a few processors performing local merge spend a majority of the time. Local
merge creates an adaptive kd-tree and then finds and merges the nodes on the skin for all
elements local to a particular processor. This jump in time for merging is possibly due to the
large number of searches for determining the nodes to be merged locally. We plan to fix this
problem in future versions of the tool by using a different tree and/or fixing the existing kd-
tree implementation.

 Compared with serial, the total time required to generate this model drops to 22
minutes for 320 processors, and for 512 and 712 processors this time further drops to 10
minutes and 8 minutes, respectively. The overall maximum memory required by a processor
decreases as the number of processors increases.

	 2014	 MeshKit	 Release	
32	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

3.3 VERA	 Benchmark	 Problems	

RGG tools were used to create 2D meshes for CASL-VERA benchmark problems and
test the PROTEUS-SN code developed at Argonne National Laboratory. The meshes shown
in this section were developed by the Oak Ridge team using RGG GUI, MeshKit, AssyGen,
and Cubit. AssyGen was used for modeling both the single pin and 17x17 assembly model
shown in Figure 28. AssyGen keywords were used to specify radial mesh size and edge mesh
interval. Using regular paving to mesh assemblies with several concentric pins fails to
generate a valid mesh for the geometry. Instead, the scheme “hole” must be used for better
meshing stability and generation of a good-quality mesh.

Figure	 27.	 Simple	 pincell	 model.	 (left:	 coarse,	 right:	 refined)	

Figure	 28.	 17x17	 PWR	 assembly	 model	

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 33	

ANL/MCS-‐TM/344	

4 Documentation	

MeshKit contains detailed documentation for a new user or developer to get started.
The SIGMA v1.0 release focused on releasing all the associated libraries at the same time,
including MeshKit v1.2 with documentation and a common webpage. Documentation and
guides for MeshKit can be obtained from four major sources :

1. SIGMA Website: This is a one-stop place containing introduction, related links,
and all the latest news and developments about CGM, MOAB, Lasso, and
MeshKit. It also contains links to other sources of documentation mentioned in
this section. Publications and download and build instructions for all the SIGMA
components are available here.

2. Doxygen: MeshKit user and developers guide along with detailed documentation
of all of MeshKit C++ classes are available from the MeshKit doxygen page. This
is updated nightly, enabling the documentation to go hand in hand with code
development. Doxygen pages also detail examples and tests for new users to start
using MeshKit.

3. Bitbucket: All SIGMA code is hosted on Bitbucket, which includes build
instructions along with information on branches and other developer-related
information.

4. GitHub: Kitware has hosted the code for RGG GUI on GitHub. This code is
publicly available and can be used to build MeshKit and the RGG GUI app
discussed in Section 5. Information about branches and other code-related
documentation are available on this site.

5. RGG GUI Manual: The instructions manual on using the RGG GUI application
for creating reactor assembly and core models is available from Kitware GUI App.
This can be generated by specifying the option to “build documentation” during
the build process of the RGG GUI app.

5 RGG	 GUI	 1.0	 Release	 and	 Collaboration	 with	 Kitware	

In collaboration with Kitware Inc., the SIGMA team worked on developing a
graphical user interface for MeshKit and RGG. Kitware Inc. is also the developers of the
CMake build system and their staff is contributing to streaming and setting up CMake build
systems for all SIGMA libraries. This year we have hosted training sessions at Oak Ridge and
Argonne National Laboratory for the RGG GUI app. The feedback from users and experts
along with our collaboration has made RGG a powerful application.

AssyGen, from Meshkit, takes in text files that describe a collection of pins and ducts
and generates solid models of these assemblies. The assemblies are then passed to CUBIT in
order to generate hexahedral meshes of these assemblies. CoreGen, from Meshkit, takes these
meshes, along with a core layout text file, and produces an acceptable mesh of the reactor
core. Any modifications to the assemblies or core text files will require the appropriate part of

	 2014	 MeshKit	 Release	
34	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

the workflow to be re-executed. Although this workflow is powerful and can generate a large
range of reactor core models and meshes, it has been used primarily by expert meshing
computational scientists, not by non-expert/non-meshing computational scientists, nuclear
engineers, or technicians. The RGG application was designed to address this specific issue
while enhancing productivity of the meshing expert. Without the ability to visualize and
graphically interact with key sections of the workflow, all users will produce errors in a file-
based workflow, which may not be caught until the simulation itself is run, resulting in wasted
time and resources. The overall MeshKit RGG workflow is given in Figure 1.

