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DIF3D-VARIANT 11.0: A Decade of Updates 
M. A. Smith, E. E. Lewis, E. R. Shemon 

SUMMARY 

The DIF3D code has been a workhorse of fast reactor analysis work at Argonne National 
Laboratory for over 30 years. In 1995, a transport option called VARIANT was added to DIF3D 
to improve the flux solutions for fast reactor problems. VARIANT performs nodal neutron 
transport calculations using PN or SPN theory in Cartesian and hexagonal two- and three-
dimensional geometries. Because of the computing capabilities at that time, VARIANT was 
restricted to 33 group P3 flux approximations with P1 scattering. Clearly computer memory 
capabilities have increased since then and thus large space-angle-energy approximations are 
possible. This manuscript serves as an update to the theory section of the original manual and 
details more than a decade worth of changes made to DIF3D to make DIF3D 11.0. 

The primary focus of this work was to extend the space-angle approximations available 
in DIF3D-VARIANT such that the error due to transport approximations could be resolved. This 
work was started and completed in 2002 and marked the official version of DIF3D 10.0. 
Unfortunately, those higher order approximations could not be used due to the memory 
constraints of the BPOINTER software (limited to 2 GB). In DIF3D 11.0, BPOINTER was 
circumvented for the largest arrays by introducing a Fortran 90 module called LMA (Large 
Memory Array). This seamlessly replaces all of the functionality of the previous software 
concept except the use of 64 bit addressing allows any given array to be considerably larger than 
2 GB. It is now common for DIF3D-VARIANT jobs to consume 50 GB of memory on modern 
workstations when using high order space-angle approximations and a large number of groups.  

Over the course of making these changes, numerous minor bugs were discovered that had 
to be fixed. Many of these bugs were found during the process of creating the perturbation and 
sensitivity code PERSENT and thus VARIANT was updated accordingly. All of the changes are 
discussed in this manuscript along with the impacts upon performance and accuracy. A detailed 
set of verification problems are performed demonstrating the new capabilities and we refer users 
to the PERSENT manual for further details on the steady state fixed source capabilities.  

Unfortunately, the coarse mesh rebalance & fission source extrapolation, the acceleration 
scheme for the outers, were removed in DIF3D 11.0 as they were not very effective in hexagonal 
geometries and were not working for the adjoint flux problems. Tchebychev acceleration was 
inserted to replace it which we note is typically less effective. This change can increase the 
number of outer iterations relative to DIF3D 10.0, but it was not uncommon for coarse mesh 
rebalance to lead to false convergence or no convergence at all which itself might have been 
associated with the various bugs that were fixed in DIF3D 11.0. 

In conclusion, the new version of VARIANT incorporated in DIF3D-11 allows users to 
fully validate their calculations by performing detailed space-angle refinement and resolves 
numerous minor bugs. These improvements facilitate existing users of DIF3D to study ever more 
difficult problems and are a testament to the importance of the VARIANT option for existing 
research being carried out at Argonne National Laboratory. This manuscript serves as an 
addendum manual to the original VARIANT manual covering the numerous changes made over 
the past decade and the impact that they have had on the performance and accuracy. 
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1 Introduction 

The DIF3D code has been a workhorse of fast reactor analysis work at Argonne National 
Laboratory for over 30 years. In 1995, a transport option called VARIANT [1-11] was added to 
DIF3D to improve the flux solutions for fast reactor problems. VARIANT performs nodal 
neutron transport calculations using PN or SPN theory in Cartesian and hexagonal two- and three-
dimensional geometries. At its inception, VARIANT was limited because of the computational 
effort required to solve the transport equation and the limited computer memory. The typical job 
was restricted to 33 group P3 flux approximations with P1 scattering. Clearly computer memory 
and performance have increased considerably since then and larger space-angle-energy 
approximations are possible.  

In 2002, there was a considerable desire to assess the error due to the space-angle 
approximations made in the VARIANT code. At issue was that VARIANT only allowed a 
maximum P5 flux approximation with a P5 scattering kernel to be combined with a 6th order flux 
(4th order in the axial direction) and quadratic leakage approximations. Thus to enable higher 
order space-angle approximations, we had to modify the parts of the code that restricted it to the 
original capabilities. In this manuscript we show how an arbitrary order space-angle 
approximation was implemented consistent with the underlying VARIANT methodology. The 
anisotropic scattering treatment was also extended to match the flux approximation order 
although we have not extensively checked it. The coupling coefficient data statements originally 
implemented within the VARIANT code were completely removed and Fortran 90 data 
structures were added to avert having to rewrite substantial portions of the original coding. This 
was accomplished by treating Fortran 90 modules as common blocks. The conclusion of this 
work marked the creation of DIF3D 10.0. 

While this version was relatively easy to create, higher order approximations could not be 
used due to the memory constraints of the BPOINTER software (limited to 2 GB). Given 
workstation computer memory today is at 132 GB and likely will increase more in the future, 
having an artificial 2 GB memory restriction is quite difficult to justify. BPOINTER was 
circumvented for the largest arrays by introducing a Fortran 90 module called LMA (Large 
Memory Array). This module seamlessly replaces all of the functionality of the BPOINTER 
software concept except it uses 64 bit addressing allowing any given array to be considerably 
larger than 2 GB. It is now common for DIF3D-VARIANT jobs to consume 50 GB of memory 
on modern workstations when using high order space-angle approximations and a large number 
of groups. This marked the creation of DIF3D 11.0. This manuscript revisits the methodology 
behind removing the data statements and the way in which the new coding is implemented into 
VARIANT covering all of the changes to make DIF3D 10.0 and 11.0. 

The primary motivating force behind these changes was the desire to run large energy 
group problems with P5 anisotropic scattering. At present, we have modified the code well 
enough that P9 flux approximations with P9 anisotropic scattering are tractable at 230 groups 
although not advisable because the total run time for a full core reactor problem can be 
considerable. The results of several benchmark problems are detailed along with computational 
timing comparisons between DIF3D 9.0, 10.0 and 11.0. Section 2 gives a brief review of the 
variational nodal theory to correct some of the notation mistakes found in the VARIANT 
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DIF3D-VARIANT 11.0: A Decade of Updates 
M. A. Smith, E. E. Lewis, E. R. Shemon  7 

manual. In Sections 3 and 4, the new methodology of obtaining the angular and spatial 
approximations is detailed along with corrections to the nomenclature given in the VARIANT 
manual. Most of sections 2 through 4 were taken directly from reference [7]. In Sections 5 and 6, 
we briefly cover some of the changes that had to be implemented to the data structuring of 
VARIANT. Section 7 discusses the changes in the algorithm which improved the functionality in 
the code. Finally, in Section 8 we present numerical results contrasting the new version of 
VARIANT with the existing production version. 
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2 Variational Nodal Transport Theory 

2.1 The within-group transport equation 

The formulation starts with the time independent form of the Boltzmann transport 
equation taken from Lewis [15] 
ˆ ˆ ˆ( , , ) ( , ) ( , , )

ˆ ˆ ˆ ˆ( , ' , ' ) ( , ', ') ' ' ( , , )
t

s

r E r E r E

r E E r E d dE S r E

y y

y

W×Ñ W + S W =

S W ® W ® W W + Wòò

r r r r

r r r . (1) 

ˆ( , , )r Ey Wr  represents the neutron angular flux and is a function of three space variables (x, y, z 
in rr ), two angular variables ( q  and f  in Ŵ), and one energy variable (E). The total cross 
section, ( , )t r ES r , represents the sum of all possible neutron reaction probabilities with energy E 

at the point rr . Similarly, the scattering kernel ˆ ˆ( , ' , ' )s r E E d dES W ® W ® Wr
 represents the 

probability that a particle at rr  with energy 'E  traveling in the direction ˆ 'W  is scattered into 
energy dE about E with direction dW about Ŵ. Finally, ˆ( , , )S r EW  is a generic neutron source 
that includes fission sources as well as fixed and external sources. Overall, equation 1 conserves 
neutrons over the entire problem domain. Using equation 1, a deterministic solution of the 
neutron angular flux is sought using a variational principle. 

For now, only isotropic scattering is implemented to simplify the system of equations 
(anisotropic scattering is discussed in Section 2.6). The substitution of an isotropic scattering 
kernel in place of the anisotropic scattering kernel simplifies equation 1 to  
ˆ ˆ ˆ ˆ( , , ) ( , ) ( , , ) ( , ' ) ( , ') ' ( , , )t sr E r E r E r E E r E dE S r Ey y fW×Ñ W + S W = S ® + Wò

r r r r r r r ,  (2) 

where the scalar flux relationship ˆ( , ) ( , , )r E r E df y= W Wò
r r

 
has been employed. 

 
The first step in a deterministic formulation is to apply a multigroup approach [1] to the 

energy dependence of the neutron flux. This approach divides the energy range of interest into G 
intervals with an upper energy cutoff, 0E , and lower energy cutoff, GE , as seen in Figure 2.1.  

 

 
Figure 2.1 The Splitting of the Energy Range into Energy Groups 

 
The desire is to develop G equations based upon the group angular fluxes ˆ( , )g ry Wr  and 

the group sources ˆ( , )gS r Wr  defined by equations 3 and 4. 

ANL/NE-14/1 



DIF3D-VARIANT 11.0: A Decade of Updates 
M. A. Smith, E. E. Lewis, E. R. Shemon  9 

1ˆ ˆ ˆ( , ) ( , , ) ( , , )
g

g

E

g E g
r r E dE r E dEy y y

-

W = W = Wò ò
r r r       1, ,= g G  (3) 

ˆ ˆ( , ) ( , , )g g
S r S r E dEW = Wò

r r
 1, ,= g G  (4) 

To obtain these G equations, equation 2 is integrated over each energy group g and the following 
relations are defined for the group cross sections. 

, ,( ) ( ) ( , ) ( , )t g g t gg
r r r E r E dEf fS = Sò
r r r r

 (5) 

, ' '
( ) ( ) ( , ' ) ( , ') 's g g g sg g
r r r E E r E dE dEf f®S = S ®ò ò
r r r r

 (6) 

Using these relationships the multigroup Boltzmann transport equation is given as 

, , ' '
' 1

ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( ) ( ) ( , )
G

g t g g s g g g g
g

r r r r r S ry y f®
=

W×Ñ W + S W = S + Wå
r r r r r r r .      1, ,= g G  (7) 

To simplify this expression all but the within group scattering ( 'g g= ) can be lumped into the 
group source thus arriving at the following within group form of the transport equation 

, ,
ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( ) ( ) ( , )g t g g s g g g gr r r r r S ry y f®W×Ñ W + S W = S + W

r r r r r r r .      1, ,= g G  (8) 

2.2 The even-parity form of the transport equation 

The next step is to transform this equation into an even parity form, which lends itself 
better to the variational treatment. First the angular flux is split up into even and odd parity 
components given by 

ˆ ˆ ˆ( , ) ( , ) ( , )g g gr r ry y y+ -W = W + Wr r r
,  (9) 

where + denotes even parity and – denotes odd parity. The even and odd parity components of 
the flux have the following properties, where the function ( )g rf r

 represents the group scalar flux. 
Even Odd 

ˆ ˆ( , ) ( , )g gr ry y+ +W = - Wr r  ˆ ˆ( , ) ( , )g gr ry y- -W = - - Wr r   (10) 
ˆ( , ) ( )g gr d ry f+ W W=ò

r r
 

ˆ( , ) 0g r dy - W W=ò
r

 

Inserting equation 9 into equation 8 gives an expression of the form 

,

,

ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( ) ( , ) ( , )

ˆ ˆ ˆ( ) ( , ') ( , ') ' ( , )

g g t g g g

s g g g g g

r r r r r

r r r d S r

y y y y

y y

+ - + -

+ -
®

é ù é ùW×Ñ W + W + S W + W =ê ú ê úë û ë û
é ùé ùS W + W W + Wê úê úë ûë ûò

r r r r r r

r r r r   (11) 

Equation 11 can be evaluated at Ω− ˆ  to get  

,

,

ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( ) ( , ) ( , )

ˆ ˆ ˆ( ) ( , ') ( , ') ' ( , )

g g t g g g

s g g g g g

r r r r r

r r r d S r

y y y y

y y

+ - + -

+ -
®

é ù é ù- W×Ñ - W + - W + S - W + - W =ê ú ê úë û ë û
é ùé ùS - W + - W W + - Wê úê úë ûë ûò

r r r r r r

r r r r   (12) 

Upon adding equation 11 to equation 12 and using the even and odd parity flux definitions in 
equation 10 to simplify the new equation, the even parity form of the transport equation, given 
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by equation 13, is obtained. In a similar fashion, subtraction of equation 12 from equation 11 will 
lead to the odd parity form of the transport equation, given in equation 14. 
Even Parity 

, ,
ˆ ˆ ˆ ˆ ˆ2 ( , ) 2 ( ) ( , ) 2 ( ) ( ) ( , ) ( , )g t g g s g g g g gr r r r r S r S ry y f- +

®×W×Ñ W + ×S W = ×S + W + - W
r r r r r r r r  (13) 

Odd Parity 

,
ˆ ˆ ˆ ˆ ˆ2 ( , ) 2 ( ) ( , ) ( , ) ( , )g t g g g gr r r S r S ry y+ -×W×Ñ W + ×S W = W - - W

r r r r r r . (14) 

To further simplify the equations, an isotropic source will be used in addition to the use 
of an isotropic scattering kernel (an anisotropic source is discussed in section 2.6). This 
simplifies equations 13 and 14 to equations 15 and 16, respectively.  
Even Parity 

, ,
ˆ ˆ ˆ( , ) ( ) ( , ) ( ) ( ) ( )g t g g s g g g gr r r r r S ry y f- +

®W×Ñ W + S W = S +
r r r r r r r

  (15) 
Odd Parity 

,
ˆ ˆ ˆ( , ) ( ) ( , ) 0g t g gr r ry y+ -W×Ñ W + S W =

r r r r
.  (16) 

Equation 16 can now be solved for ˆ( , )g ry - Wr  and substituted into equation 15 to obtain 
equation 17, the second order form of the even parity transport equation. 

, ,
,

1ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( ) ( ) ( )
( ) g t g g s g g g g

t g

r r r r r S r
r

y y f+ +
®

é ù-ê úW×Ñ W×Ñ W + S W = S +ê úSê úë û

r r r r r r r r
r

  (17) 
This differential equation is accompanied with boundary conditions that constrain the angular 
flux along the boundary of the problem domain. These boundary conditions are discussed in 
detail in Section 3.3. 

2.3 The variational nodal functional 

The even-parity transport equation can be formulated as a variational principle [1, 15]. 
That is, this equation can be derived as the necessary condition for a functional to become 
extremum, and its solution can be found by looking for the function that makes the functional 
extremum. The functional to which equation 17 is the necessary condition for the extremum is 
given in equation 18. The ˆ( , )g ry - Wr  variable in equation 18 results from the boundary conditions, 
and is thus known along the problem domain boundary. 

( )

,

,

,

1ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )
( )

ˆ ˆ( , ) ( ) ( , )

ˆ ˆ( , ) ( ) ( ) 2 ( , ) ( )

ˆ ˆ2

g g g
t g

g t g g

g s g g g g g

g

F r r r d dV
r

r r r d dV

r r r r S r d dV

n

y y y

y y

y f y

y

+ + +

+ +

+ +
®

é ùé ùê úé ù ê úW = W×Ñ W W×Ñ W Wê úê ú ê úë û Sê úê úë ûë û
é ù+ W S W Wê úë û
é ù- W S + W Wê úë û

+ W×

òò

òò
òò
òò

r rr r r
r

r r r

r r r r r

Ñ

 

 

   

  ˆ ˆ( , ) ( , )gr r d dy+ -W W W Gr r 

  (18) 
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The functional in equation 18 is defined over the entire problem domain. In a nodal 
method, the problem domain is split into several nodes and a functional is defined for each node. 
Figure 2.2 gives an example three-dimensional Cartesian nodal geometry. Given the creation of 
the nodal geometry, a local or nodal functional vF  can be defined such that it is dependent only 

upon each node’s even parity flux ˆ( , )g ry + Wr  and its odd parity boundary or interface flux 
ˆ( , )g rc - Wr  as seen in equation 19. It is important to note that the change from ˆ( , )g ry - Wr  to 
ˆ( , )g rc - Wr  was made to indicate that the odd parity flux along each node interface is unknown and 

that only the odd parity flux along the boundary of the problem domain is known via the 
boundary conditions. 
 

 
Figure 2.2  An Example Three Dimensional Cartesian Nodal Geometry 

,

,

,
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v g g g g
t g

g t g g

g s g g g

g g

F r r r r d dV
r

r r r d dV

r r r d dV

r S

 

 

 

 

y c y y

y y

y f

y

+ - + +

+ +

+
®

+

é ùé ùê úé ùé ù ê úW W = W×Ñ W W×Ñ W Wê úê úê ú ê úë û ë û Sê úê úë ûë û
é ù+ W S W Wê úë û
é ù- W S Wê úë û

- W

òò

òò
òò

r rr r r r
r

r r r

r r r

r

( )
)

ˆ ˆ ˆˆ2 ( , ) ( , )g g

r d dV

n r r d d  g y c+ -

é ù Wê úë û
é ù+ ×W W W W Gê úë û

òò
òò

r

r r

 (19) 

The functional from equation 18 (the entire problem domain) can now be expressed as a sum of 
all of the nodal functionals in the nodal geometry given by  

, ,g g v g g
nodes

F Fy c y c+ - + -é ù é ù=ê ú ê úë û ë ûå
.  (20) 
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2.4 The variational treatment 

The even-parity transport equation within each node and the continuity of even- and odd-
parity fluxes at the boundary of adjoining nodes can be derived by requiring the functional in 
equation 19 to be stationary with respect to variations in ˆ( , )g ry + Wr  and ˆ( , )g rc - Wr . Suppose that 

ˆ( , )g ry + Wr  is varied from a reference flux ˆ( , )g ry + Wr%  by an arbitrary amount ˆ( , )g rdy + Wr , as shown 
in equation 21. 

ˆ ˆ ˆ( , ) ( , ) ( , )g g gr r ry y dy+ + +W = W + Wr r r%
  (21) 

Then, the first variation of ,v g gF y c+ -é ùê úë û with respect to the arbitrary shift in ˆ( , )g ry + Wr  is 

,

,

,

1ˆ ˆ ˆ ˆ ˆ ˆ( , ), ( , ) ( , ) ( , )
( )

ˆ ˆ( , ) ( ) ( , )

ˆ( , ) ( ) ( )

(

v g g g g
t g

g t g g

g s g g g

g

F r r r r d dV
r

r r r d dV

r r r d dV

r

d dy c dy y

dy y

dy f

dy

+ - + +

+ +

+
®

+

é ùé ùê úé ùé ù ê úW W = W×Ñ W W×Ñ W Wê úê úê ú ê úë û ë û Sê úê úë ûë û
é ù+ W S W Wê úë û
é ù- W S Wê úë û

-

òò

òò
òò

r rr r r r%r

r r r%

r r r%

r

  

 

( )
ˆ, ) ( )

ˆ ˆ ˆˆ ( , ) ( , )

g

g g

S r d dV

n r r d dg dy c+ -

é ùW Wê úë û
é ù+ ×W W W W Gê úë û

òò
òò

r

r r
 

  

 (22) 

The term 
,

1ˆ ˆ ˆ ˆ( , ) ( , )
( )g g

t g

r r d dV
r

dy y+ +
é ùé ùê úé ù ê úW×Ñ W W×Ñ W Wê úê ú ê úë û Sê úê úë ûë û

òò
r rr r%r   can be rewritten using 

integration by parts to obtain  

,

,

,

1ˆ ˆ ˆ ˆ( , ) ( , )
( )

1ˆ ˆ ˆ ˆ( , ) ( , )
( )

1ˆ ˆ ˆ ˆ( , ) ( , )
( )

g g
t g

g g
t g

g g
t g

r r d dV
r

r r d dV
r

r r
r

dy y

dy y

dy y

+ +

+ +

+ +

é ùé ùê úé ùê úW×Ñ W W×Ñ W W =ê úê úê úë û Sê úê úë ûë û
é ùé ùê úê úW×Ñ W W×Ñ W Wê úê úSê úê úë ûë û

é é ùê ê ú- W W×Ñ W×Ñ Wê ê úSê úë ûë

òò

òò

r rr r%r

r rr r%r

r rr r%r

 

 

 d dV
ù
ú Wú

ê úû
òò

 (23) 
Use of the divergence theorem can transform equation 23 to 

( )
,

,

,

1ˆ ˆ ˆ ˆ( , ) ( , )
( )

1ˆ ˆ ˆ ˆˆ( , ) ( , )
( )

1ˆ ˆ ˆ ˆ( , ) ( , )
( )

g g
t g

g g
t g

g g
t g

r r d dV
r

r n r d d
r

r r d dV
r

dy y

dy y

dy y

+ +

+ +

+ +

é ùé ùê úé ùê úW×Ñ W W×Ñ W W =ê úê úê úë û Sê úê úë ûë û

W W× W×Ñ W W G
S

é ùé ùê úê ú- W W×Ñ W×Ñ W Wê úê úSê úê úë ûë û

òò

òò

òò

r rr r%r

rr r%r

r rr r%r

 

 
 (24) 
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Substitution for the odd parity flux ˆ( , )g rc - Wr  gives 

( )
,

,

1ˆ ˆ ˆ ˆ( , ) ( , )
( )

ˆ ˆ ˆˆ ( , ) ( , )

1ˆ ˆ ˆ ˆ( , ) ( , )
( )

g g
t g

g g

g g
t g

r r d dV
r

n r r d d

r r d dV
r

dy y

dy c

dy y

+ +

+ -

+ +

é ùé ùê úé ùê úW×Ñ W W×Ñ W W =ê úê úê úë û Sê úê úë ûë û
- W× W W W G

é ùé ùê úê ú- W W×Ñ W×Ñ W Wê úê úSê úê úë ûë û

òò

òò

òò

r rr r%r

r r

r rr r%r

 

 
. (25) 

Inserting equation 25 into equation 22 and making some simplifications results in equation 26. 

