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SUMMARY	  

MeshKit v1.2 was released on July 25th 2014 as part of SIGMA1 v1.0 (Scalable 
Interfaces for Geometry and Mesh-Based Applications). SIGMA consists of CGM, MOAB, 
Lasso and MeshKit developed and managed at Argonne National Laboratory. This release of 
MeshKit focuses on documentation and adding support for developing RGG (Reactor 
Geometry (and mesh) Generator GUI along with fixes and new enhancements to the RGG 
tools AssyGen and CoreGen. Several important and user required code enhancements and 
fixes are a part of this release. A new scheme for distributing the component assemblies 
forming the reactor core in parallel CoreGen has improved the overall computational time 
taken by CoreGen to assemble the reactor core from it’s component assemblies. Verdict mesh 
quality library has been integrated and is being used by quad mesher and post mesh boundary 
layer algorithm. Development of interfaces to NetGen and GRUMMP tri mesher are under 
active development. Various reactor types such as ABTR, PWR, MONJU etc. were modeled 
using MeshKit. These models applied to individual and coupled physics solvers such as 
Nek5000, PROTEUS, Diablo and SHARP. 
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1 Introduction	  

The MeshKit library provides a robust parallel infrastructure for developers and a 
scheme for algorithm users for various mesh generation functionality. It is implemented in 
C++ and provides a traditional C++-based API for interactions with other codes. A Python 
interface is also provided for interactive access to the library. MeshKit relies on geometry and 
mesh libraries developed as a part of the SIGMA (Scalable Interfaces for Geometry and 
Mesh-Based Applications) [1] libraries developed at Argonne National Laboratory; SIGMA 
v1.0 was released on July 25, 2014, and MeshKit v1.2 was a part of SIGMA v1.0 release. The 
SIGMA component CGM (Common Geometry Module) [2] provides functions for 
constructing, modifying, and querying geometric models in solid model-based and other 
formats. CGM can evaluate geometry from two underlying geometry engines: ACIS [3], with 
preliminary support for Open Cascade–based [4] version. Finite-element mesh and mesh-
related data are stored in the SIGMA component MOAB (Mesh-Oriented database) [5]. 
MOAB provides query, construction, and modification of finite-element meshes, plus 
polygons and polyhedra. Various options are available for writing and visualizing the final 
meshes produced by meshing algorithms. MOAB uses an HDF5-based file format, which can 
be visualized by using a ParaView plugin that is implemented by the MOAB library. The 
Visit visualization tool can also be configured and built with MOAB to provide a similar 
import capability. The overall goal of MeshKit is to develop a complete package for 
generating reactor core models, while at the same time being general enough to serve as a 
platform for geometry and mesh generation research and tool development. External users 
from United States (ORNL, GE, Westinghouse), Scotland (University of Glasgow), Germany 
(SIMSCALE, University of Stuttgart) and China (Xiangtan University) are now using 
MeshKit. 

The MeshKit library uses a graph-based process for specifying the overall meshing 
approach, with graph nodes representing meshing and other operation, and with graph edges 
as dependencies between those operations. The graph-based approach supports the traditional 
BREP-driven (BREP stands for boundary representation) meshing process, which usually 
proceeds by meshing BREP entities in increasing topological dimension, first with vertices, 
then edges, and so on. However, a graph-based process also enables meshing tasks not 
possible with a strict BREP-based approach. First, not every meshing process needs or has a 
geometric model representing the entire domain to be meshed. The best example is the 
Reactor Geometry (and mesh) Generator (RGG) tool, in which individual assembly types 
have geometric models but are then copied/moved into a lattice of assembly models forming a 
reactor core. Second, a meshing procedure may not involve only a once-through meshing of 
each BREP entity; again, RGG is a good example, in which the first part of the process 
involves meshing BREP models but the last step involves copy/moving mesh subsets into a 
larger core lattice. Third, the procedure-driven approach to meshing represented by most 
CAD-based meshing tools fails to capture the parallelism and dependency structure that can 
be found in most meshing problems (including BREP-based ones); representing and 
exploiting this richer structure provide more flexibility while still being applicable to BREP-
based problems. 
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Design details and a description of all the algorithms available in MeshKit were given 
in our FY13 milestone report [6]. During the past year several important algorithms and 
applications have been developed using MeshKit. The infrastructure provided by MeshKit is 
robust and has been applied in various serial and parallel meshing related activities. This 
report is structured as follows. In the remainder of this section we list of all the algorithms 
currently available and also describes the RGG tool.  Section 2 deals with code development 
over the past fiscal year. Mesh generation activities including scalability studies of parallel-
enabled RGG are given in Section 3. Section 4 provides the details of MeshKit documentation 
work. Collaboration with Kitware for RGG GUI development is highlighted in Section 5. The 
report is concludes in Section 6 with an outline of future work. 

1.1 Algorithms	  and	  Tools	  

The SIGMA v1.0 libraries provide robust infrastructure for developing geometry and 
mesh algorithms and applications. Indeed, in a short span of time, several algorithms and 
applications in MeshKit have been developed and published. MeshKit’s algorithms that are 
described in separate papers published elsewhere has been listed here.   

       	  	  	  	  	  	  	  	  (a)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (b)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (c)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Figure	  1	  Algorithms	  available	  in	  MeshKit	  

Algorithms available in MeshKit can be categorized in several ways, such as the 
dimension of entities, type of mesh elements, or application. Here, we categorize the 
algorithms based on MeshKit usage. Traditional meshing algorithms are 2D and 3D 
algorithms for developing tri/tet and quad/hex meshes. Figure 1(a) lists some of the primitive 
algorithms developed in MeshKit, for structured mesh generation, an embedded boundary 
mesher [9] and block mesher were developed. For unstructured mesh generation, a quad 
mesher [7] and one-to-one sweep [8] were developed. Other algorithms required for 
traditional meshing were integrated as external algorithms (Figure 2(b)) by leveraging 

TradiKonal	  NaKve	  
Algorithms	  

• UNSTRUCTURED	  
MESHING:	  
• 2D	  Quad	  Mesher:	  
Jaal	  QuadMesher	  

• OneToOneSweep	  

• STRUCTURED	  
MESHING	  
• Embedded	  Boundary	  
Mesher:	  EBMesh	  

• Block	  Mesher	  or	  
SCDMesh	  MeshOp	  	  

Mesh	  Handling/
ModificaKon	  

• Post	  Mesh	  Boundary	  
Layer	  GeneraKon:	  
PostBL	  

• Quad	  Mesh	  Cleanup	  

• MergeMesh	  

Support	  Algorithms	  

•  Interval	  Matching	  
Algorithm:	  
IntervalAssignment	  

• Mesh-‐Based	  
Geometry	  
ModificaKons:	  
MBGeomOp,	  
MBSplitOp,	  MBVolOp	  
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existing state-of-art existing meshing packages. Several traditional algorithms use helper 
algorithms listed in Figure 2(f).  Papers have been published in peer-reviewed journal that 
include the details results and implementation details of quad mesher, one-to-one sweep and 
embedded boundary meshing. The mesh modifications algorithms listed in Figure 1(b) were 
also developed from scratch in MeshKit; implementation details along with results for post 
mesh boundary layer and interval matching algorithms have been published last year [10] 
[11], respectively. Supports algorithms that are used by several other algorithms are listed in 
Figure 1(c). Interval matching algorithms works closely with all other algorithms in MeshKit 
to assign the sizes on geometric entities when meshing a complicated geometry. Mesh-based 
geometry modification operations listed in Figure 1(c) were developed for building 
hexahedral meshes and associated geometry of ice sheets models from latitude and longitude 
data obtained from satellites. 
 

	  
      	  	  	  	  	  	  	  	  (d)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (e)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (f)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

Figure	  2	  Algorithms	  available	  in	  MeshKit	  (Contd.)	  

Tools that are part of MeshKit are listed in Figure 2(d). The RGG tools AssyGen and 
CoreGen are described in Section 1.2 and developments in make watertight algorithms used 
for sealing facet-based geometries are reported in Section 2.3. Tools developed using 
MeshKit library may be a part of MeshKit or exist as an external library; all these algorithms 
and tools mentioned in Figure 1 and Figure 2 adhere to the graph-based design that MeshKit 
uses. MeshKit takes advantage of other open and closed source meshing libraries by 
providing a consistent interface. Interface to Gmsh and the NetGen tri mesher library are 
currently under development and in the testing phase. Several traditional algorithms use 
helper algorithms listed in Figure 2. Helper algorithms such as Vertex and Edge mesher are 
used by higher-dimensional algorithms and are often automatically created by the graph-based 
design of MeshKit.  The RGG tool uses copy/move/merge/extrude algorithms and set 
operations for copy/expand/extrude tag specified during the copy/move/extrude process 
respectively. 