Steps involved in RGG GUI app are as follows:
1. Designing Pins: The first stage involves designing the individual pin cells that

will be used in a reactor’s subassemblies. These pins represent fuel, control rods,
and various instrumentation. The pin cell editor presents a pin cell as a collection
of segments. Each of these segments is shaped as either a cylinder or a truncated
cone. By default, the editor constrains neighboring segments to have the same
mating radii. If the end user changes one segment’s radius, all constrained radii are
automatically updated. In addition, the pin editor allows the end user to define
contiguous layers throughout the pins. Each layer is assigned its own material. See
Figure 29.

Figure	 29.	 Pin	 being	 edited	 using	 RGG’s	 pin	 cell	 editor.
2. Designing Ducts: The second stage involves designing the ducts of the sub-

assemblies that will be used in laying out the core. Each assembly consists of a set
of ducts that will contain the pins. The overall height of the ducts and pins must be
the same across all of the core assemblies. To enforce this requirement, the user
can set the overall core length, which is then enforced through the workflow.
Similar to the pin editor, the GUI provides users with the ability to specify the duct
structure of each sub-assembly.

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 35	

ANL/MCS-‐TM/344	

Figure	 30.	 Simple	 duct	 being	 designed	 that	 consists	 of	 two	 materials.	 One	 material	 forms	 the	 walls	

of	 the	 subassembly,	 while	 water	 is	 assigned	 as	 the	 inside	 material.	

3. Designing Assemblies: In the third stage, the pins and ducts are available for
placement within a subassembly lattice, shown in Figure 30. The subassembly
editor provides both a 3D view of the assembly and an editable 2D lattice view
that supports drag and drop interaction. The offset between neighboring pins in the
assembly is referred to as the pitch and depends on the size of the inner layer of the
duct. Since the majority of assembly designs place the pins so that they are
equidistant within the duct, RGG provides a mechanism to autocenter the pins. An
example reactor assembly is shown in Figure 31.

Figure	 31.	 Example	 reactor	 assembly	 in	 RGG	

	 2014	 MeshKit	 Release	
36	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

4. Core Layout: In the fourth stage, the complete core is defined by placing the
different subassemblies into the core’s lattice. Similar to the sub-assembly editor,
the core editor view provides a 3D view of the core, as well as the editable 2D
lattice views. Figure 32 depicts various examples of core layouts.

Figure	 32.	 A	 simple	 hexagonal	 reactor	 core	 modeled	 in	 RGG.	

5. Generating Mesh: The final step involves calling AssyGen, CoreGen, and Cubit

in order to produce the required solid models and meshes. The process is initiated
within the RGG application. RGG does this through another Kitware toolkit, the
open-source Remote Meshing Utilities (ReMUs). ReMUs can execute the various
tools while allowing RGG to remain interactive. ReMUs relays the status of these
external tools back, while providing the ability to abort the sequence while it is
running. Once these processes are complete, RGG enables the display of the core
mesh, using MOAB, as well as visualization of the various components of the
mesh, based on volumes, materials, and boundary condition element sets.

Figures 33, 34, and 35 show various examples of a reactor core mesh, a 199 assembly
ABTR, and a PWR reactor core with five different types of assemblies, respectively, each
generated by using RGG.

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 37	

ANL/MCS-‐TM/344	

Figure	 33.	 An	 example	 of	 a	 nuclear	 reactor	 core	 mesh	 generated	 using	 RGG.	

Figure	 34.	 199	 Assembly	 ABTR	 created	 using	 RGG.	