,
,

,

1ˆ ˆ ˆ ˆ( , ) ( ) ( , )
ˆ ˆ ˆ( )( , ) ( , )

( ) ( ) ( )

g t g g
t gv g g

s g g g g

r r r
rF r r d dV

r r S r

y y
d dy dy

f

+ +

+ +

®

ì ü-ï ïï ïW×Ñ W×Ñ W + S Wï ïï ïé ù SW = W Wí ýê úë û ï ïï ïï ï- S -ï ïî þ
òò

r r r r r% %rr r
r r r%

 
 (26) 

For the functional ,v g gF y c+ -é ùê úë û to be stationary with respect to ˆ( , )g rdy + Wr , this first 

variation should be zero. Since ˆ( , )g rdy + Wr  is arbitrary this requires that those terms within the 

brackets { } in equation 26 be zero. By inspection, one can see that these bracketed terms are 

simply the second order even parity transport equation defined by equation 17. 

To investigate the variation of ,v g gF y c+ -é ùê úë û with respect to the odd parity boundary flux at 

the surface of each node, suppose that ˆ( , )g rc - Wr%  is varied from a reference flux ˆ( , )g rc - Wr%  by an 

arbitrary amount ˆ( , )g rdc - Wr , as shown in equation 27. 
ˆ ˆ ˆ( , ) ( , ) ( , )g g gr r rc c dc- - -W = W + Wr r r% ,  (27) 

The first variation of ,v g gF y c+ -é ùê úë û for each node is given as 

( )ˆ ˆ ˆ ˆ ˆˆ( , ), ( , ) 2 ( , ) ( , )v g g g gF r r n r r d dgd dc y dc y- + - +é ù é ùW W = W× W W W Gê ú ê úë û ë ûòò
r r r r   . (28) 

Equation 28 specifies a constraint upon the function ˆ( , )g ry + Wr  along the boundary of the node. 
To see this constraint, the nodal functional in equation 28 is written for two adjacent nodes v and 
v’. The variation of the even parity flux for either nodal functional v or v’ shows that neutron 
conservation is maintained independently for each node as demonstrated in equation 26. The 
variation of the odd parity boundary flux for both nodal functionals leads to the following 
expression defined along the boundary of the adjoining nodes. 

( ){ } ( ){ }'
'

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( , ) ( , ) ( , ) ( , )g g g g
v v

r n r d d r n r d dg gdc y dc y- + - +é ù é ùW W× W W G = W W×- W W Gê ú ê úë û ë ûòò òò
r r r r% %

 
(29) 

Using the properties of the even parity flux defined earlier, the above expression becomes an 
identity that is only met when both the even and odd parity flux are continuous across the node 
interface.  
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2.5 Obtaining the response matrix form 

As mentioned above, in the variational approach, an approximate solution of equation 17 
is determined by looking for the function that makes the functional in equation 19 extremum in a 
pre-selected function space. Given this fact, the focus now turns to the details of the flux 
approximation. To start the response matrix formulation the following approximations are made 
to the group even parity flux, the group odd parity flux, and the group source, where the 
subscripts i, j, m, n, and g  imply summation. The g  index is used to indicate that the surface of 
each node is split up into several components. 

, ,
ˆ ˆ( , ) ( ) ( )g i m g i mr f r gy z+ W = Wr r   (30) 

, , , , , ,
ˆ ˆ( , ) ( ) ( )g j n g j nr h r kg g g gc c- W = Wr r

  (31) 
,( ) ( )g i g iS r f r s=r r

  (32) 

, ,g i mz  and , , ,g j ngc  represent the unknown coefficients that come with the known spatial trial 

functions ( )if rr  and , ( )jh rg
r

 and the known angular trial functions ˆ( )mg W  and ,
ˆ( )nkg W . 

With these approximations the following matrices can be defined for each node. 
,

, ,
,

1 ( ) ( )
( )

k l
i j g k i l j

t g

P f r f r dV
r

= Ñ Ñ
Sò

r r
r

  (33) 

, ( ) ( )i j i jF f r f r dV= ò
r r

  (34) 

, , , ( ) ( ) ( )t
i j g t g i jF r f r f r dV= Sò

r r r
  (35) 

, , , ( ) ( ) ( )s
i j g s g g i jF r f r f r dV®= Sò

r r r
  (36) 

, ,( ) ( )i j i jD f r h r dg
g= Gò

r r
  (37) 

 
,
,

ˆ ˆ ˆ ˆ( ) ( )k l
m n k l m nH g g d= WW W W Wò   (38) 

,
ˆ ˆ( ) ( )m n m nI g g d= W W Wò   (39) 

, ,1
ˆ( )m n m nJ g dd= W Wò   (40) 

, ,
ˆ ˆ ˆˆ( ) ( ) ( )m n m nE n g k dg

g g= W× W W Wò   (41) 
The functional from equation 17 can be rewritten as a tensor product (denoted by the symbol ⊗ ) 
of the matrices defined in equations 33 through 41 resulting in 

( )

, ,

,

,2 2

T TK L K L t
v g g g g g g

K L

T T Ts
g g g g g g g

F P H F I

F J F J s D Eg g
g

g

z z z z

z z z z c

Ä Ä

Ä Ä Ä

é ù
é ùê ú= + ê úë ûê úë û

é ù é ù- - +ê ú ë ûë û

å

å  
 (42) 
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Equation 42 can be written in a more compact form by using the following nodal matrix 
definitions. 

, ,

,

K L K L t s
g g g g

K L

A P H F I F JÄ Ä Ä= + -å  (43) 

g gS F J sÄ=    (44) 
M D Eg g gÄ=   (45) 
With these matrix definitions, the compact form of the functional is given as 

,2 2T T T
v g g g g g g gF A S M g g

g

z z z z c= - + å  . (46) 

Although not shown here [1,7], the variation of this functional with respect to gz  results in 

, 0g g g gA S M g g
g

z c- + =å .  (47) 

Solving for the internal flux coefficients gz , equation 47 can be written as  
1 1

,g g g g gA S A M g g
g

z c- -= - å   (48) 

Equation 48 gives the solution of the nodal even parity flux within each node in terms of 
the nodal odd parity boundary flux and the internal source. In order to use a nodal response 
matrix approach an additional equation needs to be defined such that feedback for the nodal odd 
parity boundary flux based upon the nodal even parity flux is obtained. This new equation must 
allow the even and odd parity flux between nodes to be coupled together. The method used in 
VARIANT to obtain the new equation is to define the even parity function in equation 49 along 
the boundary of the node and project the nodal even parity flux onto it. 

, , , , , , , , ,
ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( )g j g j j n g j nr h r h r pg g g g g gj j jW = W = Wr r r

. (49) 
The projection of the spatial approximation takes the following form 

, , ,
ˆ ˆ( ) ( , ) ( ) ( , )j g j gh r r d h r r dg g gj y +W G= Î G W Gò ò

r r r r  
. (50) 

Equation 51 is obtained after substitution of the spatial trial functions , ( )jh rg
r  used along the 

boundary of the node. 

, , , , , ,
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )j k g k j i g ih r h r d h r f r dg g g gj y +W G= W Gò ò

r r r r 
, (51) 

If the , ( )jh rg
r  trial functions are defined to be orthogonal polynomials, the left hand side 

of equation 51 becomes the identity matrix I  and the right hand side becomes the spatial 
interface matrix Dg  from equation 37. Using this approach, equation 51 is expressed as 

,
ˆ ˆ( ) ( )T

g gI Dg gj y +× W = × W  .  (52) 
Given this definition of the spatial approximation along the node boundary, the angular 
approximation along the node boundary can now be considered.  

The even parity functions ,
ˆ( )npg W  could be defined using the same nodal even parity trial 

functions ˆ( )mg W  from equation 30; however, using such an approach makes it difficult to satisfy 
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the boundary and continuity conditions. The method used in VARIANT is to make use of the 
existing odd parity trial functions multiplied by an additional odd parity function to make them 
even parity, as seen in equation 53. 

( ), ,
ˆ ˆ ˆ( ) ( )n np n kg g gW = W× W .  (53) 

This approach allows for a straightforward treatment of the boundary and continuity conditions 
and satisfies the underlying Rumyanstev boundary conditions [13-14]. Using equation 53 in 
equation 52 the following relation is obtained for the projection 

( ) ( ), , ,
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T

n g n gI n k d D n k dg g g g g gj y +
Ä ÄW× W W W= W× W W Wò ò . (54) 

The right hand side of equation 54 will lead directly back to the earlier definition of the 
M g matrix in equation 45, except that it is transposed here. The angular integral on the left hand 
side of equation 54 can be written as the following matrix 

( ) ( ), , , ,
ˆ ˆ ˆ ˆ( ) ( )n m n mn k n k dg g g g gQ = W× W W× W Wò , (55) 

which is not an identity matrix. Rather than inverting this matrix to solve for the ,ggj  
coefficients, the set of coefficients ,ggy  defined by equation 56 are used. 

( ), ,
T

g g gI Mg g gj zÄ Q =y =  .  (56) 
This is appropriate because the continuity condition for the transport equation is exactly 
preserved with the set of coefficients in equation 56 [1,14-15]. After substitution of equation 48 
into equation 56, equation 57 is obtained. 

1 1
, ' ',

'

T TT
g g g g g gM M A S M A Mg g g g g g

g

z c- -= = - åy   (57) 

As can be seen, equation 57 represents the even parity boundary flux as a function of the 
internal source and odd parity boundary fluxes. Because equation 57 does not provide direct 
feedback to the odd parity boundary flux used to get gz  in equation 48, both the even and odd 
parity boundary fluxes must be solved for simultaneously. To do this a change of variable to gj

+  
and gj

−  is carried out where gj
+  and gj

−  are analogous to partial currents across the node interface 
[5]. 

, , ,
1 1
4 2g g gjg g gc± = ±y

  (58) 
Upon rearrangement of equation 58, the following definitions for gy  and ,ggc  in terms of +

gj  
and −

gj  are obtained. 

( ), , ,2g g gj jg g g
+ -= +y    (59) 

, , ,g g gj jg g gc + -= -   (60) 
Substitution of these expressions into equation 57 results in 
( ) ( )1 1

, , ' ', ',
'

2 T T
g g g g g g gj j M A S M A M j jg g g g g g g

g

- -+ - + -+ = - -å . (61) 

Equation 61 can be simplified by defining the matrices in equations 62 and 63. 
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1
, ', '

1
2

T
g gG M A Mg g g g

-=
  (62) 

1
,

1
2

T
g gC M Ag g

-=
  (63) 

Using these matrices equation 61 is written as 
( ), , , , ', ', ',

'
g g g g g g gj j C S G j jg g g g g g g

g

+ - + -+ = - -å . (64) 

At this point equation 64 is partitioned [4] with respect to the surface vectors jg
+  and jg

- , 
such that the following nodal interface vectors and matrices are created. 

1 2 3[ , , ,..., ]Tj j j j jg
+ + + + +=   (65) 

1 2 3[ , , ,..., ]Tj j j j jg
- - - - -=   (66) 

1,1, 1,2, 1, ,

2,1, 2,2,

,1, , ,

g g g

g g
g

g g

G G G
G G

G

G G

g

g g g

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

L
L M

M M O M
L L

  (67) 
1, 2, 3, ,[ , , ,..., ]T

g g g g gC C C C Cg=   (68) 
Rewriting equation 64 using these nodal vectors and matrices yields 

( )g g g g g g gj j C S G j j+ - + -+ = - - .  (69) 

Rearranging equation 69 to solve for j+  leads to equations 70 and 71, where I  represents an 
identity matrix. 
( ) ( )g g g g g gG I j C S G I j+ -+ = + -   (70) 

( ) ( ) ( )1 1

g g g g g g gj G I C S G I G I j
- -+ -= + + + -  (71) 

Equation 71 can be written compactly by defining the matrices in equations 72 and 73. 

( ) ( )1

g g gR G I G I
-

= + -   (72) 

( ) 1

g g gB G I C
-

= +   (73) 
Insertion of equations 72 and 73 into 71 leads to the final nodal response matrix form in equation 
74. 

g g g g gj B S R j+ -= +   (74) 

The final step in the nodal approach is to substitute the partial current definition from 
equation 58 for the odd parity boundary flux in equation 48, reiterated as equation 75 below, to 
arrive at equation 76. 

1 1
,g g g g gA S A M g g

g

z c- -= - å   (75) 

( )1 2 T
g g g g g gA S C j jz - + -= - × -   (76) 
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The production code VARIANT is based upon the iterative solution of equations 74 and 76. The 
changes made in this work are focused mainly on the definition and evaluation of the spatial 
matrices in equations 33-37 and on the definition of the angular matrices in equations 38-41. The 
details of the solution procedure and convergence methods can be found in the VARIANT 
manual [1]. 

2.6 Anisotropic Scattering Considerations 

Anisotropic scattering is made included in this section and the response matrix derivation 
above is repeated. The starting point is taken as the multigroup even and odd parity transport 
equations given by equations 77 and 78 taken from equations 13 and 14. 
Even Parity 

, ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ' ( , ') ( , ') ( , )g t g g s g g g gr r r d r r S ry y y- + + + +

®
é ùW×Ñ W + S W = W S W×W W + Wê úë ûò

r r r r r r r  (77) 

Odd Parity 

, ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ' ( , ') ( , ') ( , )g t g g s g g g gr r r d r r S ry y y+ - - - -

®
é ùW×Ñ W + S W = W S W×W W + Wê úë ûò

r r r r r r r  (78) 

where the terms ,
ˆ ˆ( , ')s g g r+

®S W×Wr , ,
ˆ ˆ( , ')s g g r-

®S W×Wr , ˆ( , )gS r+ Wr , and ˆ( , )gS r- Wr  are defined by 

, , , , ,
0.2,...

ˆ ˆ ˆ ˆ( , ') ( ) ( ) ( ')
N

e e
s g g l s g g l m l m

l m

r r Y Y+ +
® ®

=

S W×W = S W Wå år r
, (79) 

, , , , ,
1.3,...

ˆ ˆ ˆ ˆ( , ') ( ) ( ) ( ')
N

o o
s g g l s g g l m l m

l m

r r Y Y- -
® ®

=

S W×W = S W Wå år r
, (80) 

ˆ ˆ ˆ( , ) ( , ) ( , )g g gS r S r S r+ W = W + - Wr r r ,  (81) 
and 

ˆ ˆ ˆ( , ) ( , ) ( , )g g gS r S r S r- W = W - - Wr r r .  (82) 

Solving equation 78 for the odd parity flux gives  

,
,

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ' ( , ') ( , ') ( , )
( )g g s g g g g

t g

r r d r r S r
r

y y y- + - - -
®

é ùé ùW = - W×Ñ W + W S W×W W + Wê úê úë ûë ûS ò
rr r r r r

r  (83) 

Each component of the odd parity spherical harmonic expansion in equation 80 can be extracted 
from the odd parity flux in equation 83 by multiplying by the spherical harmonic and integrating 
over the angular domain as shown in equation 84. 

, ,
,

, ,
,

1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( , )
( )
1 ˆ ˆ ˆ ˆ( ) ' ( , ') ( , ')
( )

o o
l m g l m g g

t g

o
l m s g g g

t g

d Y r d Y r S r
r

d Y d r r
r

y y

y

- + -

- -
®

é ùé ùé ùW W W = W W - W×Ñ W + Wê úê úê úë û ë ûë ûS

é ùé ù+ W W W S W×W Wê úê úë ûë ûS

ò ò

ò ò

rr r r
r

r r
r

 (84) 

Substitution of the cross section definition of equation 80 into the last term of equation 84 allows 
for the simplification of this term as seen in equation 85. 
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, ,

, ', , ', ' ', '
' 1.3,... '

, , ,

ˆ ˆ ˆ ˆ( ) ' ( , ') ( , ')

ˆ ˆ ˆ ˆ( ) ' ( ) ( ) ( ') ( , ')

ˆ ˆ( ) ( ) ( , )

o
l m s g g g

N
o o o

l m l s g g l m l m g
l m

o
l s g g l m g

d Y d r r

d Y d r Y Y r

d r Y r

y

y

y

- -
®

- -
®

=

- -
®

é ùé ùW W W S W×W W =ê úê úë ûë û
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 (85) 

Substitution of equation 85 into 84 yields equation 86. 

, ,
,

, ,
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,

1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( , )
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o o
l m g l m g g

t g

l s g g o
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d Y r d Y r S r
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r
d Y r
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y y

y

- + -

-
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é ùé ùé ùW W W = W W - W×Ñ W + Wê úê úê úë û ë ûë ûS

S é ù+ W W Wê úë ûS
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ò

rr r r
r

r
r

r
 (86) 

Collecting on similar terms, equation 86 is simplified to equation 87. 

( )

,

,
, , ,

ˆ ˆ( ) ( , )

1 ˆ ˆ ˆ ˆ( ) ( , ) ( , )
( ) ( )

o
l m g

o
l m g g

t g l s g g

d Y r

d Y r S r
r r

y

y

-
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®

é ùW W W =ê úë û
é ùé ùW W - W×Ñ W + Wê úê úë ûë ûS - S

ò
ò

r

r r r
r r

 (87) 

The odd parity flux in equation 83 can be eliminated from the right hand side by 
substitution of equation 87 yielding equation 88. 

,

,
2

,

1ˆ ˆ ˆ ˆ( , ) ( , ) ( , )
( )
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s g g
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r r S r
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y y
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S W×W é ù+ W - W×Ñ W + Wê úë ûé ùSê úë û
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rr r r
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r% r r r
r

 (88) 

The cross section ,
ˆ ˆ( , ')s g g r-

®S W×Wr%  is defined by equation 89. 
1

, ,
, , , , ,

1.3,... ,

( )ˆ ˆ ˆ ˆ( , ') 1 ( ) ( ) ( ')
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N
l s g g o o
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r r Y Y

r

--
®- -

® ®
=

æ öS ÷ç ÷çS W×W = - S W W÷ç ÷÷ç Sçè ø
å å

r
r r% r  (89) 

Substituting equation 88 into the even parity transport equation (equation 77) results in equation 
90. 
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 (90) 

The corresponding functional for equation 90 is given in equation 91. 

  ANL/NE-14/1 



 DIF3D-VARIANT 11.0: A Decade of Updates 
20  January 16, 2014 

1 1ˆ ˆ ˆ ˆ' '
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 (91) 

Performing the variation with respect to the even parity flux in equation 91 gives equation 90 as 
the Euler-Lagrange equation. Performing the variation with respect to the odd parity flux in 
equation 91 leads to the same continuity conditions found with the isotropic scattering 
functional. 

To simplify the matrix notation and allow the use of tensor notation as done before, the 
spherical harmonics for the anisotropic scattering treatment are arranged into a single indexed 
vector as seen in equation 92 (two-dimensional version). The anisotropic scattering cross section 
moments must also be aligned to match ˆ( )N ± W , the details of which can be found elsewhere 
[1,7]. 
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 (92) 

Implementation of the spatial and angular approximations leads to the definition of the 
following angular and spatial matrices. 
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, ,
,

1 ( ) ( )
( ) ( )

K K
i j l i j

t s l

U f r f r dV
r r-= Ñ

S - Sò
r r

r r
 (95) 

, ( ) ( )i j i jF f r f r dV= ò
r r

  (96) 

, ( ) ( ) ( )t
i j t i jF r f r f r dV= Sò

r r r
  (97) 

, , , ( ) ( ) ( )s
i j l s l i jF r f r f r dV+= Sò

r r r
  (98) 
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, ,( ) ( )i j i jD f r h r dg
g= Gò

r r
  (99) 

 
,
,

ˆ ˆ ˆ ˆ( ) ( )k l
m n k l m nH g g d= WW W W Wò   (100) 

,
ˆ ˆ ˆ( ) ( )k

i l k i lV g N d-= W W W Wò  
  (101) 

,
ˆ ˆ( ) ( )m n m nI g g d= W W Wò   (102) 

,
ˆ ˆ( ) ( )i l i lJ g N d+= W W Wò   (103) 

, ,
ˆ ˆ ˆˆ( ) ( ) ( )m n m nE n g k dg

g g= W× W W Wò   (104) 

Upon substitution of equations 93-104 into the functional in equation 91, one obtains the 
discretized functional of equation 105. 