Integrated	  Tools	  

• RGG: 	  	  
• Nuclear	  Reactor	  
Modeling:	  Assembly	  
Geometry	  CreaFon	  Tool:	  
AssyGen	  

• Nuclear	  Reactor	  
Modeling:	  Core	  Mesh	  
and	  Geometry	  CreaFon	  
Tool:	  CoreGen	  

• Sealing	  Facet	  Based	  
Geometry:	  
MakeWaterTight	  

External	  Algorithms	  

• Triangle	  

• CAMAL/CUBIT	  
• Tri	  Mesher	  
• Quad	  Mesher	  
• Tet	  Mesher	  

• NetGen	  
• Tri	  Mesher	  
• Tet	  Mesher	  

• Mesquite	  

• Gmsh	  

Helper	  Algorithms	  

• TFIMapping	  

• QSlimMesher	  

• Vertex	  Mesher	  

• Edge	  Mesher	  

• Extrude	  Mesh	  

• Copy	  Mesh/Geom	  
OperaKon	  

• Set	  OperaKons:	  Copy/
Expand/Extrude	  
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1.2 Reactor	  Geometry	  (and	  mesh)	  Generator:	  RGG	  

A nuclear reactor core consists of uranium fuel rods, instrumentation rods, control 
rods, ducts, coolant, grid spacers, load pads, restraint ring systems, and other supporting 
structure. Although these core models are quasi-2.5-dimensional, modeling of interassembly 
gaps forming the whole core model from the component assemblies can get cumbersome and 
difficult to manage by using scripts or traditional meshing packages. Creating a fully detailed 
reactor core model with a few million elements can take a few days. Moreover, constructing 
these models on typical desktop computers can require large runtimes, and for large models 
such efforts may not succeed at all because of memory constraints. Analysts require a parallel 
modeling tool that can generate large core models in a few hours and can simplify the overall 
process of generating reactor core models.  

RGG methodology involves three steps; the overall workflow is highlighted in Figure 
3. First, AssyGen reads an input file describing a reactor assembly lattice and generates an 
ACIS or OCC-based geometry file, along with a template script for generating a mesh for the 
assembly using the Cubit meshing toolkit [12]. For the Core Mesh shown in Figure 1, 
AssyGen was run twice to generate the two types of assemblies shown. AssyGen supports 
several features, such as axial numbering material and boundary conditions, sectioning, 
rotation, and information about location of pins. These have been described in a paper 
presented at the International Meshing Roundtable [13].  

The second step is meshing, where the user may choose to perform meshing using the 
Cubit mesh script generated by AssyGen or using meshing algorithms in MeshKit. The RGG 
GUI app developed by Kitware Inc. is available for download from the website: 
http://www.computationalmodelbuilder.org/download/   

 
Figure	  3	  RGG	  Workflow	  
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A single reactor assembly may comprise several thousand geometric regions if one 
considers the materials and axially varying properties of the assembly. One possible approach 
for parallelizing AssyGen involves having each processor create a region based on the 
location of the pin it obtains from the master processor. The problem with this approach is 
that the subtraction of regions from the outermost duct is a serial process. Because of the 
unavailability of parallel subtraction of geometry from components, this feature has not been 
developed. Instead, we are developing in MeshKit a parallel meshing algorithm that partitions 
geometry created by AssyGen and meshes these chunks in different processors to create the 
assembly mesh.  

Once all the assembly and core input files are created, the third step of the workflow 
occurs: the CoreGen program is invoked. This tool reads an input file describing the reactor 
core arrangement and generates the reactor core mesh or geometry from its component 
assemblies. CoreGen uses the CopyMesh, ExtrudeMesh, CopyGeom, and MergeMesh 
algorithms in MeshKit. Figure 1 shows the two assembly meshes and an interstice mesh file 
that form a 19-assembly reactor core. A makefile is generated by CoreGen to automate the 
whole process from geometry creation. This makefile can be invoked in parallel by using the 
“-j” option of the “make” command to run the geometry creation and mesh generation of 
individual assemblies in different CPU cores. Thus, while the creation of individual assembly 
geometry and the meshing of individual assemblies are not parallel, the generation of all 
assemblies needed for a given core is parallelized, by using the basic parallel execution 
facilities of the standard make process. Since complicated reactor cores often use more then 
ten different assembly types, and since hundreds of assembly meshes along with interstices 
meshes such as grid spacers and restraint rings form a complete reactor core mesh, the models 
can involve several billion mesh elements. Generation of such models in serial is a time-
consuming process, and parallelization can therefore be a tremendous boon.  

The parallel CoreGen algorithm comprises seven steps: 

1. On each processor, read CoreGen input file, parse, and determine assembly 
copies assigned to this processor based on a round-robin distribution. 

2. Locally read assembly meshes for assemblies determined in step 1. 

3. Perform assembly copy/move operations assigned to this processor. 

4. Perform local merge of on-processor mesh. 

5. Perform parallel merge of mesh between processors. 

6. Parallelize the expand/extrude/copy set (metadata) handling. 

7. Save output mesh. 

A simple graph constructed by the user for running CoreGen is shown in Figure 4(a).  
In the setup traversal phase, CoreGen adds two nodes, “CopyMesh” and “MergeMesh” 
(shown in the box), to the graph. In the execute phase, based on a user specified input file, the 
assembly meshes are copy/moved and then merged. After populating the material and 
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boundary conditions for the core model, CoreGen saves the desired core model. Note that in 
serial CoreGen, CopyMesh does the copy/move of all the assemblies. Consider the graph with 
two processors in Figure 4(c). All the operations—copy/move, merge, boundary/material 
conditions, setup, and mesh saving—are parallelized, thereby making CoreGen MeshOp truly 
parallel and enabling creation of large reactor models. Indeed, parallel-enabled CoreGen has 
been used to create large meshes such as MONJU, VHTR, HTGR, EBRII, and PWR for 
different reactor simulation codes. Speedup results for VHTR and MONJU reactors using the 
parallel version of CoreGen can be found in Section 3.4.   

 

 
(a) 

 
(b) 

 
(c) 

Figure	  4.	  (a)	  CoreGen	  MeshOp	  di-‐graph.	  (b)	  Internal	  nodes	  created	  during	  setup-‐phase	  of	  CoreGen,	  
shown	  in	  box.	  (c)	  2-‐processor	  digraph	  for	  CoreGen	  MeshOp.	  

 

2 Code	  Development	  	  

This section focuses on the code development in MeshKit over the past year. We 
moved the repository from subversion version control system to git version control system on 
Bitbucket, which is a free web-hosting service for projects that use git. Git is a relatively new 
distributed revision control and source code management system that has already become the 
most widely adopted version control system for software development. Total time required 
and the quality and efficiency of code development have improved after moving to git. We 
have spent considerable effort cleaning up the code (removed all warnings), the library is 
tested with various configurations of dependencies and compiler nightly on our buildbot 
system [14]. The error messages and warnings are reported using this system. This system is 
very helpful in ensuring the robustness and workability of the code. We have also added 
several new builds and compilers, including the clang compiler (used on Mac OSX), to the 
suite of builds that are run nightly.  
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Discussed in this section are efforts to simplify the overall build system, RGG 
enhancements and fixes, make watertight algorithm, sweep mesh generation, verdict 
integration, trimesh generation and quad mesh cleanup. 

2.1 Build	  System	  

MeshKit has three mandatory dependencies—CGM, MOAB, and Lasso (each having 
its own dependencies, such as HDF5, NetCDF, libCCMIO, Zoltan, CUBIT, and 
OpenCascade)—and several options dependencies, including Triangle, CAMAL, NetGen, 
IPOPT, MPI, and Mesquite. Because of these dependencies, the packaging and build system 
for applications using MeshKit can get cumbersome. We have two efforts under way to make 
these steps easy for the end user: CMake and Autotools. 

MeshKit v1.2 supports serial CMake-based builds. The CMake-based build system 
also allows the user to build an RGG GUI App developed by Kitware Inc. and all the SIGMA 
tools: CGM, MOAB, Lasso, and MeshKit. It provides options to use system installed or 
perform a fresh download and install for all dependencies. This effort is in collaboration with 
Kitware, the makers of the CMake build system. We also have a script tailored to download 
and compile SIGMA v1.0 from scratch.  

All SIGMA tools from their inception have used the Autotools build system, and it 
continues to be supported. We are also working on scripting the Autotools build system to 
make it easier for the user to build and install all dependencies with one command.  See 
Appendix A and B for details on building MeshKit using Autotools and CMake, respectively. 

Our build systems provides very efficient infrastructure for development. When a 
collaborator or developer creates algorithms or tools in MeshKit, they submit a “pull request” 
that is peer-reviewed, tested and fine tuned before adding the code to the master branch. 
Development branches and pull requests can be tested using our buildbot system 
(http://gnep.mcs.anl.gov:8010/waterfall?category=meshkit) for a variety of configurations of 
MeshKit. 

2.2 RGG	  Enhancement	  and	  Fixes	  

Various enhancements and bug fixes were applied to the RGG code. The following 
subsections cover the major developments incorporated in this release. 

2.2.1 Introduction	  of	  Common	  Input	  File	  	  

Nuclear reactor cores usually consist of multiple assemblies and each assembly has 
several properties that remain same for all the assemblies. Our experience has shown that 
most of the AssyGen input file (discussed in Section 1.2) has several common variables such 
as mesh type, geometry engine, geometry type, merge tolerance, edge interval, radial mesh 
size, height of ducts and axial mesh size. This common.inp file is read by default along with 
each assembly input (see Figure 5). 
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Figure	  5.	  Common.inp	  file	  for	  AssyGen.	  These	  are	  core-‐level	  parameters,	  the	  same	  for	  all	  
assemblies.	  

2.2.2 New	  Parallel	  CoreGen	  Scheme	  

During a parallel CoreGen run there is no master processor; each processor analyzes 
the overall workload and decides the mesh file(s) that it must load. During this task 
distribution phase three different cases (A, B, and C) may occur, where nA is the total number 
of different assembly mesh files, np is the number of processors, and nT is the total number of 
assemblies in the reactor core. 