	 2014	 MeshKit	 Release	
38	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

Figure	 35.	 A	 PWR	 reactor	 core	 with	 five	 different	 types	 of	 assemblies	 modeled	 using	 RGG.	

6 Conclusions	 	

MeshKit provides a robust parallel infrastructure for geometry/meshing researchers,
tool developers, and users needing to generate geometry/mesh. MeshKit has most of the
traditional meshing algorithms required for meshing complex geometries. Moreover, we have
devoted significant effort to the build system and documentation in MeshKit v1.2.

The RGG tools consist of AssyGen and CoreGen, both of which use text-based input
files. These input files are based on a set of keywords that help define the geometry and
meshing parameters for creating a nuclear reactor core. The RGG GUI enables users to build
the reactor model without writing text-based input files. The GUI is intuitive and easy to
understand; it comes with a users manual; and it works with Linux, Mac OSX and Windows
operating system. The RGG GUI developed by Kitware as a part of an SBIR can display the
geometry and meshes created by AssyGen and CoreGen, respectively.

MeshKit is ideally suited for development of new meshing tools. Simulation of
complex systems such as nuclear reactors requires detailed models that properly capture the
geometric shape and have correct specification of material and boundary conditions. Different
physics such as neutron transport, fluid flow, thermal expansion, and heat transfer must be
studied in order to fully understand the performance and safety aspects of nuclear reactors.
The parallel RGG tools enable the creation of such large and complicated reactor models for

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 39	

ANL/MCS-‐TM/344	

different physics simulations. Several enhancements and fixes to the AssyGen/CoreGen tools
in RGG, including introduction of shifting material and Neumann set ids, have been
incorporated in this release. With the introduction of the new distribution scheme for
CoreGen, we can create meshes such as the finer ABTR core mesh (file on disk is 137 GB
and consists of more than a 1 billion hexahedral elements). Such meshes are impossible to
construct by using serial meshing processes on a standalone workstation. We plan to create
fully detailed models and coupling results for these models. Work is in progress for
developing geometry partitioning-based meshing algorithms to mesh the assemblies in
parallel. Also, new schemes are being formulated for a better load-balancing during
copy/move task distribution; this scheme will combine existing schemes with more weightage
given to meshes with larger element count. Parallel AssyGen development would involve
creation of individual pins and components in parallel, but we lose the speedup with serial
subtraction of pins; this development therefore is subject to development of parallel
subtraction of geometries in CGM.

Current work involves adapting the RGG GUI app to run in parallel and developing an
open source tri mesher to have a completely open RGG GUI app, which currently depends on
Cubit (closed source). We are also involved in linking of the Gmsh meshing package with
MeshKit. Also planned are development of automatic scheme selection and support for
higher-order elements in postmesh boundary layer tools.

Acknowledgments	

We thank the SIGMA group at Argonne, who maintain the libraries required by
MeshKit and Kitware Inc. for collaborating on the development of RGG GUI application.
This material was based on work supported in part by the U.S. Department of Energy, Office
of Nuclear Energy, Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program
and by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing
Research Program and by the U.S. Department of Energy’s Scientific Discovery through
Advanced Computing program, under Contract DE-AC02-06CH11357.

References	
1. SIGMA (Scalable Interfaces for Geometry and Mesh-Based Applications) website:

http://sigma.mcs.anl.gov/
2. Tautges, T. J. (2005) CGM: a geometry interface for mesh generation, analysis and other

applications. Eng. Comput. 17:486–490.
3. Spatial website (2010) http://www.spatial.com/
4. Open CASCADE technology website (2000–2010) http://www.opencascade.org.
5. Tautges, T. J., Meyers, R., Merkley, K., Stimpson, C., and Ernst, C. (2004). MOAB:

A mesh-oriented database, SAND2004-1592. Sandia National Laboratories, Albuquerque,
NM.

6. Jain, R., and Tautges, T. J. (2013). MeshKit. Report of US DOE, Reactor Campaign.
ANL/MCS-TM-336.

7. Verma, C. S., and Tautges, T. (2012). Jaal: Engineering a high quality all-quadrilateral
mesh generator. In Proceedings of the 20th International Meshing Roundtable (pp. 511–
530).