[ ]

( )

, , ,
, ,

,

,

,

2 2 2

T K L t K L T st K L t T s
v K l L l l l l l

K L l l

T T T st K T
l l l K l l l

l K l

F H P V V P I F J J F

J J F S V U S D Eg g
g

g

z c z z

z z z c

Ä Ä Ä Ä

+ -
Ä Ä Ä

é ùé ùé ù é ùê úê ú= + + -ê ú ê úë û ë ûê úê úë ûë û
é ù- - +ê úë û

å å å

å å å å 
 (105) 

It is important to note that the matrices in equations 101 and 103 are really vectors for each 
spherical harmonic moment of the anisotropic scattering expansion. As was done for the 
isotropic functional, equation 105 can be simplified using the following matrix definitions. 

, , ,
, ,

,

K L t K L T st K L t T s
K l L l l l l l

K L l l

A H P V V P I F J J FÄ Ä Ä Ä
é ùé ù é ùê ú= + + -ê ú ê úë û ë ûê úë û

å å å  (106) 

,
st K

l K l l
K l

T V UÄ= å å   (107) 

T
l l lW J J FÄé ù= ê úë û   (108) 

M D Eg g
g Ä=   (109) 

Substituting equations 106-109 into equation 105 and partitioning the lT  matrix and the even and 
odd parity source components, yields equation 110. 

[ ], 2 2 2T T T T
vF A W S T S Mz c z z z z z c+ -= - - +   (110) 

Performing the variation with respect to the even parity flux coefficients in equation 110 and 
solving the resulting equation for the even parity flux coefficients leads to equation 111. 

1 1 1A W S A T S A Mz c- + - - -= + -    (111) 
Following the same response matrix approach used for the isotropic functional, the following 
response matrix equations are obtained. 
j B S B S Rc+ + + - -= + +    (112) 

11
2

TG M A M-=
  (113) 

11
2

TC M A-=
  (114) 
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( ) 1
B G I C

-+ = +   (115) 

B B T- +=   (116) 

( ) ( )1
R G I G I

-
= + -   (117) 

1 1 2 TA W S A T S Cz c- + - -= + -    (118) 
The details on how to obtain the even and odd parity source moments are given in the 
VARIANT manual. This concludes the description of the theory implemented in the VARIANT 
code. Section 3 deals with the angular approximations implemented in VARIANT while Section 
4 deals with the spatial approximations. 
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3 The Angular Approximation Implemented in VARIANT 

3.1 Introduction 

In Section 2, the response matrix equations were derived with the assumption that the 
flux would be approximated with a set of spatial and angular trial functions. In this section the 
angular trial functions are displayed. In the production version of VARIANT, the angular and 
spatial integrals were evaluated analytically using MATHEMATICA. The results of these 
integrations were placed into FORTRAN data statements and placed into the coding during 
compilation. In this work the angular trial functions and matrices are obtained numerically 
during VARIANT code execution for a user specified order. In this section, the procedure used 
to obtain the angular trial functions and the method used to obtain the angular matrices and to 
implement them into VARIANT is detailed. 

3.2 Angular approximation 

The production version of VARIANT can use either spherical harmonics or simplified 
spherical harmonics to approximate the even parity trial functions, ˆ( )g W , and the odd parity trial 
functions, ˆ( )kg W . In this report only the spherical harmonics formulation will be derived; the 
derivation of the simplified spherical harmonics approximation can be found elsewhere [1]. 

The spherical harmonic functions [15] are defined as  
ˆ( ) ( ) em m m imY C P fmW = × ×l l l ,  (119) 

where ( )mP ml  represents the associated Legendre function ( cos( )m q= ) and the normalization 
constant is given by 

(2 1)( )!
( )!

m mC
m

+ -=
+l

l l
l

.  (120) 

The spherical harmonic functions can be separated into sine and cosine series as shown in 
equations 121-123. 

, ,
ˆ ˆ ˆ( ) ( ) ( )m e o

m mY Y i YW = W + Wl l l   (121) 

,
ˆ( ) ( ) cos( )c m m

mY C P mm fW = × ×l l l   (122) 
s
,

ˆ( ) ( ) sin( )m m
mY C P mm fW = × ×l l l   (123) 

What is unique about equations 122 and 123 is that the functions ,
ˆ( )c

mY Wl  are symmetric with 

respect to f  and the functions ,
ˆ( )s

mY Ω  are not. Also important is that the functions with even   
are even parity and odd   are odd parity. These properties of the spherical harmonic functions 
are quite beneficial when defining the functions ˆ( )g W  and ˆ( )kg W  as will be shown shortly. 

To satisfy the continuity conditions along nodal boundaries, Rumyantsev boundary 
conditions [13] are implemented in VARIANT. Rumyantsev has shown that the integrals for the 
total flux in equation 124 must be continuous across interfaces for the spherical harmonics 
approximation. 
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ˆ ˆ ˆˆ( ) ( ) ( , )mn Y r dg yW× W Î G W Wò l
r

0,1,2,..., N=l       0,1, 2,...,m = l  (124) 

Separating the angular flux along the boundary into even and odd parity components 
yields equations 125 and 126. It is important to note that the range of l  has been adjusted in 
these equations to compensate for the parity dependence upon the associated Legendre function, 
which forces some of the terms automatically to zero [15]. 

ˆ ˆ ˆˆ( ) ( ) ( )mn Y dg y +W× W W Wò l   1,3,5,..., N=l          0,1, 2,...,m = l  (125) 

ˆ ˆ ˆˆ( ) ( ) ( )mn Y dg y -W× W W Wò l   0, 2, 4,..., 1N= -l    0,1, 2,...,m = l  (126) 

The even and odd parity flux can be expanded in spherical harmonics as shown in equations 127 
and 128. 

,
ˆ ˆ( ) ( )m

mYy y+ +W = Wl l    0, 2, 4,..., 1N= -l 0,1,2,...,m = l  (127) 

,
ˆ ˆ( ) ( )m

mYy y- -W = Wl l    1,3,5,..., N=l        0,1,2,...,m = l  (128) 
Upon insertion of equations 127 and 128 into equations 125 and 126, equations 129 and 130 are 
obtained. 

'
' ', '

ˆ ˆ ˆˆ( ) ( ) ( )m m
mn Y Y dg y +W× W W Wò l l l   

1,3,5,...,
' 0, 2, 4,..., 1

N
N

=
= -

l
l

 
0,1, 2,...,

' 0,1, 2,..., '

m

m

=

=

l

l

  
 (129) 

'
' ', '

ˆ ˆ ˆˆ( ) ( ) ( )m m
mn Y Y dg y -W× W W Wò l l l   

0, 2, 4,..., 1
' 1,3,5,...,

N
N

= -
=

l
l

  
0,1, 2,...,

' 0,1, 2,..., '

m

m

=

=

l

l

  
 (130) 

Upon inspection of equations 129 and 130, the matrix defined in equation 131 is found to exist 
for any arbitrary surface n̂g . 

', ' '
, '

ˆ ˆ ˆˆ( ) ( ) ( )m m m
mE n Y Y dg= W× W W Wòl

l l l   
0, 2, 4,..., 1

' 1,3,5,...,
N
N

= -
=

l
l

  
0,1, 2,...,

' 0,1, 2,..., '

m

m

=

=

l

l

  
 (131) 

In terms of the spherical harmonics expansion defined by equations 127 and 128, the 
Rumyantsev boundary conditions can be interpreted as a requirement that TE y +  and Ey -  be 
continuous across node interfaces. From the application of the variation in Section 2, equation 
29, it is known that the Ey -  condition is satisfied. The TE y +  condition is also satisfied because 
of the special even parity interface functions chosen in Section 2, equation 53. The use of a 
different set of even parity angular interface trial functions for the projection, such as ˆ( )g W , 
would not meet the continuity requirements outlined by equation 131. 

With a spherical harmonics expansion, the E  matrix of equation 104 (or equation 131) is 
not a square matrix; there are clearly more odd parity expansion terms than even parity for a 
selected order N (N is an odd number). For the response matrix formulation derived in section 2, 
this matrix must be square, which means that either some odd parity functions must be 
eliminated or some even parity functions must be added. It has been shown [1-4,7,14] that some 
of the odd parity trial functions in an N order expansion are linearly dependent in the projection 
of E  and thus they can be eliminated. The method currently implemented in VARIANT is to 
remove the Y ± l

l  terms from the odd parity expansion (   is odd) and the required square E  
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matrix is obtained. The resulting angular trial functions for two-dimensional problems are found 
to be 

0,0 2,2 2,1 2,0 4,4 4,3 4,2
ˆ( ) { , , , , , , ,...}c c c c c c cg Y Y Y Y Y Y YW =  and (132) 

1,0 3,2 3,1 3,0 5,4 5,3 5,2
ˆ( ) { , , , , , , ,...}c c c c c c ck Y Y Y Y Y Y Yg W = . (133) 

For three-dimensional problems the angular trial functions are found to be 

0,0 2, 2 2, 1 2,0 2,2 2,1 4, 4 4, 3 4, 2
ˆ( ) { , , , , , , , , ,...}c s s c c c s s sg Y Y Y Y Y Y Y Y Y- - - - -W =  and (134) 

1,0 3, 2 3, 1 3,0 3,2 3,1 5, 4 5, 3 5, 2
ˆ( ) { , , , , , , , , ,...}c s s c c c s s sk Y Y Y Y Y Y Y Y Yg - - - - -W = . (135) 

Note that the g  index is included to denote that the ˆ( )kg W  trial functions must be rotated to align 
the polar angle with the outward normal. 

With these definitions of the functions ˆ( )g W  and ˆ( )kg W , the angular matrices derived 
during the response matrix formulation can either be evaluated analytically or numerically. For 
the matrices in equations 100-104, equation 102 reduces to  

, ' , 'm m m mI d= .  (136) 
Equation 103 has a similar result since the spherical harmonic set used for the anisotropic 
scattering is a subset of the even parity flux moments. The matrices in equations 100 and 101 can 
be obtained analytically. The matrices in equation 104 require the surface functions to be rotated, 
which makes the analytical integration exceedingly difficult, especially for hexagonal 
geometries. Note that we could also employ the generic rotation matrices, but we have found this 
to be quite difficult in practice because of the non-standard orientations applied to the surface 
functions in VARIANT. Given this problem, exact numerical integration techniques (within the 
precision of the machine) were employed to perform the angular integrals in equations 100, 101, 
and 104. The details of this numerical integration and its implementation into VARIANT are 
given in Section 3.5. 

3.3 Boundary conditions for the response matrix method 
 
With the angular trial functions defined, the new angular boundary conditions must be 

explored. For this analysis a three-dimensional Cartesian nodal geometry, as seen in Figure 3.1, 
will be used. The two types of boundary conditions that will be applied in this work are the 
reflective and vacuum boundary conditions. To reduce the complexity of the boundary condition 
expressions, the direction cosines defined by equation 137, shown in Figure 3.2, are employed. 

 
Figure 3.1. A Three-Dimensional Cartesian Node 
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ˆ ˆ ˆˆ ˆ ˆ ˆcos( ) cos( )sin( ) sin( )sin( )i j k i j km h z q f q f qW= + + = + +       (137) 

 
Figure 3.2. Direction Cosines and Numbered Octants 

 

First the reflective boundary condition given by equation 138 is considered. Equation 138 
can be graphically represented as seen in Figure 3.3, where ˆ 'W  represents the direction of 
reflection corresponding to the incident angle Ŵ. 

ˆ ˆ( , ) ( , ')

( , , , ) ( , ', ', ')
g g

g g

r r

r r

y y

y mh z y m h z

W = W

=

r r

r r  r Î Gr  (138) 

 
Figure 3.3. Simplified 1-D Diagram of the Reflected Boundary Condition 

In Figure 3.3, the positive x side of the problem domain is used as an example for which 
the reflected boundary condition is given by 

( , , , ) ( , , , )g gr ry mh z y mh z= -r r
.  (139) 

Expanding the angular flux in equation 139 into even and odd parity flux components leads to 
equation 140.  

( , , , ) ( , , , ) ( , , , ) ( , , , )g g g gr r r ry mh z y mh z y mh z y mh z+ - + -+ = - + -r r r r
 (140) 

To develop unique expressions for the even and odd parity components, equation 140 is 
evaluated at ˆ- W to get equation 141. 

( , , , ) ( , , , ) ( , , , ) ( , , , )g g g gr r r ry m h z y m h z y m h z y m h z+ - + -- - - + - - - = - - + - -r r r r
 (141) 

Equations 140 and 141 are then added and subtracted to yield equations 142 and 143 in standard 
form (left) and octant form (right). 
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 (142) 

( , , , ) ( , , , )

( , , , )

( , , , )

( , , )

( , , )

g g

g

g

g

g

r r

r

r

r

r

y mh z y mh z

y m h z

y m h z

y q f p

y q f

- -

-

-

-

-

= -

= - - - -

= - - -

= - +

=
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r
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{ }

1 2

7

8

g g

g

g

y y

y

y

- -

-

-

=

= -

= -

    

  (143) 

These relations can be implemented into the nodal functional and one finds that only the 
boundary term is affected, the result of which is given in equation 144. 

( )

( )

2

0 0
2

0 0

ˆ ˆsin ( , , ) ( , , )

ˆ ˆsin ( , , ) ( , , )

g g

g g

d d d n r r

d d d n r r

p p

gg

p p

gg

f q q y q f y q f

f q q y q f p y q f p

+ -

+ -

é ùG W× =ê úë û

é ù- G W× + +ê úë û

ò ò ò

ò ò ò

r r

r r

 

 

 (144) 

Defining the variable 'f f p= + , equation 144 can be simplified to equation 145, which can 
only be satisfied if the boundary term is forced to zero. 

( )

( )

2

0 0
2

0 0

ˆ ˆsin ( , , ) ( , , )

ˆ ˆ' sin ( , , ') ( , , ') 0

g g

g g

d d d n r r

d d d n r r

p p

gg

p p

gg

f q q y q f y q f

f q q y q f y q f

+ -

+ -

é ùG W× =ê úë û

é ù- G W× =ê úë û

ò ò ò

ò ò ò

r r

r r

 

 

 (145) 

It has been shown in earlier work [1-4,7] that in order to satisfy the above restriction the 
expansion coefficients for even parity trial functions ˆ( )pg W  with odd order m and the expansion 

coefficients for odd parity trial functions ˆ( )kg W  with even order m must be forced to zero. 

Although this can be shown mathematically, a visual analysis based on the octant form of 
equations 146 and 147 can more easily clarify why these terms must forced to zero. For this 
visual analysis a two-dimensional Cartesian P3 approximation is used as an example. The P3 
angular trial functions for surface 1 are given in equations 146 and 147 and plotted in Figures 3.4 
and 3.5 for two different perspectives in 2π geometry ( 0 q p£ £  and 0 f p£ £ ). 
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 1g =  (146) 
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ê úWê úê úë û

 1g =  (147) 

From the boundary condition in equation 142 one can see that only the first, second, and fourth 
even parity P3 functions obey the reflected boundary condition. The coefficient for the third even 
parity P3 function, corresponding to 3,1

ˆ( )eYm× W , must therefore be forced to zero. In the same 
fashion, inspection of the higher order angular trial functions shows that only the even m even 
parity trial functions match the reflective boundary condition specified by equation 142. 

A similar behavior can be observed for the odd parity P3 functions shown in Figure 3.5. 
From the boundary condition described by equation 143 one can see that only the third odd 
parity P3 function, corresponding to 3,1

ˆ( )eY W , obeys the reflected boundary condition. Therefore, 
the first, second, and fourth odd parity expansion coefficients must all be forced to zero to match 
the reflected boundary condition. Similar to the even parity trial functions, further inspection of 
higher order angular trial functions shows that only the odd m odd parity trial functions obey the 
reflective boundary condition specified in equation 143. 
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Figure 3.4. Even Parity Interface Trial Functions ˆ( )p W  
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Figure 3.5. Odd Parity Interface Trial Functions ˆ( )k W  
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For the response matrix formulation in VARIANT, the reflected boundary condition 
needs to be expressed as a matrix relation in terms of the partial currents j+  and j-  for a given 
surface g  of the node. From the definition of j±  in Section 2 it is known that j±  are made up of 
coupled spatial and angular coefficients. Since the boundary condition is a constraint on the 
angular approximation, the spatial approximation can be ignored if it is assumed that all of the 
spatial expansion coefficients are treated the same. Selecting a single spatial expansion 
coefficient i  and considering only its associated angular moments n , the following general 
matrix relation between j+  and j-  can be written, where the matrix iℜ  represents the 
application of the boundary condition. 

ij j- += ×ℜ    (148) 
Equation 148 can be expressed in terms of the n  angular expansion coefficients with implied 
summation on 'n  to arrive at 

, ' '
i

n n n nj j- += ×ℜ  .  (149) 
Substituting the definitions of the partial currents from equation 58 yields 

, ' ' '
1 1 1 1
4 2 4 2

i
n n n n n nc c

æ ö÷ç- = × + ÷ç ÷÷çè ø
ℜy y .  (150) 

For those n expansion terms that correspond to the odd m spherical harmonic trial 
functions, the elements of the iℜ  matrix are defined as , 1i

n n = -ℜ  and , ' 0i
n n n¹ =ℜ  to force the 

even parity coefficients to zero and the odd parity coefficients to unity. For all other n expansion 
terms, the elements of the iℜ  matrix are defined as , 1i

n n =ℜ  and , ' 0i
n n n¹ =ℜ  to force the odd 

parity coefficients to zero and the even parity coefficients to unity. By inspection it is obvious 
that the resulting iℜ  matrix is just an identity matrix with some negative diagonal values 
corresponding to the angular expansion terms with odd m. 

Up to this point only a positive x reflective boundary condition has been considered. 
Upon inspection of the positive y reflective boundary condition one finds that the components of 
the iℜ  matrix will be different than that of the positive x boundary condition. Although the same 
mathematical analysis can be applied to the positive y boundary and a iℜ  matrix can be defined 
for it, it is more convenient to use the same iℜ  matrix for all sides of a node. To implement such 
an approach, the angular trial functions are rotated such that the µ direction is always aligned 
with the outward normal of the selected node surface. This will make the angular integrations 
more difficult, but the boundary conditions will be identical on all surfaces of the node. 

With the treatment of the reflective boundary condition completed, the vacuum boundary 
condition given by equation 151 is investigated. 

ˆ( , ) 0

( , , , ) 0
g

g

r

r

y

y mh z

W =

=

r

r  r Î Gr , ˆ ˆ 0nW× <  (151) 

The angular flux in equation 151 can be expressed in terms of the even and odd parity flux 
components and merged with the odd parity transport equation given by equation 16 to yield 
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equations 152 and 153. Both equation 152 and 153 must be obeyed in order to satisfy the 
vacuum boundary condition. 

,
ˆ ˆ ˆ( , ) ( ) ( , ) 0g t g gr r ry y+ +W×Ñ W - S W =

r r r r     r Î Gr ,    ˆ ˆ 0nW× <  (152) 

,
ˆ ˆ ˆ( , ) ( ) ( , ) 0g t g gr r ry y+ +W×Ñ W + S W =

r r r r     r Î Gr ,    ˆ ˆ 0nW× >  (153) 
The vacuum boundary condition is imposed as a natural boundary condition by altering the 
formulation of the boundary term ( )ˆ ˆ ˆˆ ( , ) ( , )g gn r r d dy y+ -W× W W W Gòò

r rÑ   in the functional. Using 

equations 152 and 153, the new boundary term shown in equation 154 can be obtained. 

( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( , ) ( , ) ( , ) ( , )g g g gn r r d d n r r d dy y y y+ - + +W× W W W G® W× W W W Gòò òò
r r r rÑ Ñ     (154) 

To implement the vacuum boundary condition, the present boundary term in the 
functional in equation 19 must be replaced by the new boundary term in equation 154. A direct 
substitution will lead to response matrices that are dependent upon the boundary conditions, 
which is undesirable since this can increase the number of unique nodes that have to be defined 
(this can significantly impact the time required to obtain the response matrices). To obviate this 
problem, a new global even parity function ˆ( , )g ry + W

) r  is defined along the boundary of the 
problem domain as seen in equation 155. 

( )

ˆ ˆ ˆ ˆ( , ), ( , ) ( , ), ( , )

ˆ ˆ ˆˆ2 ( , ) ( , )

ˆ ˆ ˆˆ ( , ) ( , )

g g v g g
v

g g

g g

F r r F r r

n r r d d

n r r d d

y y y c

y c

y y

+ + + -

+ -

+ +

é ù é ùW W = W Wê ú ê úë û ë û

- W× W W W G

+ W× W W W G

å

òò
òò

)r r r r

) r r

) )r r
Ñ

Ñ
  

  

 (155) 

The variation of this new functional with respect to ˆ( , )g ry + W
) r  requires that the following 

constraint be obeyed along the vacuum boundary.  

( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( , ) ( , ) ( , ) ( , ) 0g g g gn r r d d n r r d ddy c dy y+ - + +- W× W W W G+ W× W W W G=òò òò
) ) )r r r rÑ Ñ     (156) 

Since the boundary condition is not defined to be spatially dependent along the selected 
interface, the spatial variation can be ignored given that each spatial expansion coefficient is 
treated identically. Also, since the even and odd parity interface trial functions are rotated at each 
interface, the problem can further be reduced to a one-dimensional analysis ( 1g = ). 

The angular expansions for the nodal even and odd parity functions in equation 156 for a 
selected spatial coefficient take the following forms. 