A. np <  nA 

B. nA < np < nT 

C. np  > nT 

In case A, each processor loads one or more assembly mesh files and solely performs 
the copy/move operation associated with that assembly for the entire core. In case B, some 
mesh files are loaded into multiple processors, and the copy/move task is distributed among 
them. Two schemes have been developed for selecting mesh files for copy/move task 
distribution. Scheme 1 is based on the frequency or the number of occurrence of that mesh file 
in the core; the assembly type that appears the most number of times in the core is assigned to 
multiple processors in a round-robin fashion. Scheme 2 is based on recursive analysis of load 
on each processor after each mesh file load has been decided. Scheme 2 leads to better load 
balancing of meshes among processors and faster overall completion time when compared 
with scheme 1. Another scheme based on the size of the mesh file and a combination of 
scheme 1 and 2 is under development. In case C, there are more processors than available 
work units, so only nT processors can take part in this parallel algorithm.  

Results for the MONJU reactor are detailed in Section 3.4.3. In this case the round-
robin distribution scheme leads to highly unbalanced load among processors, causing the 
problem to not fit in the available CPU memory. Therefore, the reactor uses scheme 2 for 
copy/move task distribution.  

2.2.3 Material	  and	  Neumann	  Set	  Shifting	  in	  CoreGen	  

In several reactors such as the ABTR the only difference between different assemblies 
is the name or ids of material and boundary conditions. Creating different mesh files for all 
such assemblies is time consuming and wasteful of resources. Consider the ABTR core in 

MeshType Tet             ! Specifies the mesh type 
GeomEngine ACIS          ! Specifies geometry engine       
GeometryType Rectangular ! Shape of assembly geometry  
TetMeshSize 2.0          ! Size of tetrahedral mesh   
CreateSideset No         ! Turn on/off boundary creation 
MergeTolerance 1e-6      ! Merge tol for nodes b/w assemblies 
Info on                  ! Generate CSV with pin locations  
END                      ! Marks the end of this file 
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Section 3.3, in which all the 199 assemblies that form the core are different, each assembly 
having its own material and boundary condition. We therefore create only distinct assemblies, 
and we use the “same_as” CoreGen keyword to create the core model by duplicating the 
nodes and elements and shifting or reassigning the material and Neumann sets for the new 
assembly. Consider the 7-assembly input file shown in Figure 6, in which only two mesh files 
are created: assm_mesh.exo and assm_mesh22.exo; other assemblies, namely 1123000.exo 
1124000.exo, are specified by using the “same_as” keyword. After specifying this keyword, 
the name of the assembly mesh file, material set start id, and Neumann set start id are 
specified.  

	  

Figure	  6.	  CoreGen	  input	  file	  demonstrating	  the	  use	  of	  “same_as”	  for	  7-‐assembly	  ABTR.	  

2.2.4 Fixes	  in	  SIGMA	  Components	  

MeshKit is a part of SIGMA tools and relies on other SIGMA components: CGM, 
MOAB, and Lasso. Changes in these components may result in changes in the MeshKit 
interface, and similarly fixes or issues in MeshKit often cause a fix in one of these 
components. Various fixes and additions to SIGMA components that directly affect MeshKit 
include the following: 

1. Addition of CMake support for CGM, MOAB, and Lasso. 

2. Mesquite-related build fixes in CGM that were causing a failure in MeshKit build. 

3. Fixes to OpenCascade subtraction; pin subtraction from duct of a rectangular PWR 
assembly that took 64 minutess dropped to 29 minutes after this fix. 

4. Release of CGM v14.0 to use CUBIT v14.0; the previous release of MeshKit v1.0 
used CUBIT v12.2. 

! #################################################################### 
! Homogenized 7-assembly ABTR Core Model, Demo of same_as keyword for 
! shifting material and neumann set id's 
! ##################################################################### 
 
Geometry Volume   ! 'Geometry' can be volume or surface 
Symmetry 1     ! symmetry in the model 
GeometryType HexFlat  ! Various hex types or rectangular  
Assemblies 4 14.598  ! assembly mesh files and their pitch 
assm_mesh.exo      1121 
assm_mesh22.exo 1122  
1123000.exo      1123   same_as    assm_mesh.exo 1123000   1123000 
1124000.exo      1124   same_as    assm_mesh22.exo 1124000    1124000 
Lattice 2                      
        1121 1124 & 
      1122 1123 1121 & 
         1122 1124 
NeumannSet Top  1     
NeumannSet Bot  2  !  Values 'top', 'bot' and 'side' are acceptable  
OutputFileName sc.h5m 
END     
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5. Fixes to MOAB’s CUBIT file reader that were causing failure in CoreGen. 

6. Build system fixes to Zoltan mesh partitioner that was causing linking issues in 
MeshKit. 

7. Fixes to parallel merge mesh routine, including a new parameter to turn on/off skin 
entities creation in MOAB and a test for parallel merge mesh in MOAB. 

8. Fixes to NetCDF writer (2D sidesets weren’t getting converted as expected). 

2.2.5 Other	  MeshKit	  Fixes	  

Major additions to the build system are discussed in Section 2, and documentation-
related changes are discussed in Section 4. Several other important additions and fixes to 
MeshKit are listed below: 

1. DAGMC library dependencies in MOAB and examples for make watertight. 

2. Bug fix reported by Kitware in rectangular assembly creation during CoreGen step 
of RGG. 

3. Compiler-related fixes for newer version of OSX and Linux.  

4. Fixes to get_entities_by_dimension and get_entities_by_handle. These functions 
will now return ModelEnts of dimension 4 if requested. If the dimension passed in 
is -1, the function will return all ModelEnts in the MeshKit instance.  

5. Correction to the ModelEnt constructor for iGeom EntSets. 

6. RGG AssyGen feature to “CreateFiles” and “CreateMatFiles.” 

7. Fixes to quadmesher, removed dependency on BOOST library. 

8. Fixes to PostBL along with addition of methods to create mixed element meshes. 

9. RGG enhancements for creating superblocks, automated multiple file creation, 
automatic mesh size specification. 

10. AssyGen script added support for scheme hole surfaces for automatic meshing of 
concentric pins in an assembly. 

11. Fixes to parallel HDF5 reader and writer used by CoreGen. 

12. Some bugs and changes in external packages: Zoltan, NetCDF and OpenCascade 
were reported to their respective developers lists. 
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2.3 Make	  watertight	  

Make watertight algorithms have been implemented in the graph-based scheme of 
MeshKit. Also, the robustness of the algorithm [15] has been improved for large and complex 
geometries. The sealing process developed in this algorithm has been successful implemented 
in the DAGMCNP workflow, resulting in no lost particles for several ITER models. Figure 7 
shows the unsealed original ITER blanket lite model on the left and the completely sealed 
model on the right. 

Figure	  7.	  Input	  and	  output	  geometry	  to	  make	  watertight	  algorithm.	  

2.4 Sweep	  Mesh	  Generation	  

One of the most robust and widely used algorithms for all-hexahedral meshes is the 
sweeping algorithm [8]. For multisweeping, however, the most difficult problems are the 
surface matching and interval assignment for edges on the source and target surfaces. A new 
method to generate surface meshes by imprinting edge patches between the source and target 
surfaces is proposed. The edge patch imprinting is based on a cage-based morphing of edge 
patches on the different sweeping layers where deformed and undeformed cages are extracted 
by propagating edge patches on the linking surfaces. As a result of the imprinting, the source 
or target surfaces will be partitioned with the imprinted edge patches. After partitioning, every 
new source surface should be matched to a new specific target surface where surface mesh 
projection from one-to-one sweeping based on harmonic mapping can be applied. In addition, 
3D edge patches are projected onto 2D computational domains where every sweeping level is 
planar in order to increase the robustness of imprinting. 

Figure	  8.	  Flowchart	  of	  surface	  mesh	  generation	  based	  on	  edge	  patch	  imprinting.	  
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Figure 8 shows a flowchart of our proposed algorithm. It starts with volumes without 
any surface mesh. The parametric space fi, kg, and vertex types on the linking surfaces should 
be provided. This does not imply that all the boundary edges have to be meshed; no restriction 
is made on the number of points on the boundary edges. Prior to imprinting, the sweeping 
layer number for each source and target surface should be identified in the sweeping direction. 
Next, edge patch imprinting between the source and target surfaces is performed, including 
edge patch extraction, edge patch propagation, cage-based morphing, and intersection 
processing. The surfaces then are split to make a one-to-one matching between the source and 
target surfaces. Finally, quad meshes on the source surfaces are mapped onto the target 
surface by morphing. 

Shown in Figures 9, 10, and 11, respectively, are three examples of source and target 
surface meshes that have been generated by using the edge patch imprinting algorithm and 
morphing algorithm. Users can manually match edge patches. Otherwise, the imprinting 
algorithm will use the cage-based morphing to propagate edge patches, partition the source 
and target surfaces, and match edges between the source and target surfaces. Note that 
volumes are not decomposed and that only surfaces are partitioned in order to match the 
source and target surfaces. The reason rests with the inherent characteristics of the sweeping 
algorithm: every quad element on the source surfaces has its corresponding quad element on 
the target surfaces. The great disadvantage for decomposing volumes is that interior nodes 
cannot be moved from one subvolume to another subvolume if poor volume mesh quality is 
produced.  

 
Figure.	  9.	  A	  real	  part	  from	  Caterpillar:	  (a)	  a	  geometric	  model;	  (b)	  source	  surface	  meshes;	  (c)	  

partitioned	  source	  and	  target	  surfaces	  by	  imprinting	  edge	  patches;	  (d)	  target	  surface	  meshes	  by	  
morphing.	  

