
 
 
 
 
 
 
 
 

 

 
 

ANL/NE-14/5 

 

 

PROTEUS-SN Methodology Manual 
 
 
 
 

Nuclear Engineering Division 



 

 

 

 

 

 

 

 

 

 

 

 

 

About Argonne National Laboratory  

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC  

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,  

at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne  

and its pioneering science and technology programs, see www.anl.gov.  

 

 

DOCUMENT AVAILABILITY 
 

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a 

growing number of pre-1991 documents are available free via DOE’s SciTech Connect 

(http://www.osti.gov/scitech/) 

 
Reports not in digital format may be purchased by the public from the 

National Technical Information Service (NTIS): 

U.S. Department of Commerce 

National Technical Information Service 

5301 Shawnee Rd 

Alexandra, VA 22312 

www.ntis.gov 

Phone: (800) 553-NTIS (6847) or (703) 605-6000 

Fax: (703) 605-6900 

Email: orders@ntis.gov 

 
Reports not in digital format are available to DOE and DOE contractors from the 

Office of Scientific and Technical Information (OSTI): 

U.S. Department of Energy 

Office of Scientific and Technical Information 

P.O. Box 62 

Oak Ridge, TN 37831-0062 

www.osti.gov 

Phone: (865) 576-8401 

Fax: (865) 576-5728 

 

 

 

 

 

 

Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States  

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express  

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,  

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific  

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply  

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of  

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,  

Argonne National Laboratory, or UChicago Argonne, LLC.  

 

http://www.osti.gov/scitech/)
http://www.ntis.gov/
mailto:orders@ntis.gov
http://www.osti.gov/


 
 
 

 

 
 
 
 
 

ANL/NE-14/5 

 

PROTEUS-SN Methodology Manual 
 
 
 

prepared by 

Emily R. Shemon, Micheal A. Smith, and Changho Lee  

Nuclear Engineering Division, Argonne National Laboratory 

 

 

 

 

June 30, 2014 





PROTEUS-SN Methodology Manual 
June 30, 2014 

 

 i ANL/NE-14/5  

 

ABSTRACT 

PROTEUS-SN is a three-dimensional, neutron transport code developed at Argonne 

National Laboratory. The code is applicable to all spectrum reactor transport calculations, 

particularly those in which a high degree of geometric detail is needed to resolve solution 

gradients. PROTEUS-SN solves the second order formulation of the transport equation using 

the continuous Galerkin finite element method in space, the discrete ordinates approximation 

in angle, and the multigroup approximation in energy. PROTEUS-SN’s parallel methodology 

permits the efficient decomposition of the problem by both space and angle, permitting large 

problems to run efficiently (scalable) on hundreds of thousands of cores. PROTEUS-SN can 

also be used in serial or on smaller compute clusters (10’s to 100’s of cores) for smaller 

homogenized problems, although it is generally more computationally expensive than 

traditional homogenized methodology codes. PROTEUS-SN has been used to model partially 

homogenized systems, where regions of interest are represented explicitly and other regions 

are homogenized to reduce the problem size and required computational resources.  

PROTEUS-SN is based upon sound numerical methodologies from the 1970s as it was 

intended to be a demonstration of the available parallelism. It is important to note that these 

algorithms are not accelerated significantly and thus performance compared with modern 

algorithms may not be optimal. PROTEUS-SN provides forward and adjoint eigenvalue 

calculation options using the power method. It treats neutron upscattering (in energy) by using 

conventional Gauss-Seidel iteration where each within-group system of equations is solved 

using synthetic diffusion accelerated scattering iterations with a SSOR-preconditioned 

conjugate gradient method (PETSc library) used to invert the streaming and collision 

operator.  

A kinetics option based upon the adiabatic form of the quasi-static approximation has 

recently been included for performing simple time-dependent calculations in addition to 

standard steady state calculations. PROTEUS-SN handles void and reflective boundary 

conditions. Multigroup cross sections are generated with the MC
2
-3 fast reactor multigroup 

cross section generation code or the cross section API. PROTEUS has been demonstrated to 

solve 500 billion - 1 trillion degrees of freedom on leadership computing resources. 

PROTEUS-SN is written in Fortran 90 and links to the PETSc, METIS, HDF5, and 

MPICH libraries. It optionally links against the MOAB library and is a part of the SHARP 

multi-physics suite for coupled multi-physics analysis of nuclear reactors. 

This document describes the methodology used in the PROTEUS-SN neutronics code, 

including theory, derivation, and numerical implementation. A companion user guide 

describes how to perform analysis with the code. 
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1 Introduction 
 

PROTEUS-SN is a three-dimensional neutron transport code targeted for modeling detailed 

geometry nuclear reactor applications. This document provides a basic description of the 

methodology in PROTEUS-SN for steady state and time-dependent calculations. 

1.1 Background 

PROTEUS-SN is a neutron transport code developed at Argonne National Laboratory that 

targets problems that require detailed spatial representations in order to resolve difficult spatial 

gradients. Spatially detailed solutions require large computational resources in order to (a) 

reduce the memory requirements per node and (b) reduce the wall-clock time to solution. 

PROTEUS-SN’s implementation permits the parallel decomposition of the problem by both 

space and angle, permitting large problems to run on hundreds of thousands of cores. 

PROTEUS-SN can also be used in serial or on smaller compute clusters (10’s to 100’s of cores) 

for smaller homogenized problems, although it is generally more computationally expensive than 

traditional homogenized methodology codes for those conventional problems. PROTEUS-SN 

has been used to model partially heterogeneous systems, where the regions of interest are 

represented explicitly and other regions are homogenized to reduce the problem size and 

required computational resources. Providing accurate multigroup cross sections to PROTEUS is 

key to obtaining accurate results in all cases. For homogenized regions, a considerable amount of 

work has been done in the past and we rely upon MC
2
-3 [1] for fast reactor cross section 

generation. For heterogeneous cross section, considerable research is still required and is thus a 

major area of recent work [2]. 

1.2 Code Summary 

PROTEUS-SN is based upon the second order formulation of the transport equation. The 

second order “even-parity” form of the transport equation is discretized using the continuous 

Galerkin finite element method in space, the discrete ordinates approximation in angle, and the 

multigroup approximation in energy. It solves both forward and adjoint eigenvalue problems 

using conventional power iteration with up-scattering treatments and only has simple boundary 

condition treatments (vacuum and specular reflection). We have recently added an adiabatic 

option based on the quasi-static kinetics approximation to allow modeling of simple time-

dependent problems. 

Multigroup cross sections are read from *.anlxs or *.ISOTXS formatted files. The latter is the 

native file format for Argonne’s MC
2
-3 fast reactor multigroup cross section generation code and 

is also the compatible format for Argonne’s well-established neutronics code, DIF3D. 

PROTEUS does not perform gamma radiation transport. However, PROTEUS accounts for 

power production by gammas by assuming that the gammas are absorbed at the location where 
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they are emitted. This is a conventional approximation to account for power production without 

implementation of full gamma transport. 

The overall solution technique in PROTEUS-SN is discretization of the even-parity transport 

equation into a linear system of equations for the even-parity component of the angular flux. 

PROTEUS-SN permits parallelization of neutron transport problems in both space and angle 

which significantly reduces in the per-processor memory load for a given problem. The efficient 

parallel techniques in PROTEUS-SN permit the solution of very large problems. PROTEUS has 

been demonstrated to solve 500 billion - 1 trillion degrees of freedom on leadership computing 

resources. 

PROTEUS-SN is written in Fortran 90 source code and also includes C preprocessor 

definitions. The code links against the PETSc [3], METIS [4], HDF5 [5], and MPICH [6] 

libraries. It optionally links against the MOAB [7] library and is part of the SHARP [8] multi-

physics suite for coupled multi-physics analysis of nuclear reactors. 
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2 Theory 

In this section we describe the history of PROTEUS-SN and provide a detailed description of 

the methodology used inside the code. 

2.1 History 

Development of PROTEUS-SN began in 2005 under the DOE Nuclear Energy Advanced 

Modeling and Simulation (NEAMS) program. PROTEUS-SN is the product of an original 

research code, termed “UNIC: Ultimate Neutronics Investigation Code”, created to study the 

performance of different neutron transport algorithms for the targeted application of transitioning 

from homogenized to high-fidelity neutron transport calculations. Several solvers were 

developed under the UNIC framework [9], including PN2ND (a spherical harmonics/finite 

element method), SN2ND (a discrete ordinates/finite element method), and MOCFE (a 3D 

method-of-characteristics on unstructured finite element mesh). The PROTEUS-SN code is 

equivalent to the SN2ND code, and previous literature references refer to the code as SN2ND. 

The aforementioned codes were tested on various architectures ranging from small Linux 

clusters to leadership machines with hundreds of thousands of cores (IBM BG/P and Cray XT5). 

Compared to the PN2ND spherical harmonics solver based on the even-parity formulation, 

PROTEUS-SN takes more iterative time due to the need for scattering iterations. However, 

PROTEUS-SN has a large reduction in memory usage compared to PN2ND due to the greatly 

reduced coupling in the angular space of the system of linear equations. Additionally, the 

PN2ND solver breaks down for transport problems which have discontinuities in the angular 

flux, while the SN2ND solver does not suffer the same consequence. The memory requirements 

in MOCFE were considered too large, and an alternative solver PROTEUS-MOC was developed 

[10] as an alternative method-of-characteristics technique. PROTEUS-MOC is not discussed in 

this manual. 

2.2 Summary of Approximations in Angle, Space, Energy and Time 

PROTEUS-SN solves the even-parity formulation of the neutron transport equation using the 

following approximations for the angular, spatial, and energy variables: 

 Discrete ordinates approximation for the angular variable 

 Continuous finite element approximation for the spatial variable 

 Multigroup approximation for the energy variable 

PROTEUS-SN does not include explicit time dependence. However, an adiabatic time-

dependent capability has recently been implemented [11]. 

2.3 Even-Parity Formulation 

PROTEUS-SN is based on the second-order even-parity formulation of the transport equation 

which is less widely used than the familiar first-order form. The second-order form was chosen 

because it works well with the continuous finite element method for spatial discretization and 
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there are considerable problems with scaling sweeping methods based on first order treatments 

on unstructured meshes.  When the second order formulation is discretized with the continuous 

finite element method, the resulting within-group linear system is symmetric positive definite 

which allows the well-established parallel conjugate gradient algorithm to be applied. The 

parallel conjugate gradient method has been well-established in other physics fields and is 

known to have efficient parallel performance.  

The second-order formulation has known drawbacks. First, the presence of the inverse total 

cross section term results in an ill-posed system of equations for void mediums (due to division 

by zero). This issue can be circumvented by homogenization of void regions with neighboring 

materials. However, this required homogenization inherently limits the heterogeneous capability 

of the code. Finally, the condition number of the matrix corresponding to the discretized system 

of equations increases quadratically as the element size is reduced. Further, the condition number 

increases considerably as the polynomial order of the element basis functions increase(linear, 

quadratic, cubic, etc.). Finally, the methodology does not display more than second order 

convergence with respect to spatial mesh refinement, whereas first order forms can display 

second or third order accuracy. All of these issues pose serious problems  with regard to 

modeling, but the even-parity method was chosen as it posed the best case scenario for 

performance and scalability (if it performed worse than first order sweeping codes then there is 

no point in looking at better continuous finite element treatments). Based on experience, we 

recommend using a larger number of linear elements rather than using quadratic elements for 

heterogeneous geometry modeling. We note that there are known continuous finite element 

schemes which avoid all of the preceding problems, but they have been studied far less than the 

current research.  

2.4 Derivation of the Second-Order Even-Parity Formulation 

To derive the even-parity form of the transport equation upon which PROTEUS-SN is based, 

we begin with the time-independent form of the Boltzmann transport equation taken from Lewis 

[12]. 

0

ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , ) ( , , ) ( , , ) ( , , ) ' '

ˆ( ) ( , ) ( , ) ( , , )

t s

f

r E r E r E r E E r E d dE

E r E r E dE q r E

  

  


             

     

 


 (2.1) 

In Eq. (2.1), the quantity ˆ( , , )r E   represents the neutron angular flux which is a function of 

three space variables (x, y, and z in r ), two angular variables (  and   in ̂ ), and one energy 

variable ( E ). The quantity ( , )r E  is the angular flux integrated over all angles on the unit 

sphere. The macroscopic total cross section, ( , )t r E , represents the sum of all possible neutron 

reaction probabilities with energy E at the point r . Similarly, the scattering kernel 

ˆ ˆ( , , )s r E E     represents the probability that a particle at r  with energy E  traveling in 
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the direction ˆ   is scattered into energy dE  about E  with direction d  about ̂ . The 

term ( , )f r E  represents the total number of fission neutrons being born as a result of a fission 

occurring at energy E  at the point r . These secondary fission source neutrons are emitted with 

energy distribution  ( )E . Finally, ˆ( , , )q r E  is a generic external fixed neutron source. Note 

the implementation of PROTEUS-SN does not currently allow fixed external sources, but we 

include the term for completeness. 

The first step in a deterministic formulation is to apply a multigroup approach [12] to the 

energy dependence of the neutron flux. This approach divides the energy range of interest into G 

intervals with an upper energy cutoff, 0E , and lower energy cutoff, GE , as seen in Figure 2.1.  

 

 

Figure 2.1 Splitting of the Energy Range into Energy Groups 

 

Integrating the transport equation over energy group g results in G equations where the 

degrees of freedom are the group angular fluxes ˆ( , )g r   defined by Eq. (2.2), 

 

1ˆ ˆ( , ) ( , , )

ˆ( , , ) , 1, , .

g

g

E

g
E

g

r r E dE

r E dE g G

 





  

  




 (2.2) 

The multi-group cross sections in the resulting equations are defined in more detail elsewhere 

[12]. Using these relationships, the multigroup Boltzmann transport equation is derived exactly 

as 

 

, , ' '

' 1

,

' 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ) ( , )

ˆ( ) ( ) ( , )

G

g t g g s g g g

g

G

g f g g g

g

r r r r r d

r r q r

  

  





 



          

   




 (2.3) 

It is convenient to lump the group-to-group scattering sources (except the within group 

scattering term) into one term called the group source in order to obtain Eq. (2.4), a familiar form 

for the within group transport equation: 

 ,
ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ) ( , )g t g g g gr r r W r S r          (2.4) 
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The term ˆ( , )gW r   represents the within-group scattering source, and the term 

ˆ( , )gS r  represents the fission source, external source, and in-scattering source to energy group 

g  from other groups. Expanding the differential scattering cross section into Legendre basis 

functions of M
th

 order, 
, ' , ,

0

ˆ ˆ ˆ ˆ( , ) ( ) ( )
M

s g g s g g m m

m

r r P 



      , we define the within-group 

and other sources by 

 

,

, ,

0

ˆ ˆ ˆ ˆ ˆ( , ) ( , ') ( , ') '

ˆ ˆ ˆ ˆ( ) ( ) ( , ') '

g s g g g

M

s g g m m g

m

W r r r d

r P r d











     

    




 (2.5) 

, ' ' ,

' ' 1

, , ' ,

' 0 ' 1

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( ) ( ) ( , )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( , ) ( ) ( ) ( , )

G G

g s g g g g f g g g

g g g

G M G

s g g m m g g f g g g

g g m g

S r r r d r r q r

r P r d r r q r

   

   

 

 

 

  

           

          

 

 

(2.6) 

To derive the second order even-parity formulation, we define the even-parity component 

ˆ( , )g r    to be the sum of the angular flux evaluated at directions ̂  and ˆ . Similarly, the 

odd-parity angular flux ˆ( , )g r   is defined as the difference of the true angular flux evaluated at 

directions ̂  and ˆ .  

  
1ˆ ˆ ˆ( , ) ( , ) ( , )
2

g g gr r r         (2.7) 

It follows directly that the angular flux can be written as the sum of the even- and odd-parity 

components: 

 ˆ ˆ ˆ( , ) ( , ) ( , )g g gr r r         (2.8) 

The even- and odd-parity components of the flux can be shown to have the following 

properties, where the function ( )g r  represents the group scalar flux. 

 ˆ ˆ( , ) ( , )g gr r      (2.9) 

 ˆ( , ) ( )g gr d r     (2.10) 

 ˆ ˆ( , ) ( , )g gr r       (2.11) 

 ˆ( , ) 0g r d     (2.12) 
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Inserting the expression for the angular flux (Eq. (2.8)) into the within-group first order 

transport equation (Eq. (2.4)) yields the following equation. 

 
,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , )g g t g g g g gr r r r r W r S r                    
   

 (2.13) 

Evaluating Eq. (2.13) at ˆ  and adding to Eq. (2.13) yields the even-parity form of the 

transport equation in Eq. (2.14). Evaluating Eq. (2.13) at ˆ  and subtracting from Eq. (2.13) 

yields the odd-parity form of the transport equation given by Eq. (2.15). 

 ,
ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ) ( , )g t g g g gr r r W r S r             (2.14) 

 ,
ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ) ( , )g t g g g gr r r W r S r             (2.15) 

We have defined the even- and odd-parity components of the within group source by: 

 

, ,

4

, ,

4

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , )

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , )

g s g g m m g

m even

g s g g m m g

m odd

W r r P r d

W r r P r d









 





 





       

       

 

 
 (2.16) 

These expressions are derived exactly due to the even and odd dependence on angle of the 

Legendre polynomials and the even- and odd-parity fluxes. Written compactly, this is equivalent 

to: 

 

, ,

4

,

4

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , )

ˆ ˆ ˆ ˆ( , ) ( , ) .

g gs g g m m
m

s g g g

W r r P r d

r r d









 



 



 



       

      

 


 (2.17) 

Similarly, the remaining even- and odd-parity components of the source term are defined in 

Eq. (2.18), where the fission source term drops out of the odd-parity component because it is 

isotropic.  