,
ˆ ˆ( ) ( )g m g mgy z+ W = W

) )
  (157) 

,
ˆ ˆ( ) ( )g n g nkc c- W = W  1g =  (158) 

Substituting these relations into equation 155 and taking the variation with respect to the angular 
expansion coefficients leads to equation 159. 

( ) , ,
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( )m n g n m q g qn g k d n g g dc zW× W W W= W× W W Wò ò

)
   (159) 

Equation 159 can be expressed in a matrix form, like that done for the reflected boundary 
condition, via the definition of the angular matrices in equations 160 and 161. 
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( ),
ˆ ˆ ˆˆ ( ) ( )m n m nE n g k d= W× W W Wò    (160) 

,
ˆ ˆ ˆˆ ( ) ( )m q m qL n g g d= W× W W Wò    (161) 

Substitution of equations 160 and 161 into equation 159 yields equation 162. 

g gE Lc z=
)

  (162) 

Solving equation 162 for gz
)

 gives 
1

g gL Ez c-=
)

  (163) 

At this point the even parity angular flux can be projected to the node boundary (as done 
earlier in Section 2, equations 49-57) such that the following relationship is obtained. 

1T
g gE L E c-=

)
y     (164) 
Using the definitions of the partial currents from equations 59 and 60 in Section 2, equation 164 
can be rearranged to obtain the following final form of the vacuum boundary condition for any 
specified node surface. 

( ) ( )1 11 1
2 2

T T
g gj E L E I E L E I j- - - += + -

-1
    (165) 

Equation 165 has the same form as that seen in equation 149, thus the application of the vacuum 
boundary condition simply requires the definition of a different iℜ  matrix. 

3.4 Corrections to the angular approximation 

The previous sections have thus far given only a brief review of the theory implemented 
into the present VARIANT code. What follows is the discussion on the corrections made to the 
angular approximation resulting from the recent work of Won Sik Yang in a paper on 
Rumyantsev boundary conditions [14]. Although the details of that paper are omitted here (about 
30-40 pages) the conclusions are given.  

Before these new trial functions are given, a correction to the notation used up to this 
point for the spherical harmonics must be made. Although a –m is valid for the spherical 
harmonics defined in equation 119, it doesn’t apply to the even and odd parity series defined by 
equations 122 and 123. Instead, in this report and that of the VARIANT manual, m has been 
used to denote the transition from cosine of the azimuthal angle (φ) to sine of the azimuthal 
angle. The correct notation for the even and odd parity functions utilized in VARIANT is given 
below. Note that they do not follow the standard convention, but instead rely upon a linear 
combination of |L| and |M| functions. 

,

( ) cos( )ˆ( )
( ) sin( )

m m
e
m

m mm
l

C P m
Y

G C P m

m f

m f

× ×
W =

× ×

l l
l

l l

0
0

m
m

³
<

 (166) 

,

( ) cos( )ˆ( )
( ) sin( )

m m
o
m

m mm
l

C P m
Y

G C P m

m f

m f

× ×
W =

× ×

l l
l

l l

0
0

m
m

³
<

 (167) 
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( ) ( )
( )

!
1

!
mm

l

l m
G

l m
-

= - ×
+

  (168) 

(2 1)( )!
( )!

m mC
m

+ -=
+l

l l
l

.  (169) 

The factor m
lG  comes from the Legendre polynomial relation. 

The work of Yang has shown that the set of odd parity angular trial functions ˆ( )k Ω  
chosen in equations 133 and 135, reproduced as equations 170 and 171 below, do not satisfy the 
Rumyantsev boundary conditions. Consequently, the functions ˆ( )p W  defined in equation 53 also 
do not satisfy the Rumyantsev boundary conditions.  

1,0 3,2 3,1 3,0 5,4 5,3 5,2
ˆ( ) { , , , , , , ,...}e e e e e e ek Y Y Y Y Y Y Yg W = . (170) 

1,0 3, 2 3, 1 3,0 3,2 3,1 5, 4 5, 3 5, 2
ˆ( ) { , , , , , , , , ,...}e o o e e e o o ok Y Y Y Y Y Y Y Y Yg - - - - -W = . (171) 

Two alternate angular trial function sets were derived by Yang and both were included in the 
VARIANT coding. However, only the second is feasible with the current acceleration scheme 
and it is therefore the only one considered here. Equation 172 gives the two-dimensional set of 
even parity functions while equation 173 gives the three-dimensional set derived by Yang (±m 
denote cosine and sine series as shown earlier). 

( ) ( )
( ) ( )

,

, , 1, 2,

ˆ 1,3,5, , ; 0, 2, 4, ,
ˆ

ˆ ˆ 1,3,5, , 2; 1,3,5, ,

c
l m

c c
l m l m l m l m

Y l N m l
k

a Y a Y l N m l
g

+ +

ìï W = =ïïïW = íï W + W = - =ïïïî

K K

K K
 (172) 

( ) ( )
( ) ( )

,

, , 1, 2,

ˆ 1,3,5, , ; 0, 2, 4, ,
ˆ

ˆ ˆ 1,3,5, , 2; 1,3,5, ,

l m

l m l m l m l m

Y l N m l
k

a Y a Y l N m l
g

+ +

ìï W = =ïïïW = íï W + W = - =ïïïî

K K

K K
 (173) 

( )( )
( )( ),

1 1
2 1 2 3l m

l m l m
a

l l
+ + - +

=
+ +

  (174) 

Note that the odd m spherical harmonics are coupled together and no terms are arbitrarily 
removed. To help clarify the difference between the angular expansion, the two-dimensional P3 
sets of angular trial functions for the new and old approaches are given in equation 175. 
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 (175) 
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As can be seen the new approach does pose a significantly different set of angular trial 
functions and makes the integrations in the Eg  matrix of equation 41 considerably more difficult. 
Fortunately, the new set of trial functions has no significant effects on the boundary conditions 
since the odd m terms are coupled to each other and the vacuum matrix treatment makes use of 
the 1E  matrix (compare equation 160 to equation 41).  

3.5 The angular integrals 

To begin, the angular integral is expressed in terms of the two angular variables as seen 
in equation 176. 

( ) ( ) ( )
2

4 0 0

, sinf d f d d
p p

p

q f q q fW W=ò òò  (176) 

Since the angular functions used in this work are well-defined polynomials, the best way to 
numerically perform the integrals is with a Gaussian quadrature. To put equation 176 into a form 
compatible with Gaussian quadrature integration schemes, the following variable transformations 
are made. 

( )
( )

cos

sind d

m q

m q q

=

= -
 

0 1
1

q m
q p m

= =
= = -

   
   

 (177) 

( )
( )

( )2

2

cos

sin

1 cos

1

h

dh d

d

h d

f

f f

f f

f

=

= -

= - -

= - -

 
0 1

1
2 1

h
h
h

f
f p
f p

= =
= = -
= =

     
     
   

 (178) 

Substituting these transformations into equation 176 and splitting the azimuthal angle into two 
hemispheres yields equation 179. 

( ) ( )

( ) ( )

( ) ( )

2

0 0
1 1 1 1

2 2
1 1 1 1

1 1 1 1

2 2
1 1 1 1

, sin

1 1, ,
1 1

1 1, ,
1 1upper lower

f d d

f h d dh f h d dh
h h

f h d dh f h d dh
h h

p p

q f q q f

m m m m

m m m m

- - -

-

-

- - -

=

× + × =
- -

é ù é ù
ê ú ê ú× + ×ê ú ê ú- -ê ú ê úë û ë û

òò

òò òò

òò òò

 (179) 

The angular integrations in equation 179 can be handled with the Gauss-Legendre and 
Gauss-Tchebychev numerical integration treatments defined by equations 180 and 181. 

( ) ( )
1

1
l l

L

f d f wm m m
-

= åò   (180) 

( ) ( )
1

2
1

1
1

c c
C

f h dh f h w
h-

=
-

åò   (181) 
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The details of how to obtain the weights and abscissas for the Gaussian quadrature can be found 
elsewhere [16,17]. The tensor of the two one-dimensional integration schemes produces a set of 
weights and abscissas that exactly integrates (within the precision of the machine) functions of L 
order in µ and C order in h. 

It is important to note that other numerical integration techniques can be used (such as 
level-symmetric, equal weight, etc…) the details of which can be found in the literature [17]. In 
this work, the Legendre-Tchebychev approach is preferable because it guarantees integration of 
the spherical harmonics and it can easily be extended to very high order N. This is especially true 
upon the rotation of the angular trial functions where the lack of angular matrix symmetry caused 
by insufficient integration can cause problems in the inner iteration routine of the VARIANT 
code. 

Application of equations 180 and 181 to the angular integral in equation 179 is difficult 
because of the use of upper and lower hemisphere. To eliminate this problem with notation, the 
direction cosines specified in equation 182 are used. 

( )
( ) ( )
( ) ( )

cos

sin cos

sin sin

m q

h q f

z q f

=

=

=

  (182) 

Substitution of equations 180-182 into equation 179 gives the final form of the integral seen in 
equation 183. 

( ) ( ) ( )
2

0 0

, sin , ,p p p p
P

f d d f w
p p

q f q q f m h z= åòò  (183) 

To distinguish the upper and lower hemispheres of integration, the z  variable takes on positive 
(upper hemisphere) and negative (lower hemisphere) values. The variable P represents the total 
number of Legendre-Tchebychev points that are present in the quadrature. For a 4π domain 
P=2LC, for a 2π domain P=LC, and for a π domain P=½LC. This quadrature set is referred to as 
the “Square Legendre-Tchebychev” or SLC quadrature. Typically, even values of L and C are 
used, although there are no restrictions requiring even values. 

Given the method to numerically perform the integrals, the evaluation of the spherical 
harmonics functions can be discussed. For this work, the spherical harmonic recursion 
relationships are used. Equation 184 gives the recursion relationship for the associated Legendre 
polynomials and equation 185 gives the negative M Legendre polynomial correspondence 
(defined earlier). 

( ) ( )( ) ( )1, 1, 1,

2 1
1 1L M L M L M

L L MP P P
L M L M

m m m m
+ + -

+ += × -
- + - +

 (184) 

( ) ( ) ( )
( ) ( ), ,

!
1

!
M

L M L M

L M
P P

L M
m m

-

-
= -

+
  (185) 

Equation 186 gives the generating relationship for the associated Legendre polynomials. 

( ) ( ) ( ) ( )2 22
,

1
1 1

2 !

M M L M L

L L ML M

dP
L d

m m m
m

+

+

-
= - -  (186) 
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Upon forcing M=L in the generating relationship, one finds that the derivative term in equation 
186 is a constant and equation 186 reduces to equation 187. 

( ) ( ) ( ) ( )2 2
,

1
1 2 !

2 !

L L

LL L
P L

L
m m

-
= -   (187) 

Using equations 184, 185, and 186 the associated Legendre polynomials can now be 
evaluated at µ for all possible combinations of L and M. In the VARIANT code the matrix in 
equation 188 is defined (two-dimensional P3 example is shown). The P terms are obtained using 
equation 187 and the p terms are obtained using the recursion relations. 

( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

0,0

1,0 1,1

2,0 2,1 2,2

3,0 3,1 3,2 3,3
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Pn d
p p P
p p p P

m
m m
m m m
m m m m

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

 (188) 

For three-dimensional applications, the associated Legendre polynomials in equation 188 are 
duplicated and the negative M correspondence is used as shown in equation 189. 

( )
( ) ( )
( ) ( ) ( )

1, 1

2, 1 2, 2

3, 1 3, 2 3, 3

0 0 0 0
0 0 0

3
0 0
0

P
Pn d

P P
P P P

m
m m
m m m

-

- -

- - -

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê úê úë û

 (189) 

To obtain the spherical harmonics, the matrices in equation 188 and 189 are modified to include 
the normalization factor and the azimuthal angle dependence. Only the modification to equation 
189 is shown for brevity. 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1
1 1, 1

1 2
2 2, 1 2 2, 2

1 2 3
3 3, 1 3 3, 2 3 3, 3

0 0 0 0
0 sin 0 0

3 2
0 sin sin 2 0
0 sin sin 2 sin 3

C P
YLM d

C P C P
C P C P C P

m f
m f m f
m f m f m f

-
-

- -
- -

- - -
- - -

é ù
ê ú
ê ú
ê ú= ×ê ú
ê ú
ê úê úë û

 (190) 

As can be seen, the recursion relationships do not make use of the direction cosines from 
equation 182 (azimuthal angle). This means that the SLC abscissas must be converted to the 
appropriate variables in order to make use of the recursion relationships, which is a trivial 
trigonometric operation. 

The angular integrals to be performed for the response matrix method in VARIANT are 
reproduced in equations 191-196 for easy reference. 

,
,

ˆ ˆ ˆ ˆ( ) ( )k l
m n k l m nH g g d= WW W W Wò   (191) 

,
ˆ ˆ ˆ( ) ( )k

i l k i lV g N d-= W W W Wò  
  (192) 

,
ˆ ˆ( ) ( )m n m nI g g d= W W Wò   (193) 

,
ˆ ˆ( ) ( )i l i lJ g N d+= W W Wò   (194) 
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, ,
ˆ ˆ ˆˆ( ) ( ) ( )m n m nE n g k dg

g g= W× W W Wò   (195) 

,
ˆ ˆ ˆˆ ( ) ( )m q m qL n g g d= W× W W Wò    (196) 

Performing the integrations in equations 193 and 194 are unnecessary since they both result in 
identity matrices. As it turns out, performing the integrations in equation 191 is also unnecessary 
since they can be obtained from equation 192 as outlined in equation 197, where the V matrices 
have been partitioned with respect to l. 

( ), TK L K LH V V=   (197) 

Obtaining the V matrices is straightforward, thus it will be dealt with first. The spherical 
harmonics are evaluated for each SLC abscissa as demonstrated in equation 190. The results of 
this matrix are reordered to form a matrix of spherical harmonic trial functions evaluated at each 
abscissa as shown in equations 198 and 199 (two-dimensional P3 example shown). 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0,0 1 2,0 1 2,1 1 2,2 1

0,0 2 2,0 2 2,1 2 2,2 2
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ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
P P P P

Y Y Y Y

Y Y Y Y
EvenPn
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
P P P P P P

Y Y Y Y Y Y
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M M M M M M
 (199) 

The final piece of the integral is Ω, evaluated at each of the SLC abscissa points as shown in 
equation 200. It is important to note that equation 200 is nothing but the SLC abscissa points and 
that no additional work must be done to obtain equation 200. 

1 1 1

2 2 2

P P P

m h z
m h z

m h z

é ù
ê ú
ê ú
ê úW= ê ú
ê ú
ê úê úë û

M M M
  (200) 

To obtain the integrals of the spherical harmonic moments for the V matrix in equation 
192, one must simply select the appropriate columns of equations 198, 199, and 200. The 
product shown in equation 201 is obtained for each SLC abscissa and the sum over all of the P 
abscissas gives the angular integral from equation 183. 

, , ,
ˆ ( , , ) ( , , )k

i l p k p i p p p l p p p pV g N wm h z m h z-= W   (201) 
The order of the SLC quadrature (L and C) necessary to exactly integrate the components of 
equation 192 is N+1, where N is the order of the spherical harmonics expansion. Also, because 

ANL/NE-14/1 



DIF3D-VARIANT 11.0: A Decade of Updates 
M. A. Smith, E. E. Lewis, E. R. Shemon  39 

of rotational symmetry, the SLC quadrature only needs to be defined over half of the angular 
domain: 2π for three-dimensional geometries and π for two-dimensional geometries. 

For the E matrix integrations the odd parity interface functions must be rotated and 
reoriented. The reorientation is needed to satisfy geometrical symmetry conditions, the details of 
which will be given shortly. The angular rotations for the Cartesian and hexagonal geometries 
are given in Table 3.1 and displayed in Figure 3.6. 

Table 3.1. Angular Rotations for Spherical Harmonic Trial Functions 
 µ’ η’ ζ’ 

Cartesian Surface 1 µ η ζ 
Cartesian Surface 2 η µ ζ 
Cartesian Surface 3 ζ η µ 

Hexagonal Surface 1 µ η ζ 
Hexagonal Surface 2 ½ µ + 3

2 η 3
2 µ - ½η ζ 

Hexagonal Surface 3 -½ µ + 3
2 η 3

2 µ + ½η ζ 
Hexagonal Surface 5 ζ η µ 

 
 

 
Figure 3.6. Cartesian and Hexagonal Angular Surface Function Orientations. 

The most important part of Table 3.1 and Figure 3.6 to recognize is that the “right hand rule” is 
not followed for all surfaces. The reason for the reorientation is to allow the implementation of 
30 and 45 degree geometrical symmetry. In the Cartesian and hexagonal geometries of Figure 
3.6, the dashed arrows indicate the lines of symmetry that are viable using direct current 
matching. The dashed circle-head line indicates a line of symmetry that is not viable with direct 
current mapping. In short, the direction of the dashed circle-head line fails to result in a 
symmetrical layout of the current moments (the η variable must be aligned symmetrically on 
opposite surfaces of the symmetry line). More detail will be given in a later section as this 
proved to be a formidable bug in the existing coding. 

The application of the angular rotations in the E matrix integrations makes the analytical 
integration difficult since they require variable transformations like ' 90q q= +  and 
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' 30f f= - - . Fortunately, the numerical integration approach makes the rotation process almost 
trivial to implement. For the E matrix integrations, the internal even parity trial functions are 
evaluated the same way in which they were done for the V matrices. The odd parity spherical 
harmonics along each surface are evaluated using SLC abscissas that are transformed according 
to the surface angular transformation in Table 3.1. The end result is that an equation of the form 
seen in equation 199 is obtained for each unique surface of each node. The term ˆ n̂gW×  is also 
obtained using the SLC abscissas under the transformation. The integrations then follow the 
same procedure as that done for the V matrix integrations. As was the case for the V matrix 
integrations, only an N+1 order SLC quadrature (L and C) is necessary to exactly integrate the E 
matrix components. As was the case with the V matrix integrations, the SLC quadrature only 
needs to be defined over half of the angular domain. 

At this point the E matrices are defined using all of the odd parity spherical harmonic 
moments. To get the E matrices into a square form, as required in the response matrix equations 
of Section 2, either the old method of moment reduction or the new method proposed by Yang 
must be applied. In this analysis only the old method is shown for brevity. To carry out the 
moment reduction, the matrix multiplication shown in equation 202 is applied where the Z 
matrix is defined in equation 203 for a two-dimensional P3 expansion according to the moment 
ordering of equation 199. 

'E E Zg g=    (202) 
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

Z

é ù
ê ú
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úê úë û

  (203) 

The same treatment applies to the Yang approach but in this form the odd m moments are 
coupled together. The Z matrix is also used to reduce the iℜ  matrix for the reflected boundary 
condition to one appropriate for the reduced set of angular trial functions. 

The last integration to perform is the L matrix integration shown in equation 196. What 
makes this integration unique is the absolute value of the ˆ n̂gW×  term. The standard SLC 

quadrature used up to this point fails because the µ variable is defined over the entire domain {-
1,1} and thus smooth polynomials are assumed over that domain. With the absolute value, 
discontinuities in the slope of the angular function to be integrated exist at 0, thus a double 
Legendre approximation must be made. In this approximation, smooth Legendre polynomial 
approximations are made over the half ranges of µ: {-1,0} and {0,1}. This effectively doubles 
the number of points used in the µ direction. The name of this quadrature set is SDLC and an 
N+1 order expansion (L and C) is needed to exactly evaluate the integrals in equation 196. More 
detail on the SDLC approach can be found in the literature under the general topic of double 
Legendre approximations in slab geometry [15,17]. Given that the only change is in the 
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quadrature used, the mechanics of the integration process are the same as those used in the V and 
E matrices. 

This concludes the new work done on the angular approximation in the VARIANT 
coding. The above methodology was put into Fortran subroutines using standard Fortran 90 
coding to eliminate problems with Fortran 77 memory allocation routines. In the production 
version of VARIANT, the angular matrices were hardwired at different points in the coding 
making a single subroutine call to obtain all of the new angular matrices almost impossible. The 
solution was to write unique subroutines to obtain only the matrices needed at the various points 
in the VARIANT coding. 

The DIF3D input structure also had to be changed to allow the new angular 
approximations to be used, which affects the third input descriptor on the card type 12 of DIF3D 
input and the NAPRXA variable in the binary DIF3D file. The major changes to the DIF3D 
input are shown in Table 3.2 and the modified input and binary descriptions for DIF3D are given 
in Appendix A. For the new description, two angular trial function sets are possible. The first is 
the default angular trial function set used in VARIANT since 1992: H=1. The second were given 
by Yang earlier in this section: H=3 (30505 for the example in Table 3.2). 