 

 
Figure.	  10.	  Example	  of	  generating	  surface	  meshes	  and	  matching	  the	  source	  and	  target	  surfaces	  by	  
imprinting	  edge	  patches:	  (a)	  geometric	  model;	  (b)	  	  partitioned	  source	  and	  target	  surfaces;	  (c)	  
source	  surface	  meshes;	  (d)	  3D-‐view	  surface	  meshes;	  (e)	  target	  surface	  meshes	  by	  morphing.	  
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Figure	  11.	  Surface	  mesh	  generation	  for	  crankshaft	  by	  imprinting:	  (a)	  geometric	  model	  with	  
imprinted	  edge	  patches	  (denoted	  by	  blue	  curves);	  (b)	  target	  surface	  meshes	  by	  morphing.	  

2.5 Verdict	  Integration	  

In finite-element analysis, the shape of individual elements can significantly affect the 
accuracy of a simulation. Several metrics for each cell type (shape) exist; which one is most 
closely related to the accuracy of a simulation is application-specific. VERDICT, a separate 
module providing these quality criteria, has been developed by Sandia/Kitware to help 
standardize these quality metrics. MeshKit integrates the Kitware Inc. version of VERDICT, 
which has a BSD licensed version for VTK that is based on Sandia’s version of 
VERDICT.  Quality measures for triangular, quadrilateral, tetrahedral, and hexahedral cells 
are available. The filter will compute the value of one quality metric per cell and allows the 
user to choose this metric on a per-cell-type basis. For example, one might compute the radius 
ratio for triangular cells and the Frobenius aspect for tetrahedral cells. 

MeshKit tools can now compute the summary information for the entire mesh 
including the following: 

• Average value of some quality metric per cell type (e.g., the average over all 
tetrahedral cells) 

• Variance of some quality metric per cell type 

• Minimum and maximum quality metric values per cell type 

• Number of cells of each type. 



2014	  MeshKit	  Release	  
Rajeev	  Jain	  and	  Vijay	  Mahadevan	   	   19	  

ANL/MCS-‐TM/344	  

VERDICT documentation from Kitware contains the mathematical definition of each 
quality metric as well as implementation details. It also has documentation on implementation 
and definition of all the quality metrics provided by VERDICT [16]. 

2.6 Tri	  Mesh	  Generator	  	  

Simple pyramid geometry is meshed with tetrahedral elements by using an external 
meshing library NetGen, which has been integrated with MeshKit for tet mesh generation. 
The graph setup by the user is shown in Figure 12(a). During the setup phase of the graph, a 
tri-mesher MeshOp is created. This MeshOp further creates EdgeMesher and VertexMesher 
graph nodes. Figure 12(b) shows the nodes created during setup traversal phase in a box.  
Note that different tri-meshers can be selected with NGTetMesher. Detailed documentation 
for this example is available in MeshKit doxygen page [17]. Final mesh output from the 
algorithm is shown in Figure 13. 

 

(a) 

 
(b) 

Figure	  12.	  Graph-‐based	  tetrahedral	  mesh	  generation.	  
 

 
Figure	  13.	  Tetrahedral	  mesh	  created	  by	  NGTetMesher	  MeshOp.	  

In order for a truly open-source solution to meshing problems, MeshKit needs a robust 
tri-mesher for open-cascade geometries. This tetrahedral mesh example uses the CAMAL Tri 
Mesher, which is closed source. We are working on getting AssyGen geometry to mesh with 
our native or the NetGen tri mesher.  

2.7 Quad	  Mesh	  Cleanup	  

QuadMesher (presented in our previous report [6] and International Meshing 
Roundtable paper [7]) internally cleans up the quad mesh generated in the algorithm. This 
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quad cleanup algorithm is available as an independent algorithm that reads a quad mesh and 
produces a mesh with better node-valence, shape quality, and so forth. The options available 
include the following: 

• Removal of interior doublets   
• Removal of boundary singlets   
• Removal of diamonds  
• Vertex degree reduction  
• Laplace smoothing 
• Advancing front edge swapping  
• Shape optimization  
• Shifting of irregular nodes inside domain  
• Automation of everything 

Figure 14(a) shows a mesh before quad cleanup, and Figure 14(b) shows the final 
mesh after using the automatic option of quad cleanup. The model has a total of 7k nodes. 
Quad cleanup removes all the singlets and 4 diamonds in the model; 845 edges are swapped. 
The final model has better valence and fewer irregular nodes. This example can be found in 
the Meshkit repository. Table 1 lists some of the properties of input and output mesh. 

Table	  1.	  Properties	  of	  input	  and	  output	  mesh	  to	  the	  quad	  cleanup	  algorithm.	  
Property Input Mesh Output Mesh 
Nodes with degree >  8 24 1 
Nodes with degree = 4 2946 4292 
Irregular nodes 3708 3276 

 
(a)	  Input	  

	  
(b)	  Output	  

Figure	  14.	  Input	  and	  output	  to	  quad	  cleanup	  operation	  (a)	  original	  mesh.	  (b)	  final	  mesh	  after	  quad-‐
cleanup.	  
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3 Meshing	  Activities	  

MeshKit tools and algorithms in conjunction with CUBIT were used to complete 
several reactor-meshing tasks listed in the following subsections. Some of the tasks were 
performed at Argonne, while others were at Oak Ridge. All the meshes discussed in this 
section were also tested with STARCCM+. This section is divided into three parts covering 
the three different types of mesh activities. The Advanced Breeder Test Reactor (ABTR) was 
modeled as a part of the ARC project in order to demonstrate SHARP coupled physics 
simulations.  

3.1 ABTR	  

This section discusses the geometry, mesh, boundary conditions, and other RGG- 
related parameters involved during the development of models for this study. 

3.1.1 ABTR	  Single	  Assembly	  Model	  

The detailed fuel assembly (nonhomogenized) is shown in Figure 15(a). The detailed 
fuel assembly geometry model with varying material specification for a fuel element cross-
sections contains of over 15k geometric volumes. It takes AssyGen ~20 minutes to create the 
nonhomogenized geometric model. Hex meshes for the assemblies are obtained by specifying 
the intervals on the edges, followed by meshing the surfaces, and extruding the surface 
mesh.Load pads are modeled by specifying separate material along the duct at ACLP (Above 
Core Load Pad) and TLP (Top Load Pad) locations shown in Figure 15(b). Interassembly gap 
regions are divided in two equal parts and modeled with every assembly. All the 
interassembly gaps are merged when CoreGen assembles the individual assembly meshes to 
create the core model. Outlet plenums are modeled on top of each assembly for specifying 
outlet boundary conditions in thermohydraulics simulations. The assembly consists of 217 
fuel pins.   

 

  
(a) (b) 

Figure	  15.	  (a)	  Detailed	  (nonhomogenized	  ABTR	  fuel	  assembly);	  (b)	  Three	  homogenized	  fuel	  
assemblies	  showing	  the	  Above	  Core	  Load	  Pad	  (ACLP),	  Top	  Load	  Pad	  (TLP),	  and	  outlet	  plenum	  

regions.	  
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The dimensions of a single fuel pin are shown in Figure 16. Each pin for a particular 
axial height consists of four geometric volumes.  

The control assembly has an additional duct and sodium layer compared with fuel, 
shield, and reflector assemblies. The inner and outer ducts of the control rod assembly are 
shown in Figure 17(a). Figure 17(b) shows the coarse homogenized control assembly mesh. 
The AssyGen input file used for creating the fuel assembly can be found in Appendix C. 
Since all assemblies that form the ABTR core (Section 3.1.2 and Section 3.1.3) have varying 
properties in the axial direction, a common axial configuration must be determined in order to 
have coincident nodes along the height of all eight assemblies that form this 199-assembly 
core model. This configuration leads to a conformal mesh that is fit for simulations. 

Figure	  16.	  Section	  of	  metal	  fuel	  pin	  showing	  dimensions	  in	  cold	  condition.	  

New keywords “NumSuperBlocks” and “SuperBlocks” were introduced to combine 
material blocks for different physics. “NumSuperBlocks” specifies the number of 
superblocks, and “SuperBlocks” specifies the blocks to be merged to form the new 
superblock. For example, neutronics models each fuel pin with tens of materials along the 
height, whereas thermohydraulics models consider all the fuel pins to be one material. These 
keywords help in the creation of one-mesh files that can be used by all physics simulations. 
Material and boundary conditions that are not required by a particular physics are ignored. We 
note that superblocks are not required when modeling meshes for individual physics 
separately. The clock time to create the homogenized geometry and mesh for this fuel 
assembly is 2 minutes. The mesh has 2.5k hex elements. 
 

	  
(a)	  

	  
(b)	  

Figure	  17.	  (a)	  Control	  assembly	  absorber	  region	  containing	  two	  ducts;	  (b)	  Inlet	  of	  actual	  
control	  assembly	  with	  homogenized	  control	  pins	  (magenta),	  two	  ducts	  (red),	  and	  half	  of	  

inter-‐assembly	  sodium	  gap	  (green).	  
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3.1.2 ABTR	  7-‐Assembly	  Model	  

This section highlights the two minicore models for testing standalone and coupled 
physics simulations. The assumptions and requirements listed below are applicable to core 
models detailed in this Section, Section 3.1.3, and Section 3.2.1. 