 

, , '

'

,

' 1

, , '

'

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , ) ( )

( ) ( )

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , ) ( )

G M

g s g g m m g q

g g m even

G

g f g g

g

G M

g s g g m m g q

g g m odd

S r r P r d q r

r r

S r r P r d q r



  



 



 

 



 



 

        

 

        

  



  

 (2.18) 

2.5 Application of Discrete Ordinates Approximation 

We now make the following two approximations of the angular dependence of the flux, 

collectively known as the discrete ordinates approximation. 
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,

ˆ ˆ( , ) ( , )

( )

g g n

g n

r r

r

 



 



  


 (2.19) 

 
, , ,

,

ˆ ˆ( ) ( ) ( , )

ˆ ˆ( ) ( , )

g l m l m g

l m n g n n

n

r Y r d

Y r w

 



 



   

  




 (2.20) 

Eq. (2.19) assumes the angular flux is a 0
th

 order finite element approximation in the angular 

space. With this approximation, the flux is solved for a set of directions , 1n n N   on the unit 

sphere, and area weights , 1nw n N  are assigned to each direction. The choice of these 

directions and weights is arbitrary, but they are typically derived such that Eq. (2.20) is exact. 

Eq. (2.20) represents the spherical harmonic projection of the discrete ordinate solution which is 

needed for compatibility with the scattering kernel representation. Figure 2.2 depicts several 

angular cubatures available in PROTEUS-SN, where the black dots represent the intersections of 

each direction with the unit sphere and the coloring indicates the relative magnitudes of the 

weights assigned to each direction. 

    
Carlson Level-

Symmetric S16 
Square Legendre-

Tchebychev S16 

Lebedev-Laikov S15 Thurgood S15 

Figure 2.2 Example Angular Cubature for the Discrete Ordinates Method 

 

Using the discrete ordinates approximation, we rewrite the even- and odd-parity transport 

equations using the shorthand notation for each direction in the cubature and obtain the within-

group discrete ordinates equations for the even-parity formulation: 

 , , , , ,
ˆ ( ) ( ) ( ) ( ) ( )n g n t g g n g n g nr r r W r S r          (2.21) 

 , , , , ,
ˆ ( ) ( ) ( ) ( ) ( )n g n t g g n g n g nr r r W r S r          (2.22) 

In the following section, we discuss discretization of the spatial variable. 
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2.6 Weak Form of the Even-Parity Equation 

In order to apply the finite element approximation, we weight the even-parity transport 

equation, Eq. (2.21), with a set of spatial trial functions, ( )r , and integrate over space to obtain 

the weak form, 

 
, , , , ,

ˆ( ) ( ) ( ) ( ) ( ) ( )n g n t g g n g n g ndV r r r r W r S r          
  . (2.23) 

Applying the divergence theorem to the gradient term, we transform the derivative on the 

odd-parity flux term into a surface integral term and a term where the derivative is applied to the 

trial function, 

, , , , ,

,

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ( ) ( )

n g n t g g n g n g n

n g n

r r r r r dV r W r r S r dV

n r r d

     

 

   



          

   

 

  
 (2.24) 

where n̂  is the outward normal from the domain surface,  . We now seek to replace the term 

with odd-parity component dependence, 
,

ˆ ˆ ( ) ( )n g nn r r d       , by an equivalent definition 

using boundary conditions.  

It can be shown using angular parity arguments that the following expression holds: 

 
ˆ ˆ 0

, , ,
ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) 2 ( ) ( , )n

n g n n g n n gd n r r d n r r d n r r        

              (2.25) 

Let the boundary condition on the outer domain surface r   be given by 

,
ˆ ˆ( , ) ( , )g n g nr r    for incoming directions, ˆ ˆ 0n n   . We can express the angular flux on 

the boundary as: 

 

ˆ ˆˆ ˆ0 0

, , ,

, ,

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )

ˆ ˆ ˆ ˆ( , ) ( , )

n nn n

n g n n g n n g n

n g n n g n

n r n r n r

n r n r

  

 

  

 

     

  

 

 

        

     
. (2.26) 

We can expand the incoming and outgoing angular fluxes into even- and odd parity components 

as 

 

ˆ ˆ ˆˆ ˆ ˆ0 , 0 , 0

, , ,

ˆ ˆ ˆˆ ˆ ˆ0 , 0 , 0

, , ,

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )

n n n

n n n

n n n

n g n n g n n g n

n n n

n g n n g n n g n

n r n r n r

n r n r n r

  

  

  

  

          

  

          

  

        

        
. (2.27) 

By definition, we cannot apply angular restraints to the even- and odd-parity fluxes and thus 

find Eq. (2.27) must be modified into something like 

 

ˆ ˆ 0

, , ,

ˆ ˆ 0

, , ,

ˆ ˆ ˆ ˆ ˆ ˆ2 ( , ) ( , ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆ2 ( , ) ( , ) ( , )

n

n

n

n g n n g n n g n

n

n g n n g n n g n

n r n r n r

n r n r n r

  

  

  

  

    

  

    

  

         

         
. (2.28) 

such that Eq. (2.26)  can still be satisfied. For vacuum boundary conditions we can write 
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ˆ ˆ 0

, , ,

, ,

ˆ ˆ ˆ ˆ ˆ ˆ2 ( , ) 0 ( , ) ( , )

ˆ ˆ ˆ ˆ( , ) ( , )

n n

n g n n g n n g n

n g n n g n

n r n r n r

n r n r

  

 

  

 

    

  

 

 

          

      
. (2.29) 

It is important to note that while this was explicitly defined for incoming directions, we have 

in fact defined a rule for the parity system that must be obeyed for both incoming and outgoing 

directions. Thus we can evaluate Eq. (2.29) for the outgoing direction set and find 

 
, ,

, ,

ˆ ˆ ˆ ˆ( , ) 1 ( , )

ˆ ˆ ˆ ˆ( , ) ( , )

n g n n g n

n g n n g n

n r n r

n r n r

 

 

 

 

 

 

 

 

       

      
. (2.30) 

In this case, we see that for the “outgoing” directions, we must impose a different relation 

between the even- and odd-parity fluxes which cannot be true. Because Eq. (2.29) is trying to 

equivalence an odd*even function on the left hand side with an odd*odd function on the right 

hand side, we know that we must physically convert either the left hand side to even*even or 

right hand side to odd*odd such that we obey the original constraint given by Eq. (2.29). In this 

case, the sign resulting from ˆ
n n   for ˆ 0n n    cancels out on both sides of the equation and 

we are free to modify Eq. (2.29) into one of 

 
, ,

, ,

ˆ ˆ ˆ ˆ( , ) ( , )

ˆ ˆ ˆ ˆ( , ) ( , )

n g n n g n

n g n n g n

n r n r

n r n r

 

 

 

 

 

 

 

 

       

      
. (2.31) 

It is very important to note that the signs are preserved with respect to Eq. (2.29) in both cases 

with respect to ˆ 0n n   . The first of these is used for the even-parity transport methodology 

while the second is used for the odd-parity one. Looking at Eq. (2.28), we can see that 

conversion of Eq. (2.27) into Eq. (2.28) was actually invalid and, for the even-parity system, we 

must modify it into the form 

 

ˆ ˆ 0

, , ,

ˆ ˆ 0

, , ,

ˆ ˆ ˆ ˆ ˆ ˆ2 ( , ) ( , ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆ2 ( , ) ( , ) ( , )

n

n

n

n g n n g n n g n

n

n g n n g n n g n

n r n r n r

n r n r n r

  

  

  

  

    

  

    

  

          

         
. (2.32) 

For completeness, it is not hard to show that  

    , , ,ˆ ˆ0 0

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )
n n

n g n n g n n g n
n n

n r n r n r
 

      

  
     

           . (2.33) 

Given these relations, we can generically write an incoming flux boundary condition as: 

 
ˆ ˆ 0

, , ,
ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) 2 ( , )n n

n g n n g n n g nn r n r n r        

             . (2.34) 

Or, given a weighting function and integrals on the surface, we write: 
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ˆ ˆ 0

, , ,
ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) 2 ( ) ( , )n

n g n n g n n gd n r r d n r r d n r r        

              (2.35) 

 We substitute this expression into Eq. (2.24) and obtain the second-order transport equation 

with modified natural boundary conditions: 

 

, , ,

, ,

ˆ ˆ 0

, , ,

ˆ ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆˆ ˆ( ) ( ) 2 ( ) ( )n

n g n t g g n

g n g n

n

n g n n g n

r r r r r dV

r W r r S r dV

d n r r d n r r

   

 

   

 

 

  



    
 

   

       





  

 (2.36) 

Next, we solve the odd-parity transport equation, Eq. (2.22), for the odd-parity flux, 

  , , , ,

,

1 ˆ( ) ( ) ( ) ( )
( )

g n n g n g n g n

t g

r r W r S r
r

        


. (2.37) 

We note that the odd parity within-group and in-scattering sources , ( )g nW r and , ( )g nS r  are 

still dependent on the odd-parity component of the flux, so the above equation is not an explicit 

definition for the odd-parity component of the flux. However, we can update these sources 

iteratively later in the solver rather than evaluating them explicitly with the odd-parity flux.  

Substituting Eq. (2.37) into Eq. (2.36) to eliminate dependence on the odd-parity flux, we 

obtain the weak form of the even-parity transport formulation with modified natural boundary 

conditions, 

 

, , ,

,

, ,

, ,

, ,

,

1ˆ ˆ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

1 1ˆ ˆ( ) ( ) ( ) ( )
( ) ( )

ˆ ˆ ( ) (

n n g n t g g n

t g

g n g n

n g n n g n

t g t g

n g n

r r r r r dV
r

r W r r S r dV

r W r r S r dV
r r

d n r

   

 

 

 

 

 

 



 
      

  

   

 
     

   

   







 
ˆ ˆ 0

, ,
ˆ ˆ) 2 ( ) ( ).n n

n g nr d n r r    

   

 (2.38) 

We can also put this in the following functional form and define the generic boundary 

condition contribution term. 
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, , ,

,

, ,

, ,

, ,

1ˆ ˆ( ), ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

1 1ˆ ˆ( ) ( ) ( ) ( )
( ) ( )

g g n n g n t g g n

t g

g n g n

n g n n g n

t g t g

r S r r r r r r dV
r

r W r r S r dV

r W r r S r dV
r r

B

    

 

 

   

 

 

 
             

   

 
     

   









,g nC

 (2.39) 

 
, ,

ˆ ˆ 0

, , ,

ˆ ˆ ( ) ( )

ˆ ˆˆ ˆ( ) ( ) 2 ( ) ( )n

g n n g n

n

n g n n g n

BC n r r d

d n r r d n r r

 

   



  



   

       



 

  

 
 (2.40) 

2.7 Spatial Approximation 

In the finite element method, the problem domain is subdivided using a finite element mesh as 

seen in Figure 2.3. Each finite element in the mesh is defined through the use of spatial vertex 

points (typically called nodes in the finite element literature) and the material cross sections are 

assumed to be spatially flat within each element. 

 

 

Figure 2.3 Imposition of a Finite Element Mesh for a Control Assembly 

 

We define the total volume of the domain as the sum of all element volumes, 

 e

e

V V . (2.41) 

In two dimensions, the volume can refer to area (for example, the area of a triangular or 

quadrilateral element). On each finite element, there exists a number of polynomial trial 

functions equal to the number of nodes on the element (e.g. N=3 nodes for linear triangular 

elements). The N polynomial trial functions on element e  hold the property that ( )i

e j ijL r  , 
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meaning that the i
th

 trial function evaluates to unity at the i
th

 node (and to zero at every other 

node) on the element.  

Within each finite element, we approximate the spatial dependence of the flux, source, and 

weighting functions as a linear combination of the polynomial trial functions 
1( ) ( ), ( )T N

e e eL r L r L r      that exist on the element. If the same sets of trial functions are used in 

adjoining elements, the flux approximation will be continuous across the interfaces. The 

following expressions show this spatial approximation within an element, i.e. for er V  : 

 

,1

, ,

1 ,

, , , ,

1,

, ,

ˆ( , ) ( ) ( ), ( ) ( )

g e n N
T N i i

g n e g e n e e e g e n

iN

g e n

r L r L r L r L r



  





  



 
 

      
 
 

  (2.42) 

 ,
ˆ ˆ( , ) ( ) ( )T T

g e g er Y L r  

     (2.43) 

 ,
ˆ( , ) ( ) ( )T T

g e g eW r Y L r W 

     (2.44) 

 ,
ˆ( , ) ( ) ( )T T

g e g eS r Y L r S 

     (2.45) 

 ( ) ( )er L r   (2.46) 

The notation   represents a tensor product of the spatial and angular vectors of trial 

functions. (The tensor product of two vectors x and y is equal to Tx y xy  , i.e. a rank-1 matrix 

whose columns are multiples of the first vector.)  Eqs. (2.43)-(2.45) involve the evaluation of 

spherical harmonics functions at a given angle. Eq. (2.46) states that the spatial trial functions in 

the weak-form of the even-parity transport equation will in fact be identical to the finite element 

trial functions.  

We substitute Eqs. (2.43)-(2.46) into Eq. (2.39) and modify the functional to be defined over a 

single element volume instead of the entire volume. This substitution, as well as the assumption 

of constant cross sections within an element, permits all terms except the trial functions and their 

derivatives to be moved outside the spatial integrals. Only the following types of spatial 

integrals, called spatial matrices, remain after this substitution: 

 , , ( ) ( )T

e K L K e L e eP L r L r dV    (2.47) 

 , ( ) ( )T

e K e K e eU L r L r dV   (2.48) 

 ( ) ( )T

e e e eF L r L r dV  . (2.49) 
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These spatial matrices are dependent on known features of the element (node locations, shape, 

trial function definitions). The integrals can be evaluated using Gauss quadrature. Using the 

spatial matrix notation, the functional expression over a single element volume can be written: 

 

 

, ,

, , , , , , , , , , , , , ,

, , ,

,

, , , , , , ,

, ,

ˆ ˆ
( ), ( )

ˆ

K n L n

e g e n g e n e K L t g e e g e n e g e n e g e n

K L t g e

K n T

e K g e n g e n g e n

K t g e

T r S r P F FW F S

U W S BC

     

 

  
          

 
   

  





 (2.50) 

To evaluate the original functional, T, we sum the element-wise trial functions into a global 

representation, 

 , , , , , ,, ,g n g n e g e n g e n

e

S S             . (2.51) 

We can simplify Eq. (2.50) by defining the matrices and vectors 

 
, ,

, , , , , ,

, , ,

ˆ ˆ
K n L n

g e n e K L t g e e

K L t g e

A P F
 

 


  (2.52) 

 , , , ,g e n e g e ns F S   (2.53) 

 , , , ,g e n e g e nw FW   (2.54) 

 
,

, , , , ,

,

ˆ
K n T

g e n e K g e n

K t g

s U S 





  (2.55) 

 
,

, , , , ,

,

ˆ
K n T

g e n e K g e n

K t g

w U W 





  (2.56) 

to obtain  

 
, , , , , , , , , , , , , , , , , ,,e g e n g e n g e n g e n g e n g e n g e n g e n g e ns A s s w w BC                 (2.57) 

The expression in Eq. (2.57) is valid for all discrete ordinates, n  and elements e. This discrete 

functional can be assembled over the domain of interest and has only one solution for , ,g e n   that  

minimizes the error in the functional. However, before solving the equation, we must define the 

element boundary conditions , ,g e nBC . In the following sections, we show that the boundary 

condition term cancels for interior elements due to the continuity conditions that are applied for 

the angular flux. 
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2.8 Finite Element Continuity Conditions 

In order to completely characterize the boundary condition term defined in Eq. (2.40), we 

must explicitly define the continuity conditions on each element. The even-parity angular flux is 

taken to be continuous along element surfaces. We show that the boundary term in Eq. (2.57)  

will exist only for those elements that lie along the problem domain boundary. 

Enforcement of the continuity condition on the angular flux between elements is guaranteed 

by Eq. (2.51). To show this we inspect two adjacent elements sharing a surface e shown in 

Figure 2.4. 

 

Figure 2.4 Adjacent Triangular Finite Elements 

 

Picking an arbitrary point r  and angular direction ̂  along the boundary e , as shown on 

the right in Figure 2.4, the following relations can be written for the even- and odd-parity flux 

and weight functions for the two elements.  

 

   

   

   

ˆ ˆ, ,

ˆ ˆ, ,

ˆ ˆ, ,

A e B e

A e B e

A e B e

r r

r r

r r

 

 

 

 

 

 

    

    

    

 (2.58) 

We note that the first expression (continuity of the even-parity flux) is enforced in this 

methodology. The second expression (continuity of the odd-parity flux) is not enforced, but only 

assumed.  

The boundary condition on surface e  can be expressed for element A and element B as  

 
, , , ,

, , , ,

ˆ ˆ ( ) ( ) ,

ˆ ˆ ( ) ( ) .

A

g n e n A e A g n e e

B

g n e n B e B g n e e

BC n r r d

BC n r r d

 

 





     

     





 

 
 (2.59) 
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The major difference between these two relations is the change in sign on the outward normal 

n̂  for surface e  because the outward normal for each element is the opposite of the other’s. 

Writing out the sum of the two boundary conditions that appear for adjacent elements in Eq. 

(2.51), and then imposing the continuity conditions in Eq. (2.58) gives the following identity, 

 

, , , ,

, , , ,

, , , ,

ˆ ˆˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ( ) ( ) ( ) ( )

ˆ ˆ ( ) ( ) ( ) ( )

n A e A g n e e n B e B g n e e

n A e A g n e B e B g n e e

n A e B g n e B e B g n e e

n r r d n r r d

n r r r r d

n r r r r d

   

   

   

 

 

 

          

          

          

 





  

 

 

0.