Table 3.2. Changes to the DIF3D Input Description on Card 12. 
Input Field ±MN ±HMMNN or ±MMNN or ±MN 

± PN (+) or SPN (-) PN (+) or SPN(-) 
H ─ Angular Trial Function Set 
M Order of the PN Flux Expansion Order of the PN Flux Expansion 
N Order of the PN Leakage Expansion Order of the PN Leakage Expansion 

P5 example 55 10505 or 0505 or 55 
SP5 example -55 –10505 or –0505 or –55 

Other changes include the removal of the reduced order leakage approximation MN=31 and the 
restriction of a maximum P5 anisotropic scattering. It was found that the theory behind the 
reduced order approximation was based upon an older set of angular trial functions (Legendre 
polynomial expansions) rather than the full spherical harmonics [4]. Recent work by Smith [9] 
indicates that there are two valid approaches to reducing the angular trial functions on the 
interface and reduced order options may be reintroduced in the future, but for now they are 
omitted. As for the limitation on anisotropic scattering, the inclusion of higher order scattering 
required a significant rework of the cross section setup within DIF3D which was facilitated by 
using Fortran 90 or just hardwiring the various array dimensions to order P101 which are 
generally beyond the practical limits of existing computing technology. 

  ANL/NE-14/1 



 DIF3D-VARIANT 11.0: A Decade of Updates 
42  January 16, 2014 

4 The Spatial Approximations Implemented in VARIANT 

4.1 Introduction 

With the angular approximation detailed, now the spatial approximation can be 
displayed. Although this approximation is not original work, it is necessary to clarify the changes 
made to the production version of VARIANT. The procedure used to obtain the higher order 
spatial trial functions and the method used to obtain the spatial matrices defined in Section 2 is 
discussed. Again, the main focus of this section is the removal of data statements from the 
VARIANT coding. 

4.2 The RITZ approximation 

The classical Ritz procedure employs orthonormal spatial trial functions. The method 
used to obtain those functions is the Gramm-Schmidt procedure outlined by Figure 4.1. In the 
production version of VARIANT this procedure was carried out analytically using Mathematica. 
In Fortran, an analytical approach cannot be used forcing a monomial based approach to be 
pursued instead. In this approach the analytic integration of an arbitrary monomial (xnymzo) is 
known over the integration range of the node (volume or surface integration), where the 
exponents n, m, and o are stored. The procedure of obtaining the orthonormal functions using 
this approach is outlined in Figure 4.2 and reference 4. 

In Figure 4.2, Mi 
j represents the jth vector of monomial integrands and fi represents the 

monomial coefficients for the ith orthonormal function (a vector). Upon comparison of Figure 
4.1 to Figure 4.2, one finds that the major difference is the removal of the integration in step 2 
with a vector multiplication. What should be immediately apparent is that the vectors M and f 
can be partitioned into full matrices, where the M matrix is a sparse symmetric matrix and the f 
matrix is an upper triangular matrix. The partitioning helps to simplify the storage scheme and 
speed up the computation of the orthonormal functions. 

Given this process to obtain orthonormal functions, the resulting set of functions is 
dependent upon the ordering of the monomials, which can be setup in any number of ways in 
Fortran. Consequently, the set of orthonormal functions used in the production version are not 
identical to the set used here (an arbitrary ordering of the trial functions was implemented for the 
production form) and the matrices that resulted were not the same for three-dimensional 
geometries. No impact on the accuracy of the results could be distinguished by using the 
alternate set of orthonormal functions. 
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Figure 4.1. Gramm-Schmidt Procedure for Obtaining Orthonormal Functions  
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Figure 4.2. Fortran Approach to Performing Gramm-Schmidt Procedure. 

 
 

ANL/NE-14/1 



DIF3D-VARIANT 11.0: A Decade of Updates 
M. A. Smith, E. E. Lewis, E. R. Shemon  45 

Given the set of orthogonal functions the integrations of equations 93-99 can be 
performed. In VARIANT, the cross sections are assumed to be constant within each node (no 
spatial dependence), thus the spatial integrations can be reduced to those shown in equations 
204-208. 

,
, ( ) ( )K L K L

i j i jP f r f r dV= Ñ Ñò
r r   (204) 

, ( ) ( )K K
i j i jU f r f r dV= Ñò

r r   (205) 

, ( ) ( )i j i jF f r f r dV= ò
r r   (206) 

, ,( ) ( )i j i jD f r h r dg
g= Gò

r r   (207) 

The integration in equation 206 does not need to be performed since it is by definition the 
identity matrix. For this report only the integrations of equation 204 will be detailed with the 
others briefly described. 

To perform the integrations in equation 204, an approach similar to that used to obtain the 
orthonormal functions is used. Given the set of monomials (from step 1 of Figure 4.2), equation 
204 can be written in terms of the monomials to get 

,
, ( ) ( )K L K L

i j i jM m r m r dV= Ñ Ñò
r r .  (208) 

Since the exponents of the monomials n, m, and o are known, the derivative process in 
equation 208 becomes a trivial algebraic process (subtraction). To obtain the matrix components 
in equation 204, the following relation is used. 

, ,
, f f

TK L i K L j
i jP Mé ù= ê úë û    (209) 

From Figure 4.2, f i  is the coefficient vector for the ith orthonormal function. An almost 
identical procedure applies to the U matrix integrations of equation 205, while a slightly 
modified version must be used for the D matrix integrations in equation 207. In the D matrix 
integrations, the coefficients for a set of surface functions and volume functions must be created 
and used (surface functions will appear on the right hand side of the monomial integration matrix 
in equation 209). The projection of the monomials to the surface of the node is straightforward 
and thus the M matrix is straightforward for equation 207. 

For this work, the Cartesian matrices were all obtained using analytical solutions to the 
monomial integrations. For the hexagonal geometries, the surface projection monomial 
integrations were carried out using numerical integration. Although recent work of Yang has 
given the analytical results for the hexagonal monomials, no effort was made to implement them 
into the coding. Consequently, the hexagonal spatial expansion is limited to about a 48th order 
spatial approximation. The impact on the computational efficiency caused by using a numerical 
approach should be obvious; however, the impact was found to be insignificant for all problems 
tested thus far (probably adds a couple of milliseconds onto the coupling coefficient time). If at 
some point in the future, the spatial approximation is to be regenerated for every spatial node, 
rather than done once at the beginning of the VARIANT code execution, then it is suggested that 
the analytical form be implemented. 
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This concludes the new work done on the spatial approximation in the VARIANT 
coding. The above methodology was put into Fortran subroutines using standard Fortran 90 
coding to again eliminate problems with Fortran 77 memory allocation routines. As was the case 
with the angular approximation, the spatial matrices in the production version of VARIANT 
were hardwired at different points in the coding making a single subroutine call almost 
impossible. The solution again was to write unique subroutines to obtain only the matrices 
needed at the various points in the VARIANT coding. 

The DIF3D BCD input description also had to be changed to allow the new spatial 
approximations to be used. This affects the second input descriptor on the card type 12 of DIF3D 
BCD input and the NAPRX variable in the binary DIF3D file. The major changes to the BCD 
input are shown in Table 4.1 and modified descriptions for the DIF3D BCD input are given in 
Appendix A. 

Table 4.1. Changes to the DIF3D BCD Input Description on Card 12. 
Input Field LMN LLMMXN or LMN 

L Order of the Source Order of the Source 
M Order of the Flux Order of the Flux 
N Order of the Leakage  Order of the Leakage  
X -- Order Reduction in the Z Direction 

Examples 462 040622 or 462 
 442 040402 or 442 

As can be seen in Table 4.1, there is a new variable, X, included in the input which is not 
consistent with that of the preexisting formulation. The reason for the inconsistency is that the 
production version of VARIANT only allowed a maximum 4th order flux and source 
approximation in the z direction while the x-y flux approximation was extended to 6th order. To 
keep this flexibility, the new variable was added into the DIF3D input definition, although its 
usage is not required for the new input style. 

With the flexibility in the input, the question of matrix rank deficiencies must be 
addressed. Although not detailed here, a check must be performed to guarantee that the spatial 
projection to the interface does not produce rank deficient response matrices. This check is 
performed once at the beginning of the code (computational time is insignificant) and an error 
warning is generated if the matrices are determined to be rank deficient. The reason for using an 
error warning rather than a stoppage is that the 6th order x-y, 4th order z flux approximation was 
found to be rank deficient when combined with a quadratic leakage approximation (662 for 3-d 
Cartesian and hexagonal geometries). As it turns out only severe rank deficiencies will cause 
problems during the iterative algorithm. Since slightly rank deficient approximations such as 
“662” do work under most situations, it was decided that a warning would be issued rather than a 
stoppage. Typical indications of spatial rank deficiencies are slow and unstable convergence of 
the inner iteration scheme. For severely rank deficient matrices, in which an insufficient number 
of spatial degrees of freedom have been defined, an error stoppage is issued. 
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5 Non-Zero Storage Implementation 

With the above modifications to the spatial and angular matrix definitions implemented 
into the VARIANT code, there remains one additional issue to address, the matrix free storage 
application of the anisotropic scattering matrices. To begin, we identify the main iteration 
equations from section 2 that VARIANT uses as equations 112 and 118 and reproduce them here 
as equations 210 and 211. 
j B S B S Rc+ + + - -= + +    (210) 

1 1 2 TA W S A T S Cz c- + - -= + -    (211) 

DIF3D-9 formed and stored the matrices: B+ , B- , R , 1A- , 1A T- , T , and TC . Unlike 
the previous derivation, the matrix T  is stored without the group wise cross sections and used in 
a full matrix-vector operation with the odd-parity source. What is missing from this system is the 
solution of the odd-parity flux which is derived from equation 88 and given in matrix form as  

T T
K K

K

I F V U F Sy y- + -
Ä Ä Ä-

é ù é ùé ù ê ú= S + Sê ú ê úë û ë ûê úë û
å % % , (212) 

where we have dropped the group notation and redefined the matrix 

, , ( ) ( )i j K i K jU f r f r dV= Ñò
r r ,  (213) 

and defined the cross section angular matrix of odd-parity size as 
1

t -

S =
S - S

% .  (214) 

Given that F is an identity matrix for the trial functions we can rewrite equation 212 as 
T I Sy y- + -

Äé ù= + Sê úë û
% .  (215) 

In this form, one can easily see the real reason for not storing the T  matrix for each group.  

The motivation behind the most recent work is associated with the performance of 
VARIANT. The primary issue we identified with the production version of VARIANT is a 
general performance degradation as the number of energy groups increases when anisotropic 
scattering is being used. After some study, this performance issue was traced directly to the 
expense of applying the T  matrix in equations 211 and 212. This matrix also causes severe 
memory constraints due to its inherent size and the 32 bit storage limitations of BPOINTER. As 
it turns out, the T  matrix is ridiculously sparse and the analysis indicated that using non-zero 
storage of the T  matrix could not only reduce the overall memory storage of VARIANT, but 
also eliminate the performance degradation. Rather than just focusing on this change, we also 
identified that the application of B-  and 1A T-  could be improved by eliminating them entirely 
and using the relationship from equation 116, reproduced here as equation 216 
B B T- += .  (216) 
Given that we have to operate with B+  and 1A-  we can see that the extra matrices can be 
completely eliminated assuming we have a means by which to apply T . This approach is more 
efficient because the T  matrix can be applied in a very cheap manner using the non-zero storage 
protocol and the previous work of Yang [5] made the computational effort required to apply B+  
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and 1A-  very cheap. The new version stores the spatial and angular matrices in separate non-
zero storage routines and applies the tensor operations using these routines. While this doesn’t 
guarantee the minimal number of multiplications, it does minimize the memory required to apply 
these routines which should be ideal for performance on large problems. This leaves the primary 
issue of memory in the formation and inversion of A  as the remaining inhibitor to using higher 
order approximations. With time this problem might also be fixed given that A  is block diagonal 
and we are using a full matrix storage protocol. Unfortunately this will not significantly alter the 
computational performance of the underlying algorithm further.  
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6 Large Memory Array Implementation 

6.1 Introduction 

Numerous VARIANT subroutines have been modified to increase the efficiency and 
memory utilization of large VARIANT jobs in DIF3D-11 over previous versions.  The changes 
involve removal of numerous BPOINTER [] calls in favor of LMA, the Large Memory Array 
module developed for UNIC [] under NEAMS. 

6.2 Implementation of LMA 

In DIF3D-10 (and preceding versions of DIF3D), the program BPOINTER is used to 
circumvent the lack of dynamic storage capability in FORTRAN 77, and to move data to and 
from disk in order to fit large problems on limited computing resources.  BPOINTER is called by 
DIF3D to obtain and/or release large blocks of workspace called “containers”.  However, 
BPOINTER is restricted to 32-bit memory addressing, and so the memory container size is 
limited to 2 GB regardless of the actual available memory.  For large problems, this limitation 
results in performance degradation due to partitioning the data on disk and repeated calls to 
perform retrieve/put data on the disk.  In several cases, very large problems cannot even be run 
using DIF3D-10.0 which can leave unresolved questions about some analysis work.  From a 
programming perspective, calls to BPOINTER functions are difficult to understand and maintain 
due to complex pointer math and outdated naming conventions. 

The dynamic storage capabilities in modern FORTRAN make the BPOINTER usage 
obsolete.  A modern memory management program, LMA (Large Memory Array), has been 
implemented in DIF3D-11.  LMA uses 64-bit memory addressing and efficiently utilizes the full 
available machine memory (has been tested to use over 132 GB of memory).  It performs the 
same tasks as BPOINTER but in a more efficient and intuitive manner, handling data 
partitioning to disk (if necessary) internally to the module.  LMA simplifies the procedure for 
accessing a particular section of any given large array. 

The following examples (taken from vstou2.f in DIF3D-11) show how the group source 
vector is accessed using BPOINTER, and alternatively, LMA.  
 

Example: Using BPOINTER to load external source vector 
CALL OPENDF(FSRC,NDFSRC) 
CALL BLKGET(NCSRC,KBLKS,NDFSRC,KBLKS) 
CALL FINGET(NCSRC,KBLKS,NDFSRC,KBLKS) 
 

Example: Using LMA to load external source vector 
Matrix_Access%Partition_Start(2)  = NG 
Matrix_Access%Partition_End(2)    = NG 
Matrix_Access%Partition_Start(1)  = 1 
Matrix_Access%Partition_End(1)  = iStorage_iSizeExtSrc 
CALL NE_LMA_R64_Get(NOUT,Vector_ExtSrc,Matrix_Access,iOffset_ExtSrc) 
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The LMA Partition_Start and Partition_End points correspond to the index ranges of the desired 
multidimensional array, in this example, Vector_ExtSrc(1:iStorage_iSizeExtSrc, NG:NG).  This 
assignment tells LMA to retrieve the first iStorage_iSizeExtSrc values stored for group NG.  The 
function NE_LMA_R64_Get does the necessary pointer math and file reading to return the 
desired data at the physical memory address “iOffset_ExtSrc” within the physical container: 
Vector_ExtSrc%Storage (this last piece is part of the structure). LMA usage is more transparent 
than the BPOINTER subroutines OPENDF (opens a file associated with the name “FSRC” if it is 
not already open), BLKGET (gets the physical 32-bit pointer address, NCSRC, into the memory 
space BLK for the array named “NDFSRC” which needs to contain KBLKS points of data), and 
FINGET (loads data from the associated file connected to the BPOINTER array NDFSRC into 
the provided position). 

6.3 Impact of LMA 

The primary advantage of DIF3D-11 over previous versions is the ability to utilize the 
full machine memory efficiently using LMA as opposed to BPOINTER.  Users of DIF3D-11 
(VARIANT) are able to run larger problems, perform complete space-angle convergence studies, 
and suffer with faster runtimes. Developers will also find DIF3D-11 easier to maintain due to the 
replacement of numerous BPOINTER calls with the more intuitive LMA functions. Note that if 
DIF3D-11 cannot obtain the necessary physical memory, it will attempt to create random access 
files in the /tmp directory with job specific numbering. We strongly suggest attaching an 
additional hard drive to the computer mounted as /tmp and adjusting the buffering on files if you 
intend on running these jobs on small memory machines. If the creation of those files fails, it will 
attempt to create files in the current working directory which can be disastrous if that is a 
network mapped file system.  

 
  

ANL/NE-14/1 



DIF3D-VARIANT 11.0: A Decade of Updates 
M. A. Smith, E. E. Lewis, E. R. Shemon  51 

7 Additional DIF3D-11.0 Algorithm Changes 

This section describes additional algorithm changes made to VARIANT in DIF3D-11 
after the initial version was created to accommodate new features. 

7.1 Fission source error measures and acceleration 

The subroutines that deal with the fission source computation and convergence tracking 
have been rearranged considerably from DIF3D-9. Coarse mesh rebalance (CMR) and 
asymptotic source extrapolation have been permanently disabled (deleted) in DIF3D-11 in 
anticipation of a better acceleration algorithm being implemented. In the interim, Tchebychev 
acceleration was added to counter the reduced performance although the ability of DIF3D 11.0 to 
use larger memory spaces generally overwhelms the performance issues associated with 
eliminating the previous acceleration.  

To understand the troubles with coarse mesh rebalance, we selected a series of problems 
to display the issues. Before we begin, it is important to note the changes in error norm criteria 
that cause fundamental differences in the convergence behavior. First, the fission source norm 
used to estimate the eigenvalue in version 9.0 weighted the fission source with the volume where 
as version 11.0 does not. In version 9.0, it was observed that large volume fissionable meshes 
would dominate the eigenvalue convergence such that when using rather high convergence 
criteria (greater than 10-5 on the eigenvalue) the actual solution given by 9.0 was not precisely 
within the stated error of the fully converged solution. Second, the average source error in 
version 9.0 was defined using equation 217 while it was modified for version 11.0 to be 218.  

1
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Given that equation 218 is a much more strict check on the spatial convergence, the user must 
understand that they can weaken the fission source convergence criteria slightly compared with 
past usages to get the “same” answer. Unfortunately, because of the change in the eigenvalue 
norm, one cannot get version 11.0 to “converge” using exactly the same number of outer 
iterations as version 9.0 in all cases, but they are routinely close.  

The first test problem we consider is a bare homogeneous system on which CMR and 
fission source extrapolation should be ideal. Spatially we chose a 6th order flux, 1st order leakage, 
and 4th order source and chose to only consider diffusion theory. We constructed multiple reactor 
sizes and choose only to give the two of relevance in Table 7.1. Note that in both cases (1 meter 
tall and 2 meter tall), we vary the pitch from 5 cm to 40 cm to cover most realistic cases although 
both end points are unrealistic. In each problem we give the existing version 9.0 outer iteration 
result with and without CMR along with the version 11.0 result with Tchebychev acceleration 
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and the un-accelerated case (almost always identical or one outer iteration off between version 
9.0 and 11.0 for this problem). 

Starting with the full core results, one can see that the version 9.0 and version 11.0 results 
are very comparable up to pitch of 8 cm. The dominance ratio above this point transitions from 
0.6 to 0.75 at a 14 cm pitch and 0.96 at 40 cm. In this situation, it should be clear that CMR and 
fission source extrapolation make a considerable difference giving a 71% reduction when using a 
16 cm pitch where as the Tchebychev acceleration only yields a 50% reduction in effort. We 
note that fission source extrapolation accounts for a bulk of the gain. 

Table 7.1. Bare, Homogeneous Hexagonal Reactor Outer Iteration Count in Diffusion Theory 
Hex 
Pitch 
(cm) 

Full Core, 10 rings, 1 meter tall 120 periodic, 10 rings, 2 meter tall 

V9.0  V9.0  
no CMR V11.0 No 

Accel V9.0  V9.0  
no CMR V11.0 No 

Accel 
5 18 21 22 29 32 39 45 75 
6 16 22 21 27 31 32 47 69 
7 17 21 20 26 31 32 41 64 
8 18 22 21 27 33 33 41 61 
10 18 22 31 33 30 34 40 58 
12 18 25 29 41 33 34 42 55 
14 18 30 31 51 29 34 32 55 
16 18 30 32 63 29 36 40 60 
20 21 40 47 89 33 38 47 83 
30 35 57 95 179 34 59 94 163 
40 56 85 167 298 45 79 158 270 

Continuing with the 120 periodic cases which has a 2 meter height, one sees a similar result in 
that CMR gives almost no improvement in the acceleration for a bulk of the cases. While 
Tchebychev acceleration is not as good as CMR + fission source extrapolation, it still yields a 
33% gain with a 16 cm pitch compared with a 52% gain. 

The next problem we consider is a scatter load system the composition assignment for 
which is depicted in Figure 7.1 along with the fast flux profile. As can be seen, the scatter pattern 
is relatively regular and not necessarily indicative of a true scatter load reactor, but the flux 
solution clearly shows no real symmetry pattern which is the underlying goal. We constructed 
two cores with 12 and 16 rings and show an example of the geometry and fast flux for the 16 
ring case in Figure 7.1. We would not expect CMR to work well in either case given the way it 
was implemented but fission source extrapolation should still yield some improvements. We 
built hexagonal and Cartesian geometries (16 rings means a 16x16 grid) and only chose to 
include the full core results in Table 7.2 for each case with a two meter tall geometry. Note that 
we included 40 cm of axial reflector in each case. 

Starting with the hex geometry case, one can easily see the CMR result degrades 
considerably as the hex pitch size is increased. At 16 cm, the dominance ratio is 0.84 and CMR 
actually hurts the overall performance although the code still finishes quicker (53% reduction) 
than the Tchebychev accelerated version 11.0 (36% reduction). Overall, Tchebychev performs 
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about as well as the old acceleration for the smaller node sizes. At larger node sizes one sees that 
fission source extrapolation is the best approach. The Cartesian geometry cases show much 
better improvement with CMR although fission source extrapolation is clearly accounting for a 
bulk of the acceleration. 
 