Key	  Assumptions	  and	  Requirements	  

Several meshing restrictions and assumptions were made for modeling the ABTR 
assemblies, restraint-ring, and full core mesh. Moreover, physics codes: PROTEUS/Diablo 
and Nek5000 impose certain features and required characteristics on the mesh: 

1. Geometry models are created using dimensions when the reactor is cold. 

2. The model is homogenized; pins and other instrumentation inside the 
assemblies are not modeled. 

3. All 199 assemblies are modeled with different material and boundary 
conditions in order to specifically identify and prescribe inlet/outlet boundary 
conditions to a particular assembly. Each assembly is numbered.  

4. The axial and radial mesh size is coarse to keep the element count low. 

5. The nosepiece region at the bottom of each assembly is not modeled.  

6. Additional axial materials are created for modeling fuel regions in PROTEUS. 

7. Nek5000’s spectral element solver requires hex27 elements. 

8. Nek5000 requires a plenum region that connects all the coolant flowing 
through the individual assemblies at the top of the reactor. The axial height of 
outlet plenum is 30 cm.  

9. Diablo and Nek5000 model fuel elements as a uniform “mush” across all the 
axial fuel regions. 

10. PROTEUS needs only 3 boundary conditions: top, bottom, and side of the 
entire core. 

11. Boundaries modeled for Nek5000 and Diablo are as follows: 

a. Inner/outer walls of the restraint rings 

b. Wall of gap between assemblies and restraint rings  

c. Inlet for whole core and each assembly 

d. Outlet for whole core and each assembly 
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e. Wall of TLP for each assembly 

f. Wall of ACLP for each assembly 

7-‐Assembly	  Core	  with	  Four	  Different	  Assemblies	  

This minicore consists of 7 assemblies surrounded by a restraint ring. The core 
contains 3 inner core fuel assemblies, 2 reflector assemblies, 1 shield assembly, and 1 central 
control assembly (Figures 18(a) and (b)). This case was intended to test four of the assembly 
types (fuel, reflector, shield, control) present in the ABTR geometry. 

The small problem size allowed for easier debugging of the mesh via both 
visualization and manual inspection of input/output. During the specification of this problem, 
conventions were agreed upon for the mesh block ordering, which was instrumental to 
streamlining the input generation for the full-core case. All the assemblies used in this model 
are same as those described for the 199-assembly core (Section 3.3). 

Each of the four types of assemblies has a material and boundary condition names 
prefixed with IIJJ (Figure 18(b)). To overcome the problem of manually creating three 
separate AssyGen files for fuel assemblies, the “CreateMatFiles” keyword was introduced. 
This keyword creates AssyGen files with name “IJ”.inp and sets the start material and 
boundary condition numbers based on “IJ.” This is important for the 199-assembly core 
model, where tens of files of each kind are present. One AssyGen run on the base file that 
describes all required “IJ”.inp files via CreateMatFiles keyword generates all the input files 
corresponding to that particular assembly. This enables a numbering scheme that is 
manageable and helps prescribe temperature, flow rate, and so forth for a particular assembly 
easily. Figure 19 shows the final mesh along with power distribution plots. 
 

 
(a) 

 
(b) 

Figure	  18.	  Minicore	  assembly:	  (a)	  configuration;	  (b)	  numbering	  scheme	  of	  assemblies	  (red).	  
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(a) 

 
(b) 

 

 
(c) 

Figure	  19.	  Minicore	  mesh:	  (a)	  elements	  and	  blocks;	  	  
(b)	  internal	  assembly	  blocks	  used	  in	  PROTEUS;	  (c)	  power	  

distribution.	  
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7-‐assembly	  Core	  with	  All	  Fuel	  Assemblies	  

A second minicore consisting of 7 fuel assemblies surrounded by a restraint ring was 
created to provide a more realistic model, while keeping the problem size small (Figure 20). 
The CoreGen input file for creating the mesh for the all-fuel minicore can be found in 
Appendix D. 

Figure 21 highlights the ACLP and TLP regions. The gap between assemblies and 
restraint ring is kept the same as the full-core restraint ring model (these gaps are same for the 
full core model shown in Section 3.3). In Figure 21(c), three of the load pads on fuel 
assemblies are highlighted. These load pads are present in all assemblies outside the structural 
steel covering. The sodium flow region between the load pads of individual assemblies is 
divided in half and modeled with each assembly separately. 

 

  
Figure	  20.	  Composition	  map	  for	  fuel-‐only	  minicore.	  

 

 
(a) 
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(b) 

 
(c) 

Figure	  21.	  Assembly	  structural	  components:	  (a)	  restraint	  rings;	  (b)	  load	  pads	  on	  fuel	  assemblies;	  	  
(c)	  gap	  between	  assemblies	  and	  restraint	  rings	  ACLP	  (0.0235	  cm,	  gray)	  and	  TLP	  (1.2025	  cm,	  

green).	  

3.1.3 ABTR	  Full	  Core	  

The 199-assembly full core with restraint ring consists of 60 fuel assemblies (24 inner, 
30 outer, 6 test), 10 control assemblies, 48 shield assemblies, 78 reflector assemblies, and 3 
material test assemblies (which are modeled like reflector assemblies). Figure 22(a) also 
shows the detailed configuration with I-J numbering and the number of occurrences of each of 
the assembly types. Horizontal lines represent J increasing from top to bottom, and slanted 
vertical lines following the core arrangement represent I from left to right. All 199 assemblies 
must be modeled independently with different materials in order to enable specification of 
varying densities, inlet/outlet boundary conditions, and so forth for a particular assembly in 
the core model. The core is modeled with four different assemblies: fuel, reflector, shield, and 
control. 

	  

	   	  
(a)	   (b)	  

Figure	  22.	  ABTR	  full-‐core	  configuration:	  (a)	  with	  lines	  of	  constant	  logical	  I,J	  assembly	  regions;	  
(b)	  with	  homogenized	  assemblies,	  outer	  covering,	  and	  restraint	  rings	  at	  TLP	  and	  ACLP	  locations	  

 
The final homogenized core model is created from assembly meshes (Section 3.1) and the 
outer covering mesh. The mesh shown in Figure 22(b) consists of 800,000 hex elements. The 
structural mechanics and thermal-hydraulics mesh consists of 1,500 material blocks, whereas 
the neutronics mesh consists of 7,200 material blocks. The neutronics mesh requires more 
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material blocks along the height of the fuel pins. It takes 30 minutes for CoreGen to create 
this model on a Linux workstation using 32 processors.  

RGG tools can handle changes in assembly/core dimensions and process only the parts 
that are modified. Also, various arrangements of fuel and other assemblies can be simulated 
very easily. For example, different outer rings with varying TLP and ACLP gaps can be 
created by modifying the parameters that generates the restraint rings. The currently available 
geometry tools are capable of generating a nonhomogenized assembly and core model, which 
taxes readily available computing resources; therefore, simpler, homogenized models were 
used in this ABTR demonstration. 

3.2 Meshes	  Created	  For	  CoreGen	  Scalability	  Study	  	  	  	  

Creating detailed geometry and meshes for reactors using commercial tools for expert 
users require a large workstation (~1 TB RAM), and experienced users take months of time 
just to create meshes for such reactor problems (~1 billion elements).  In order to resolve the 
detailed flow in the reactor, a mesh size of 5-10 billion cells might be required. The CoreGen 
tool in MeshKit has been tested to work in parallel and create a few million element meshes. 
The ability to quickly create detailed meshes enables studies of rod vibrations caused by cross 
flow and turbulence vibration flows. Also, mesh convergence studies can be done for testing 
and validating the physics involved. MeshKit uses parallel HDF5 reader/writer for handling 
meshes; this feature is obtained from MOAB library that works closely with the HDF5 group. 
This section further highlights some large mesh models and scalability results for CoreGen. 

3.2.1 Fine	  ABTR	  Core	  Model	  

CoreGen is run to create the final homogenized core model from assembly meshes and 
this outer covering mesh. Two models were created for this ABTR core model:  

1. Coarse model: The final mesh is shown in Figure 22(b), and details are given in Sectin 
3.1.3. CoreGen takes 5 seconds to assemble the core using 128 processors. The 
maximum memory used by a processor is 110 MB. The serial runtime for CoreGen is 
45 seconds with 280 MB of memory used.  

2. Fine model: Each assembly in this model consists of 5–10M hexahedral elements. The 
final mesh size of the core model created is 1.2 billion hexahedral elements, the size 
of this file on disk is 137GB. CoreGen on 200 processors (each processor loads one 
mesh file: 199 assembly + 1 interstices mesh file) takes 30 mins to create this file of 
which parallel save takes up 27 mins and parallel merge takes 1.7 mins.  The 
maximum memory used by a processor is 1.96GB. 

3.2.2 1/6th	  VHTR	  Core	  	  

The 1/6 Very High Temperature Reactor (VHTR) core model shown in Figure 23 
consists of 19.6M hexahedral elements and 20.5M mesh vertices. The size of this mesh file on 
disk is 2.2 GB. 
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Figure	  23.	  One-‐sixth	  of	  a	  VHTR	  core	  model	  generated	  by	  using	  CoreGen	  (left);	  closeup	  of	  assembly	  

mesh	  in	  this	  model	  (right).	  