 (2.60) 

As a consequence, the surface term in Eq. (2.57) only exists for those elements that lie along 

the outer problem boundary. With the boundary condition term removed for all those elements 

that do not lie upon the problem domain boundary, the boundary conditions that have been 

implemented on those elements along the outer problem boundary can now be investigated. 

2.9 Vacuum Boundary Conditions 

The vacuum boundary condition in Eq. (2.61) is a standard boundary condition imposed in 

neutron transport problems. 

  ˆ ˆ ˆ, 0, , 0g r r n       (2.61) 

Since Eq. (2.61) defines the incoming angular flux to be zero, Eq. (2.40) reduces to 

 

 

 , , , ,

, ,

, ,

ˆ ˆˆ ˆ( ) ( ) 2 ( ) 0

ˆ ˆ ( ) ( )

ˆ ˆ ,

g e n n g e n n

n g e n

n g e n

BC d n r r d n r

d n r r

n W

  

 









        

   

  

 



 

 (2.62) 

where W  is a new spatial matrix defined as a surface integral of the product of trial functions: 

 ( ) ( )T

e eW d L r L r      . (2.63) 

This allows the functional form to be rewritten for an element with a vacuum boundary on 

surface  as: 

 
, , , , , , , , , , , , , , , ,

, , , , , , , , , , , ,

ˆ ˆ,
v

e g e n g e n g e n n g e n g e n g e n g e n g e n

v

g e n g e n g e n g e n g e n g e n

s A n W s s w w

A s s w w

 


 



      



    

 
           

 

    


 (2.64) 

Note that for curvilinear boundary surfaces which are possible with higher order finite 

elements (quadratic, cubic, super-parametric, etc.), the outward normal is a complicated function 
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of space and angle and thus the evaluation in Eq. (2.62) can be quite complicated. To avoid this 

complication in PROTEUS-SN, the outward normal is approximated by an average outward 

normal for each element surface on the problem domain boundary. This approximation should be 

sufficient for reactor geometries. 

2.10 Reflected Boundary Conditions 

The generally oriented reflected boundary condition is the only other boundary condition 

currently implemented in PROTEUS-SN. The reflected boundary condition, shown in Eq. (2.65), 

assigns the incoming angular flux on the surface r   to be equal to the outgoing angular flux 

at the corresponding “reflected” angle.  

 

,

ˆ ˆ( , ) ( , ', ', ') ( , , , ) ( , )

ˆ ˆ ˆ ˆ, ,

g g g g

out reflected out

r r r r

r

             

    
 (2.65) 

The explicit dependence of the vector ̂  on the azimuthal and polar angles is explicitly 

written in Eq. (2.66) as a reminder. 

 
ˆˆ ˆ ˆ

ˆˆ ˆcos( ) cos( )sin( ) sin( )sin( )

i j k

i j k

  

    

   

  

   

   
 (2.66) 

In Eq. (2.65), the incoming angular flux, ˆ( , )g r  , is set equal to the outgoing angular flux 

ˆ( , )g r  . These two angles are graphically represented in Figure 2.5 for the surface  , which in 

this example lies perpendicular to the x-axis and has an outward normal n̂  extending towards the 

exterior of the domain. In this picture, the reflected boundary condition is given by 

( , , , ) ( , , , )g gr r         , where the only difference is the sign of the first vector 

component   because the surface lies perpendicular to the x-axis. 

 

 

Figure 2.5. Simplified 1-D Diagram of the Reflected Boundary Condition 

 

The conditions required to meet the reflected boundary condition are problematic because of 

the nature of the discrete ordinates approximation.  For every outgoing discrete angle ˆ
n  in the 
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cubature set, there may not exist another discrete angle in the cubature set which is the exact 

reflection of ˆ
n  off a generally oriented surface. In the literature, a common approach is to 

utilize a cubature on the sphere which obeys all of the symmetry assumed in the geometry. In 

such an approach, a “one-to-one” mapping between the ordinates exists for reflected boundary 

conditions and thus all that remains is to define a set of dependent directions (those which are not 

solved for) and a set of independent directions (those which are solved for) at a given point on 

the surface of the domain.  

However, to handle a generally orientated boundary condition, as desired in PROTEUS-SN, 

we must approximate Eq. (2.65) when the cubature fails to satisfy all of the problem symmetry. 

The first task is to define an interpolation scheme on the surface of the sphere such that the 

reflection of any angle in the cubature off a generally oriented surface can be defined in terms of 

the other angles in the cubature. PROTEUS-SN maps the cubature on the sphere with a set of 

triangular finite elements (spherical triangles) as shown in Figure 2.6.  

  

  
Carlson Even Moment S8 Tegmark m

lY  fitted S9 

Figure 2.6. Example Triangular Meshes of Spherical Cubature 

 

A given outward normal defines a plane that slices the unit sphere into incoming, outgoing, 

and parallel directions. Using the interpolation scheme outlined in Appendix C, we can produce a 

set of first-order equations of the form shown in Eq. (2.67), where each incoming direction is 

dependent upon at most 3 outgoing directions. These three directions are the nodes of the 

triangular surface which the exactly reflected angle passes through. For cubatures that exactly 

meet the symmetry conditions of the domain, the outward normal will cut the sphere such that a 

“one-to-one” mapping between the directions is created for a given reflected boundary condition. 

  

 

,

1,3

ˆ ˆ, 0

ˆ ˆ, 0

in j out j out

j

in n n

out n n

n

n

  

 

 



 

   

   

 P P

 (2.67) 

Because we are working with continuous finite element trial functions, we must impose these 

constraints at the vertices of the finite element mesh. Under these circumstances, a vertex could 
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lie at the apex of more than one reflected boundary surface with different orientations, thus we 

must combine the sets of first-order equations defined in Eq. (2.67) to properly constrain the 

system. A standard least squares approach was implemented to resolve the final set of first-order 

equations. The first step in this procedure is to identify the set of incoming and outgoing 

directions which are incident with regard to all of the reflected surfaces associated with a given 

spatial vertex indicated by summation over   in Eq. (2.68). 

 ˆ ˆ, 0 , 0in n n out n nn n 

 

   
   

          
   

 (2.68) 

Using this set of directions, we recast the individual first-order systems of equations into the 

non-square system  

 

1 1

2 2

,

in out

in out

 

 

 
 

 

 

   
   
   
   
   
      



 (2.69) 

where   and   are obtained by rearranging the individual first-order systems of equations, 

,P  such that they correspond to Eq. (2.68). This system of equations enforces the reflective 

boundary condition on all incoming angles at a given vertex. There are often more equations than 

degrees of freedom, so a least squares method must be used to solve this system. The least 

squares procedure is then implemented as shown in Eq. (2.70).  

 
 

1

in out

T T

in out

T T

in out

out

 

   

    











 P

 (2.70) 

Note that for a single reflected boundary condition on a vertex, this least squares procedure 

simply reverts to the original first-order system defined in Eq. (2.67). Additionally, for cases 

where the cubature meets all of the symmetry of the problem, the resulting system of equations 

defined by Eq. (2.70) will be a Boolean matrix which properly defines the one-to-one mapping 

between the incoming and outgoing direction set. Finally, for high order cubatures that do not 

meet the symmetry of the problem but which have been implemented for a vertex associated 

with multiple reflected surfaces, the above least squares projection has been observed to produce 

very small positive and negative numbers. Such dependencies illustrate a very weak coupling 

between these directions through the reflection operator, and PROTEUS-SN truncates such 

dependencies and rebalances the equation. 
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Since we are solving the even-parity form of the transport equation rather than the first-order 

form, we still have one more transformation to apply. We must recast the system of equations to 

enforce boundary conditions on the even-parity fluxes (rather than the first order fluxes) as 

shown in Eq. (2.71), where the even parity fluxes are solved only for angles in a specific part of 

the sphere dependent on problem dimension. Recall that the even-parity fluxes for angles in the 

other part of the sphere can be obtained through angular parity relationships. 

 
     ,   1D ,  2D  or 2   3D

2

in out

n n

B C   


   

 



  

 
   
 

P

 (2.71) 

Matrix B is a Boolean matrix corresponding to the vector reassignment from the set of 

incoming directions to the corresponding set of even-parity directions. Matrix C is the reordered 

P  matrix such that it corresponds to the set of even-parity directions. For one-to-one mappings, 

the B and C matrices are both Boolean matrices, and several of the equations are duplicates. To 

develop a system of valid constraints, we sweep through the system of equations defined by Eq. 

(2.71) and remove duplicate ones such that we end up with the maximal set of unique equations 

which constrain the maximal set of angular directions producing a new equation of the form 

given as Eq. (2.72). Note that this does not involve the inversion of B, but rather a simple 

rearrangement of B and C such that the   matrix is defined and redundant equations are 

eliminated.  

     (2.72) 

This   matrix can typically be rearranged using a Gauss elimination algorithm with row 

pivoting. 

 
0

D ID D

I I
I

 

 

 

 

     
    
    

 (2.73) 

This final system defines a subset of the even-parity directions, I  , which are independent, 

and a subset which are dependent, D  . The submatrix D  is strictly upper triangular and the 

structure of I  is irrelevant. This final system of equations states mathematically that for a 

given set of independent even-parity directions (those that we must solve for), the solution for 

the dependent set of directions is known from the reflection operator. This operation connects the 

dependent angular directions to the independent angular directions for all those vertices on the 

boundary of the domain.  

For elements with vacuum boundary conditions, we can assemble the functional in Eq. (2.57) 

over all directions as shown in Eq. (2.74), where the A matrix for vacuum boundary conditions 

was defined earlier. 



PROTEUS-SN Methodology Manual 
June 30, 2014 

 

27 

 

, ,1 , ,1 , ,1 , ,1 , ,1 , ,1

, ,

, , , , , , , , , , , ,

, ,

0 0

, 0 0

0 0

v

g e g e g e g e g e g e

e g e g e

v

g e N g e N g e N g e N g e N g e N

v

g e g e

A s s w w

s

A s s w w

A









    

 

    



           
           

                  
           
           

 , , , , , ,g e g e g e n g e ns s w w      

 (2.74) 

The application of equation Eq. (2.73) for a given vertex on the surface eliminates the block 

diagonal nature of the system in Eq. (2.74), but only for those vertices on a reflected surface. The 

application of Eq. (2.73) is straightforward and leads to the new system given by Eq. (2.75).  

 
, , , , , , , ,, r

e g e g e g e g e g e g e g e g es A s s w w                (2.75) 

The details of the ,

r

g eA  matrix are not shown for brevity (the “r” superscript stands for 

“reflected”). In forming this matrix, the dependent space-angle degrees of freedom are not 

removed from Eq. (2.74), but instead the row and column of the dependent space-angle degrees 

of freedom are zeroed out and the scaling factor of 1

t t
  is placed on the diagonal to maintain 

good matrix properties for the preconditioner. This trick allows the vector space to be kept 

constant for all elements, regardless of the presence of boundary conditions.  

Note that the sources for the dependent directions have to be redirected as sources for the 

independent directions using Eq. (2.73), and, after Eq. (2.75) is solved, the dependent discrete 

ordinate flux moments must be rebuilt using Eq. (2.73). These operations are not only 

computationally cheap given the sparse nature of Eq. (2.73), but they are scalable so long as the 

ratio of work to communication is known for the problem of interest ahead of time. Eq. (2.75) 

can be assembled over all elements as defined by Eq. (2.51) to give the final within group 

equation 

 , r

g g g g g g g gs A s s w w                (2.76) 

2.11 Summary 

In this chapter, we have derived the second-order even-parity transport equation which 

governs the even-parity flux. We have applied the multigroup approximation to discretize the 

energy domain into the typical “within-group” equations, which are coupled to each other the 

scattering and fission source terms. Most energy groups receive contributions from higher energy 

groups (via down-scattering). Additionally, a few energy groups may also receive contributions 

from lower energy groups (if up-scattering is present). Finally, the fission source causes neutrons 

to be born in high-energy groups due to fission reactions occurring in other energy groups. 

We have also applied the discrete ordinates approximation to the multigroup equations in 

order to discretize the angular dependence. Functionals were derived to express the multigroup 

flux along a particular discrete ordinate. These functionals are connected to each other by the 

scattering source, which causes neutrons to change direction. It is very important to note that in 
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the presence of up-scattering, the even-parity operator is iterative as the odd-parity source  must 

be iteratively based upon the even-parity flux. In a sense, the odd-parity flux is not really the 

odd-parity flux as the even-parity methodology assumes the odd-parity flux is completely 

eliminated via substitution. This makes the application of GMRES and other solvers on the 

complete multi-group system somewhat unwise and impractical for the even-parity 

methodology. 

Finally, the continuous Galerkin finite element method is applied to discretize the spatial 

domain. The degrees of freedom therefore become the values of the even-parity angular flux at 

each “node” or “vertex”, for a given energy group and discrete ordinate. The boundary 

conditions for each element vary depending on whether the element is interior (no extra 

boundary condition term), or has a void or reflective surface. 

In the following chapter, we discuss the numerical implementation of these equations and the 

algorithms used to solve them. 
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3 Numerical Implementation 

In this chapter we discuss the flow of a PROTEUS calculation, starting with the problem set- 

up and continuing with the solution of the within-group equations and global system. 

PROTEUS-SN can be used in two different modes: steady state and kinetics (adiabatic time 

dependence). We primarily discuss the steady state mode here and later make mention of the 

time-dependent mode. 

3.1 Overview 

In PROTEUS-SN, the multigroup second order even-parity transport equation is discretized 

using the angular discrete ordinates approximation and the continuous finite element 

approximation in space. Boundary conditions are not applied to the odd-parity flux in the even-

parity method as it assumed to be entirely removed via substitution. Available finite element 

types include bar, triangle, quadrilateral, tetrahedron, triangular prism, and hexahedron. 

Lagrangian, serendipity and Gauss-Lobatto polynomial trial functions are available up to ninth, 

second, and sixth orders, respectively.  

As derived in the previous chapter, the discrete ordinate and finite element approximations 

reduce the second order even-parity transport equation to a set of within-group linear algebra 

equations for the even-parity multigroup flux, 

 ( )g g g g g g g gA B S C W S         , (3.1) 

where Bg represents the within-group scattering matrix. The odd-parity sources are iteratively 

calculated. The coefficient matrix Ag is positive definite which enables Eq. (3.1) to be solved 

using the conjugate gradient (CG) method [13] known to be scalable on large parallel systems.   

The solution methodology in PROTEUS-SN consists of the following iterations listed in order 

from outer to inner, where the PETSc package is used to perform the innermost iteration: 

 Fission source (inverse power) iteration for the eigenvalue or fixed source 

 Gauss-Seidel iteration over energy groups 

 Scattering iterations for within-group scattering system 

 Conjugate gradient over whole space-angle system 

 PETSc preconditioned conjugate gradient for each discrete ordinate 
 

We describe these iterations in further detail in this chapter. 

3.2 Parallelism 

The computational method used in PROTEUS-SN is highly parallelizable in both space and 

angle, due to the applicability of the conjugate gradient method and the block diagonal 

connection in angle of the matrix Ag. This method permits the efficient utilization of hundreds of 

thousands of processors which in turn allows the efficient solution of high-fidelity problems with 

billions of degrees of freedom. While PROTEUS-SN was built to enable parallelization in the 
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energy domain, parallelization in energy is not currently permitted, nor needed, as the current 

space-angle decomposition scheme already saturates the capabilities of leadership computing 

machines. 

The parallel decomposition of the problem in both space and angle is accomplished by 

assigning sections of the phase space to different processors which each calculate the solution on 

their “owned” portion of the domain. Therefore, if a problem runs on 4 processors, each 

processor might own ¼ of the spatial domain and all of the angles. Alternatively, each processor 

might own ½ of the spatial domain and ½ of the angles. The number of domains to decompose 

into is specified at runtime by the user.  

PROTEUS-SN uses the Message Passing Interface (MPI) standard to communicate 

information from one processor to another, since the physical boundaries between locally owned 

domains are shared. Also, scattering causes a connection in angle (and between different 

processors). The code runs on machines ranging from desktop to leadership computing 

machines. It has been previously demonstrated [14] to scale efficiently to 300,000 processors 

(IBM’s BlueGene/P architecture) and 222,000 processors (Cray XT5) which enables the solution 

of very large problems up to 10
12

 degrees of freedom on leadership computing resources. The 

scaling results shown in Table 3.1 and Table 3.2 were performed for different space-angle 

discretizations of the ZPR6/7 fast reactor experiment and indicate the expected scaling 

efficiencies for typical simulations with PROTEUS-SN. 

 
Table 3.1. Strong Spatial Scaling of PROTEUS-SN on BlueGene/P Architecture 

Total 

Cores 

Vertices 

Per 

Process 

Total 

Time (s) 

Strong 

Scaling 

8,192 7,324 2,402 100% 

16,384 3,662 1,312 92% 

24,576 

32,768 

2,441 

1,831 

873 

637 

92% 

94% 
 

Table 3.2. Weak Angle Scaling of PROTEUS-SN on BlueGene/P Architecture 

Total 

Cores 

Angular 

Directions 

Total 

Time (s) 

Weak 

Scaling 

32,768 

73,728 

131,072 

32 

72 

128 

579 

572 

581 

100% 

101% 

100% 

163,840 160 691 84% 

294,912 288 763 76% 
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Experience has shown that the number of vertices per process (i.e. size of a local domain on a 

processor) should be kept greater than 1,500 in order to maintain a reasonable work to 

communication ratio. Each processor should also be assigned work for at least two angles in the 

cubature to balance the PETSc work. A combined >90% strong space-angle scaling efficiency is 

expected in this regime.  