 
Figure 7.1. Scatter Load Example for Hex Geometry and Fast Flux Profile 

Table 7.2. Twelve Ring Scatter Core Outer Iteration Count in Diffusion Theory 
Hex 
Pitch 
(cm) 

Hex Full Core Cartesian Full Core 

V9.0  V9.0  
no CMR V11.0 No 

Accel V9.0  V9.0  
no CMR V11.0 No 

Accel 
5 22 24 27 30 21 29 43 67 
6 18 22 24 31 22 27 42 62 
7 18 24 26 33 18 27 35 58 
8 22 26 26 36 17 28 34 56 
10 23 30 26 49 17 30 34 53 
12 29 32 45 65 21 32 35 51 
14 33 43 55 84 24 27 38 56 
16 49 40 67 106 24 34 43 69 
20 62 59 101 162 30 42 64 101 
30 112 123 208 386 43 62 119 208 
40 152 185 392 500 55 81 205 344 

To study “high” dominance ratio problems, we expanded the reactor to 16 rings and 
found we had to eliminate the large hex pitches due to computational run time in version 9.0. 
The outer iteration results are tabulated in Table 7.3 for the hexagonal and Cartesian cases where 
we extended the domain to be 4 meters tall. Assuming the 16 cm pitch would be the target case, 
this was observed to have a 0.95 dominance ratio. Looking at the hexagonal results, one can see 
that fission source extrapolation again accounts for a bulk of the acceleration but in this case, 
CMR leads to net gains in each case with a 28% reduction at a 16 cm pitch. The Cartesian cases 
are considerably different indicating that CMR clearly makes substantial improvements in the 
performance (50% over fission source extrapolation and 80% over unaccelerated) which we 
believe is more due to the number of axial meshes than the increase in radial meshes. 
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Table 7.3. Sixteen Ring Scatter Core Outer Iteration Count in Diffusion Theory 
Hex 
Pitch 
(cm) 

Hex Full Core Cartesian Full Core 

V9.0  V9.0  
no CMR V11.0 No 

Accel V9.0  V9.0  
no CMR V11.0 No 

Accel 
5 20 46 58 102 22 71 121 213 
6 24 43 48 97 20 70 110 200 
7 27 37 52 95 21 70 124 193 
8 32 38 54 93 21 66 96 188 
10 37 40 54 92 23 64 101 183 
12 40 49 68 99 25 74 103 180 
14 49 62 71 127 31 75 107 179 
16 53 74 105 163 36 73 92 178 

We note that all of this work was done in diffusion theory as past experience using 
transport shows even more minimal gains in CMR acceleration if not negative gains like that 
observed in  Table 7.2. More problematic is that CMR acceleration regularly fails to converge 
which was the case for all 120 periodic geometries of the scatter load problems and most of the 
60 degree periodic geometries. Further, CMR is apparently not implemented correctly when 
solving the adjoint transport equation as it always fails to converge whether using Cartesian or 
hexagonal geometries. Given the rather paltry gains over fission source extrapolation, CMR was 
deleted in version 11.0 assuming that we would replace it with a more effective acceleration 
algorithm. The asymptotic source extrapolation in all of the preceding problems was found to be 
quite good, however, these are ideal cases with only a few unique compositions. For a bulk of the 
actual problems we have executed in the last decade, we have found that extrapolation caused 
considerable instabilities when using more than 20 groups and it only reduced the number of 
outer iterations by a few. In the example problem of the next section, a typical user reactor 
problem, source extrapolation does work and it is responsible for reducing the number of outer 
iterations by 3 when only engaged twice (coarse mesh rebalance is responsible for reducing the 
number of outer iterations by 10). 

Tchebychev acceleration was expected to be a more reliable scheme than fission source 
extrapolation on more routine reactor problems, but in order for Tchebychev acceleration to 
work properly, the dominance ratio estimate must be reasonably stable and accurate. In most 
problems with large dominance ratios, whether fast or thermal, the dominance ratio is rather 
stable and Tchebychev works as seen above. However, in some small, transport dominated 
systems with large amounts of leakage, the dominance ratio estimate effectively becomes a 
random number between 0.0 and 2.0. Of course the real dominance ratio is typically far less than 
0.5 in these cases. Thus whether we use CMR or Tchebychev, the acceleration is going to be 
minimal as neither of them are effective acceleration schemes as seen with the small problems of 
Table 7.1. As a consequence, the Tchebychev acceleration is restricted such that it will not 
engage unless 1) the dominance ratio varies minorly over four consecutive outer iterations and 2) 
the P0 based dominance ratio estimate does not deviate far from the actual dominance ratio.  

The second criteria is an artifact of the partitioned diffusion VARIANT methodology 
which is geared to maximize convergence of the diffusive system rather than convergence of the 
total system. This acceleration works wonderfully when the problem is diffusion dominant, but 
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in small leaky reactor systems, it can become transport dominant and thus the dominance ratio 
estimates using just the P0 components versus the full system can be wildly different. In this 
case, we cannot use Tchebychev as it is geared to accelerate the full system. It is important to 
note that CMR was observed to breakdown similarly in these cases.  

When following these two criteria, Tchebychev acceleration almost always improves the 
performance. However, we have observed that on some very small problems where the 
dominance ratio can be temporarily stable and Tchebychev inappropriately engages leading to 
considerably longer convergence times. In these cases (i.e. small, leaky, transport dominanted 
reactor systems), we suggest the user disable Tchebychev acceleration to ensure that it is not 
causing convergence problems.  

As a final step, when the dominance ratio is observed to be consistently high and 
Tchebychev is not activated, an auto adjustment routine was added to increase the number of 
inners in each outer. This routine is restricted to dominance ratios greater than 0.85 and 
determines whether increasing the number of inner iterations can reduce or stabilize the 
dominance ratio. It only makes a few attempts to increase the number of inners when necessary 
and is hesitant in increasing the number of inners further if an improvement is observed. In 
effect, we rely upon the user to recognize the problems where the predicted number of inners are 
insufficient and increase the number of inners appropriately. From experience, this has rarely 
been necessary. 

7.2 Modification to the DIF3D outer iteration history 

The DIF3D 10.0 output during the outer iteration convergence was found to be 
insufficient by most users. In many cases it did not adequately assist either the user or the 
developer in understanding the specific problem with a particular input deck that was failing or 
provide an idea of how much time was remaining for convergence. To correct this issue, the 
output specification was modified to include more detailed information which we describe here. 

Figure 7.2 shows the example un-accelerated output from DIF3D 10.0 for a transport 
dominated problem while Figure 7.3 shows the output when coarse mesh rebalance and fission 
source extrapolation are enabled and both working. One should note that the convergence criteria 
are sufficiently low enough that the residual error between the two solutions is within the error 
criteria and the acceleration saves 15 outer iterations. Starting with Figure 7.2, one can see that 
the outer iteration number is given along with the relative point error (maximum fission source 
error), relative sum error (relative flux error), and eigenvalue error (change). These quantities 
represent the primary error measures used to define convergence of the steady state problem. The 
additional quantities of fission source extrapolation (FSRC. EXTRAP.), dominance ratio 
estimate, and rebalance error are associated with the acceleration schemes applied to DIF3D 10.0 
which were made defunct in 11.0. The final column of data is the eigenvalue itself which is a 
common quantity of interest most developers and users wish to see. 

Comparison of Figure 7.3 to Figure 7.2 indicates that fission source extrapolation is 
engaged twice and when disabled we found it increased the number of outer iterations on this 
problem by 3 (i.e. 25 outer iterations). Disabling the ω acceleration does not change the number 
of outer iterations, but it has a substantial impact upon the computational effort as the number of 
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inner iterations are increased by a factor of 2. It is also the reason for the error between the 
DIF3D 10.0 and DIF3D 11.0 result. Reducing the number of inners to match the accelerated case 
yields no difference in the solution indicating that the estimation of the number of inners is 
erroneous in that case. From all of this, it should be clear that coarse mesh rebalance (CMR) is 
the primary acceleration for this problem and saves 12 outer iterations worth of work. 

Figure 7.4 shows the outer iteration history for DIF3D 11.0. To begin, one can see a 
“=VARIANT” line at each outer iteration. This was done to allow users to grep the convergence 
history from extensive output files (REBUS) utilizing restart and thus quickly assess 
convergence problems. The remaining info is similar to the DIF3D 10.0 output, but we note the 
total time in seconds required for each outer iteration is given. Although present in the previous 
DIF3D 10.0, it is never listed how many upscattering iterations (Gauss-Siedel iterations over the 
energy system) are actually used. In fast spectrum systems, only a single Gauss-Siedel iteration 
is needed and thus “Ups” is reported as 1 for each outer iteration in this case.  

The next columns in Figure 7.4 are the eigenvalue (K-effective) followed by its error 
allowing the user to easily locate and understand how far the eigenvalue is from convergence 
noting that additional significant digits on the eigenvalue are unnecessary as the error fully 
informs the user as to the convergence. The “pGS” column indicates whether the partitioned 
matrix Gauss-Siedel acceleration scheme is being used on the within group equation noting that 
in outer iteration 16 it is disabled. This is fully consistent with the behavior of DIF3D 10.0 
although it only reported the fact that it had done it much later in the as “FULL MATRIX 
SWEEP.” The maximum fission source error (Fis Max) and the RMS error are then reported 
which are the replacement norms as discussed. Note that Fis Max is consistent with the relative 
point error of DIF3D 10.0.  

Four columns are dedicated to Tchebychev acceleration which indicate whether it is 
enabled and the number of back vectors currently being used. The “Dom” and “P0” are the 
conventional Tchebychev dominance ratio estimates where “P0” only considers the flat diffusive 
moments. The remaining columns show the breakdown in computational time for the three main 
subroutines which is the source computation “Src(s),” partial current solution “j+/-(s),” and flux 
reconstruction equations “Phi(s).” These timing measurements better explain to the user (and 
developer) what aspect of the input affects the performance of the code. The source computation 
is the time spent getting the up and down scattering source for each outer. The partial current is 
the time spent solving the partial current equations in each within group equation. The flux 
reconstruction is the act of updating the nodal flux values given the updated partial currents. This 
flux reconstruction component can be observed to change dramatically near the end of a 
computation will check for unnecessary PN moments due to the lack of scattering data and skip 
the reconstruction. To produce a valid flux solution at the end of the computation, the flux 
moments must be fully constructed which is typically carried out in the very last outer iteration 
performed. Tchebychev was only engaged for the last 7 iterations and saved 10 outer iterations. 

Figure 7.5 shows an example of spectral radius problem with a slightly older version of 
DIF3D 11.0. In this case, the eigenvalue is observed to converge, but the fission source is clearly 
diverging after outer iteration 22. This cannot be resolved without altering the geometry as 
acceleration makes no difference. The typical cause is a nearly void node somewhere in the 
domain which is the case in this problem as we provide as an example of what to watch for.  
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0       OUTER        REL. POINT      REL. SUM      EIGENVALUE   FSRC.    DOM. RATIO     REBALANCE                           
       IT. NO.         ERROR           ERROR         CHANGE    EXTRAP.    ESTIMATED       ERROR      K-EFFECTIVE                     
0         1         1.138104E+02   5.330136E+00   1.050883E-01   NO     1.693809E+12  9.214395E-01  1.10508834E+00 
0         1         8.174757E+00   6.275693E-01  -3.873569E-01   NO     7.895107E+11  0.000000E+00  6.12643118E-01 
0         2         2.464780E+02   3.545478E-01   1.967998E-01   NO     1.881540E+00  0.000000E+00  8.09442893E-01 
0         3         1.439890E+02   3.876838E-01   1.326190E-01   NO     6.467476E-01  0.000000E+00  9.42061885E-01 
0         4         1.349842E+01   1.668780E-01   4.554079E-02   NO     3.494048E-01  0.000000E+00  9.87602679E-01 
0         5         1.257865E+00   5.042699E-02   1.066960E-02   NO     2.856158E-01  0.000000E+00  9.98272275E-01 
0         6         3.891613E-01   1.057393E-02   1.806735E-03   NO     3.910432E-01  0.000000E+00  1.00007901E+00 
0         7         8.130482E-02   2.029900E-03   1.492255E-04   NO     4.166888E-01  0.000000E+00  1.00022824E+00 
0         8         2.299323E-02   6.576237E-04  -5.324372E-05   NO     3.463302E-01  0.000000E+00  1.00017499E+00 
0         9         1.381967E-02   3.030294E-04  -4.417065E-05   NO     2.905599E-01  0.000000E+00  1.00013082E+00 
0        10         7.659400E-03   1.377861E-04  -2.563242E-05   NO     3.171578E-01  0.000000E+00  1.00010519E+00 
0        11         4.248676E-03   6.598536E-05  -1.493265E-05   NO     4.757461E-01  0.000000E+00  1.00009026E+00 
0        12         2.453879E-03   3.333214E-05  -9.076385E-06   NO     5.361753E-01  0.000000E+00  1.00008118E+00 
0        13         1.503240E-03   1.761314E-05  -5.779421E-06   NO     5.702603E-01  0.000000E+00  1.00007540E+00 
0        14         9.786356E-04   9.793555E-06  -3.934385E-06   NO     6.501605E-01  0.000000E+00  1.00007147E+00 
0        15         6.736367E-04   6.059926E-06  -2.918724E-06   NO     7.299196E-01  0.000000E+00  1.00006855E+00 
0        16         4.871206E-04   4.252960E-06  -2.350417E-06   NO     7.918137E-01  0.000000E+00  1.00006620E+00 
0        17         3.677257E-04   3.314987E-06  -2.011352E-06   NO     8.413575E-01  0.000000E+00  1.00006419E+00 
0        18         2.986403E-04   2.755819E-06  -1.788753E-06   NO     8.779158E-01  0.000000E+00  1.00006240E+00 
0        19         2.482796E-04   2.379072E-06  -1.628036E-06   NO     9.018469E-01  0.000000E+00  1.00006077E+00 
0        20         2.098784E-04   2.099818E-06  -1.503125E-06   NO     9.166544E-01  0.000000E+00  1.00005927E+00 
0        21         1.799468E-04   1.879889E-06  -1.400959E-06   NO     9.259899E-01  0.000000E+00  1.00005786E+00 
0        22         1.561543E-04   1.701333E-06  -1.314399E-06   NO     9.322626E-01  0.000000E+00  1.00005655E+00 
0        23         1.369064E-04   1.552406E-06  -1.239167E-06   NO     9.367847E-01  0.000000E+00  1.00005531E+00 
0        24         1.210879E-04   1.425586E-06  -1.172512E-06   NO     9.402329E-01  0.000000E+00  1.00005414E+00 
0        25         1.079031E-04   1.315527E-06  -1.112580E-06   NO     9.429708E-01  0.000000E+00  1.00005303E+00 
0        26         9.677332E-05   1.219148E-06  -1.058078E-06   NO     9.452118E-01  0.000000E+00  1.00005197E+00 
0        27         8.727108E-05   1.133840E-06  -1.008074E-06   NO     9.470928E-01  0.000000E+00  1.00005096E+00 
0        28         7.907548E-05   1.057859E-06  -9.618801E-07   NO     9.487058E-01  0.000000E+00  1.00005000E+00 
          OUTER ITERATION WITH FULL MATRIX SWEEP IS PERFORMED 
0        30         1.156758E-04   1.676986E-06  -1.654761E-06   NO     1.067279E+00  0.000000E+00  1.00004671E+00 
0        31         9.800049E-05   1.521791E-06  -1.527986E-06   NO     9.379693E-01  0.000000E+00  1.00004518E+00 
0        32         8.385475E-05   1.362965E-06  -1.408546E-06   NO     9.186980E-01  0.000000E+00  1.00004377E+00 
0        33         7.207775E-05   1.225934E-06  -1.301730E-06   NO     9.176868E-01  0.000000E+00  1.00004247E+00 
0        34         6.219366E-05   1.106847E-06  -1.205090E-06   NO     9.193264E-01  0.000000E+00  1.00004127E+00 
0        35         5.384640E-05   1.002740E-06  -1.117599E-06   NO     9.212795E-01  0.000000E+00  1.00004015E+00 
0        36         4.675516E-05   9.113880E-07  -1.038205E-06   NO     9.232417E-01  0.000000E+00  1.00003911E+00 
0        37         4.069871E-05   8.311961E-07  -9.659612E-07   NO     9.250951E-01  0.000000E+00  1.00003814E+00 
         MAX ERROR ON POINT FISSION SOURCE OCCURED AT NODE   655 ON PLANE    2 

0          OUTER ITERATIONS COMPLETED AT ITERATION  37, ITERATIONS HAVE CONVERGED 
0          K-EFFECTIVE =   1.00003814425 

 
Figure 7.2. Example DIF3D 8.0 through 10.0 Outer Iteration Information without Acceleration  
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0       OUTER        REL. POINT      REL. SUM      EIGENVALUE   FSRC.    DOM. RATIO     REBALANCE                           
       IT. NO.         ERROR           ERROR         CHANGE    EXTRAP.    ESTIMATED       ERROR      K-EFFECTIVE                     
0         1         1.138104E+02   5.330136E+00   1.050883E-01   NO     1.693809E+12  9.214395E-01  1.10508834E+00 
0         2         1.743296E+02   5.058496E-01  -7.648824E-02   NO     2.761199E-01  2.724583E-01  1.02860011E+00 
0         3         1.217475E+00   4.562054E-02  -2.176428E-02   NO     2.123212E-01  2.808327E-02  1.00683583E+00 
0         4         3.457592E-01   8.301705E-03  -5.221585E-03   NO     1.745165E-01  7.591008E-03  1.00161425E+00 
0         5         7.775910E-02   2.582331E-03  -9.431916E-04   NO     2.257507E-01  1.330915E-03  1.00067105E+00 
0         6         3.070483E-02   6.635208E-04  -3.695707E-04   NO     3.778580E-01  4.080813E-04  1.00030148E+00 
0         7         5.406078E-03   1.874969E-04  -1.319292E-04   NO     5.068078E-01  1.169308E-04  1.00016955E+00 
0         8         2.269474E-03   9.650244E-05  -4.901412E-05   NO     4.903609E-01  5.396055E-05  1.00012054E+00 
0         9         1.130768E-03   4.837029E-05  -2.231372E-05   YES    4.811589E-01  3.087018E-05  1.00009823E+00 
0        10         2.973780E-04   1.119877E-05  -2.557589E-05   NO     3.961954E-01  6.302524E-06  1.00007265E+00 
0        11         1.004393E-04   3.955890E-06  -5.896087E-07   NO     1.596102E-01  3.033608E-06  1.00007206E+00 
0        12         8.459904E-05   3.040804E-06  -2.283492E-06   NO     1.393198E+00  5.363999E-06  1.00006978E+00 
0        13         7.030465E-05   2.639960E-06  -2.196115E-06   NO     8.663072E-01  4.468065E-06  1.00006758E+00 
0        14         5.758577E-05   2.348821E-06  -2.026048E-06   NO     8.758791E-01  3.908923E-06  1.00006556E+00 
0        15         4.951282E-05   2.108488E-06  -1.837181E-06   NO     9.054297E-01  3.566990E-06  1.00006372E+00 
0        16         4.752941E-05   1.907095E-06  -1.685608E-06   NO     9.157423E-01  3.276356E-06  1.00006203E+00 
0        17         4.502637E-05   1.733876E-06  -1.559478E-06   NO     9.219312E-01  3.023241E-06  1.00006047E+00 
0        18         4.225362E-05   1.585717E-06  -1.453385E-06   YES    9.276983E-01  2.802317E-06  1.00005902E+00 
0        19         6.331069E-05   4.556405E-06  -2.114648E-05   NO     6.681148E+00  2.792290E-06  1.00003787E+00 
0        20         3.742398E-05   1.094274E-06   1.745596E-06   NO     1.686769E-01  2.698594E-06  1.00003962E+00 
0        21         3.487733E-05   8.225915E-07  -1.008528E-07   NO     1.774255E-01  3.959557E-07  1.00003952E+00 
          OUTER ITERATION WITH FULL MATRIX SWEEP IS PERFORMED 
0        22         5.509557E-05   1.337599E-06  -5.770602E-07   NO     2.165325E+00  6.910751E-07  1.00003894E+00 
         MAX ERROR ON POINT FISSION SOURCE OCCURED AT NODE   573 ON PLANE   15 
0          OUTER ITERATIONS COMPLETED AT ITERATION  22, ITERATIONS HAVE CONVERGED 
0          K-EFFECTIVE =   1.00003894069 