AssyGen took 10.5 minutes to generate the geometry, journal files, and run CUBIT in 
order to mesh individual assemblies. The serial CoreGen program took 48 minutes to generate 
the core model. When using 56 processors for running CoreGen, this model can be generated 
in less than 3 minutes (2.1 minutes with 12 processors; 12 assemblies form this 58-assembly 
model) from scratch. The AssyGen+CUBIT are run on 1, 4, 8, and 12 processors by using the 
–j option of the makefile; the maximum number of processors is limited to 12 for this step. 

Table 2 lists the AssyGen+CUBIT, copy/move, merge, parallel save, total time, and 
the maximum memory used for various steps of the CoreGen stage, when using different 
number of processors. Figure 24 shows these timing results and maximum memory used vs. 
number of processors. Superlinear speedups are observed in almost all cases, because of the 
job fitting in available memory. Mesh joining (or merge) is observed to be actually slow as 
the number of processors increases from one to four; this result is probably due to the 
communication overhead required in the parallel algorithm. At larger numbers of processors, 
however, the joining time is reduced far below the serial time. As expected, the total time, 
time taken to save, and maximum memory used by a processor decrease as the number of 
processors increases. 

Table	  2.	  CPU	  time	  in	  minutes	  and	  maximum	  memory	  in	  gigabytes	  used	  for	  1/6	  VHTR	  core	  	  
# Procs AssyGen+CUBIT  Copy/Move Merge Save Total Memory 

1 10.5 17.6 10.4 0.7 48.2 4.9 
4 3.4 11.0 11.7 0.01 26.2 2.6 
8 2.8 11.1 5.6 0.01 19.5 2.5 

16 2.1 0.4 4.7 0.01 7.3 1.7 
32 2.1 0.03 0.56 0.01 2.7 0.48 
56 2.1 0.0005 0.31 0.005 2.43 0.33 
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2 

Figure	  24.	  Log	  scale	  results	  from	  Table	  2	  vs.	  number	  of	  processors	  for	  1/6	  VHTR	  reactor	  core.	  

3.2.3 MONJU	  Reactor	  	  

Figure 25 shows a full-core MONJU reactor, which comprises 8 assembly types and 
consists of 715 assemblies. AssyGen and meshing take 5.5 minutes (8 processors using make 
–j8 option) to mesh the 8 assemblies. CoreGen on 712 processors takes only 90 seconds. The 
total wall-clock time required to generate this 101M hexahedral element model from scratch 
is 8 minutes. The maximum memory used by a processor is only 196 MB. This model cannot 
be run in serial because the problem does not fit in memory. The size of the mesh file on disk 
is 14 GB. 

 
Figure	  25.	  Full-‐core	  MONU	  reactor;	  closeup	  area	  in	  red	  rectangular	  region	  is	  highlighted	  from	  left	  

to	  right.	  

Using a round-robin scheme to establish the copy/move work for this reactor causes 
the load on some processors to be larger than the available memory. Therefore, we use a 
recursive load-balanced scheme, wherein after deciding every assembly load, the resulting 
assembly copy/move work due to this load is analyzed and then the decision on the next 
assembly load is made. Table 3 lists the AssyGen+CUBIT, copy/move, merge, parallel save, 
total time, and maximum memory used with different numbers of processors.   
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Table	  3.	  CPU	  time	  in	  mins	  and	  maximum	  memory	  in	  GB	  used	  for	  MONJU	  core	  
#Procs AssyGen+CUBIT  Copy/Move Merge Save Total Memory 

16 5.5 35 163 3.8 207.64 4.2 
64 5.5 0.03 61 9.01 76.7 1.04 

128 5.5 0.03 293 15.5 315 0.532 
256 5.5 0.03 291 24 321.5 0.244 
320 5.5 0.002 0.45 16.5 22.8 0.233 
512 5.5 0.002 0.49 3.85 9.99 0.233 
712 5.5 0.002 0.18 2.3 7.89 0.196 

 

Figure	  26.	  Log	  scale	  results	  from	  Table	  3	  vs	  number	  of	  processors	  plot	  for	  MONJU	  reactor	  core.	  

Figure 26 shows the log scale results from Table 2 vs the number of processors used. 
One can see the sudden jump in merge/save and total time for 128 and 256 processors. We 
determined that a few processors performing local merge spend a majority of the time.  Local 
merge creates an adaptive kd-tree and then finds and merges the nodes on the skin for all 
elements local to a particular processor. This jump in time for merging is possibly due to the 
large number of searches for determining the nodes to be merged locally. We plan to fix this 
problem in future versions of the tool by using a different tree and/or fixing the existing kd-
tree implementation. 

 Compared with serial, the total time required to generate this model drops to 22 
minutes for 320 processors, and for 512 and 712 processors this time further drops to 10 
minutes and 8 minutes, respectively. The overall maximum memory required by a processor 
decreases as the number of processors increases. 
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3.3 VERA	  Benchmark	  Problems	  

RGG tools were used to create 2D meshes for CASL-VERA benchmark problems and 
test the PROTEUS-SN code developed at Argonne National Laboratory. The meshes shown 
in this section were developed by the Oak Ridge team using RGG GUI, MeshKit, AssyGen, 
and Cubit. AssyGen was used for modeling both the single pin and 17x17 assembly model 
shown in Figure 28. AssyGen keywords were used to specify radial mesh size and edge mesh 
interval. Using regular paving to mesh assemblies with several concentric pins fails to 
generate a valid mesh for the geometry. Instead, the scheme “hole” must be used for better 
meshing stability and generation of a good-quality mesh. 

 

  
Figure	  27.	  Simple	  pincell	  model.	  (left:	  coarse,	  right:	  refined)	  

 

  
Figure	  28.	  17x17	  PWR	  assembly	  model	  
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4 Documentation	  

MeshKit contains detailed documentation for a new user or developer to get started. 
The SIGMA v1.0 release focused on releasing all the associated libraries at the same time, 
including MeshKit v1.2 with documentation and a common webpage. Documentation and 
guides for MeshKit can be obtained from four major sources : 

1. SIGMA Website: This is a one-stop place containing introduction, related links, 
and all the latest news and developments about CGM, MOAB, Lasso, and 
MeshKit. It also contains links to other sources of documentation mentioned in 
this section. Publications and download and build instructions for all the SIGMA 
components are available here. 

2. Doxygen: MeshKit user and developers guide along with detailed documentation 
of all of MeshKit C++ classes are available from the MeshKit doxygen page. This 
is updated nightly, enabling the documentation to go hand in hand with code 
development. Doxygen pages also detail examples and tests for new users to start 
using MeshKit. 

3. Bitbucket: All SIGMA code is hosted on Bitbucket, which includes build 
instructions along with information on branches and other developer-related 
information. 

4. GitHub: Kitware has hosted the code for RGG GUI on GitHub. This code is 
publicly available and can be used to build MeshKit and the RGG GUI app 
discussed in Section 5. Information about branches and other code-related 
documentation are available on this site. 

5. RGG GUI Manual: The instructions manual on using the RGG GUI application 
for creating reactor assembly and core models is available from Kitware GUI App. 
This can be generated by specifying the option to “build documentation” during 
the build process of the RGG GUI app. 

5 RGG	  GUI	  1.0	  Release	  and	  Collaboration	  with	  Kitware	  

In collaboration with Kitware Inc., the SIGMA team worked on developing a 
graphical user interface for MeshKit and RGG. Kitware Inc. is also the developers of the 
CMake build system and their staff is contributing to streaming and setting up CMake build 
systems for all SIGMA libraries. This year we have hosted training sessions at Oak Ridge and 
Argonne National Laboratory for the RGG GUI app. The feedback from users and experts 
along with our collaboration has made RGG a powerful application.  

AssyGen, from Meshkit, takes in text files that describe a collection of pins and ducts 
and generates solid models of these assemblies. The assemblies are then passed to CUBIT in 
order to generate hexahedral meshes of these assemblies. CoreGen, from Meshkit, takes these 
meshes, along with a core layout text file, and produces an acceptable mesh of the reactor 
core. Any modifications to the assemblies or core text files will require the appropriate part of 
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the workflow to be re-executed. Although this workflow is powerful and can generate a large 
range of reactor core models and meshes, it has been used primarily by expert meshing 
computational scientists, not by non-expert/non-meshing computational scientists, nuclear 
engineers, or technicians. The RGG application was designed to address this specific issue 
while enhancing productivity of the meshing expert. Without the ability to visualize and 
graphically interact with key sections of the workflow, all users will produce errors in a file-
based workflow, which may not be caught until the simulation itself is run, resulting in wasted 
time and resources.  The overall MeshKit RGG workflow is given in Figure 1.   

Steps involved in RGG GUI app are as follows: 
1. Designing Pins: The first stage involves designing the individual pin cells that 

will be used in a reactor’s subassemblies. These pins represent fuel, control rods, 
and various instrumentation. The pin cell editor presents a pin cell as a collection 
of segments. Each of these segments is shaped as either a cylinder or a truncated 
cone. By default, the editor constrains neighboring segments to have the same 
mating radii. If the end user changes one segment’s radius, all constrained radii are 
automatically updated. In addition, the pin editor allows the end user to define 
contiguous layers throughout the pins. Each layer is assigned its own material.  See 
Figure 29. 
 

 

Figure	  29.	  Pin	  being	  edited	  using	  RGG’s	  pin	  cell	  editor. 
2. Designing Ducts: The second stage involves designing the ducts of the sub-

assemblies that will be used in laying out the core. Each assembly consists of a set 
of ducts that will contain the pins. The overall height of the ducts and pins must be 
the same across all of the core assemblies. To enforce this requirement, the user 
can set the overall core length, which is then enforced through the workflow. 
Similar to the pin editor, the GUI provides users with the ability to specify the duct 
structure of each sub-assembly.   
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Figure	  30.	  Simple	  duct	  being	  designed	  that	  consists	  of	  two	  materials.	  One	  material	  forms	  the	  walls	  

of	  the	  subassembly,	  while	  water	  is	  assigned	  as	  the	  inside	  material.	  