3.3 Problem Initialization 

Before the multigroup system of equations are solved, PROTEUS-SN performs some 

initializations and calculations, including reading the input data, translating material information, 

decomposing the mesh, and building the finite element matrices. 

3.3.1 Read Input 

At the beginning of a PROTEUS-SN calculation, the root processor reads in the driver input 

file and initializes the PETSc library using the requested angular resolution, parallelization in 

angle, scattering order, and other iterative values. The driver input information is communicated 

to all other processors. Next, the root processor looks at the multigroup cross section library and 

broadcasts the control information (number of groups and anisotropic scattering information) to 

all other processors. Alternatively, PROTEUS-SN can generate multigroup cross section data 

from a generalized library using the subgroup application programming interface (API). The 

implementation of the subgroup API is a new feature is being verified. For more information on 

the subgroup API, contact nera-software@anl.gov. 

3.3.2 Mesh Decomposition 

In the current implementation, the root processor reads in the user-provided mesh and sends 

each piece to the rest of the parallel system. A partitioning mesh file can optionally be provided 

in order to specify the desired spatial decomposition. If the partitioning file is not included, 

PROTEUS-SN partitions the mesh on-the-fly using the METIS software and the number of 

requested spatial partitions. At the end of this process, each processor owns a piece of the mesh, 

called the local mesh. It sees its local mesh and a one-ring ghost set of elements, combined these 

are called the visible piece of the mesh. A basic bandwidth optimization can be performed on the 

local piece of the mesh to improve preconditioning if requested in the driver input.  

3.3.3 Computation of the Finite Element Matrices 

After the control data, cross section and mesh data are read in, the mesh is processed and 

auxiliary boundary conditions provided in the control input are applied. This is necessary to 

identify the necessary communication to carry out with respect to reflected boundary conditions. 

During this process the finite element spatial matrices are generated on each processor for the 

local visible mesh using Gaussian numerical integration. 

mailto:nera-software@anl.gov
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After processing the finite element mesh, PROTEUS determines the material compositions on 

the local mesh and eliminates recursive definitions in the material assignment file in favor of 

direct definitions using the isotopes included in the cross section file. 

The PETSc library set-up is performed by defining the vector scatter/gather operation for a 

single space-angle segment of the flux vector. The spatial matrices are stenciled and the 

preconditioner is set. Finally, the multigroup solve routine is called to solve either a forward 

problem, adjoint problem, or both. 

3.4 Multi-Group Solve Procedure 

The solution of the global system of equations has several nested loops. The outermost loop is 

the fission source iteration, in which iterates of the fission source and eigenvalue are calculated 

based on the current estimate of the global multi-group flux for all groups. Tchebychev 

acceleration is optionally applied to accelerate fission source convergence. 

To obtain the multigroup fluxes needed for the fission source iteration, each within-group 

equation is solved in order, starting with the highest energy group, in Gauss-Seidel fashion. For 

each within-group system, the group sources (fission, fixed source, in-scattering and within-

group scattering) are calculated based on current estimates of the multigroup flux values, and the 

within-group solver is then called to solve the matrix equation in Eq. (3.1).  

The within-group solver contains a two-step iterative procedure since the left hand side and 

right hand side both depend on the within-group flux. The first step involves performing a 

scattering (Richardson) iteration for the discrete ordinates even parity flux. The second step 

follows with a synthetic diffusion acceleration calculation to correct the P0 moment of angular 

flux. The scattering source is updated using the diffusion correction, and the procedure repeats. 

The synthetic diffusion scheme can be considered a multigrid preconditioner in angle. 

After the within-group flux is obtained, the fission and scattering group sources are updated 

and the next energy group is solved. This group-by-group solution proceeds until all of the 

down-scattering-only groups have been solved. The within-group equations for up-scattering 

groups are then solved, but they require an extra outer iteration loop called the “up-scattering 

iteration” since the flux in a group with both down-scattering and up-scattering is dependent on 

both the groups above and below it. 

We now discuss the details of how to solve the within-group equations (innermost iteration).   

3.4.1 Within-Group Parallel Preconditioned Conjugate Gradient Method for each Discrete 
Ordinate 

The within-group flux equation for the entire space-angle system has the form 
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    
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   

  



 (3.2) 

where the A matrix has convenient properties which enable the use of highly parallel iterative 

schemes. First, the A matrix is real, symmetric ( TA A ), and positive definite ( 0Tx Ax   for 

any vector x), and therefore the conjugate gradient method can be applied to solve the system. 

CG is an iterative method which is excellent for large, sparse systems such as those that result 

from finite element discretizations. Second, the A matrix is block-diagonal in angle for vacuum 

boundary conditions and contains only minor coupling between the angles for reflected 

boundaries. The method is relatively scalable in angle so long as the cost associated with 

communicating the reflected independent moment information is accounted for in the load 

balancing. The preconditioner of the CG solve of Eq. (3.2), is forced to be block diagonal by 

eliminating the connections in angle and thus can be solved independently with respect to angle 

(discrete ordinate). Each angle sub-system in the preconditioner is symmetric positive definite 

and thus again we can use CG to solve it. For problems with vacuum boundary conditions only, 

the upper level CG solve can be omitted. 

For the preconditioner, PROTEUS-SN links to and uses the parallel SSOR-preconditioned 

conjugate gradient solver in the PETSc package [3] to solve the preconditioner system. The 

PETSc package was chosen due to its development history and optimization on supercomputing 

platforms. The preconditioned conjugate gradient method can be summarized as follows, where 

the matrix C is the preconditioner: 

1

1 0

Let  be an initial vector.

Let  be the initial residual.

Let  be the initial direction of correction.

do 0,1,...

         (compute magnitude of correction)

n

o

o o

o o o

T
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k

z r

d Ad

x x




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   (recompute residual)
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The SSOR (Symmetric Successive Over Relaxation) preconditioner defines the matrix C in 

terms of the symmetric matrix TA L D L   , 

  11 1
, 0,2

2

TC D L D D L



  

   
      

   
 (3.3) 

One scattering iteration therefore consists of multiple iterations within the conjugate gradient 

solver. The two largest computational components of the CG method are the application of the 

coefficient matrix A and the application/inversion of the preconditioner matrix C. In most cases, 

the computational effort for the preconditioner is more costly than all of the other solver 

operations. PROTEUS-SN reports the number of iterations required to invert the preconditioner 

in the output file.   

3.4.2 Synthetic Diffusion Acceleration of the Within Group Scattering Source 

The within-group scattering source for the within group equation is directly dependent upon 

the flux solution for that group, and therefore scattering source iterations are required to properly 

compute the flux. Eq. (3.4) presents the standard scattering source iteration of the within group 

equation, where i gives the index number of the iteration. 

      
1i i i

r

g g g g g gA s s w w


         (3.4) 

We modify this source iteration slightly by expanding the definition of the within-group 

sources in terms of the spherical harmonic projection of the flux to develop the following 

relationships. 
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 (3.5) 
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 (3.6) 

We insert Eqs. (3.5) and (3.6) into Eq. (3.4) and introduce the superscript 1
2i   on the flux 

vector to indicate the intermediate estimate of the flux solution obtained by source iteration. 

      
1/2i i i

r

g g g g g gA s s L L  


    

      (3.7) 
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We can rewrite Eq. (3.7) as the more general equation Eq. (3.8), where it is understood that 

the definition of the L matrix is rather complicated. 

    
1/2i i

r

g g g g g gA s s L 


       (3.8) 

The exact solution, g  , therefore satisfies Eq. (3.9): 

 
 r

g g g g g

g g g g

A L s s

D s s





  

  
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 
 (3.9) 

The source iteration shown in Eq. (3.7) can be slow to converge. Therefore, as is conventional 

in discrete ordinates methods, we apply a diffusion synthetic acceleration (DSA) scheme in order 

to accelerate the convergence of the flux vector. The general steps in the DSA acceleration 

scheme are (1) solve the transport equation to obtain an intermediate estimate of the flux vector, 

(2) solve a simplified diffusion-like system (the synthetic equation) to estimate the correction 

needed to the flux vector, and (3) update the intermediate estimate of the flux vector with the 

correction. The DSA iteration steps are then repeated until convergence. This process reduces the 

number of high-order transport calculations that are needed. 

To define the synthetic equation, we first define the error in the flux solution at 1
2i   due to 

the scattering iteration defined by Eq. (3.7) as 

    
1/21/2 ii

g g  
     (3.10) 

We then develop a system of equations to express the error at iteration 1
2i   as a function of 

the previous two flux solutions:  
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 (3.11) 

If the error term  
1/2i




 in Eq. (3.11) could be solved exactly, the discrete ordinates flux 

could be updated immediately and the exact solution would be obtained by Eq. (3.10). However, 

solving the discrete ordinates system in Eq. (3.11) for the exact discrete ordinates error  
1/2i




 is 

expensive. Instead, we project the system of equations to the smaller spherical harmonic P1 space 
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in order to evaluate the error in that space. To accomplish this we utilize the relationship between 

the discrete ordinate solution vector ,g n   and the spherical harmonic moment coefficients g
 , 

 ,
ˆ( )g n n g n

n

Y w  

  . (3.12) 

We note that the discrete ordinate angular flux can be recovered by using the formula  

ˆ ˆ( ) ( )T

g n n gY  

    where the spherical harmonic functions are simply evaluated the prescribed 

angle. We therefore obtain the following system of equations for the spherical harmonic 

projection error  
1/2

,

i

Y



, which can be applied to the intermediate spherical harmonics 

moments estimate as a correction term. 
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 (3.13) 

PROTEUS-SN accelerates (apply corrections to) the P0 even-parity moment, which 

corresponds to writing Eq. (3.13) only for the zeroth moment: 

       1/21/2

,0 ,0 ,0 ,0 ,0

i ii

g g g gD L  
  

    (3.14) 

Solving Eq. (3.14) for  
1/2

,0

i





 therefore yields the correction to the P0 even-parity moment, 

i.e.      
1 1/2 1/2

,0 ,0

i i i

g g  
     . Once this correction is applied, the next source iteration takes 

place using Eq. (3.7). 

We note that Eq. (3.13) and consequently Eq. (3.14) are exact for elements with reflected 

boundary conditions provided a one-to-one angular mapping exists between the incident and 

reflected angles. However, for elements with vacuum boundary conditions, an additional term 

must be added which we do not describe here. 

For each scattering iteration, a transport solve is done for all angles. The diffusion 

acceleration equation is not partitioned over the entire set of processors (ideal), but only over a 

subset equivalent to the selected spatial decomposition. The solution of the diffusion equation is 

also done using the PETSc SSOR preconditioned CG algorithm. After it is solved to a given 

tolerance, the updated P0 solution is transmitted to all of the angle specific processors for use in 

completing the acceleration process. In most problems, the code only needs to do a single DSA 

iteration to successfully accelerate the convergence as the diffusion equation is an exact 

projection of the even-parity discrete ordinates transport equation. 
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3.4.3 Connection of Multigroup System of Equations 

The within-group systems are connected to each other by the scattering source which can 

include both down-scattering and up-scattering. The global multigroup system is solved by 

Gauss-Seidel iteration which converges in a single iteration when no up-scattering is present. 

The Gauss-Seidel iterative matrix inversion scheme can be summarized as 

  

   
11

( )

k k

D L U x b

D L x b Ux

x D L b Ux


  

  

   

 (3.15) 

In the above scheme, the coefficient matrix A is split into the diagonal (D), strictly upper 

triangular (U), and strictly lower (L) triangular matrices. For the case of no up-scattering, the 

matrix is lower triangular.  

3.4.4 Fission Source Iteration 

The outermost iteration in PROTEUS-SN iterates on the entire multigroup fission source and 

eigenvalue using the power method, with optional Tchebychev acceleration. While there are 

better acceleration methods available, the PROTEUS-SN code was only meant to be an initial 

test to see if the continuous finite element method would perform well on petascale computing 

machines. Possible improvements may be made to the acceleration scheme in the future. 

3.4.4.1 Power Iteration 

The initial fission source is calculated based on an initial flux vector guess of unity (flat 

uniform flux). To briefly summarize the power method, we write the global system of equations 

as 
1

T F
k

   , where the term F   is the fission source, . Applying the matrix product 1FT   

to both sides of the equation yields the eigenvalue problem 11
F FT F

k
    , or 1k FT  , 

where F    is the fission source. The fission source (eigenvector) and k-effective value 

(eigenvalue) can be solved using the power method: 

 

( 1) 1 ( )
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( 1)

( 1) ( )

( )

1

,

,

i i

i

i

i i

i

FT
k

W
k k

W

 





 









 (3.16) 

In Eq. (3.16), W is some positive weight function and the brackets indicate integration over 

the reactor volume. The easy choices are to use W=1 (i.e. L1 norm) or the current fission source 

distribution (i.e. L2 norm). While one can choose any arbitrary function, these two choices ensure 

that the resulting system converges to the dominant eigenmode(s) of the system. 
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3.4.4.2 Tchebychev Acceleration of the Fission Source 

Various extrapolation methods can be used to improve the flux or fission source iterates. One 

such extrapolation method is Tchebychev acceleration. In traditional mode (no Tchebychev 

acceleration applied to the fission source), the fission source error, eigenvalue, and iterative flux 

error decrease for each iteration according to the spectral radius (or dominance ratio) of the 

eigenvalue problem. A plot of these errors with respect to fission source iteration will display 

straight curves on a log scale where the slope is the negative of the spectral radius. 

Tchebychev acceleration speeds the convergence of the fission source by altering the spectral 

radius of the eigenvalue problem and hence decreasing the number of required outer iterations 

(usually by a factor of 2). Using Tchebychev acceleration, the accelerated fission source iterate, 

1i  , is calculated based on the intermediate (non-accelerated) iterate 
1i 
 calculated by 

( 1) 1 ( )

( )

1i i

i
FT

k
   , as well as the previous estimates of the fission source, i  and 1i  . 

 1 1 1 1( ) ( )i i i i i i i i                (3.17) 

The values of   and   are iteration-dependent and determined by the order of the Tchebychev 

polynomial fitting that is being applied. 

3.5 Methodology Limitations 

While the continuous finite element with the second order even-parity methodology offers 

benefits in terms of computational scalability and efficient use of computing resources, it also 

has currently unavoidable caveats which we describe here.  

PROTEUS-SN cannot model void or very optically thin regions due to the 1

t

  coefficient 

appearing in the second order even-parity equation. The workaround is to homogenize void or 

optically thin regions with surrounding non-void regions.  

Additionally, the condition number of the within-group matrix increases as O(1/h
2
) with mesh 

size h decreases,  and O(p
2
) with element order p increases. This causes the computational 

burden in PROTEUS-SN to increase at a fast rate for finely detailed problems compared to other 

methodologies. For most problems, we advise using a large number of linear elements rather 

than increasing the element order. 

PROTEUS-SN also has convergence issues when neighboring materials in the problem have 

strongly contrasting properties (i.e. alternating optically thick and optically thin regions). There 

is no current workaround other than homogenization.  
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4 Time-Dependent Calculations 

In addition to the steady state mode, PROTEUS-SN models time-dependence using the 

adiabatic approximation. This approximation is more accurate than point kinetics but less 

accurate and simpler to implement than the quasi-static or full kinetics methods. 

4.1 Neutron Kinetics Theory 

A fission event in a nuclear reactor produces both fission products and prompt neutrons, 

which are emitted into the system within 10
-14

 seconds of the fission event. Some fission 

products are unstable (these are called precursors) and undergo a beta decay process which 

instigates the emission of delayed neutrons. The production of delayed neutrons plays a crucial 

part in the control of nuclear reactors, and this process must be accounted for in the time 

dependent transport equation. There are numerous precursor isotopes and complete physics data 

is not well-known for each one. Therefore, in computational methods, the precursors are 

typically categorized into 6 “delay groups” based on their half-lives. Each delay group is 

assigned a characteristic decay constant, m , and a characteristic energy dependent delay yield, 

m . For example, a single fissionable isotope ( i ) may produce different precursors ( ,m iC ) 

belonging to any (or all) of the six delay groups. The characteristic delay yield for group m is 

computed as a sum over all contributing fissionable isotopes to group m, 
, ,m m i m i

i

v v .   

Eq. (4.1) is the time dependent neutron transport equation with delayed neutrons, which 

includes a source term corresponding to the production of delayed neutrons by precursor decay. 

The change in precursor concentration over time is given by Eq. (4.2), which contains the 

production of delayed neutron precursors via fission events and the loss of delayed neutron 

precursors via radioactive decay. 

 , , ,

6

,

1

1 ˆ ˆ ˆ ˆ ˆ( , , ) ( , , , ) ( , , , ) ( , , , )

( ) ( , , ) ( , , )

( , , )

t s

p i p i f i

i

m m i

i m

r E t r E t dE d r E E t r E t
v t

E dE r E t r E t

C r E t

  

  




 
               

   



 

 



  (4.1) 

 , , , , ,( , , ) ( ) ( , , ) ( , , ) ( , , )m i m i m i f i m m iC r E t E dE r E t r E t C r E t
t

   


    
   (4.2) 

Various definitions are stated below. 

, ( ) Prompt fission spectrum due to fission of isotope ip i E   (4.3) 

, ( ) Delayed neutron spectrum emitted by precursor m of isotope im i E   (4.4) 
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, (1 ) Prompt neutron yield due to fission of isotope ip i i i      (4.5) 

, , Delayed neutron yield emitted by precursor m of isotope im i m i i     (4.6) 

, ( , , ) Concentration of precursor group m due to fission of

 isotope i that always emit a delayed neutron at energy E

m iC r E t 
 (4.7) 

It is important to note that in this formulation, the change in physical position of the precursors is 

not considered and thus these equations cannot be used to treat “moving fuel” reactor types. 