	 2014	 MeshKit	 Release	
40	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

8. Cai, S., and Tautges, T. (2014). Robust one-to-one sweeping with harmonic ST mapping
and cages: Post-mesh boundary layer generation tool. In Proceedings of the 22nd
International Meshing Roundtable (pp. 118).

9. Kim, H., and Tautges, T. J. (2010). EBMesh: An embedded boundary layer meshing tool.
In Proceedings of the 19th International Meshing Roundtable (pp. 227–242).

10. Jain, Rajeev, and Tautges, T. J. (2014). PostBL: Post-mesh boundary layer generation
tool. In Proceedings of the 22nd International Meshing Roundtable (pp. 445-464).

11. Mitchell, S. (2014). Simple and fast interval assignment using nonlinear and piecewise
linear. In Proceedings of the 22nd International Meshing Roundtable (pp. 203–221).

12. Sjaardema, G. D., Tautges, T. J, Wilson, T. J., Owen, S. J., Blacker, T. D., Bohnhoff, W.
J., Edwards, T. L., Hipp, J. R., Lober, R. R., and Mitchell, S. A. (1994). CUBIT mesh
generation environment, users manual, vol 1. Sandia National Laboratories, Albuquerque.

13. Jain, Rajeev, and Tautges, T. J. (2012). RGG: Reactor Geometry (and mesh) Generator.
International Congress on the Advances in Nuclear Power Plants, Chicago.

14. Buildbot: http://gnep.mcs.anl.gov:8010/
15. Smith, B., Wilson, P., and Tautges, T. J. (2010). Sealing faceted surfaces to achieve

watertight CAD models. In Proceedings of the 19th International Meshing
Roundtable (pp. 177–194).

16. VERDICT documentation: http://www.vtk.org/Wiki/images/6/6b/VerdictManual-
revA.pdf

17. MeshKit doxygen page: http://ftp.mcs.anl.gov/pub/fathom/meshkit-docs/index.html
18. GRUMMP: http://tetra.mech.ubc.ca/GRUMMP/

Appendix	 A. Autotools	 Based	 Configure/Build/Installation	 of	 MeshKit	

MeshKit is maintained as open source software under an LGPL license and is
therefore distributed in source code form. The library uses several required and optional
libraries that must be built and installed prior to MeshKit installation. MeshKit is currently
supported on Linux and Linux-like operating systems (including MacOS).

Prerequisites

MeshKit requires the following libraries to be installed before configuration:

• CGM: a library for representation, query and modification of geometric
models; see [2] for details on obtaining and building CGM.

• MOAB: a library for representing structured and unstructured mesh; see [5] for
details on obtaining and building MOAB.

• Autotools: a set of Linux utilities for configuring software packages.
Autotools can be found in most Linux package managers, and usually consists
of the Autoconf and Automake packages.

In addition, if a parallel version of MeshKit is desired, the Message Passing Interface
(MPI) must be available on the use’s computer; binary versions of MPI can be found in most
Linux package managers.

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 41	

ANL/MCS-‐TM/344	

Download, Configure, Build, Install

MeshKit source code is maintained in a world-readable svn repository, located at
https://www.bitbucket.org/fathomteam/moab/moab.git. By default, MeshKit uses a GNU
Autotools-based configuration process. The following steps should be used to configure,
build, and install MeshKit:

• Unpack the source tarball into a directory referred to below as <MK_DIR> and
change directory into that location.

• Execute ‘autoreconf –fi’. This executes a series of tools in the autotools suite,
storing some generated files in the ‘config’ subdirectory.

• Execute ‘./configure’ with appropriate options. Two configure options are
required, specifying the locations of CGM (--with_igeom=<location>) and
MOAB (--with-imesh=<location>). Other useful configure options are the
installation location (--prefix=<location>) and specifying debug or optimized
builds (--enable-debug, --enable-optimized, respectively). For a complete list
of options, execute the command ‘./configure –help’. After a successful
configuration, a set of Makefile’s are generated in the proper subdirectories.