3. Designing Assemblies: In the third stage, the pins and ducts are available for 
placement within a subassembly lattice, shown in Figure 30. The subassembly 
editor provides both a 3D view of the assembly and an editable 2D lattice view 
that supports drag and drop interaction. The offset between neighboring pins in the 
assembly is referred to as the pitch and depends on the size of the inner layer of the 
duct. Since the majority of assembly designs place the pins so that they are 
equidistant within the duct, RGG provides a mechanism to autocenter the pins. An 
example reactor assembly is shown in Figure 31. 

 
Figure	  31.	  Example	  reactor	  assembly	  in	  RGG	  
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4. Core Layout: In the fourth stage, the complete core is defined by placing the 
different subassemblies into the core’s lattice. Similar to the sub-assembly editor, 
the core editor view provides a 3D view of the core, as well as the editable 2D 
lattice views. Figure 32 depicts various examples of core layouts.  

 

Figure	  32.	  A	  simple	  hexagonal	  reactor	  core	  modeled	  in	  RGG.	  

 
5. Generating Mesh: The final step involves calling AssyGen, CoreGen, and Cubit 

in order to produce the required solid models and meshes. The process is initiated 
within the RGG application. RGG does this through another Kitware toolkit, the 
open-source Remote Meshing Utilities (ReMUs). ReMUs can execute the various 
tools while allowing RGG to remain interactive. ReMUs relays the status of these 
external tools back, while providing the ability to abort the sequence while it is 
running. Once these processes are complete, RGG enables the display of the core 
mesh, using MOAB, as well as visualization of the various components of the 
mesh, based on volumes, materials, and boundary condition element sets. 
 

Figures 33, 34, and 35 show various examples of a reactor core mesh, a 199 assembly 
ABTR, and a PWR reactor core with five different types of assemblies, respectively, each 
generated by using RGG. 
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Figure	  33.	  An	  example	  of	  a	  nuclear	  reactor	  core	  mesh	  generated	  using	  RGG.	  

 

 
Figure	  34.	  199	  Assembly	  ABTR	  created	  using	  RGG.	  
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Figure	  35.	  A	  PWR	  reactor	  core	  with	  five	  different	  types	  of	  assemblies	  modeled	  using	  RGG.	  

6 Conclusions	  	  

MeshKit provides a robust parallel infrastructure for geometry/meshing researchers, 
tool developers, and users needing to generate geometry/mesh. MeshKit has most of the 
traditional meshing algorithms required for meshing complex geometries. Moreover, we have 
devoted  significant effort to the build system and documentation in MeshKit v1.2. 

The RGG tools consist of AssyGen and CoreGen, both of which use text-based input 
files. These input files are based on a set of keywords that help define the geometry and 
meshing parameters for creating a nuclear reactor core. The RGG GUI enables users to build 
the reactor model without writing text-based input files. The GUI is intuitive and easy to 
understand; it comes with a users manual; and it works with Linux, Mac OSX and Windows 
operating system. The RGG GUI developed by Kitware as a part of an SBIR can display the 
geometry and meshes created by AssyGen and CoreGen, respectively. 

MeshKit is ideally suited for development of new meshing tools. Simulation of 
complex systems such as nuclear reactors requires detailed models that properly capture the 
geometric shape and have correct specification of material and boundary conditions. Different 
physics such as neutron transport, fluid flow, thermal expansion, and heat transfer must be 
studied in order to fully understand the performance and safety aspects of nuclear reactors. 
The parallel RGG tools enable the creation of such large and complicated reactor models for 



2014	  MeshKit	  Release	  
Rajeev	  Jain	  and	  Vijay	  Mahadevan	   	   39	  

ANL/MCS-‐TM/344	  

different physics simulations. Several enhancements and fixes to the AssyGen/CoreGen tools 
in RGG, including introduction of shifting material and Neumann set ids, have been 
incorporated in this release. With the introduction of the new distribution scheme for 
CoreGen, we can create meshes such as the finer ABTR core mesh (file on disk is 137 GB 
and consists of more than a 1 billion hexahedral elements). Such meshes are impossible to 
construct by using serial meshing processes on a standalone workstation. We plan to create 
fully detailed models and coupling results for these models. Work is in progress for 
developing geometry partitioning-based meshing algorithms to mesh the assemblies in 
parallel. Also, new schemes are being formulated for a better load-balancing during 
copy/move task distribution; this scheme will combine existing schemes with more weightage 
given to meshes with larger element count. Parallel AssyGen development would involve 
creation of individual pins and components in parallel, but we lose the speedup with serial 
subtraction of pins; this development therefore is subject to development of parallel 
subtraction of geometries in CGM. 

Current work involves adapting the RGG GUI app to run in parallel and developing an 
open source tri mesher to have a completely open RGG GUI app, which currently depends on 
Cubit (closed source). We are also involved in linking of the Gmsh meshing package with 
MeshKit. Also planned are development of automatic scheme selection and support for 
higher-order elements in postmesh boundary layer tools. 
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Appendix	  A. Autotools	  Based	  Configure/Build/Installation	  of	  MeshKit	  

MeshKit is maintained as open source software under an LGPL license and is 
therefore distributed in source code form. The library uses several required and optional 
libraries that must be built and installed prior to MeshKit installation.  MeshKit is currently 
supported on Linux and Linux-like operating systems (including MacOS). 
 
Prerequisites 

MeshKit requires the following libraries to be installed before configuration: 

• CGM: a library for representation, query and modification of geometric 
models; see [2] for details on obtaining and building CGM. 

• MOAB: a library for representing structured and unstructured mesh; see [5] for 
details on obtaining and building MOAB. 

• Autotools: a set of Linux utilities for configuring software packages.  
Autotools can be found in most Linux package managers, and usually consists 
of the Autoconf and Automake packages. 

In addition, if a parallel version of MeshKit is desired, the Message Passing Interface 
(MPI) must be available on the use’s computer; binary versions of MPI can be found in most 
Linux package managers. 
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Download, Configure, Build, Install 

MeshKit source code is maintained in a world-readable svn repository, located at 
https://www.bitbucket.org/fathomteam/moab/moab.git. By default, MeshKit uses a GNU 
Autotools-based configuration process.  The following steps should be used to configure, 
build, and install MeshKit: 

• Unpack the source tarball into a directory referred to below as <MK_DIR> and 
change directory into that location. 

• Execute ‘autoreconf –fi’.  This executes a series of tools in the autotools suite, 
storing some generated files in the ‘config’ subdirectory. 

• Execute ‘./configure’ with appropriate options.  Two configure options are 
required, specifying the locations of CGM (--with_igeom=<location>) and 
MOAB (--with-imesh=<location>).  Other useful configure options are the 
installation location (--prefix=<location>) and specifying debug or optimized 
builds (--enable-debug, --enable-optimized, respectively).  For a complete list 
of options, execute the command ‘./configure –help’.  After a successful 
configuration, a set of Makefile’s are generated in the proper subdirectories.   

• To complete the build of MeshKit, execute ‘make’. 

• To install MeshKit, execute ‘make install’.  If the install location was not 
specified on the configure line, one can specify a location in this step by using 
the command ‘make prefix=<location> install’. 

For those wishing to use the Python interface, MeshKit and its dependencies should be 
configured to build shared libraries, using the ‘--enable-shared’ configure option where 
appropriate. 

Once the MeshKit library has been built, it is ready for inclusion into user-developed 
applications (any MeshKit-packaged programs; e.g., those that constitute RGG, will be 
installed in the ‘bin’ directory).  To aid in building user-developed applications, MeshKit also 
writes a file ‘meshkit.make’, which can be included directly into application makefiles.  This 
file defines the following make variables useful for building MeshKit-based applications: 

• MESHKIT_INCLUDES, MESHKIT_CPPFLAGS: compiler options 
pointing to all directories containing include files available to applications, 
including those for CGM and MOAB; also, CPP definitions controlling which 
optional external meshing tools have been configured into MeshKit. 

• MESHKIT_LIBS_LINK: linker options necessary to satisfy all functions 
included in MeshKit. 
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The ‘examples’ subdirectory in the MeshKit source installation contains an example 
makefile  showing how these make variables can be used to compile and link MeshKit-based 
applications. 

Appendix	  B. CMake-‐Based	  Builds:	  RGG	  Nuclear	  GUI	  Repository	  (SBIR:	  
Kitware)	  	  

An open-source public release of RGG version 1.0 was done on August 10, 2014. The 
code is maintained in a world readable repository, located at 
https://github.com/Kitware/RGG.git. The source code includes a CMake SuperBuild for 
building MeshKit as well as RGG’s other open-source dependencies, CGM, MOAB, 
OpenCASCADE, ReMUs, VTK, and QT. The Cubit meshing tool is available through Sandia 
National Labs. CMake-based build systems for RGG GUI and MeshKit have been developed 
and are part of the RGG GUI source code.  

For all CMake-based builds, the latest version of CMake must be installed. The latest 
version of CMake is available here: http://www.cmake.org/download/ . 