4.2 Point Kinetics Approximation 

The point kinetics approximation assumes that the spatial shape of the flux and precursor 

concentrations do not change with time and can be described with a solution to the steady state 

problem, 0
ˆ( , , )r E  . This approximation allows the flux and precursor densities to be written as 

functions separable in space and time: 

 0
ˆ ˆ( , , , ) ( ) ( , , )r E t n t r E     (4.8) 

 
, 0

ˆ( , , ) ( , , ) ( ) ( , , ), 1, 6m m i m

i

C r E t C r E t c t d r E m       (4.9) 

where ( )n t  and ( )mc t  describe the magnitude of the shape functions throughout time. 

Substitution of the point kinetics approximation into the kinetics equations along with algebraic 

manipulations leads to the point kinetics equations, where both spatial and isotopic dependence 

are eliminated: 

 1

( )
( ) ( ) ( )

( ) ( ) ( )

M

m m

m

m
m m m

t
n t n t c t

t

c t n t c t
t

 







 
 

 


 

 


  (4.10) 

The reactivity quantity 
0

1 1
( )

( )
t

k k t
    is the reactivity change from the base state at time t. The 

value m

m

   is the total fraction of fission neutrons which are delayed, and  is the prompt 

neutron lifetime, i.e. the average time between fission neutron birth to death (absorption or 

leakage).  

In point kinetics, the time-dependent reactivity change ( )t  is calculated as a function of 

pre-calculated reactivity coefficients, meaning that the actual transport equation is not solved for 

the true reactivity at later time steps. Additionally, the kinetics parameters   and   are 

calculated only based on the base configuration and not updated as a function of time. These 

assumptions limit the accuracy of the point kinetics method to perturbations in which the 

reactivity insertions are fairly small (<100 pcm) and do not change the kinetics parameters 
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significantly. It is very important to understand that point kinetics can still be very accurate for 

large changes in reactivity so long as   and   do not change significantly during the transient. 

4.3 Adiabatic Approximation Implemented in PROTEUS-SN 

The adiabatic approximation implemented in PROTEUS-SN is more accurate and versatile 

than the point kinetics equations, but less accurate than the quasi-static approximation on which 

it is based.  

In the quasi-static class of kinetics methods [11,15], the time-dependence of the flux is 

assumed to be dominated by a function independent of space, but smaller fluctuations in the 

shape over time are also permitted. Therefore, the flux and precursor densities are expanded in a 

factorizing approach as  

 ˆ ˆ( , , , ) ( ) ( , , , )r E t n t r E t    , and (4.11) 

 
,

ˆ( , , ) ( , , ) ( ) ( , , , )m m i m

i

C r E t C r E t c t d r E t     . (4.12) 

The time-dependence of the shape function ˆ( , , , )r E t   is assumed to be weak and bounded in 

time by some constant, a condition which typically introduces a weighting function like the 

adjoint flux. Insertion of these approximations into the full kinetics equations and performing 

algebraic manipulations results in two sets of coupled equations. The first set of equations looks 

like the point kinetics equations, where the reactivity and kinetics parameters are defined in 

terms of the shape function ˆ( , , , )r E t   and another weighting function, typically either the 

initial steady state or time-dependent adjoint flux. The second set of equations are a transport-

like system for the shape function including the delayed neutron source and other terms 

unfamiliar to the steady state transport equation. Solving these equations by replacing the time 

derivative of the shape function with a backward differencing scheme is known as the “improved 

quasi-static approximation”. 

To obtain the adiabatic approximation, a series of approximations are applied to the equation 

for the shape function.  

1) The time-derivative of the shape function is negligible, i.e. ˆ( , , , ) 0r E t
t



 


 (quasi-

static approximation). 

2) The shape of the delayed neutron source is not distinguished from the shape of the 

prompt source, i.e. the time delay in the shape of the precursor distribution is neglected. 

This results in only one fission source which is identical to the steady state fission source 

(adiabatic approximation). 

3) The time derivative of the magnitude function is neglected, i.e.  ( ) 0n t
t





 (adiabatic 

approximation). 
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These collective approximations reduce the shape equation to the familiar steady state 

transport equation. Recall that in addition to the steady state transport equation, two other 

equations are derived which differ from point kinetics because the kinetics parameters, ( )t  and 

( )t  are functions of time: 

 
1

( ) ( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )
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m m
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m m m

t t
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






 
 

 


 

 


  (4.13) 

In the adiabatic approximation, the time-dependent kinetics parameters are defined in terms of 

inner products (integral over space, angle, energy) on the adjoint and forward fluxes 
* ˆ( , , , )r E t   and ˆ( , , , )r E t  , which are solved at each time step using the steady state adjoint 

and forward transport equations: 

 

* * *1 1 1
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* * *
0 0 00, ,

* * *
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 (4.14) 

 
* * * *

1
( ) ( ) ( ) ( )

( )

1
( ) ( ) ( ) ( )

( )

A t t F t t
k t

A t t F t t
k t

 

 





 (4.15) 

The term 
,m i

F denotes the delayed fission source due to precursors in group m from isotope i, 

, ,,

ˆ( , ) ( , , ) ( , , , )m i f im i
F r t dE r E t d r E t      .  The term ( )F t  is the total fission source from 

both prompt and delayed neutrons. All of the basic approximations typically used to update   

and   are shown in Eq. (4.14), where the first expression denotes recomputing the adjoint flux 

and   and   at every timestep. We note that computing the adjoint flux at each time step is also 

optional (middle column). Similarly, the re-computation of   and   can be made optional (last 

column).  

4.4 Implementation 

At the beginning of the adiabatic kinetics calculation, the initial condition steady state forward 

and adjoint calculations are performed to obtain the initial condition forward and adjoint 

solutions, as well as initial power level ( on ). These values are used to obtain the initial kinetics 
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parameters 
,0m  and o  and ok  from Eq. (4.14). The initial precursor concentrations are  

obtained by 

 
,0

,0

m

m o

o m

c n




 

 (4.16) 

For each subsequent time step, steady state forward and adjoint calculations are performed as 

in Eq. (4.15). The solution of these steady state equations follows the same implementation as 

described in previous chapters of this manual. The kinetics parameters ( )t  and ( )t  as well as 

the reactivity are updated for the time step according to Eq. (4.14).   

Given the updated kinetics parameters for the time step, the point kinetics equations in Eq. 

(4.13) are solved over the time step using one of two techniques  

One option in PROTEUS-SN is to use a fully implicit differencing scheme over the time step 

jt  to 1jt  , where ( )t  and ( )t are assumed to be constant over a time steps. This approach is 

least accurate and efficient but is provided for verification purposes and simplicity. Applying this 

scheme to Eq. (4.13) yields the discretized equations 
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The reactivity 1j   is assumed to change linearly over the time step and can be written in terms 

of the eigenvalue as 1

1

1 1
j

j jk k
 



  . Rearranging Eqs. (4.17) and (4.18) to combine unknowns 

yields the linear system 
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 (4.20) 

These equations are implemented into a linear algebra solver and propagated for each time 

step in PROTEUS-SN. For more details on the derivation of the adiabatic methodology in 

PROTEUS-SN, we refer the reader to Reference 11. 

The alternative time dependent approach to solving this system is to use the Radau [16,17] 

solver. The Radau solver is based on implicit Runge-Kutta methods of orders 5, 9 and 13 which 
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are L-stable. In the approach, the Jacobian of the matrix system is evaluated at different points 

over the time step which is conveniently provided by the preceding implicit differencing scheme. 

The Radau solver is time step adaptive and auto corrects to the desired convergence accuracy. 

While there are other approaches to solving this system which may yield more robust 

performance, we feel that these two approaches are sufficient for the stated needs. 
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5 Cross Sections 

Multigroup cross sections for PROTEUS-SN can be generated externally using the MC
2
-3 

fast reactor multigroup cross section generation code (or any codes which can generate 

multigroup cross sections in the ISOTXS format) or internally using the cross section application 

programming interface (API) which can handle the subgroup or resonance table libraries. This 

section briefly describes the generation of multigroup cross sections for use in PROTEUS-SN. 

5.1 Conventional Multigroup Cross Sections  

PROTEUS-SN requires multigroup cross sections for each isotope of all the compositions in a 

problem. Those multigroup cross sections can be provided from external codes in the ISOTXS 

format. The MC
2
-3 code has been normally used to generate multigroup cross sections for fast 

reactor analysis. In MC
2
-3, resonance self-shielding of isotopes in homogeneous (0D) or 1D 

geometries is performed based on the numerical integration of the point-wise cross sections 

using the narrow resonance approximation. The heterogeneity effect for the 1D geometry is 

accounted for in the resonance self-shielding by introducing the escape cross sections estimated 

from the 1D collision probability calculation. The ultrafine group (UFG) transport calculation is 

conducted and then the resulting flux and moment solutions are utilized to condense UFG cross 

sections to broad group (BG) cross sections. If necessary, RZ-geometry core calculations may be 

carried out to obtain more realistic region-wise UFG spectra for group condensation. Typically, 

33 to 230 group cross sections with the historically optimized group structures are used for fast 

reactor analyses.  

Assembly-homogenized cross sections are typically used and verified through numerous 

benchmark problems. The assembly-homogenized cross sections are generated using the 0D or 

1D calculations discussed above. However, MC
2
-3 is also capable of providing heterogeneous 

cross sections which are to be used for heterogeneous-geometry core calculations with 

PROTEUS-SN. The procedure using the heterogeneous cross sections is under verification. 

5.2 Cross Section API 

The cross section API is an external library developed by Argonne National Laboratory which 

processes multigroup cross sections using the subgroup method or the generalized cross section 

(resonance table) method. The cross section API linked to PROTEUS-SN produces multigroup 

cross sections online for cross section regions in a problem. To do this, PROTEUS-SN should 

provide a one-group fixed source transport solver to the cross section API. The multigroup cross 

sections calculated from the cross section API are stored in the memory. This capability is still 

being under verification. 

5.2.1 Subgroup Cross Section Method 

The subgroup method [18] determines the effective resonance cross sections without the 

intermediate calculation of Dancoff factors, and thus it is useful for arbitrary geometry or direct 
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whole core transport calculations in which spatially dependent self-shielding should be properly 

considered. The flux solution is represented as below in terms of the background cross section 

b  and the microscopic absorption cross section r

a  of resonance r. 

 ( )
( )

b

r

a b

u
u




 



, (5.1) 

where b p e    , and  , p  and e are the intermediate resonance parameter, the potential 

cross section, and the escape cross section, respectively. 

The resonance integral is approximated by quadratures and thus the effective absorption cross 

section r

a  of resonance r  is determined in terms of the subgroup weight 
nw  and level 

n  and 

flux solution 
n  for the broad group as 
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. (5.2) 

The subgroup parameters
nw  for individual isotopes are prepared as a function of background 

cross section and temperature. Therefore, the resonance interference effect due to the presence of 

other resonant isotopes in a mixture is accounted for using the Bondarenko iteration in which 

other isotope cross sections are treated as a constant over the energy group. In the conventional 

subgroup method, the parameters are determined using the background cross sections estimated 

from the solution of a fixed source problem (FSP). From there, the Bondarenko iteration is 

performed only with the subgroup parameters already determined from the FSP, 
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. (5.3) 

where ˆ
a = absorption cross section of other resonant isotopes, k

anw , k

an , k

bn = weighting factor, 

absorption cross section, and background cross section, respectively, of subgroup level n  of 

isotope k . 

The subgroup method requires considerable effort to prepare the subgroup parameters using 

the least square method. It is also known that the subgroup method is appropriate for systems 

with compositions in which there are only a few dominant resonant isotopes and there is minimal 

or no resonance overlapping between the dominant resonant isotopes. Accordingly, it is noted 

that the subgroup method has worked well for thermal systems where U-238 is a dominant 

isotope, and the accurate treatment of the resonance cross sections of structural material is not 

that important. The subgroup method may not work well for fast systems where there are 

multiple dominant resonant isotopes and accurate estimation of resonance cross sections of 

structural material is important. 
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5.2.2 Generalized Cross Section Method 

The conventional subgroup method has been widely and successfully used for light water 

reactor analysis. However, it requires a significant effort to generate the subgroup parameters 

with good performance, and thus those subgroup parameters and cross sections need to be re-

evaluated or re-generated for reactor cores with different spectrum conditions. Therefore, the 

generalized cross section method [2] has been developed for its application to various reactor 

types including LWR, HTR, and SFR.  

Unlike the aforementioned subgroup method, the flux representation includes the contribution 

of the scattering resonance cross section r

s  for resonance r . 

 ( )
( ) ( )

b

r r

a s b

u
u u




  


 
, (5.4) 

where the background cross section is defined as 

  1
[ ( ) ( )]r k k

b a k s er k r
u u

N
 


     . (5.5) 

Similarly to the subgroup method, the escape cross sections e  accounting for the 

heterogeneity effect are calculated by solving the one-group fixed source problem. Because of 

the consideration of the scattering resonance cross section shown in Eq. (5.4), we use the 

collision probability formation to calculate the background cross section as 

 
, ,

0,

,

g

ji k j p k jj k rg

i g

ji r j jj

P N V

P N V






 


. (5.6) 

where g

jiP  is the collision probably from region j  to i . The escape cross section representing the 

heterogeneity effect is defined as 

 , , 0, , ,

g g g

e i r i i p k ik r
N  


    . (5.7) 

Since calculating the collision probabilities in Eq. (5.6) is very expensive, the following two 

fixed source problems for the resonant isotope r  are solved 

 
1 1 ,( , ) [ ( ) ( )] ( , ) ( )g g g g g

a s p kk r
r   


        r r r r , (5.8) 

 2 2( , ) [ ( ) ( )] ( , ) ( )g g g g

a s rN         r r r r r ,  

Using the solutions of the two equations above, the background cross section in Eq. (5.6) can be 

calculated as 

 
1

4 1
0,

22
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dV d r

dV d r


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 




 
 

 

 

 
. (5.9) 

Since the total cross section including resonance cross sections should be determined by the 

background cross section, the escape cross section in Eq. (5.7) can be determined by performing 
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2·N whole-core transport calculations, Eq. (5.8), where N is the number of resonant isotopes. 

One to two more iterations may be normally sufficient to get the total cross sections converged.  

For its general application, the base cross section library is constructed with ultrafine groups 

(UFGs). The base UFG cross section library is generated using MC
2
-3 and NJOY. The library 

includes the resonance cross section tables for absorption, nu-fission, and scattering cross 

sections as a function of the background cross section and temperature for each isotope. The 

number of the background cross sections for use in the resonance table should be different 

depending upon isotopic characteristics, but maximum 20 data points are used in this study. The 

UFG structure is composed of total 2158 groups from 20 MeV to 10
-4

 eV. Relatively large 

lethargies in the thermal energy range are assigned because there is no significant cross section 

variation as in the resonance energy range. We use MC
2
-3 to obtain all cross section data above 

0.414 eV and NJOY to collect thermal cross section below 0.414 eV and update scattering data 

below 3 eV. The resonance cross section tables are calculated using the hyperfine group 

(~600,000) slowing-down calculation option of MC
2
-3. 

Preliminary verification tests indicate that the base UFG cross section library is able to 

accurately estimate eigenvalue and cross sections for various compositions with different 

characteristics. Since, however, an UFG is too many for the practical use, it is necessary to be 

reduced to a practical number of groups. Thus, we use a group condensation optimization 

algorithm to condense an UFG library to a broad group (BG) library with minimizing the 

accuracy loss. Once a reactor of interest is selected, the UFG transport calculation is first 

performed with a representative homogeneous composition to determine the UFG neutron 

spectrum. Next, multiple homogeneous and heterogeneous compositions available for the 

specific core(s) are prepared to determine the BG boundaries which can best approximate the 

solutions with the UFG cross section library in terms of partial reaction rates (absorption and nu-

fission) and eigenvalue.  

In the group condensation optimization process [2], the group condensation progresses from 

the highest group until the differences of the following quantities reach a user criterion: 

/ ref

keff eff effk k   , /i i ref

a aG G aG G     , and /i i ref

nf fG G fG G        , where G  is a broad group 

containing UFGs and i  is an isotope. The evaluation of effk  during condensation is important 

since it allows us to check the contribution of the scattering cross section between UFG and BG 

structures. Once the difference is greater than a user-specified criterion, the group condensation 

process moves on to the next ultrafine group and starts evaluating the next broad group. Note 

that the ultrafine group structure is used for the previous broad groups such that the contribution 

of group condensation to eigenvalue and reaction rates is limited only to the broad group of 

evaluation. 

The UFG-based intermediate resonance (IR) parameters for an isotope mixed with U-238 and 

hydrogen are calculated by comparing the accurate resonance cross section derived from the 

hyperfine-group reference calculation and that estimated from the pre-calculated resonance table 
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with the background cross section. In fact, the IR parameters should be updated depending on the 

broad group structure.  

The followings summarize the keys in the cross section library generation procedure: 

 The master cross section library is based on the 2158 ultrafine group structure, which 

includes the resonance cross section tables for absorption, nu-fission, and scattering 

reactions. The resonance cross section tables are produced by MC
2
-3 with the hyperfine 

group slowing-down calculation capability. 

 The broad group cross section library for a reactor or reactor type of interest is determined by 

the group condensation optimization algorithm minimizing the change of eigenvalue and 

reaction rates from the ultrafine group solutions. In this process, various compositions of a 

reactor or reactor type of interest are used. With the resulting broad group structure and the 

reactor-representative neutron spectrum, the base ultrafine group cross section library is 

condensed to a broad group library. 

 For the local heterogeneity effect, the escape cross sections are determined iteratively as 

described in the previous section - Eqs. (5.7), (5.8), and (5.9). 