• To complete the build of MeshKit, execute ‘make’.

• To install MeshKit, execute ‘make install’. If the install location was not
specified on the configure line, one can specify a location in this step by using
the command ‘make prefix=<location> install’.

For those wishing to use the Python interface, MeshKit and its dependencies should be
configured to build shared libraries, using the ‘--enable-shared’ configure option where
appropriate.

Once the MeshKit library has been built, it is ready for inclusion into user-developed
applications (any MeshKit-packaged programs; e.g., those that constitute RGG, will be
installed in the ‘bin’ directory). To aid in building user-developed applications, MeshKit also
writes a file ‘meshkit.make’, which can be included directly into application makefiles. This
file defines the following make variables useful for building MeshKit-based applications:

• MESHKIT_INCLUDES, MESHKIT_CPPFLAGS: compiler options
pointing to all directories containing include files available to applications,
including those for CGM and MOAB; also, CPP definitions controlling which
optional external meshing tools have been configured into MeshKit.

• MESHKIT_LIBS_LINK: linker options necessary to satisfy all functions
included in MeshKit.

	 2014	 MeshKit	 Release	
42	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

The ‘examples’ subdirectory in the MeshKit source installation contains an example
makefile showing how these make variables can be used to compile and link MeshKit-based
applications.

Appendix	 B. CMake-‐Based	 Builds:	 RGG	 Nuclear	 GUI	 Repository	 (SBIR:	
Kitware)	 	

An open-source public release of RGG version 1.0 was done on August 10, 2014. The
code is maintained in a world readable repository, located at
https://github.com/Kitware/RGG.git. The source code includes a CMake SuperBuild for
building MeshKit as well as RGG’s other open-source dependencies, CGM, MOAB,
OpenCASCADE, ReMUs, VTK, and QT. The Cubit meshing tool is available through Sandia
National Labs. CMake-based build systems for RGG GUI and MeshKit have been developed
and are part of the RGG GUI source code.

For all CMake-based builds, the latest version of CMake must be installed. The latest
version of CMake is available here: http://www.cmake.org/download/ .

RGG GUI Superbuild

The RGG GUI can be downloaded and built to work on a Linux, Mac OSX, or
Windows operating system. The build system for RGG GUI can be separate from MeshKit. In
future versions of the tool, binaries to the GUI app for all types of OSX will be available.

Prerequisites

• Git for downloading the source code from the web.

• Latest version of CMake.

• OpenGL. This isn’t installed as a part of RGG GUI installation and must be
available in the system on which installation is performed.

Steps for building the RGG GUI

• Get the repository git clone https://github.com/Kitware/RGG.git

• cd RGG/superbuild, mkdir build, cd build

• Invoke cmake or ccmake on RGG directory: ccmake ..

• Choose the appropriate options.

o Turn BUILD_DOCUMENTATION ON to generate the RGG GUI
users guide.

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 43	

ANL/MCS-‐TM/344	

o There are options to use libraries already available in the system, e.g.,
use of existing Qt library.

o Building with MOAB support is optional. If the GUI is built without
MOAB support, loading of the final mesh file generated by CoreGen
doesn’t work.

o Building with MeshKit and CUBIT is also part of the options; they are
turned off by default.

• Run ccmake .., configure, generate and exit.

• Run ‘make’.

• For linking the libraries LD or DYLD, _LIBRARY_PATH=<your
directory>/superbuild/build/install/lib.

• RGGNuclear app is installed in the folder <your
directory>/superbuild/build/nuclearRGG/src/nuclearRGG-build/Application/

Why is this last point here - it is not a step unless you mean Install the RGG…

MeshKit Superbuild

The source code in GitHub repository contains a separate build system for MeshKit,
and associated SIGMA tools can be downloaded and built to work on a Linux, Mac OSX, or
Windows operating system. The build system for RGG GUI can be separate from MeshKit. In
future versions of the tool binaries to the GUI app for all types of OSX would be available

Prerequisites

• Git for downloading the source code from the web.