RGG GUI Superbuild 

The RGG GUI can be downloaded and built to work on a Linux, Mac OSX, or 
Windows operating system. The build system for RGG GUI can be separate from MeshKit. In 
future versions of the tool, binaries to the GUI app for all types of OSX will be available.  

Prerequisites 

• Git for downloading the source code from the web. 

• Latest version of CMake. 

• OpenGL. This isn’t installed as a part of RGG GUI installation and must be 
available in the system on which installation is performed. 

Steps for building the RGG GUI  

• Get the repository git clone https://github.com/Kitware/RGG.git  

• cd RGG/superbuild, mkdir build, cd build 

• Invoke cmake or ccmake on RGG directory: ccmake .. 

• Choose the appropriate options.  

o Turn BUILD_DOCUMENTATION ON to generate the RGG GUI 
users guide. 
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o There are options to use libraries already available in the system, e.g., 
use of existing Qt library. 

o Building with MOAB support is optional. If the GUI is built without 
MOAB support, loading of the final mesh file generated by CoreGen 
doesn’t work. 

o Building with MeshKit and CUBIT is also part of the options; they are 
turned off by default. 

• Run ccmake .., configure, generate and exit. 

• Run ‘make’. 

• For linking the libraries LD or DYLD, _LIBRARY_PATH=<your 
directory>/superbuild/build/install/lib. 

• RGGNuclear app is installed in the folder <your 
directory>/superbuild/build/nuclearRGG/src/nuclearRGG-build/Application/ 

Why is this last point here  - it is not a step unless you mean Install the RGG… 

MeshKit Superbuild 

The source code in GitHub repository contains a separate build system for MeshKit, 
and associated SIGMA tools can be downloaded and built to work on a Linux, Mac OSX, or 
Windows operating system. The build system for RGG GUI can be separate from MeshKit. In 
future versions of the tool binaries to the GUI app for all types of OSX would be available 

Prerequisites 

• Git for downloading the source code from the web. 

• Latest version of CMake. 

Steps for building MeshKit using CMake are:  

• Get the repository git clone https://github.com/Kitware/RGG.git  

• cd RGG/meshkit, mkdir build, cd build 

• Invoke cmake or ccmake on meshkit directory: ccmake .. 

• Choose the appropriate options.  

o Turn BUILD_WITH_CUBIT ON to build CGM with CUBIT option; 
the script requires the CUBIT installation directory to proceed. 
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o MOAB dependencies HDF5 and NetCDF are currently supported in 
serial mode only. Options to use system-installed version are also 
available. 

o  Support for OCE-based CGM is also available and is turned on by 
default.  

• For linking the libraries set LD or DYLD, _LIBRARY_PATH=<your 
directory>/meshkit/build/install/lib. 

• All done, launch the executable “assygen” and “coregen” from the folder 
<your directory>/meshkit/build/install/bin. 

Appendix	  C. Input	  File	  for	  a	  Fuel	  Assembly	  with	  24	  Axial	  Regions	  	  
 
!############################################################################## 
! ABTR Minimal Fuel (cm).  
!################################################################################ 
Geometry Volume 
GeometryType Hexagonal  
!                                     
Materials 36 MTLP MTLP & 
MACLP MACLP & 
Oplenum Oplenum & 
StHT9 StHT9 & 
Ustructure Ustructure & 
GPNA_BC GPNA_BC & 
GPNA01 GPNA01 & 
GPNA02 GPNA02 & 
GPNA03 GPNA03 & 
GPNA04 GPNA04 & 
GPNA05 GPNA05 & 
GPNA06 GPNA06 & 
GPNA07 GPNA07 & 
GPNA08 GPNA08 & 
GPNA09 GPNA09 & 
GPNA10 GPNA10 & 
GPNA11 GPNA11 & 
GPNA_BACLP GPNA_BACLP & 
GPNA_ACLP GPNA_ACLP & 
GPNA_BTLP GPNA_BTLP & 
GPNA_TLP GPNA_TLP & 
GPNA_ATLP GPNA_ATLP & 
NAHT9 NAHT9 & 
Active01 Active01 & 
Active02 Active02 & 
Active03 Active03 & 
Active04 Active04 & 
Active05 Active05 & 
Active06 Active06 & 
Active07 Active07 & 
Active08 Active08 & 
Active09 Active09 & 
Active10 Active10 & 
GP_FuelBond GP_FuelBond & 
GP_Bond GP_Bond & 
GP_GasBond GP_GasBond 
Duct 4 0 0 38 80.1 13.598 14.198 14.463 14.598 NAHT9 StHT9
 GPNA_BC GPNA_BC 
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Duct 4 0 0 80.1 98 13.598 14.198 14.463 14.598 NAHT9 StHT9
 GPNA_BC GPNA_BC 
Duct 4 0 0 98 106 13.598 14.198 14.463 14.598 Active01
 StHT9 GPNA01 GPNA01 
Duct 4 0 0 106 114 13.598 14.198 14.463 14.598 Active02
 StHT9 GPNA02 GPNA02 
Duct 4 0 0 114 122 13.598 14.198 14.463 14.598 Active03
 StHT9 GPNA03 GPNA03 
Duct 4 0 0 122 130 13.598 14.198 14.463 14.598 Active04
 StHT9 GPNA04 GPNA04 
Duct 4 0 0 130 138 13.598 14.198 14.463 14.598 Active05
 StHT9 GPNA05 GPNA05 
Duct 4 0 0 138 146 13.598 14.198 14.463 14.598 Active06
 StHT9 GPNA06 GPNA06 
Duct 4 0 0 146 154 13.598 14.198 14.463 14.598 Active07
 StHT9 GPNA07 GPNA07 
Duct 4 0 0 154 162 13.598 14.198 14.463 14.598 Active08
 StHT9 GPNA08 GPNA08 
Duct 4 0 0 162 165.2 13.598 14.198 14.463 14.598 Active09
 StHT9 GPNA09 GPNA09 
Duct 4 0 0 165.2 170 13.598 14.198 14.463 14.598 Active09
 StHT9 GPNA09 GPNA09 
Duct 4 0 0 170 178 13.598 14.198 14.463 14.598 Active10
 StHT9 GPNA10      GPNA10 
Duct 4 0 0 178 182 13.598 14.198 14.463 14.598 GP_FuelBond
 StHT9 GPNA11    GPNA11 
Duct 4 0 0 182 182.89 13.598 14.198 14.463 14.598 GP_FuelBond
 StHT9 GPNA11    GPNA11 
Duct 4 0 0 182.89 183.12 13.598 14.198 14.463 14.598 GP_Bond      
 StHT9 GPNA_BACLP       GPNA_BACLP 
Duct 4 0 0 183.12 193.28 13.598 14.198 14.463 14.598 GP_Bond         
 StHT9 MACLP GPNA_ACLP 
Duct 4 0 0 193.28 202.654 13.598 14.198 14.463 14.598 GP_Bond
 StHT9 GPNA_BTLP GPNA_BTLP 
Duct 4 0 0 202.654 267 13.598 14.198 14.463 14.598 GP_GasBond
 StHT9 GPNA_BTLP GPNA_BTLP 
Duct 4 0 0 267 298 13.598 14.198 14.463 14.598 GP_GasBond
 StHT9 GPNA_BTLP GPNA_BTLP 
Duct 4 0 0 298 312.72 13.598 14.198 14.463 14.598 Ustructure
 StHT9 GPNA_BTLP GPNA_BTLP 
Duct 4 0 0 312.72 322.88 13.598 14.198 14.463 14.598 Ustructure
 StHT9 MTLP GPNA_TLP 
Duct 4 0 0 322.88 328 13.598 14.198 14.463 14.598 Ustructure
 StHT9 GPNA_ATLP GPNA_ATLP 
Duct 4 0 0 328 358 13.598 14.198 14.463 14.598 Oplenum
 Oplenum Oplenum Oplenum 
Assembly 1   
XX                  
Center 
Rotate Z 30 
RadialMeshSize 0.1 
AxialMeshSize 1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
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1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
1 & 
1 
EdgeInterval 3 
CreateSideset No 
CreateMatFiles 6 
List_MaterialSet_StartId 6 & 
1622000   & 
1818000   & 
1821000   & 
1916000   & 
2118000   & 
2219000  
List_NeumannSet_StartId 6 & 
1622000   & 
1818000   & 
1821000   & 
1916000   & 
2118000   & 
2219000  
END 

Appendix	  D. Input	  File	  for	  a	  Fuel-‐only	  Mini-‐core	  with	  Restraint	  Rings	  
 
 
!##################################################################################
### 
! Simple 7 assembly All Fuel ABTR Mini-Core With 3 Rings 
!##################################################################################
### 
! 
Geometry Volume   ! 'Geometry' card defines if the meshes are volume or surface 
Symmetry 1     ! 'Symmetry' card defines the desired symmetry in the model 
GeometryType HexFlat  ! 'GeometryType' card can take values Hexagonal Rectangular 
Assemblies 7 14.598   ! 'Assemblies' is #assembly mesh files and their pitch 
1916000.exo 1916     ! Meshfile name followed by alias    
1622000.exo 1622 
2118000.exo 2118 
2219000.exo 2219 
1818000.exo 1818 
1821000.exo 1821 
1620000.exo 1620 
Lattice 2 
    1916  1622            & 
  2118  2219  1818        & 
    1620  1821        
NeumannSet Top  1                        
NeumannSet Bot  2                        
Background or.exo     ! Background mesh file 
OutputFileName 7a_all_fuel.h5m 
END 
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