 This method still relies on the Bondarenko iteration to account for the resonance interference 

effect. It is noticed that the errors in the detailed broad group cross sections are often reduced 

with a smaller number of energy groups due to error cancellation. 

 
 

 

 



PROTEUS-SN Methodology Manual 
June 30, 2014 

 

ANL/NE-14/5 50  
 

6 Using PROTEUS-SN 

For a detailed description of input, output, and usage, we refer the reader to the companion 

user guide to PROTEUS-SN [19]. However, for convenience, we provide a brief summary of 

these items here. 

6.1 Input 

PROTEUS-SN requires 4 input files: multi-group cross section data file, finite element mesh, 

material assignment (mapping compositions to mesh) file, and a driver input file. The first two 

files must appear is specific file formats described in the user manual. The MC
2
-3 fast reactor 

cross section generation code is typically used to produce the cross section file. The finite 

element mesh can be generated using a number of tools, but must be converted by the user to the 

PROTEUS-compatible format. The recommended mesh-generator options at this time are 

MeshKit (.h5m) and Cubit (.e), as these mesh files can easily be read in or converted to 

PROTEUS-compatible formats using the MOAB library. The material assignment file and driver 

input file are simple readable text files created by the user. 

6.2 Output  

6.2.1 Steady State Calculations 

PROTEUS-SN produces two main types of output files for forward calculations. A simple 

text file echoes all the input options, parallel decomposition information, the outer iteration 

convergence history, final eigenvalue, and simple parallel timing data. Additionally, the full flux 

solution can be exported. The “UNIC” plugin in VisIt can be used to directly import the full flux 

solution for visualization and analysis. In addition to containing the full flux solution, the output 

file also includes mesh, composition, power, and certain reaction rates (namely absorption). The 

output is described in more detail in the companion manual (user guide). For adjoint calculations, 

only the simple text file is produced. 

6.2.2 Time-Dependent Calculations 

PROTEUS-SN produces output files for time-dependent calculations at each time step. For 

example, the eigenvalue history is output along with updated power level, and updated  and   

(upon request). The full solution is exported to file upon request at each time step. 
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APPENDIX A. FINITE ELEMENT SPATIAL APPROXIMATION 

This appendix is focused on the general procedures used in the finite element method used to 

evaluate the spatial integrals. It is common in finite element approximations to define a reference 

element to which all of the finite elements in the mesh are individually transformed.  The 

reference elements used in this work were taken from reference 1, an example of which is shown 

in Figure A.1. 

 

 

Figure A.1. Linear (Left) and Quadratic (Right) Master Triangular Elements 

 

The class of finite elements chosen for this work is termed iso-parametric.  Iso-parametric 

elements use the same trial functions to approximate the independent variable and to perform the 

transformation from the master element to any arbitrary element.  To reduce the complexity of 

the spatial integration only the linear triangular finite element scheme will be displayed.  

Equation A.1 provides the linear triangular finite element trial functions. 















 











1

),(L  (A.1) 

The ordering of the trial functions is important and it corresponds to the vertex indices indicated 

in Figure A.1 (the vertex index labels are found on the interior of the master element). 

 

The transformation from an arbitrary finite element to the master element is accomplished 

using the following relations, where kx  and ky  are the spatial coordinates of the element 

vertices. 

( , ) ( , )k k

k

x x L     (A.2) 

( , ) ( , )k k

k

y y L     (A.3) 

Using these relationships, the Jacobian transformation matrix and inverse Jacobian matrix can be 

defined as 
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J  (A.4) 

1( , )  K J . (A.5) 

The components of the two-dimensional   operator can now be expressed as 

( ) ( , ) ( , )k k k

d d d
L r L L

dx d d
   

 
 

1,1 1,2
K K  (A.6) 

( ) ( , ) ( , )k k k

d d d
L r L L

dy d d
   

 
 

2,1 2,2
K K . (A.7) 

Using these relationships we can show the calculation of the volumetric based matrices typically 

carried out in methods that utilize a finite element approximation. In what follows, ( , ) J  

represents the determinant of the Jacobian matrix. 
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The surface integrations are more complicated due to the type of integration that must be 

performed. In short generic expressions similar to those shown for the volumetric integrations 

can only be obtained for one-dimensional elements, quadrilateral elements, and hexahedral 

elements. This is due to the ability of directly utilizing the Jacobian for calculating the cross 

product in the surface area differential component. For those elements with triangular based 

geometry, a unique linear combination of the components of the Jacobian occurs. 

 

Fortunately, such occurrences can be exclusively linked to the outward normal associated 

with the targeted element surface in the reference frame. For clarity, Figure A.2 shows the 

reference elements for 2-D quadrilateral elements.  

 

Figure A.2. Linear (Left) and Quadratic (Right) Master Quadrilateral Elements 

 

From Figure A.1, we can see that there are two surfaces for the triangular element which are 

similar to the quadrilateral and thus will have a similar outward normal. In this way, the surface 

integration is not element specific, but specific to all of the unique outward normals derived from 

all of the elements that exist in the element library. This bookkeeping information must 

obviously be maintained in the code such that the integration type is known. The alternative is to 

develop a separate set of integration routines for every element type in the library. For 

completeness, we present the integration information for the triangular elements where that 

utilized for quadrilaterals and hexahedrons can be found in the literature. 

 

A.1 Surface Integration for Two-dimensional Triangular Elements 
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Consider a transformation which maps the standard triangular element P1P2P3 in onto the 

reference triangle Q1Q2Q3 Figure A.3. Suppose that the line segments P1P2, P2P3, and P3P1 are 

respectively mapped onto the curves Q1Q2, Q2Q3, and Q3Q1, and that the transformation is 

represented as: 


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 (A.15) 

 

  

Figure A.3. A Reference Element (Left) and an General Element (Right) 

 

Then, the curves Q1Q2, Q2Q3, and Q3Q1 are represented by functions of a single parameter as 
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Denoting the position vector on the curves by tzyx ),,(r  and the arc length along the 

curves by s , the tangential vectors of the curves Q1Q2, Q2Q3, and Q3Q1 can be written as 
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Therefore, the normal vectors of the vertical surfaces that contain the curves Q1Q2, Q2Q3, and 

Q3Q1 can be determined by the cross product kt  as 
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At a point ),,( zyxQ  on these vertical surfaces, a differential surface area vector σd  is 

defined by a vector whose length is equal to the element of surface area d  associated with P  

and whose direction coincides with the normal vector n  at Q . On the aforementioned vertical 

surfaces, it can be determined as 

 dsdddsdzdd nktkrσ  )()()(  (A.25) 

Thus the differential surface area vectors of the vertical surfaces that contain the curves Q1Q2, 

Q2Q3, and Q3Q1 can be represented as 



PROTEUS-SN Methodology Manual 
June 30, 2014 

 

ANL/NE-14/5 58  
 






dd
f

g

d




































0

σ  (A.26) 











dd
ff

gg

dd
ff

gg

d



























































































00

σ  (A.27) 






dd
f

g

d




































0

σ  (A.28) 

The elements of surface area || σdd   are given by 
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For a linear two-dimensional triangular finite element, we can define the following 

transformation 

( , )

( , )

x x x

y y y

x f a b c

y g a b c

z

   

   



   

   



 (A.33) 

This transformation maps the points )0,0(1P , )0,1(2P , and )1,0(3P  to ),(1 yx ccQ , 

),(2 yyxx cacaQ  , and ),(3 yyxx cbcbQ  , respectively. Thus, the lengths of line segments 

Q1Q2, Q2Q3, and Q3Q1 are 22

yx aa  , 22 )()( yyxx abab  , and 22

yx bb  . The length 
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elements of the line segments Q1Q2, Q2Q3, and Q3Q1 can be determined from equations A.29 to 

A.31 as 
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Integration of Eqs. A.34 to A.36 yields the exact lengths of line segments Q1Q2, Q2Q3, and Q3Q1. 

 

A.2 Surface Integration for Three-dimensional Tetrahedral Elements 

 

Suppose that a transformation which maps the standard triangular element P1P2P3 onto 

Q1Q2Q3 is given by 

  

Figure A.4. A Reference Element (Left) and an General Element (Right) 

 





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),,(

),,(

),,(


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

hz

gy

fx

 (A.37) 

and the surface equation for the triangle P1P2P3 is given by 

0),,(  . (A.38) 

The surface Q1Q2Q3 is represented by two parameters since the variables  ,  , and   are 

constrained by Eq. A.38. For example, if Eq. A.38 can be solved for  , it can be represented by 

two parameters   and  . In this case, two tangent vectors 1t  and 2t  can be defined as 
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The partial derivatives   /  and   /  can be determined from Eq. A.37 as 
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Substituting Eqs. A.41 and A.42 into Eqs. A.39 and A.40, we obtain 
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Therefore, the differential surface area vector σd  can be determined as 

 dddd )( 21 ttnσ   (A.45) 

where n  is the normal vector at a point ),,( zyxQ  of the element Q1Q2Q3.  

 If Eq. A.38 can be solved for  , the two tangent vectors 1t  and 2t  are defined as 
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and the differential surface area vector σd  is determined as 

 dddd )( 21 ttnσ   (A.48) 

If Eq. (38) can be solved for  , the two tangent vectors 1t  and 2t  are defined as 
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and the differential surface area vector σd  is determined as 

 dddd )( 21 ttnσ   (A.51) 

Given the proceeding derivations, we can display the implementation results for a  four surfaces 
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we obtain the two tangent vectors 
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and the differential area 
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Similarly, we can pick the surface 
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and obtain the tangent vectors 
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and the differential area 



PROTEUS-SN Methodology Manual 
June 30, 2014 

 

ANL/NE-14/5 62  
 




dd
fg

d

t


















 0,,σ  (A.60) 




 dd
gf

d

2/1
22








































  (A.61) 

Picking the other surface we have 
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and the tangent vectors 
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and the differential area 
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Finally, we can pick the remaining surface 
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To get the tangent vectors 
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And the differential areas 
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. (A.71) 

Clearly these expressions are complicated, but all of the components are fundamentally in the 

Jacobian defined in Eq. A.4. In this manner, we can use the differential area and the shape 

functions to construct derivatives as done in Eqs. A.5 and A.6 as necessary to build matrices 

similar to Eqs. A.8 through A.14. 
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APPENDIX B. ANGULAR CUBATURE IN PROTEUS-SN 

 Given the long history of discrete ordinates approximations of the neutron transport equation, 

angular cubature have undergone quite a substantial amount of development. All of the angular 

cubature that exists cannot obviously be discussed here and thus we only focus on those that are 

relevant for two- and three-dimensional Cartesian implementations in the PROTEUS code. 

 

B.1 Carlson’s Level Symmetric Cubature 

 A substantial number of angular cubature that are currently used in the field of neutronics can 

trace their origins to the work of Bengt G. Carlson [1,2]. His focus was to develop sets of angular 

cubature which could be used in discrete ordinates, finite difference codes for structure 

Cartesian, hexagonal, and R-Z geometries. We can separate this work into two pieces: level 

symmetric and the Legendre-Tchebychev product cubature. 

 The level symmetric cubature is based upon the double tetragon which has a total of eight 

external triangular surfaces. This surface geometry is very similar to the two-dimensional surface 

of a sphere when it is split along the coordinate axes.  Three separate level-symmetric cubatures 

were proposed by Carlson. The first Carlson method [1] used even-moment conditions to 

develop a set of equations which gave the necessary set of weights. The second Carlson method 

[1] used level-moment conditions to obtain the weights. The third Carlson method [2] imposed 

that all abscissas weights were equal. To produce a one-to-one angular mapping for reflected 

boundary conditions (to avoid interpolation), Carlson focused on placing points in a triangular 

pattern (Pascal’s) inside of the triangle segments on the surface of the sphere. In this manner, the 

points were laid out to be rotationally symmetric about the coordinate axes such that the number 

of degrees of freedom were reduced, however, additional symmetry conditions were typically 

required to develop a closed set of equations. These cubature follow the well known even order 

series 2,4,6,8, etc., which has become synonymous with discrete ordinates methods. 

 Both the first and second level symmetric cubatures had the drawback of generating negative 

weights after 20
th

 order. The equal weight cubature defines R/2 equations, which when 

combined, formed an R
th

 order equation in terms of the largest azimuthal angle (θ). After 

obtaining the smallest root from this equation, it can be back substituted into the other equations 

to define the entire set of abscissas. This approach is quite effective and appears to define a gauss 

rule, but it is very difficult to code up in a general fashion. As stated by Carlson, the set of R/2 

equations were arrived at via a “trial and error” procedure thus adding more uncertainty to the 

possibility of producing a viable program to obtain the weights and abscissas at very high orders. 

We note that there are other level symmetric cubatures proposed by Carlson, but these generally 

had negative weights or were of insufficient accuracy in the literature. 

 Given the presence of the spherical harmonics code, some early work indicated problems 

with the first two level symmetric cubatures based upon even moment conditions (LSQ) and 

level moment conditions (LSL). In short, those cubature higher than S12 (S14, S16,…,SN) were 

stated to be of higher order, yet they only possessed accuracy of order S11. One can check this by 

performing the integration of Eq. B.1 on the unit sphere for the set of spherical harmonics that 

are of order L=N. In Table B.1, we have shown the results where L=N-1 for comparison 

purposes to our new work. 
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 m m

l ld Y     (B.1) 

 
Table B.1. Level-Symmetric Integration Results for Eq. (B.1). 

N 

LSQ
a
 LSL

b
 Yl

m
 

Points 
Max 

Error 
Points 

Max 

Error 

2 8 0.E+0 8 0.E+0 

4 24 2.E-16 24 2E-16 

6 48 8.E-16 48 6E-16 

8 80 2.E-15 80 1E-16 

10 120 3.E-14 120 1E-15 

12 168 1.E-14 168 2E-15 

14 224 1.E-2 224 2E-15 

16 288 2.E-2 288 8E-16 
a
Level symmetric even-moment conditions (Carlson). 

b
Level symmetric level-moment abscissas with Yl

m
 rules (follow an odd order series). 

 

 It is unclear whether Eq. B.1 was solved by Carlson or others since using his cubatures, but it 

is clear that errors are immediately present for order S12 or higher. It is important to note that this 

was found only to exist with the even-moment and level-moment cubature and not with the equal 

weight cubature. After some study, we determined that the additional symmetry conditions 

implemented by Carlson to obtain the point weights failed to obey the complete rotational 

symmetry of the polynomials on the unit sphere and thus the set of weights fail to produce the 

correct integration. 

 As an alternative approach to Carlson’s, we chose to investigate the possibility of using a 

least squares procedure on Carlson’s set of abscissas. As one would expect, the additional 

symmetry conditions imposed by Carlson (rotational groups on the first octant) reduces the 

viable set of spherical harmonics that can be used as constraints. First, the upper and lower 

hemisphere symmetry eliminates all the odd parity spherical harmonics. Second, the octant to 

octant symmetry eliminates the sine series of the even-parity set of spherical harmonics. Finally, 

the rotational symmetry within the octant eliminates the odd m terms of the cosine series of the 

even-parity spherical harmonics. The remaining set of spherical harmonics is defined in Eq. B.2 

followed with the accompanying equation defining the number of moments in the series of L
th

 

order. 

    cos cos

, , 0, 0
4

1

N

i l m i l m l m

i

wY Y d





       
0,2,

0,2

l L

m l




 (B.2) 
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8

L L
M

 
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As it turns out, the number of abscissas on the first octant for the Carlson cubature is given by 

Eq. B.4 and M=N when L=R+1. 

 
 2

8

R R
N


  2,4,6,R   (B.4) 

This means we can exactly define an odd order cubature rule without requiring the use of 

more spherical harmonic moments than abscissas. It is important to note that this set of spherical 

harmonics closely resembles the set of monomials chosen by Carlson in the even-moment 

method. Figure B.1 shows three selected cubature from Carlson along with the fitted results for 

the equivalent set of abscissas (the level-moment abscissas and those derived from even-moment 

conditions are effectively the same). As one would expect the set of weights between the two 

approaches are significantly different. However, the same rotational symmetry properties of the 

weights are observable in both cubatures. Unfortunately, this approach produces negative 

weights at order S17 and above order S21. Although the resulting set of weights exactly meets the 

integration requirements defined by Eq. (2), at high orders (S45+), the magnitudes of the 

individual weights are greater than 1.0 which indicates some degree of non-physical oscillations 

in the distribution of weights. Consequently, one must question the impact that this will have 

upon solution of the discrete ordinates or characteristics equations. 

 

   

   

Figure B.1. Carlson S10, S12, and S16 Even-Moment Level Symmetric (top)  

   Least Squares Fitted S9, S11, and S15 Level Symmetric (bottom) 
 

In summary, both our approach and Carlson’s, negative weights are generated after order 

N=20, however, our approach yields cubature whose order of integration is consistent with the 

specified order N of the cubature. The primary problem with all of Carlson’s work is that it is 

very difficult to construct a general computer algorithm to generate the cubature for any order R 

where negative weights are avoided. A greater problem is that the first and second methods 

proposed by Carlson are not consistent with the stated order. 
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B.2 Legendre-Tchebychev Product Cubature 

 

 The origin of the Legendre-Tchebychev product cubature is not clear from the literature, but 

the earliest record we have found is Carlson [1]. The idea behind the Legendre-Tchebychev 

cubature is to combine the one-dimensional cubatures to form a two-dimensional cubature. We 

start with the general targeted integral of Eq. B.5. 