• Latest version of CMake.

Steps for building MeshKit using CMake are:

• Get the repository git clone https://github.com/Kitware/RGG.git

• cd RGG/meshkit, mkdir build, cd build

• Invoke cmake or ccmake on meshkit directory: ccmake ..

• Choose the appropriate options.

o Turn BUILD_WITH_CUBIT ON to build CGM with CUBIT option;
the script requires the CUBIT installation directory to proceed.

	 2014	 MeshKit	 Release	
44	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

o MOAB dependencies HDF5 and NetCDF are currently supported in
serial mode only. Options to use system-installed version are also
available.

o Support for OCE-based CGM is also available and is turned on by
default.

• For linking the libraries set LD or DYLD, _LIBRARY_PATH=<your
directory>/meshkit/build/install/lib.

• All done, launch the executable “assygen” and “coregen” from the folder
<your directory>/meshkit/build/install/bin.

Appendix	 C. Input	 File	 for	 a	 Fuel	 Assembly	 with	 24	 Axial	 Regions	 	

!##
! ABTR Minimal Fuel (cm).
!##
Geometry Volume
GeometryType Hexagonal
!
Materials 36 MTLP MTLP &
MACLP MACLP &
Oplenum Oplenum &
StHT9 StHT9 &
Ustructure Ustructure &
GPNA_BC GPNA_BC &
GPNA01 GPNA01 &
GPNA02 GPNA02 &
GPNA03 GPNA03 &
GPNA04 GPNA04 &
GPNA05 GPNA05 &
GPNA06 GPNA06 &
GPNA07 GPNA07 &
GPNA08 GPNA08 &
GPNA09 GPNA09 &
GPNA10 GPNA10 &
GPNA11 GPNA11 &
GPNA_BACLP GPNA_BACLP &
GPNA_ACLP GPNA_ACLP &
GPNA_BTLP GPNA_BTLP &
GPNA_TLP GPNA_TLP &
GPNA_ATLP GPNA_ATLP &
NAHT9 NAHT9 &
Active01 Active01 &
Active02 Active02 &
Active03 Active03 &
Active04 Active04 &
Active05 Active05 &
Active06 Active06 &
Active07 Active07 &
Active08 Active08 &
Active09 Active09 &
Active10 Active10 &
GP_FuelBond GP_FuelBond &
GP_Bond GP_Bond &
GP_GasBond GP_GasBond
Duct 4 0 0 38 80.1 13.598 14.198 14.463 14.598 NAHT9 StHT9
 GPNA_BC GPNA_BC