Figure 7.3. Example DIF3D 10.0 Outer Iteration Information with Acceleration 
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=VARIANT|OUTER| TIME(s)|Ups| K-effective | Error |pGS| Fis Max ,   RMS   |TCheby  Vecs  Dom    P0 |Src(s) |j+/-(s)|Phi(s) | 
=VARIANT|    1|    29.2|001| 5.863153E-01|7.1E-01| T | 8.13E+00, 4.15E-01|   T      0   0.41  0.41|    1.5|   22.0|    5.6| 
=VARIANT|    2|    29.1|001| 7.669153E-01|2.4E-01| T | 2.19E+02, 8.71E-01|   T      0   2.08  2.10|    1.5|   21.9|    5.6| 
=VARIANT|    3|    29.1|001| 9.290477E-01|1.7E-01| T | 1.43E+03, 3.71E-01|   T      0   0.78  0.78|    1.5|   21.9|    5.6| 
=VARIANT|    4|    29.1|001| 9.823526E-01|5.4E-02| T | 4.65E+01, 9.95E-02|   T      0   0.37  0.36|    1.5|   21.9|    5.6| 
=VARIANT|    5|    29.1|001| 9.938115E-01|1.2E-02| T | 1.27E+00, 2.84E-02|   T      0   0.31  0.31|    1.5|   21.9|    5.6| 
=VARIANT|    6|    29.1|001| 9.971656E-01|3.4E-03| T | 3.73E-01, 1.17E-02|   T      0   0.42  0.42|    1.5|   21.9|    5.6| 
=VARIANT|    7|    29.1|001| 9.989715E-01|1.8E-03| T | 6.95E-02, 4.98E-03|   T      0   0.43  0.43|    1.5|   21.9|    5.6| 
=VARIANT|    8|    29.1|001| 9.997894E-01|8.2E-04| T | 3.05E-02, 1.88E-03|   T      0   0.38  0.38|    1.5|   21.9|    5.6| 
=VARIANT|    9|    29.1|001| 1.000046E+00|2.6E-04| T | 1.59E-02, 6.23E-04|   T      0   0.33  0.33|    1.5|   21.9|    5.6| 
=VARIANT|   10|    29.1|001| 1.000094E+00|4.8E-05| T | 8.47E-03, 1.99E-04|   T      0   0.32  0.31|    1.5|   21.9|    5.6| 
=VARIANT|   11|    29.1|001| 1.000090E+00|4.0E-06| T | 4.46E-03, 7.60E-05|   T      0   0.38  0.38|    1.5|   21.9|    5.6| 
=VARIANT|   12|    29.1|001| 1.000080E+00|9.6E-06| T | 2.43E-03, 3.64E-05|   T      0   0.48  0.48|    1.5|   21.9|    5.6| 
=VARIANT|   13|    29.1|001| 1.000074E+00|6.7E-06| T | 1.41E-03, 1.93E-05|   T      0   0.53  0.52|    1.5|   21.9|    5.6| 
=VARIANT|   14|    29.1|001| 1.000069E+00|4.2E-06| T | 8.85E-04, 1.14E-05|   T      0   0.59  0.56|    1.5|   21.9|    5.6| 
=VARIANT|   15|    29.1|001| 1.000067E+00|2.9E-06| T | 5.93E-04, 7.84E-06|   T      0   0.69  0.64|    1.5|   21.9|    5.6| 
=VARIANT|   16|    37.1|001| 1.000062E+00|4.5E-06| F | 7.10E-04, 1.10E-05|   T      0   1.40  1.23|    1.5|   29.9|    5.6| 
=VARIANT|   17|    37.1|001| 1.000059E+00|3.4E-06| F | 4.77E-04, 9.35E-06|   T      0   0.85  0.86|    1.5|   29.9|    5.6| 
=VARIANT|   18|    37.1|001| 1.000056E+00|2.6E-06| F | 3.38E-04, 7.89E-06|   T      0   0.84  0.83|    1.5|   29.9|    5.6| 
=VARIANT|   19|    37.1|001| 1.000054E+00|2.3E-06| F | 2.54E-04, 6.84E-06|   T      0   0.87  0.87|    1.5|   29.9|    5.6| 
=VARIANT|   20|    37.1|001| 1.000052E+00|2.1E-06| F | 1.98E-04, 6.00E-06|   T      0   0.88  0.88|    1.5|   29.9|    5.6| 
=VARIANT|   21|    45.3|001| 1.000049E+00|2.9E-06| F | 3.94E-04, 7.44E-06|   T      1   1.24  1.21|    1.5|   38.2|    5.6| 
=VARIANT|   22|    45.3|001| 1.000044E+00|4.6E-06| F | 2.71E-05, 3.42E-06|   T      0   0.46  0.62|    1.5|   38.1|    5.6| 
=VARIANT|   23|    45.2|001| 1.000044E+00|2.0E-07| F | 1.58E-04, 4.30E-06|   T      1   1.26  0.78|    1.5|   38.1|    5.6| 
=VARIANT|   24|    45.2|001| 1.000042E+00|1.9E-06| F | 6.94E-05, 3.75E-06|   T      0   0.87  1.21|    1.5|   38.0|    5.6| 
=VARIANT|   25|    45.0|001| 1.000040E+00|2.0E-06| F | 1.42E-04, 4.19E-06|   T      1   1.12  1.05|    1.5|   37.9|    5.6| 
=VARIANT|   26|    44.9|001| 1.000038E+00|2.9E-06| F | 1.31E-05, 1.95E-06|   T      0   0.46  0.57|    1.5|   37.7|    5.6| 
=VARIANT|   27|    44.7|001| 1.000038E+00|2.0E-07| F | 6.67E-05, 2.42E-06|   T      1   1.25  0.79|    1.5|   37.5|    5.6| 
          OUTER ITERATIONS COMPLETED AT ITERATION  27, ITERATIONS HAVE CONVERGED 
           K-EFFECTIVE =        1.00003773 

Figure 7.4. Example DIF3D 11.0 Outer Iteration Information 
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=VARIANT|OUTER| TIME(s)|Ups| K-effective | Error |pGS| Fis Max ,   RMS   | Cheby  Vecs  Dom |Time: Source  Current   Flux | 
=VARIANT|    1|   455.6|001| 6.423414E-01|5.6E-01| T | 4.07E+00, 4.07E-01|   F      0   0.41|       240.6 |   57.8|  157.2| 
=VARIANT|    2|   455.7|001| 8.096865E-01|2.1E-01| T | 2.07E+00, 5.61E-01|   F      0   1.15|       240.7 |   57.7|  157.2| 
=VARIANT|    3|   455.6|001| 9.127771E-01|1.1E-01| T | 2.55E+00, 2.53E-01|   F      0   0.68|       240.7 |   57.7|  157.1| 
=VARIANT|    4|   455.5|001| 9.609669E-01|5.0E-02| T | 2.33E+00, 1.12E-01|   F      0   0.55|       240.6 |   57.7|  157.2| 
=VARIANT|    5|   455.6|001| 9.819601E-01|2.1E-02| T | 1.65E+00, 5.37E-02|   F      0   0.53|       240.7 |   57.7|  157.2| 
=VARIANT|    6|   455.6|001| 9.915092E-01|9.6E-03| T | 8.77E-01, 2.80E-02|   F      0   0.54|       240.7 |   57.7|  157.1| 
=VARIANT|    7|   455.6|001| 9.962158E-01|4.7E-03| T | 3.51E-01, 1.54E-02|   F      0   0.56|       240.6 |   57.8|  157.2| 
=VARIANT|    8|   455.7|001| 9.987147E-01|2.5E-03| T | 1.29E-01, 8.78E-03|   F      0   0.58|       240.7 |   57.8|  157.2| 
=VARIANT|    9|   455.6|001| 1.000113E+00|1.4E-03| T | 5.13E-02, 5.09E-03|   F      0   0.58|       240.7 |   57.7|  157.1| 
=VARIANT|   10|   455.6|001| 1.000920E+00|8.1E-04| T | 2.37E-02, 2.98E-03|   F      0   0.59|       240.6 |   57.7|  157.2| 
=VARIANT|   11|   455.7|001| 1.001393E+00|4.7E-04| T | 1.21E-02, 1.76E-03|   F      0   0.59|       240.7 |   57.8|  157.2| 
=VARIANT|   12|   455.6|001| 1.001672E+00|2.8E-04| T | 6.63E-03, 1.05E-03|   F      0   0.59|       240.7 |   57.7|  157.1| 
=VARIANT|   13|   455.6|001| 1.001836E+00|1.6E-04| T | 3.81E-03, 6.27E-04|   F      0   0.60|       240.6 |   57.7|  157.2| 
=VARIANT|   14|   455.7|001| 1.001933E+00|9.7E-05| T | 2.37E-03, 3.83E-04|   F      0   0.61|       240.7 |   57.8|  157.2| 
=VARIANT|   15|   455.6|001| 1.001990E+00|5.7E-05| T | 1.50E-03, 2.40E-04|   F      0   0.63|       240.7 |   57.7|  157.1| 
=VARIANT|   16|   455.5|001| 1.002023E+00|3.3E-05| T | 9.70E-04, 1.57E-04|   F      0   0.65|       240.6 |   57.7|  157.2| 
=VARIANT|   17|   455.6|001| 1.002043E+00|2.0E-05| T | 6.50E-04, 1.08E-04|   F      0   0.69|       240.7 |   57.7|  157.2| 
=VARIANT|   18|   455.6|001| 1.002055E+00|1.2E-05| T | 4.39E-04, 7.88E-05|   F      0   0.73|       240.7 |   57.8|  157.1| 
=VARIANT|   19|   461.0|001| 1.002061E+00|6.7E-06| F | 3.02E-04, 5.89E-05|   F      0   0.75|       240.6 |   63.2|  157.2| 
=VARIANT|   20|   461.0|001| 1.002065E+00|4.1E-06| F | 2.16E-04, 4.60E-05|   F      0   0.78|       240.7 |   63.1|  157.2| 
=VARIANT|   21|   460.9|001| 1.002068E+00|2.4E-06| F | 1.64E-04, 3.72E-05|   F      0   0.81|       240.7 |   63.1|  157.1| 
=VARIANT|   22|   461.0|001| 1.002069E+00|1.5E-06| F | 1.76E-04, 3.04E-05|   F      0   0.82|       240.6 |   63.1|  157.2| 
=VARIANT|   23|   461.0|001| 1.002070E+00|9.3E-07| F | 1.91E-04, 2.50E-05|   F      0   0.82|       240.7 |   63.1|  157.2| 
=VARIANT|   24|   460.9|001| 1.002071E+00|5.8E-07| F | 2.10E-04, 2.06E-05|   F      0   0.83|       240.7 |   63.1|  157.1| 
=VARIANT|   25|   460.9|001| 1.002071E+00|3.7E-07| F | 2.34E-04, 1.71E-05|   F      0   0.83|       240.6 |   63.1|  157.2| 
=VARIANT|   26|   461.0|001| 1.002071E+00|2.4E-07| F | 2.65E-04, 1.41E-05|   F      0   0.83|       240.7 |   63.1|  157.2| 
=VARIANT|   27|   461.0|001| 1.002072E+00|1.5E-07| F | 3.04E-04, 1.17E-05|   F      0   0.83|       240.7 |   63.1|  157.1| 
=VARIANT|   28|   460.9|001| 1.002072E+00|1.0E-07| F | 3.53E-04, 9.70E-06|   F      0   0.83|       240.6 |   63.1|  157.2| 
=VARIANT|   29|   461.0|001| 1.002072E+00|7.0E-08| F | 4.13E-04, 8.04E-06|   F      0   0.83|       240.7 |   63.2|  157.2| 
=VARIANT|   30|   461.0|001| 1.002072E+00|5.0E-08| F | 4.88E-04, 6.67E-06|   F      0   0.83|       240.7 |   63.1|  157.1| 
=VARIANT|   31|   461.0|001| 1.002072E+00|3.8E-08| F | 5.80E-04, 5.53E-06|   F      0   0.83|       240.6 |   63.2|  157.2| 
=VARIANT|   32|   461.1|001| 1.002072E+00|3.1E-08| F | 6.95E-04, 4.59E-06|   F      0   0.83|       240.7 |   63.2|  157.2| 
=VARIANT|   33|   461.0|001| 1.002072E+00|2.7E-08| F | 8.39E-04, 3.81E-06|   F      0   0.83|       240.7 |   63.2|  157.1| 
=VARIANT|   34|   461.0|001| 1.002072E+00|2.5E-08| F | 1.02E-03, 3.17E-06|   F      0   0.83|       240.6 |   63.2|  157.2| 
=VARIANT|   35|   461.1|001| 1.002072E+00|2.5E-08| F | 1.25E-03, 2.63E-06|   F      0   0.83|       240.7 |   63.2|  157.2| 
=VARIANT|   36|   461.0|001| 1.002072E+00|2.7E-08| F | 1.53E-03, 2.20E-06|   F      0   0.84|       240.7 |   63.2|  157.1| 
=VARIANT|   37|   461.0|001| 1.002072E+00|2.9E-08| F | 1.90E-03, 1.85E-06|   F      0   0.84|       240.6 |   63.2|  157.2| 
=VARIANT|   38|   461.1|001| 1.002072E+00|3.2E-08| F | 2.37E-03, 1.58E-06|   F      0   0.85|       240.7 |   63.2|  157.2| 
=VARIANT|   39|   461.1|001| 1.002072E+00|3.6E-08| F | 2.97E-03, 1.39E-06|   F      0   0.88|       240.8 |   63.2|  157.1| 
=VARIANT|   40|   461.2|001| 1.002072E+00|4.1E-08| F | 3.74E-03, 1.29E-06|   F      0   0.93|       240.7 |   63.2|  157.3| 

… 
Figure 7.5. Example DIF3D 11.0 Optical Thickness Convergence Problem 
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7.3 Inclusion of an external PN based fixed source file 

The conventional DIF3D code will build a FIXSRC file given rudimentary input. The file 
generated by input only allows an isotropic fixed source although the file format itself does allow 
a spatially dependent source consistent with the VARIANT spatial approximation. To enable the 
PERSENT sensitivity calculations [25], a new anisotropic fixed source file called VARSRC was 
added. The format of the binary VARSRC file (Appendix A) is nearly identical to that of 
NHFLUX_VARIANT and contains both even and odd angular nodal source moments. DIF3D-
11 has been modified to check for presence of this new file and use it with priority over 
FIXSRC. 

7.4 Anisotropic scattering bug in SPN 

Another important code bug found in VARIANT is the inaccurate treatment of 
anisotropic scattering with the SPN approximation. Although the theory derived was correct, the 
implementation into the coding improperly defined the odd parity within- group scattering term. 
In the new coding the problem has been fixed. Given the new approach to generating angular 
trial functions and the corrections to the notation, the evaluation of the angular integrals are now 
verified to work properly. 

7.5 Errors with “Omega” Acceleration 

Over the course of the last ten years of getting users to transition from version 8.0 to 
version 11.0, we have noticed several outstanding problems with the VARIANT coding. Most 
important is that the forward and adjoint are occasionally not always consistent. In many cases 
these errors are easy to reproduce.  

Starting with the ω acceleration problem, the discrete matrix-vector equations for 
VARIANT are typically written on a node-wise basis as: 

TH s Cψ χ= ⋅ − ⋅   (219) 
C s Gϕ χ= ⋅ − ⋅ .  (220) 

In the conventional formulation, a change of variable is made using partial currents 

( )
1 1 1 1
4 2 4 2

2

j j

j j j j

ϕ χ ϕ χ

ϕ χ

+ −

+ − + −

= + = −

= + = −
,  (221) 

which results in the new governing equations 
TH s C j jψ + − = ⋅ − −    (222) 

j B s R j+ −= ⋅ + ⋅ .  (223) 
The new matrices are found to be 

1
1 1
2 2B G I C

−
 = +    (224) 

1 1
1 1 1
2 2 22R G I G I I G I

− −
     = + − = − +      . (225) 
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The “omega” acceleration applied in VARIANT, but in a consistent manner with 
successive over-relaxation (SOR) makes the fundamental change 

( ) ( )

1 1 1 1ˆ ˆ
4 2 4 2
2 1ˆ ˆ ˆ ˆ

1 1

j j

j j j j

ω ω ω ωϕ χ ϕ χ

ϕ χ
ω ω

+ −

+ − + −

− + − +
= + = −

= + = −
− + , (226) 

which leads to the transformation equations between the two definitions of the partial currents as 

( )( ) ( )( )

ˆ ˆ

ˆ ˆ ˆ ˆ
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j j j j j j

j j j j
j j

ω ω

ω ω
ω ω ω ω

+ + − − + −

+ − + −
+ −

= − = − +

+ +
= =

− + − + . (227) 
Substituting in the alternative definitions of equation 227 into equations 219 and 220 we obtain 
the alternate iterative equations and matrices: 

( )1 ˆ ˆ
1

TH s C j jψ
ω

+ −= ⋅ − −
+   (228) 

ˆ ˆj B s R j+ −= ⋅ + ⋅   (229) 
1

1
2

1 1
2 1

B G I Cω ω
ω

−− − = + + 
  (230) 

1 1
1 1 1
2 2 2
1 1 12
1 1 1

R G I G I I G Iω ω ω
ω ω ω

− −− − −     = + − = − +     + + +     
. (231) 

In VARIANT, three quantities are computed and stored because of the repetition in their 
usage in the above equations 

( )( )
1 11 1 2 3

1 1 1
O O Oω

ω ω ω
= − = =

+ − + . (232) 
In the current implementation, VARIANT only applies these factors to the flat moments leading 
to numerous differences in the above equations with regard to a standard SOR implementation. 

Given that no bug was present, the only rational explanation was a mistake in the 
formulation of the acceleration. While the acceleration is very effective at reducing the 
computational effort required to get convergence, the fact that it converges to the wrong solution 
is quite problematic. Equation 233 shows the conventional Gauss-Seidel and SOR applied to a 
given matrix vector system. 

( )
( )
( ) ( )( )

1

1 1ω ω ω ω

+

+

= + + =

+ = −−

+ = − + −

k k

k k

Ax L D U x b

D L x b UxGauss Siedel
SOR D L x b U D x  (233) 
After studying the VARIANT implementation, it seems likely that the reason for the problem is 
that the ω acceleration was only applied to the flat moments. With regard the SOR in equation 
233, this would be equivalent to applying the acceleration to only a few select rows rather than 
the entire system. This is obviously not the intention of SOR and this likely alters the diagonal 
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dominance of the system in some manner. If that is the case, then some of the non-accelerated 
moments (higher order) may not converge, but oscillate in some manner. If those other moments 
are key to defining the accuracy of the flat moments, then it could explain why the code 
converges to the incorrect answer as the convergence criteria in the code only considers the flat 
moments. While we believe this is the source of the errors observed in what follows, we have not 
been able to verify it thus far. 

To display the issue with ω acceleration, we constructed a series of test problems, the 
details of which are not entirely relevant, and tabulate the forward and adjoint eigenvalues results 
in Table 7.4. Note that we consider the case without ω acceleration (Gauss-Seidel) to be the 
reference solution and that the 10.0 version infers the approach before 11.0. We also note that the 
convergence criteria was set to 10-8 in all quantities and all possible means to eliminate the error 
(no partitioned matrix, full convergence of inners, etc…) was attempted clearly indicating the ω 
acceleration as the outstanding problem in many of the test problems. We also note that while the 
error appears to be zero for several cases, it is in fact never exactly zero unless specifically using 
Gauss-Seidel. 

To begin, in almost all of the problems, the error between the forward and adjoint 
calculation in Gauss-Seidel, termed “self error,” is within the targeted error criteria. The only 
exceptions are 120 periodic hexagonal geometry (Hex-120) cases where there is an observable 
eigenvalue error between the forward and adjoint (self error). This was traced to another bug 
which is discussed in the following section. 

Looking at the errors in the production calculations in Table 7.4, there are clearly 
identifiable issues with all geometry options when the ω acceleration is enabled leading to 1-2 
pcm of error. There is no error on a few problems which can be explained mostly by the fact that 
those problems are particularly large diffusive reactor problems. The two “restricted” cases infer 
that the values of ω  in equation 228 are restricted to be within the cited range where 1ω =  is 
conventional Gauss-Seidel. Starting with the first restricted case, one can clearly see there is an 
impact on the computed results noting that the error is reduced by nearly an order of magnitude 
on most problems. Restricting it further to 0.8 almost eliminates all of the eigenvalue errors back 
to the base Gauss-Siedel scheme. We obviously tested out other ranges with 0.8 being the most 
consistent at reducing the error to 0.1 pcm or less. Note that switching the Hex-120 problems 
typically eliminates all of the errors which is clearly the case with tests 8-10 noting that there 
were some changes in geometry that result when the full core model is collapsed into 60 and 120 
periodic cases. 