 

      
2

4 0 0

ˆ , sind f d d f

 



           (B.5) 

 

For the   variable, we utilize the transformation given by Eq. B.6 such that we can implement 

the well known Legendre cubature where we assume the transformation from  ,f    to 

 ,f    is smooth. 
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Implementing Eq. B.6 into Eq. B.5 reduces the integral to 
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To transform the   variable, we first split the range of integration such that we can write 
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To put Eq. B.8 into a form acceptable for Tchebychev integration, we make the following 

variable substitution 

 
 

 

cos

sin

h
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We note the rule defined by Eq. B.10 
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This allows us to replace  sin   in Eq. B.9 such that we can write 
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and 
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 (B.12) 

 

where it is understood that the transformation h and h’ are different due to the range of the   

variable in the substitution. To carry out the integration, we can implement the Legendre 

polynomial based cubature in the   direction and the Tchebychev cubature in the h  integration. 

The presence of the split integration in Eq. B.12 can be eliminated by proper selection of points 

in the space of Eq. B.10.  

 The primary advantage of this product cubature is its ability to exactly integrate a set of 

spherical harmonics and an easy to write construction algorithm. The most common path used 

for implementing the preceding cubature is termed Square Legendre-Tchebychev such that the 

order of the Tchebychev and Legendre series are the same. Another commonly used approach is 

termed Triangular Legendre-Tchebychev which forms a triangular pattern on the surface of the 

sphere similarly to the preceding level-symmetric cubature. Other notable uses are the so called 

double Legendre-Tchebychev where the Legendre series is defined over 0 to π. Of course, the 

real potential of a product cubature lies in its ability to use different orders for the one-

dimensional spaces and thus tailor the number of points on the sphere for the problem of interest. 

Figure B.2 shows three examples of the square Legendre-Tchebychev along with three examples 

of the Triangular Legendre-Tchebychev which are of comparable order to those defined earlier 

for the level-symmetric cubatures. Table B.2 shows the integration results using the Legendre-

Tchebychev cubature for Eq. B.1. Note that the poor performance of the Triangular Legendre-

Tchebychev cubature is due to the inherent limitation of the construction algorithm. 
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Figure B.2. Square (top) and Triangular (bottom) Legendre-Tchebychev 

 
Table B.2. Legendre-Tchebychev Integration Error for Equation B.1 

PN 

Order 

Square 

Legendre- 

Tchebychev 

Triangular 

Legendre-

Tchebychev 

PN 

Order 

Square 

Legendre- 

Tchebychev 

Triangular 

Legendre-

Tchebychev 

1 0.0E+00 0.0E+00 27 4.9E-14 5.8E-01 

3 0.0E+00 0.0E+00 29 5.8E-14 4.4E-01 

5 2.8E-15 1.2E+00 31 6.9E-14 5.3E-01 

7 9.2E-13 3.0E-01 33 7.6E-14 4.4E-01 

9 7.7E-15 1.1E+00 35 8.1E-14 4.9E-01 

11 9.2E-15 5.2E-01 37 7.8E-14 4.3E-01 

13 5.7E-14 8.9E-01 39 8.9E-14 4.4E-01 

15 7.0E-15 6.2E-01 41 8.5E-14 4.1E-01 

17 7.4E-15 7.1E-01 43 8.7E-14 4.0E-01 

19 6.7E-15 6.4E-01 45 7.4E-14 4.0E-01 

21 1.6E-14 5.7E-01 47 8.6E-14 3.6E-01 

23 2.6E-14 6.2E-01 49 8.9E-14 3.8E-01 

25 4.2E-14 4.7E-01 51 8.3E-14 3.3E-01 
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B.3 Thurgood Cubature 

 

 The Thurgood cubature
 
[3] was posed as an alternative to Carlson’s in the field of mechanical 

engineering for the solution of the gamma ray transport equation. The goal of course was to 

avoid the problems associated with generating negative weights past order 20 with the overriding 

goal of defining more points on the unit sphere. In this regard, they paid no attention to the 

ability of the cubature to integrate the spherical harmonics past 1
st
 order. Similar to Carlson, they 

assume rotational symmetry of the abscissa distribution on the first octant. They take a reference 

equilateral triangle domain as shown in Figure B.3 and split the domain into a series of equal 

area triangles.  

 

 

Figure B.3. Thurgood Triangulation of the Equilateral Triangle. 

 

The abscissa locations are defined as the centroids of the equivalent spherical triangles. The 

mapping between the abscissas in this system to the 1
st
 octant is straightforward and the set of 

abscissas that are equally spaced on the equilateral triangle turn out to be biased towards the 

corners of the spherical triangle that defines the 1
st
 octant. This is the opposite of the Carlson 

approach where the points are biased towards the centroid of the spherical triangle. As it turns 

out, the Thurgood method imposes an abscissa layout which is basically equivalent to two 

merged Carleson level symmetric cubatures although the selection of the abscissas is quite 

different. As an example, the upper triangle abscissa layout is equivalent to the S6 Carlson layout 

while the lower triangle abscissas layout is equivalent to the S8 Carlson layout. As a consequence 

we can implement the same fitting rules used for Carlson abscissas with respect to the upper and 

lower set of triangles. As one would expect, this approach also leads to negative weights past 

order 21. Curiously, the S17 cubature does not yield negative weights and the relative size of the 

negative weights appears to be better distributed in the Thurgood cubature than the Carlson up to 

order S41. After this order, the weights start to increase dramatically as seen with the Carlson 

approach. Figure B.4 shows three resolution orders of the Thurgood cubature equivalent to those 

of the level-symmetric cubatures. Although the cubature may appear to violate the fundamental 

Upper 

Lower 
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symmetry properties, this is only an artifact of the two merged level symmetric cubatures and the 

resulting meshing of the set of points. Table B.3 shows the integration results for Eq. B.1 for 

both the fitted and unfitted Thurgood cubature. 

 

   

   

Figure B.4. Thurgood (top) and Fitted Thurgood (bottom). 
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Table B.3. Thurgood Integration Error for Equation B.1 

PN 

Order 
Thurgood 

Thurgood 

Yl
m

 Fitted 

PN 

Order 
Thurgood 

Thurgood 

Yl
m

 Fitted 

1 0.0E+00 4.4E-16 27 2.0E-03 1.6E-15 

3 2.2E-16 4.4E-16 29 1.9E-03 2.7E-15 

5 8.5E-02 6.7E-16 31 1.5E-03 3.4E-15 

7 2.2E-02 1.8E-15 33 1.5E-03 2.4E-15 

9 1.6E-02 6.7E-16 35 1.3E-03 0.0E+00 

11 1.1E-02 1.1E-15 37 1.2E-03 6.7E-16 

13 8.1E-03 1.8E-15 39 1.0E-03 2.4E-15 

15 6.2E-03 4.4E-16 41 1.0E-03 1.6E-15 

17 5.7E-03 1.6E-15 43 8.9E-04 5.6E-15 

19 3.9E-03 4.4E-16 45 8.6E-04 6.7E-16 

21 3.3E-03 6.7E-16 47 7.6E-04 4.9E-15 

23 2.7E-03 1.1E-15 49 7.4E-04 0.0E+00 

25 2.3E-03 1.1E-16 51 6.6E-04 6.0E-15 

 

B.4 Lebedev-Laikov Cubature 

 

The Lebedev-Laikov cubature [4] is rather interesting because it follows an odd order series 

and is relatively unused in the neutronics field. The goal of developers of this cubature was to 

minimize the number of points used to integrate a set of spherical harmonics. As will be shown 

later, it is vastly superior in this capability when compared to any of the other cubatures. Its 

primary drawback is the presence of directions along the coordinate axes and planes which 

complicates the treatment of reflected boundary conditions. Also some negative weights exist in 

some of the resolutions of the cubature. While a general construction algorithm cannot be built 

for this cubature, sufficient data exists such that it is not a significant problem. Figure B.5 shows 

plots of the weight distributions for cubature orders equivalent to the preceding Carlson and 

Thurgood. As can be seen, the Lebedev-Laikov cubature sets are very coarse compared to the 

Thurgood or Carlson cubature. Table B.4 shows the excellent integration abilities of the cubature 

when used on Eq. B.1. 
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Figure B.5. Lebedov-Laikov Cubature 

 
Table B.4. Lebedev-Laikov Integration Error for Equation B.1. 

PN 

Order 

Lebedev- 

Laikov 

PN 

Order 

Lebedev- 

Laikov 

PN 

Order 

Lebedev- 

Laikov 

1 2.2E-16 19 2.0E-15 37 1.0E-15 

3 2.2E-16 21 2.2E-15 39 1.0E-15 

5 2.2E-16 23 4.4E-16 41 1.0E-15 

7 1.1E-16 25 1.9E-15 43 3.6E-15 

9 0.0E+00 27 2.7E-15 45 3.6E-15 

11 4.4E-16 29 2.1E-15 47 3.6E-15 

13 3.3E-16 31 2.0E-15 49 2.4E-15 

15 8.9E-16 33 1.1E-15 51 2.4E-15 

17 4.4E-16 35 1.1E-15   

 

 

B.5 COBE Sky Cube Cubature 

 The COBE sky cube based cubature [5] is based upon the projection of the cube to the 

surface of the sphere rather than the double pyramid. The developers created a fitting function 

which would distribute points from the cube onto the sphere in nearly equidistant manner. The 

weights for this approach were set to be equal and were quite poor when used to integrate 

spherical harmonics. While the originating purpose was to create a hierarchical interpolation 

basis, we modified the code provided by the authors such that we filled in the missing 

resolutions. 

 In an attempt to correct the integration problems, we again utilized the least squares 

procedure. Due to the method employed in projection points from the cube to the sphere, we 

found that the fitting procedure led to two separate fitting cases which we term even and odd 

COBE. The results of this fitting are shown in Figure B.6 where the spherical harmonic fitting 

procedure was used.  
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Figure B.6. Even Order (top) and Odd Order COBE Cubature. 

 

The results of the integration for Eq. B.1 are shown in Table B.5 (COBE odd is no more 

effective than COBE even). Obviously more work is necessary to improve the integration 

properties. 

 
Table B.5. COBE Integration Error for Equation B.1. 

PN 

Order 

COBE 

Equal Weight 

COBE Even 

Yl
m

 Fitted 

PN 

Order 

COBE 

Equal Weight 

COBE Even 

Yl
m

 Fitted 

1 1.1E-16 0.0E+00 27 6.6E-03 5.2E-03 

3 1.1E-16 0.0E+00 29 4.0E-03 2.4E-03 

5 8.9E-03 8.9E-02 31 4.0E-03 2.4E-03 

7 5.7E-02 8.9E-02 33 3.4E-03 1.1E-03 

9 1.6E-02 3.3E-02 35 3.4E-03 1.1E-03 

11 1.8E-02 3.3E-02 37 5.3E-03 1.1E-03 

13 1.3E-02 4.2E-02 39 3.0E-03 3.2E-03 

15 1.3E-02 4.2E-02 41 3.0E-03 3.2E-03 

17 2.5E-02 4.2E-02 43 2.8E-03 1.5E-03 

19 8.0E-03 1.5E-02 45 2.8E-03 1.5E-03 

21 1.2E-02 1.5E-02 47 2.8E-03 1.5E-03 

23 5.0E-03 5.2E-03 49 2.7E-03 1.2E-03 

25 5.0E-03 5.2E-03 51 2.7E-03 1.5E-03 
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B.6 Tegmark Icosahedron Based Cubature 

 

 The Tegmark cubature is based upon an icosahedron projective base suggested by M. 

Tegmark to improve the COBE sky cube method [6]. The icosahedron is the Platonic solid 

closest in shape to the sphere, having twenty equilateral triangular faces and twelve vertices. 

Tegmark showed that by pixelizing the triangular faces into equilateral triangles, shifting the 

resulting vertices slightly to account for “stretching” effects, and then projecting the vertices onto 

the sphere, a very uniform distribution of points can be obtained as seen in Figure B.7. The 

resolution, R, of this icosahedron-based cubature leads to a set of abscissas on the unit sphere 

defined by the equation 

   12140  RRN . (B.13) 

The first three sets consist of N=12, 92, and 252 absissas (92, 252, and 1126 are shown in 

Figure B.7). A construction routine was provided by M. Tegmark and was modified to fit into 

the framework of the UNÌC Gauss library. For most neutron transport problems, only the first 

five Tegmark resolutions are conceivably useful with the remainder only appropriate for high 

order applications (a Tegmark resolution of 10 is comparable to a 60
th

 order level symmetric). 

Given that Tegmark’s cubature is based upon the icosahedron projection to the surface of the 

sphere, each triangle is broken up into a systematic pattern as shown in Figure B.8 which we 

term corner based Tegmark. 

 

 

   

   

Figure B.7. Corner Based Equal Weight (top) and Least Squares Fitted (bottom). 

 



PROTEUS-SN Methodology Manual 
June 30, 2014 

 

ANL/NE-14/5 76  
 

 

Figure B.8 Tegmark Hierarchical Resolution of a Triangle on the Icosahedron. 

 

Similar to the COBE sky cube cubature, the intent of Tegmark was to define a hierarchical 

set of abscissas for sky map analysis. The first change we made was to introduce the “missing” 

resolutions as was done for the COBE cubature such that the hierarchical approach is negated. 

This alleviated the problem with a rapidly increasing number of points. The second change was 

to introduce the triangular setup pattern as done by Carlson such that the points lie entirely 

within the triangle which we term as center based Tegmark. 

 Overall, the primary drawback of this cubature is that it is only accurate up to 5
th

 order 

spherical harmonics even though the construction routine can go much higher. As a consequence 

we again utilize a least squares fitting procedure to try and improve the integration properties. 

Given the symmetry condition on the hemisphere, we can remove the odd parity spherical 

harmonic moments from the least squares procedure leaving just the set of even-parity spherical 

harmonics. From Figure B.7, we can observe remarkably good symmetry properties in the 

weights for the corner based method which translates well to the integration results for Eq. B.1 as 

shown in Table B.6. This symmetry reflects the underlying 120 degree symmetry in the 

icosahedron. The center based scheme displayed in Figure B.9, does not perform as well and 

more work is required to improve its integration capabilities. 

 

   

   

Figure B.9. Center Based Equal Weight (top) and Least Squares Fitted (bottom). 

R=1 R=2 R=3 
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Table B.6. Tegmark Integration Error for Equation B.1. 

Corner Based Tegmark Center Based Tegmark 

PN 

Order 

Equal 

Weight 

Yl
m

 

Fitted 

PN 

Order 

Equal 

Weight 

Yl
m 

Fitted 

1 0.0E+00 2.2E-16 1 2.2E-16 0.0E+00 

3 1.2E-08 2.2E-16 3 2.2E-16 0.0E+00 

5 2.8E-09 2.4E-09 5 3.1E-15 1.1E-16 

7 4.7E-03 3.8E-07 7 2.4E-02 1.1E-16 

9 4.7E-03 3.8E-07 9 2.2E-02 3.0E-03 

11 1.5E-02 1.9E-07 11 3.2E-02 2.3E-02 

13 1.5E-02 3.4E-07 13 2.0E-02 9.8E-03 

15 1.5E-02 1.4E-06 15 2.0E-02 9.8E-03 

17 1.1E-02 2.8E-07 17 2.5E-02 1.1E-02 

19 1.1E-02 3.0E-07 19 2.0E-02 5.8E-03 

21 1.1E-02 1.5E-06 21 2.0E-02 5.8E-03 

23 8.8E-03 1.6E-03 23 1.9E-02 3.2E-03 

25 8.8E-03 2.2E-03 25 1.9E-02 3.2E-03 

27 8.8E-03 2.2E-03 27 1.7E-02 2.7E-03 

29 4.7E-03 9.9E-04 29 1.7E-02 2.7E-03 

31 4.7E-03 1.2E-03 31 1.3E-02 2.6E-03 

33 4.7E-03 1.2E-03 33 1.3E-02 2.6E-03 

35 4.5E-03 7.5E-04 35 1.3E-02 2.6E-03 

37 4.5E-03 7.5E-04 37 1.1E-02 2.8E-03 

39 4.7E-03 7.5E-04 39 1.2E-02 2.8E-03 

41 3.1E-03 7.3E-07 41 1.0E-02 2.6E-04 

43 3.1E-03 1.0E-06 43 1.0E-02 2.6E-04 

45 3.8E-03 1.0E-06 45 8.5E-03 7.0E-04 

47 3.0E-03 4.7E-04 47 1.1E-02 7.0E-04 

49 3.0E-03 4.7E-04 49 8.3E-03 7.9E-04 

51 3.1E-03 4.7E-04 51 8.3E-03 7.9E-04 
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B.7 Summary on Cubature 

 In conclusion, all of the above mentioned cubatures are currently implemented in the Gauss 

module of the PROTEUS-SN code. Although cubatures are generated which provide acceptable 

integration results, the presence of negative weights is generally detrimental to the likely success 

of individual cubatures. Additional work is necessary to see if this can be fixed. With regard to 

the problems at 20
th

 order with the Carlson and Thurgood cubatures we believe this is a result of 

the fact that the abscissa layout doesn’t obey the symmetry properties of the spherical harmonics 

beyond this order. This would seem to indicate that a more preferable layout of points is possible 

although this may lead to points lying along coordinate axes as is the case in the Lebedev-Laikov 

and Tegmark cubatures. In such a case the cubature cannot be used in two-dimensional discrete 

ordinates or characteristics. 

 Figure B.10 shows the number of points on the sphere for a given resolution of the cubature 

for the preceding in the current coding (those cubatures that cannot properly integrate the set of 

spherical harmonics are eliminated). Figure B.11 shows the corresponding “order” of the 

cubature as a function of the resolution number. These numbers are reproduced in Tables B.7 

through B.12 for all existing cubatures on the sphere that are maintained in the Gauss Library. As 

can be seen, the Lebedev-Laikov cubature produces the least number of points followed directly 

by the Legendre-Tchebychev product cubature. The Thurgood, Tegmark, and Carlson level 

symmetric cubatures are next with the Tegmark cubature posing the most rapidly increasing one. 