2014	 MeshKit	 Release	
Rajeev	 Jain	 and	 Vijay	 Mahadevan	 	 45	

ANL/MCS-‐TM/344	

Duct 4 0 0 80.1 98 13.598 14.198 14.463 14.598 NAHT9 StHT9
 GPNA_BC GPNA_BC
Duct 4 0 0 98 106 13.598 14.198 14.463 14.598 Active01
 StHT9 GPNA01 GPNA01
Duct 4 0 0 106 114 13.598 14.198 14.463 14.598 Active02
 StHT9 GPNA02 GPNA02
Duct 4 0 0 114 122 13.598 14.198 14.463 14.598 Active03
 StHT9 GPNA03 GPNA03
Duct 4 0 0 122 130 13.598 14.198 14.463 14.598 Active04
 StHT9 GPNA04 GPNA04
Duct 4 0 0 130 138 13.598 14.198 14.463 14.598 Active05
 StHT9 GPNA05 GPNA05
Duct 4 0 0 138 146 13.598 14.198 14.463 14.598 Active06
 StHT9 GPNA06 GPNA06
Duct 4 0 0 146 154 13.598 14.198 14.463 14.598 Active07
 StHT9 GPNA07 GPNA07
Duct 4 0 0 154 162 13.598 14.198 14.463 14.598 Active08
 StHT9 GPNA08 GPNA08
Duct 4 0 0 162 165.2 13.598 14.198 14.463 14.598 Active09
 StHT9 GPNA09 GPNA09
Duct 4 0 0 165.2 170 13.598 14.198 14.463 14.598 Active09
 StHT9 GPNA09 GPNA09
Duct 4 0 0 170 178 13.598 14.198 14.463 14.598 Active10
 StHT9 GPNA10 GPNA10
Duct 4 0 0 178 182 13.598 14.198 14.463 14.598 GP_FuelBond
 StHT9 GPNA11 GPNA11
Duct 4 0 0 182 182.89 13.598 14.198 14.463 14.598 GP_FuelBond
 StHT9 GPNA11 GPNA11
Duct 4 0 0 182.89 183.12 13.598 14.198 14.463 14.598 GP_Bond
 StHT9 GPNA_BACLP GPNA_BACLP
Duct 4 0 0 183.12 193.28 13.598 14.198 14.463 14.598 GP_Bond
 StHT9 MACLP GPNA_ACLP
Duct 4 0 0 193.28 202.654 13.598 14.198 14.463 14.598 GP_Bond
 StHT9 GPNA_BTLP GPNA_BTLP
Duct 4 0 0 202.654 267 13.598 14.198 14.463 14.598 GP_GasBond
 StHT9 GPNA_BTLP GPNA_BTLP
Duct 4 0 0 267 298 13.598 14.198 14.463 14.598 GP_GasBond
 StHT9 GPNA_BTLP GPNA_BTLP
Duct 4 0 0 298 312.72 13.598 14.198 14.463 14.598 Ustructure
 StHT9 GPNA_BTLP GPNA_BTLP
Duct 4 0 0 312.72 322.88 13.598 14.198 14.463 14.598 Ustructure
 StHT9 MTLP GPNA_TLP
Duct 4 0 0 322.88 328 13.598 14.198 14.463 14.598 Ustructure
 StHT9 GPNA_ATLP GPNA_ATLP
Duct 4 0 0 328 358 13.598 14.198 14.463 14.598 Oplenum
 Oplenum Oplenum Oplenum
Assembly 1
XX
Center
Rotate Z 30
RadialMeshSize 0.1
AxialMeshSize 1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &

	 2014	 MeshKit	 Release	
46	 	 	 	 September	 30,	 2014	

ANL/MCS-‐TM/344	

1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1 &
1
EdgeInterval 3
CreateSideset No
CreateMatFiles 6
List_MaterialSet_StartId 6 &
1622000 &
1818000 &
1821000 &
1916000 &
2118000 &
2219000
List_NeumannSet_StartId 6 &
1622000 &
1818000 &
1821000 &
1916000 &
2118000 &
2219000
END

Appendix	 D. Input	 File	 for	 a	 Fuel-‐only	 Mini-‐core	 with	 Restraint	 Rings	

!##

! Simple 7 assembly All Fuel ABTR Mini-Core With 3 Rings
!##

!
Geometry Volume ! 'Geometry' card defines if the meshes are volume or surface
Symmetry 1 ! 'Symmetry' card defines the desired symmetry in the model
GeometryType HexFlat ! 'GeometryType' card can take values Hexagonal Rectangular
Assemblies 7 14.598 ! 'Assemblies' is #assembly mesh files and their pitch
1916000.exo 1916 ! Meshfile name followed by alias
1622000.exo 1622
2118000.exo 2118
2219000.exo 2219
1818000.exo 1818
1821000.exo 1821
1620000.exo 1620
Lattice 2
 1916 1622 &
 2118 2219 1818 &
 1620 1821
NeumannSet Top 1
NeumannSet Bot 2
Background or.exo ! Background mesh file
OutputFileName 7a_all_fuel.h5m
END

	

	

Mathematics	 and	 Computer	 Science	 Division	
Argonne	 National	 Laboratory	
9700	 South	 Cass	 Avenue,	 Bldg.	 240	
Argonne,	 IL	 60439	
	
www.anl.gov	

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