 Table B.13 lists the weight distribution properties of the Lebedev-Laikov and fitted Carlson 

cubature while Table B.14 lists the weight distribution properties for the Thurgood and Tegmark 

fitted cubatures. The remaining cubatures do not have negative weight properties and thus are 

eliminated from this discussion. As can be seen all of the cubatures in Tables B.13 and B.14 

display different behaviors of the negative weights with increasing order. The Lebedev-Laikov 

cubature only has negative weights at a few select orders. The fitted Carlson cubature displays 

the worst distribution with weights rapidly increasing after order S25. The fitted Thurgood 

cubature has a trend similar to that of the Carlson approach, except the weights start increasing at 

order S29 with a much slower pace than that observed in Carlson. Finally, the Tegmark cubature 

displays a rather good, nearly equal weight distribution as the order is increased. 
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Figure B.10. Number of Abscissas versus Resolution of the Cubature 
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Figure B.11. “Order” of the Cubature for a Given Resolution
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Table B.7. Summary Information about Carlson Cubature in Gauss Library 

 CARLSON_EM CARLSON_LM CARLSON_EQUALW PYRAMID_CARLSON 

Resolution Order 2π 4π Order 2π 4π Order 2π 4π Order 2π 4π 

0 2 4 8 2 4 8 2 4 8 1 4 8 

1 4 12 24 4 12 24 4 12 24 3 12 24 

2 6 24 48 6 24 48 6 24 48 5 24 48 

3 8 40 80 8 40 80 8 40 80 7 40 80 

4 10 60 120    10 60 120 9 60 120 

5 12 84 168 12 84 168 12 84 168 11 84 168 

6 14 112 224    14 112 224 13 112 224 

7 16 144 288 16 144 288 16 144 288 15 144 288 
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Table B.8. Summary Information about Thurgood Cubature in Gauss Library 

 THURGOOD_TN THURGOOD_LEASTSQ 

Resolution Order 2π 4π Order 2π 4π 

0 2 16 32 2 16 32 

1 4 36 72 4 36 72 

2 6 64 128 6 64 128 

3 8 100 200 8 100 200 

4 10 144 288 10 144 288 

5 12 196 392 12 196 392 

6 14 256 512 14 256 512 

7 16 324 648 16 324 648 

8 18 400 800 18 400 800 

9 20 484 968 20 484 968 
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Table B.9. Summary Information about Legendre-Tchebychev Cubature in Gauss Library 

 LEG-TCHEBY 

X_DIR_LEG-

TCHEBY 

DOUB_LEG-

TCHEBY TRI_LEG-TCHEBY 

Resolution Order 2π 4π Order 2π 4π Order 2π 4π Order 2π 4π 

0 3 4 8 3 4 8 3 8 16 2 4 8 

1 5 9 18 5 9 18 5 18 36 4 12 24 

2 7 16 32 7 16 32 7 32 64 6 24 48 

3 9 25 50 9 25 50 9 50 100 8 40 80 

4 11 36 72 11 36 72 11 72 144 10 60 120 

5 13 49 98 13 49 98 13 98 196 12 84 168 

6 15 64 128 15 64 128 15 128 256 14 112 224 

7 17 81 162 17 81 162 17 162 324 16 144 288 

8 19 100 200 19 100 200 19 200 400 18 180 360 

9 21 121 242 21 121 242 21 242 484 20 220 440 

10 23 144 288 23 144 288 23 288 576 22 264 528 

11 25 169 338 25 169 338 25 338 676 24 312 624 

12 27 196 392 27 196 392 27 392 784 26 364 728 

13 29 225 450 29 225 450 29 450 900 28 420 840 

14 31 256 512 31 256 512 31 512 1024 30 480 960 

15 33 289 578 33 289 578 33 578 1156 32 544 1088 

16 35 324 648 35 324 648 35 648 1296 34 612 1224 

17 37 361 722 37 361 722 37 722 1444 36 684 1368 

18 39 400 800 39 400 800 39 800 1600 38 760 1520 

19 41 441 882 41 441 882 41 882 1764 40 840 1680 
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20 43 484 968 43 484 968 43 968 1936 42 924 1848 

21 45 529 1058 45 529 1058 45 1058 2116 44 1012 2024 

22 47 576 1152 47 576 1152 47 1152 2304 46 1104 2208 

23 49 625 1250 49 625 1250 49 1250 2500 48 1200 2400 

24 51 676 1352 51 676 1352 51 1352 2704 50 1300 2600 

25 53 729 1458 53 729 1458 53 1458 2916 52 1404 2808 

26 55 784 1568 55 784 1568 55 1568 3136 54 1512 3024 

27 57 841 1682 57 841 1682 57 1682 3364 56 1624 3248 

28 59 900 1800 59 900 1800 59 1800 3600 58 1740 3480 

29 61 961 1922 61 961 1922 61 1922 3844 60 1860 3720 

 
Table B.10. Summary Information about Tegmark Cubature in Gauss Library 

 TEG_CORNER_EQWT TEG_CORNER_LSQ TEG_CENTROID_EQW TEG_CENTROID_LSQ 

Resolution Order 2π 4π Order 2π 4π Order 2π 4π Order 2π 4π 

0 3 6 12 3 6 12 3 10 20 3 10 20 

1 5 21 42 5 21 42 7 40 80 7 40 80 

2 9 46 92 9 46 92 11 90 180 11 90 180 

3 11 81 162 11 81 162 17 160 320 17 160 320 

4 15 126 252 15 126 252 21 250 500 21 250 500 

5 17 181 362 17 181 362 25 360 720 25 360 720 

6 21 246 492 21 246 492 29 490 980 29 490 980 

7 23 321 642 23 321 642 35 640 1280 35 640 1280 

8 27 406 812 27 406 812 39 810 1620 39 810 1620 

9 31 501 1002 31 501 1002 43 1000 2000 43 1000 2000 
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10 33 606 1212 33 606 1212 47 1210 2420 47 1210 2420 

11 37 721 1442 37 721 1442 53 1440 2880 53 1440 2880 

12 39 846 1692 39 846 1692 57 1690 3380 57 1690 3380 

13 43 981 1962 43 981 1962 61 1960 3920 61 1960 3920 

14 45 1126 2252 45 1126 2252 65 2250 4500 65 2250 4500 

 
Table B.11. Summary Information about COBE Cubature in Gauss Library 

 EVEN_COBE_EQ_WT EVEN_COBE_LSQ ODD_COBE_EQ_WT ODD_COBE_LSQ 

Resolution Order 2π 4π Order 2π 4π Order 2π 4π Order 2π 4π 

0 3 12 24 3 12 24 3 3 6 3 3 6 

1 7 48 96 7 48 96 7 27 54 7 27 54 

2 11 108 216 11 108 216 11 75 150 11 75 150 

3 17 192 384 17 192 384 17 147 294 17 147 294 

4 21 300 600 21 300 600 21 243 486 21 243 486 

5 27 432 864 27 432 864 27 363 726 27 363 726 

6 31 588 1176 31 588 1176 31 507 1014 31 507 1014 

7 37 768 1536 37 768 1536 37 675 1350 37 675 1350 

8 41 972 1944 41 972 1944 41 867 1734 41 867 1734 

9 47 1200 2400 47 1200 2400 47 1083 2166    

 

 

 

 

 

 



PROTEUS-SN Methodology Manual 
June 30, 2014 

 

85 

 

Table B.12. Summary Information about Lebedev-Laikov Cubature in Gauss Library 

 LEBEDEV-LAIKOV 

Resolution Order 2π 4π 

0 3 3 6 

1 5 7 14 

2 7 13 26 

3 9 19 38 

4 11 25 50 

5 13 37 74 

6 15 43 86 

7 17 55 110 

8 19 73 146 

9 21 85 170 

10 23 97 194 

11 25 115 230 

12 27 133 266 

13 29 151 302 

14 31 175 350 

15 35 217 434 

16 41 295 590 

17 47 385 770 

18 53 487 974 

19 59 601 1202 
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20 65 727 1454 

21 71 865 1730 

22 77 1015 2030 

23 83 1177 2354 

24 89 1351 2702 

25 95 1537 3074 

26 101 1735 3470 

27 107 1945 3890 
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Table B.13. Weight Distributions for Lebedev-Laikov and Carlson Yl
m

 Fitted. 

 Lebedev-Laikov Carlson Yl
m

 Fitted 

 Positive Negative Positive Negative 

PN Number Average Number Average Number Average Number Average 

1 6 1.7E-01 0 0.0E+00 8 1.3E-01 0 0.0E+00 

3 6 1.7E-01 0 0.0E+00 24 4.2E-02 0 0.0E+00 

5 14 7.1E-02 0 0.0E+00 48 2.1E-02 0 0.0E+00 

7 26 3.8E-02 0 0.0E+00 80 1.3E-02 0 0.0E+00 

9 38 2.6E-02 0 0.0E+00 120 8.3E-03 0 0.0E+00 

11 50 2.0E-02 0 0.0E+00 168 6.0E-03 0 0.0E+00 

13 66 1.9E-02 8 -3.0E-02 224 4.5E-03 0 0.0E+00 

15 86 1.2E-02 0 0.0E+00 288 3.5E-03 0 0.0E+00 

17 110 9.1E-03 0 0.0E+00 336 3.0E-03 24 -4.0E-04 

19 146 6.8E-03 0 0.0E+00 440 2.3E-03 0 0.0E+00 

21 170 5.9E-03 0 0.0E+00 504 2.0E-03 24 -3.3E-04 

23 194 5.2E-03 0 0.0E+00 600 1.7E-03 24 -5.1E-05 

25 224 5.9E-03 6 -5.5E-02 560 2.2E-03 168 -1.5E-03 

27 248 4.2E-03 18 -2.1E-03 624 2.7E-03 216 -3.1E-03 

29 302 3.3E-03 0 0.0E+00 528 8.2E-03 432 -7.7E-03 

31 350 2.9E-03 0 0.0E+00 744 8.1E-03 344 -1.5E-02 

33 434 2.3E-03 0 0.0E+00 648 2.8E-02 576 -3.0E-02 

35 434 2.3E-03 0 0.0E+00 816 3.2E-02 552 -4.5E-02 

37 590 1.7E-03 0 0.0E+00 800 9.6E-02 720 -1.0E-01 
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39 590 1.7E-03 0 0.0E+00 912 1.2E-01 768 -1.4E-01 

41 590 1.7E-03 0 0.0E+00 984 3.1E-01 864 -3.6E-01 

43 770 1.3E-03 0 0.0E+00 1104 4.1E-01 920 -4.9E-01 

45 770 1.3E-03 0 0.0E+00 1128 1.1E+00 1080 -1.1E+00 

47 770 1.3E-03 0 0.0E+00 1224 1.5E+00 1176 -1.5E+00 

49 974 1.0E-03 0 0.0E+00 1352 3.5E+00 1248 -3.8E+00 

51 974 1.0E-03 0 0.0E+00 1488 4.8E+00 1320 -5.5E+00 
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Table B.14. Weight Distributions for Thurgood and Tegmark Yl
m

 Fitted. 

 Thurgood Yl
m

 Fitted Tegmark Yl
m

 Fitted 

 Positive Negative Positive Negative 

PN Number Average Number Average Number Average Number Average 

1 32 3.1E-02 0 0.0E+00 12 8.3E-02 0 0.0E+00 

3 72 1.4E-02 0 0.0E+00 12 8.3E-02 0 0.0E+00 

5 128 7.8E-03 0 0.0E+00 92 1.1E-02 0 0.0E+00 

7 200 5.0E-03 0 0.0E+00 92 1.1E-02 0 0.0E+00 

9 288 3.5E-03 0 0.0E+00 92 1.1E-02 0 0.0E+00 

11 392 2.6E-03 0 0.0E+00 252 4.0E-03 0 0.0E+00 

13 512 2.0E-03 0 0.0E+00 252 4.0E-03 0 0.0E+00 

15 648 1.5E-03 0 0.0E+00 252 4.0E-03 0 0.0E+00 

17 800 1.3E-03 0 0.0E+00 492 2.0E-03 0 0.0E+00 

19 968 1.0E-03 0 0.0E+00 492 2.0E-03 0 0.0E+00 

21 1152 8.7E-04 0 0.0E+00 492 2.0E-03 0 0.0E+00 

23 1328 7.5E-04 24 -7.3E-05 812 1.2E-03 0 0.0E+00 

25 1472 6.9E-04 96 -1.5E-04 812 1.2E-03 0 0.0E+00 

27 1656 6.3E-04 144 -3.3E-04 812 1.2E-03 0 0.0E+00 

29 1856 6.0E-04 192 -6.1E-04 1212 8.3E-04 0 0.0E+00 

31 1976 6.1E-04 336 -6.3E-04 1212 8.3E-04 0 0.0E+00 

33 2256 6.2E-04 336 -1.2E-03 1212 8.3E-04 0 0.0E+00 

35 2552 6.7E-04 336 -2.1E-03 1692 5.9E-04 0 0.0E+00 

37 2720 8.2E-04 480 -2.6E-03 1692 5.9E-04 0 0.0E+00 
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39 2952 1.0E-03 576 -3.6E-03 1692 5.9E-04 0 0.0E+00 

41 3248 1.4E-03 624 -5.8E-03 2252 4.4E-04 0 0.0E+00 

43 3488 2.0E-03 744 -8.2E-03 2252 4.4E-04 0 0.0E+00 

45 3840 3.0E-03 768 -1.4E-02 2252 4.4E-04 0 0.0E+00 

47 4088 4.7E-03 912 -2.0E-02 2892 3.5E-04 0 0.0E+00 

49 4304 7.5E-03 1104 -2.8E-02 2892 3.5E-04 0 0.0E+00 

51 4752 1.2E-02 1080 -5.1E-02 2892 3.5E-04 0 0.0E+00 
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 We note that the preceding cubatures are primarily focused on Cartesian geometries. In the 

majority of the work done in this report, the focus has been on hexagonal geometry with 30 

degree or 60 degree symmetry conditions. Under these circumstances, the use of a cubature 

which doesn’t satisfy the symmetry requires more directions than one which does satisfy the 

symmetry conditions. While certain resolutions of the square Legendre-Tchebychev can meet 

these symmetry conditions, in general there is a need to add additional cubatures which satisfy 

these symmetry conditions.  

 We also note that the preceding set of cubatures is not all inclusive and that there are many 

other cubatures which can be utilized. To note, we can cite the work of Abu-Shumays [7], Heo 

and Xu [8], Hardin, et. al. [9], and the HEALpix software [10]. The decision to include any such 

other cubatures will be based upon the need and the potential benefit that can be gained over the 

existing data in the library. 
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APPENDIX C. REFLECTED BOUNDARY CONDITION  

 Reflected boundary conditions for the discrete ordinates methods generally produces a 

mapping between the incoming set of angular directions and the outgoing set of angular 

directions. For cubature which meet the symmetry conditions that are being imposed, this 

mapping becomes a one-to-one mapping and is quite easy to setup. When the cubature does not 

meet the symmetry conditions, more effort is required such that the boundary conditions can be 

met. While it is entirely likely that existing reactors, which have 30, 45, 90, or 120 degree 

symmetry, can be properly accounted for using existing cubature, the user must be very well 

versed in the cubature that they are using. Moreover, if a new symmetry condition is 

implemented other than those already mentioned, then cubature must be defined which can be 

used in those applications. The more problematic issue is that when such symmetry conditions 

are utilized and a one-to-one mapping routine is built, the geometry must be constrained such 

that it agrees with the scheme employed.  

 To avoid these issues and make certain the code can be used in a general fashion; we decided 

to implement a triangular interpolation routine on the surface of the sphere. In this manner, we 

allow users to utilize the level-symmetric cubature of Carlson, which most users are familiar 

with, for any problem they want to solve. To accomplish this we first had to build an algorithm 

which would generate a triangular mesh on the surface of the sphere. We considered using 

existing Delaney triangular routines, but we found that these routines were more focused on 

producing well posed meshes and thus arbitrarily added directions. This obviously causes more 

problems than it is worth and we constructed our own routine which was inevitably less efficient. 

However, we have found that the meshing procedure we created is computationally irrelevant 

(less than 1 second) on modern computational platforms for cubatures with less than 2000 

directions on the sphere which is more than acceptable for neutronics problems. 

 A reflected boundary condition is typically defined on a flat surface and the cubature on the 

sphere can be split into three sets: incoming, parallel, outgoing. The implementation approach for 

how to deal with these three sets differs between the methods that utilize the cubature, thus we 

focused on working on the assumption that the outgoing directed directions can only be 

redirected to the incoming set of directions such that we can define the relationship  

,

ˆ ˆ0 0

in j out j
n n

j
in out

n n
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Given this, we can postulate that at most three conditions will occur when an outgoing direction 

is reflected as shown in Figure C.1. In all three situations we can compute the spherical distance 

between the reflected outgoing direction (red dot) and the incoming directions which make up 

the corners of the triangle. In the general case, we obviously want to specify weights which puts 

the largest fraction to the closest point to the reflected direction which is guaranteed by using Eq. 

C.2. 
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For the case when a line is intersected, we use Eq. C.3 and for a point intersection, we obviously 

put all of the weight to the point that is intersected. 
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When Eq. C.2 and C.3 produce dependencies which are either self dependent or dependent upon 

parallel directions, the remaining weights are renormalized such that these dependencies are 

eliminated. We can obviously define a better procedure which is based upon an intersection area 

rather than spherical distance, but the preceding one is computationally efficient and appears to 

be sufficient for producing accurate results. 

 

 
General Case 

 
Line Intersection 

 
Point Intersection 

Figure C.1 The Three Possible Intersection Outcomes for a Reflected Direction. 
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