There is an impact of restricting the value of ω  as we are effectively reducing the 
acceleration and potentially increasing the time required to converge the problem. In all of the 
calculations in Table 7.4, the number of inners was fixed to be the same for all outer iterations. A 
simple adjustment routine was added to the code which detects a high dominance ratio 
(potentially caused by a lack of inner iteration convergence) and attempts to improve the 
convergence rate by increasing the number of inners. In all of the calculations above except for 
version 10.0, this adjustment feature was used to guarantee convergence, but was found to be 
rarely needed. This is consistent with the previous section results indicating that ω acceleration 
was not making much of a difference in the solution. 
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Table 7.4. Forward and Adjoint Eigenvalues and PCM Errors for the Test Problems 

Test Problem 
Geometry 

Reference 
Gauss-Seidel Self 

Error 

Version 
10.0 

Restrict 
0.5 - 1.0 

Restrict 
0.8 - 1.0 

Error (pcm) 
Forward Adjoint F A F A F A 

1 Hex-60 2D small 1.303905 1.303905 0.0 1.2 1.4 0.0 0.2 0.0 0.0 
2 Hex-120 2D small 1.303905 1.303905 0.0 1.2 1.4 0.0 0.2 0.0 0.0 
3 Hex-60 3D small 1.058513 1.058513 0.0 0.5 0.7 -0.1 0.0 0.0 0.0 
4 Hex-120 3D small 1.058513 1.058513 0.0 0.5 0.7 -0.1 0.0 0.0 0.0 
5 Hex-60 3D large 1.030034 1.030034 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
6 Hex-120 3D large 1.019692 1.019605 8.8 3.1 0.9 3.0 0.9 1.6 0.7 
7 Hex-60 3D Blanket 0.921557 0.921557 0.0 0.9 0.3 0.9 0.3 0.1 0.0 
8 Hex-60 3D channel 1.045978 1.045978 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
9 Hex-120 3D channel 1.023500 1.023561 -6.0 -0.7 0.4 -0.7 0.4 -0.4 0.0 
10 Hex-360 3D channel 1.053337 1.053337 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
11 Cart 2D tiny 0.969954 0.969954 0.0 1.9 1.1 1.8 1.0 0.1 0.1 
12 Cart 2D small 1.303469 1.303469 0.0 3.5 3.8 0.5 0.6 0.0 0.1 
13 Cart 3D small 1.058165 1.058165 0.0 2.1 2.3 0.1 0.2 0.0 0.0 
14 Cart 3D large 1.016609 1.016609 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Table 7.5 tabulates the total number of outer iterations required for convergence of the 
forward and adjoint reference Gauss-Siedel calculation for each test problem. The net change in 
the number of outers from each reference point are then given for version 10.0 and the two 
restricted ω  cases where negative numbers indicate a gain in performance and positive numbers 
indicate a loss in performance. In Table 7.5, it should be clear that restricting ω to 0.8 results in a 
near negligible impact of using the acceleration. The only problems that see any benefit from the 
acceleration are problems 3, 12, 13 & 14 where the acceleration actually reduces the amount of 
work required rather than increase it. Relative to version 10.0, one can see there is a substantial 
impact on problems 3 & 12-14 where the acceleration cuts the overall computational time in 
nearly half for problems 3 & 13. Of course, the nearly 1 pcm error observed in Table 7.5 on these 
benchmarks is generally undesirable given that the reference results are identical. 

Using Table 7.5 to assess performance, the ω  acceleration is either highly effective at 
getting VARIANT to converge quickly to either the correct solution (just problem 14) or the 
incorrect solution (problems 1-3 & 12-13) or completely ineffective (problems 2 & 4-11). Given 
that a majority of the uses for VARIANT target reactor problems similar to tests 6-10 & 14 we 
can conclude that the acceleration is only useful on benchmark 14 which requires significant flux 
solution analysis to ensure that the ω acceleration does not have a significant impact on the full 
solution (i.e. the eigenvalue isn’t the only answer to the problem). We note that the adjustment 
routine did not make any adjustments as the dominance ratio was found to be 0.84 with and 
without the acceleration applied and the algorithm only makes an adjustment if the dominance 
ratio is 0.85 or higher.  
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Table 7.5. Outer Iteration Count for the Test Problems 

Test Problem 
Geometry 

Reference 
Gauss-Seidel 

Version 
10.0 

Restrict 
0.5-1.0 

Restrict 
0.8-1.0 

Change in Outers 
F A F A F A F A 

1 Hex-60 2D small 28 37 -1 -10 -1 -8 -1 -5 
2 Hex-120 2D small 35 43 0 -8 1 -2 0 0 
3 Hex-60 3D small 34 35 -17 -18 -16 -17 -7 -7 
4 Hex-120 3D small 27 27 3 2 2 2 1 1 
5 Hex-60 3D large 27 27 3 2 2 2 1 1 
6 Hex-120 3D large 26 27 3 1 3 1 2 0 
7 Hex-60 3D Blanket 103 102 -1 1 1 1 0 1 
8 Hex-60 3D channel 36 36 3 3 3 3 1 1 
9 Hex-120 3D channel 34 34 3 3 3 3 2 2 
10 Hex-360 3D channel 73 74 3 2 3 2 1 1 
11 Cart 2D tiny 39 39 1 0 0 0 0 0 
12 Cart 2D small 42 67 -11 -25 -12 -31 -3 -11 
13 Cart 3D small 43 63 -27 -40 -22 -29 -9 -12 
14 Cart 3D large 98 85 -18 -3 -15 -3 -3 -6 

After additional studies on these problems and other more practical problems, the ω 
acceleration value was set to 0.65 to strike a balance between performance and accuracy. In 
general, this can have an impact on both the eigenvalue and flux solution (the flux is typically 
impacted in the fourth or fifth significant digit). If this is perceived to be a problem with the 
desired calculations, then the user should disable the ω acceleration and rely upon Gauss-Seidel. 
While the adjustment routine can be relied upon in most cases to correct any under predictions in 
the necessary number of inners required to converge a given problem, the user can still set higher 
values as desired assuming that they will yield less computational effort. We note that this 
adjustment routine has rarely been observed to engage and is easy to notice as the time required 
to complete each outer iteration increases dramatically when it does. 

7.6 Errors with Hexagonal 60 and 120 Periodic Geometries 

As was shown in the previous section there clearly is a problem with hexagonal 120 
periodic boundary conditions. A simple 3 group, 2D benchmark was created to magnify the 
errors and display the problem. In Figure 7.6 and Figure 7.7 we display the rotations of the 
hexagonal geometry and partial currents for 60 and 120 periodic cases, respectively. The left 
hand picture shows how the base coordinate system in each hex is rotated due to the periodic 
boundary condition. The right hand picture shows the orientation of each boundary current in 
each hex. In both geometries, the “ghost” hexes (represented using dashed boundaries) require 
the currents from the hexes along the periodic boundary to be remapped. For convenience, we 
have circled the currents that have to be remapped. Note that the boundary currents are the hexes 
that are in the solved portion of the domain where the color coding denotes which currents must 
be connected. A quick survey of both cases shows the remapping of the boundary currents can be 
summarized by Figure 7.8. 
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Figure 7.6. Hexagonal 60 Degree Periodic Geometry and Current Rotations 

 

 
Figure 7.7. Hexagonal 120 Degree Periodic Geometry and Current Rotations 

 

 
Figure 7.8. Four Current Rotations Necessary in Periodic Hexagonal Geometries 

The basis expansion used on the interfaces in DIF3D-VARIANT can roughly be stated as 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

ˆ ˆˆ ˆ,

ˆ ˆ ˆˆ ˆ ˆ,

γ γ γ γ γ

γ γ γ γ γ γ

χ χ

ϕ ϕ

−

−

Ω = ∈Γ ⊗ Ω

Ω = ∈Γ ⊗ Ω⋅ Ω





r h r Y

r h r n Y
, (234) 

where we are taking a bit of liberty with the definition of ( )ˆˆ,γϕ Ωr  for illustration purposes. The 

partial current vectors −j  and +j  are defined to be: 

60 degree:   2↔4 
60 degree:   3↔4 
120 degree: 3↔4 

60 degree:   2↔5 
60 degree:   2↔6 
60 degree:   4↔6  
120 degree: 2↔4 
120 degree: 2↔5 
120 degree: 2↔6 
120 degree: 4↔5 
 
 

60 degree: 4↔4 
120 degree: 5↔6 

Standard mapping 

3   2 
 
4         1 
 
 

  5     6 
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1 1
4 2γ ϕ χ± = ±j   (235) 

One can expand the partial current notation assuming the space-angle approximations above and 
get: 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

1 1
4 2

1 1
4 2

ˆ ˆ ˆ ˆˆ ˆ ˆ,

ˆ ˆ ˆ ˆˆ ˆ ˆ,

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

+ − − +

− − − −

 Ω = ∈Γ ⊗ Ω⋅ Ω + Ω 

 Ω = ∈Γ ⊗ Ω⋅ Ω − Ω 

j r h r n Y Y j

j r h r n Y Y j
. (236) 

Across a generic face, we equivalence +j  to −j  which from equation 236, we can see the only 

significant impact will be the sign change in ( )ˆ ˆγΩ ⋅n  and the specific change in the definition of 

( )ˆ
γ
− ΩY . In DIF3D-VARIANT, the ( )ˆ

γ
− ΩY  and ( )ˆγ γ∈Γh r  trial functions are carefully made to 

be consistent across regular connecting interfaces as shown in Figure 7.9.  

 
Figure 7.9. Example Current Alignment in Hexagonal Geometry 

In the example of Figure 7.9, we find the current equivalence to require: 

( ) ( )
( ) ( ) ( ) ( )1 1 1 1

4 2 4 2

ˆ ˆˆ ˆ, ,

ˆ ˆ ˆ ˆµ µ

− +

− +

− − − −

≡

Ω ≡ Ω

− Ω − Ω ≡ Ω + Ω

B A

B A

B B A A

j j

j r j r

Y Y Y Y

. (237) 

In equation 237, the minus sign indicates the need to embed a sign change within the angular 
basis functions to get the necessary equivalence between the surface currents. This is not what is 
done in the production coding as the negative signs are simply embedded into the matrices. 
Looking at the production code, one finds that the negative sign appears by manipulating ˆ ˆγΩ ⋅n  
on both the even-parity basis functions in equation 236 and the odd-parity boundary term in the 
transport equation. In the example given in equation 237, this minus sign is included for surfaces 
4 (B in Figure 7.9), 5, and 6 of the hexagonal geometry shown in Figure 7.6. To expose this in 
our formalism above, we redefine the meaning of our basis as 

( ) ( ) ( ){ }
( ) ( ) ( ){ }

ˆ ˆˆ ˆ,

ˆ ˆ ˆˆ ˆ ˆ,

γ γ γ γ γ γ

γ γ γ γ γ γ γ

χ χ

ϕ ϕ

−

−

Ω = ∈Γ ⊗ Ω

Ω = ∈Γ ⊗Ω⋅ Ω





r h r c Y

r h r n c Y
, (238) 

( ) ( ) ( ) ( ){ }1 1
4 2

ˆ ˆ ˆ ˆˆ ˆ ˆ,γ γ γ γ γ γ γ
± − − ± Ω = ∈Γ ⊗ Ω⋅ Ω ± Ω j r h r n c Y c Y j .  (239) 

Note that we have dropped the surface notation of the trial functions but have added in the 
surface dependent sign terms defined as 

( )1 1 1 1 1 1= − − − Tc .  (240) 
We can again impose the equivalence for Figure 7.8 and find 

 

B 
   

    A 
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( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

4 2 4 2

ˆ ˆˆ ˆ, ,

ˆ ˆ ˆ ˆ1 1µ µ

− +

− +

− − − −

≡

Ω ≡ Ω

− Ω − Ω ≡ − Ω + − Ω

B A

B A

j j

j r j r

Y Y Y Y

. (241) 

At this point we can now consider how the remapping will impact the transfer of data in Figure 
7.9. 

From Figure 7.8, it should be clear that we need to apply at most three mapping schemes. 
On each surface, we assume a local coordinate system where the s direction always travels along 
the surface and the t direction either into or out of the surface as seen in Figure 7.6 and Figure 
7.7 (arrows applied near each surface internal to a given hexagon). The remaining coordinate on 
the surfaces is identical to the z direction in the conventional nodal coordinate system. The 
spherical harmonics are also re-oriented with the s-t-z coordinate system such that µ  travels in 
the -t direction and η  travels in the +s direction. Using that logic, we can define the mapping 
relationships needed to satisfy the periodic boundary conditions as: 
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

  
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



−
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− −

A

B

C

R j s t z j s t z

R j s t z j s t z

R j s t z j s t z

 (242) 

To investigate the impacts of each remapping, we use a linear approximation in space and P3 
approximation in angle defined as 

( ) ( ) ( )
( )

3

2

2 2

31 ˆˆ 1 5γ γ
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µ µ

η µ

µ η ζ

−

 
 −  

∈Γ Ω    +   
 − 

 h r Y
s

. (243) 

Note that equation 243 is just a simplistic representation of the current such that we have 
dropped the spherical harmonic normalization constants and that the spatial trial functions are 
not orthogonal. Expanding equation 239 into this basis and noting that µ  points outward for 
surfaces 1, 2, 3 and inward for surfaces 4, 5, 6, we can write 

( ) ( ) ( )
( )

3

1 1
24 2

2 2

31ˆˆ, 1 5γ γ γ γ

µ
µ µ

µ η µ

µ η ζ

± ±

  
  −   

Ω = ± ⊗    +   
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j r c c j
s

. (244) 

Starting with AR , we have 
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( ) ( )

( ) ( )
( )

( ) ( )
( )

2 4

3 3

1 1 1 1
2 22 44 2 4 2

2 2 2 2

2

, , , , , , , , , ,

3 31 1
1 5 1 5

1
1 1
1 1

1

µ η ζ µ η ζ

µ µ
µ µ µ µ

µ µη µ η µ

µ η ζ µ η ζ

− +

− +

−

= − −

      
      − −         

− ⊗ = − − + ⊗         + − +−         
      − −      

  
     = ⊗   − − 

 
 

j s t z j s t z

j j
s s

j 4
+






 
 

j

 (245) 

As can be seen, we only need a simple Boolean vector manipulation where the signs are flipped 
for certain moments in the expansion. Note that the reverse mapping (i.e. 2→4) will require the 
same remapping array. Carrying out the same task with the other remapping cases, we find the 
Boolean results to be: 
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4 5

5 6
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  (246) 

VARIANT was originally written to only include a single current remapping function 
defined by NPCSEC which is applied to all surfaces that need remapping in Figure 7.6 and 
Figure 7.7. This was found to be incorrect by Won Sik Yang [24] and corrected to include two 
remapping arrays which fixed most of the problems, however, it was also shown to be incorrect 
using the simple 3 group test problem mentioned earlier (included as reference benchmark 34). 
The reason should be clear from Figure 7.6 and Figure 7.7 as there are clearly mapping errors.  

While the error is easy to expose in a 120 hexagonal periodic problem, a similar error is 
observable in 60 degree periodic geometries so long as it has more than 4 rings and uses at least 
a linear spatial approximation. To display the rotation problems, we extracted the second active 
node (ring 2 position 1) and fourth active node (ring 2 position 3) incoming from a full core 3D 
calculation using a linear leakage, P3 approximation in Figure 7.10. In this case, spatial moments 
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for each angular moment are bunched together such that moments 1-3 correspond to the isotropic 
PN moments (there are a total of 6 angular moments). We color the surfaces identically with our 
earlier designation of A, B, and C and one should immediately see that the remapping in each 
case requires a sign change that is different. A check of the linear leakage, P5 solution also 
verified the need for three mapping schemes. 

 

 
Figure 7.10. Full Core 3D Results Proving that the RB and RC Mappings are Necessary. 

 

There were serious problem with making the necessary changes to DIF3D as the storage 
was fundamentally broken. The +j  currents in DIF3D are implicitly defined with respect to the 
active node number and node surface such that we always have ⋅Nodes Surfaces  moments of 
storage in the problem. For nodes that lie upon the outer domain boundary, we must add 
additional storage to hold the moments of the size: DomainSurfaces . At this point we have no 
issues, especially for full core problems. For 30 degree symmetric problems, the current 
implementation numbers the global surface currents as seen in Figure 7.11 while for 60 degree 
periodic boundary conditions the numbering in Figure 7.12 is used.  

 

  Node Surface->     1             2             3             4             5             6 
     2      1   5.715064E+07  8.306824E+07  1.095894E+08  1.293469E+08  1.090745E+08  7.018622E+07 
     2      2   1.055077E+06 -6.428423E+06 -5.401662E+06  8.495812E+04 -6.563336E+06 -5.935705E+06 
     2      3   1.363168E+07  2.032730E+07  2.594975E+07  2.995970E+07  2.544448E+07  1.726000E+07 
     2      4   2.073701E+06 -1.762059E+06  1.596199E+06  4.376635E+06  2.801908E+06 -2.640681E+05 
     2      5  -2.519730E+02 -1.176633E+06 -4.828176E+05  5.900046E+04 -2.931406E+05 -8.257683E+05 
     2      6   8.011741E+05 -9.229898E+03  1.764764E+06  2.685410E+06  2.018768E+06  8.448416E+04 
     2      7  -6.080180E+05  1.392659E+07  1.381873E+07  5.511914E+05 -1.474966E+07 -1.250889E+07 
     2      8   2.470056E+06  3.936735E+06  1.622043E+06 -2.880375E+06 -3.079589E+06 -1.592088E+06 
     2      9  -1.867673E+05  3.079515E+06  2.839786E+06  1.582331E+05 -3.079977E+06 -2.724805E+06 
     2     10  -2.120513E+06 -8.791411E+05  4.043613E+06  5.063297E+06  3.467404E+06  6.257962E+05 
     2     11  -1.955425E+05  7.000833E+05 -2.129633E+05 -7.654658E+04 -2.167085E+05  3.212808E+05 
     2     12  -7.390437E+05 -2.711755E+05  2.206082E+06  3.035907E+06  2.211078E+06  7.735461E+04 
     2     13   1.649151E+07  2.283453E+07  2.983950E+07 -3.551280E+07 -3.006511E+07 -2.032239E+07 
     2     14  -4.603466E+04 -1.856091E+06 -1.919053E+06 -6.266193E+04  1.880145E+06  1.663515E+06 
     2     15  -1.140572E+07 -1.430829E+07 -1.820956E+07  2.047509E+07  1.824483E+07  1.218054E+07 
     2     16   2.354644E+05 -2.167619E+06 -2.188724E+06 -3.282121E+05 -2.612282E+06 -2.178942E+06 
     2     17  -5.427392E+05 -8.597242E+05 -3.431576E+05 -5.767496E+05 -4.652588E+05 -1.577543E+05 
     2     18  -1.150573E+05  1.168563E+06  1.292006E+06  9.798754E+04  1.434263E+06  1.023914E+06 
Node Surface->     1             2             3             4             5             6 
     4      1   1.090745E+08  7.018622E+07  5.715064E+07  8.306824E+07  1.095894E+08  1.293469E+08 
     4      2  -6.563336E+06  5.935705E+06 -1.055077E+06 -6.428423E+06  5.401662E+06 -8.495812E+04 
     4      3   2.544448E+07  1.726000E+07  1.363168E+07  2.032730E+07  2.594975E+07  2.995970E+07 
     4      4   2.801908E+06 -2.640681E+05  2.073701E+06 -1.762059E+06  1.596199E+06  4.376635E+06 
     4      5  -2.931406E+05  8.257683E+05  2.519730E+02 -1.176633E+06  4.828176E+05 -5.900046E+04 
     4      6   2.018768E+06  8.448416E+04  8.011741E+05 -9.229898E+03  1.764764E+06  2.685410E+06 
     4      7   1.474966E+07 -1.250889E+07  6.080180E+05 -1.392659E+07  1.381873E+07 -5.511914E+05 
     4      8   3.079589E+06  1.592088E+06  2.470056E+06 -3.936735E+06 -1.622043E+06 -2.880375E+06 
     4      9   3.079977E+06 -2.724805E+06  1.867673E+05 -3.079515E+06  2.839786E+06 -1.582331E+05 
     4     10   3.467404E+06  6.257962E+05 -2.120513E+06 -8.791411E+05  4.043613E+06  5.063297E+06 
     4     11  -2.167085E+05 -3.212808E+05  1.955425E+05  7.000833E+05  2.129633E+05  7.654658E+04 
     4     12   2.211078E+06  7.735461E+04 -7.390437E+05 -2.711755E+05  2.206082E+06  3.035907E+06 
     4     13   3.006511E+07  2.032239E+07  1.649151E+07 -2.283453E+07 -2.983950E+07 -3.551280E+07 
     4     14  -1.880145E+06  1.663515E+06  4.603466E+04  1.856091E+06 -1.919053E+06  6.266193E+04 
     4     15  -1.824483E+07 -1.218054E+07 -1.140572E+07  1.430829E+07  1.820956E+07  2.047509E+07 
     4     16  -2.612282E+06  2.178942E+06 -2.354644E+05 -2.167619E+06  2.188724E+06  3.282121E+05 
     4     17  -4.652588E+05 -1.577543E+05 -5.427392E+05 -8.597242E+05 -3.431576E+05 -5.767496E+05 
     4     18   1.434263E+06 -1.023914E+06  1.150573E+05  1.168563E+06 -1.292006E+06 -9.798754E+04 
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Figure 7.11. 30 Degree Symmetric Global Surface IDs for ±j  Partial Currents. 

 
Figure 7.12. 60 Degree Periodic Global Surface IDs for ±j  Partial Currents. 

Starting with Figure 7.11, surfaces 1-24 are conventional outgoing partial currents where 
surfaces 25-29 are domain boundary conditions and surfaces 30-32 are periodic boundary 
conditions that need mapping. Of course the issue is that we now know there are an insufficient 
number of periodic boundary currents because of the necessary mappings. The 30 degree 
symmetric case is more complicated than the 60 degree periodic, but one can clearly see that the 
center hex again has insufficient storage. Note that in the 30 degree symmetry case, the last node 
in the fourth ring is eliminated due to symmetry, but its current storage is not. This is quite 
confusing in the existing NHFLUX file as the current moments are never copied where as the 
nodal flux moments are. Also note that in 30 degree symmetry, the moments that need the sign 
changes are typically eliminated due to the various rotations that must be preserved to impose the 
symmetry. Finally, the 59th current is improperly listed as a periodic boundary condition that was 
linked to the 44th surface thereby potentially corrupting the accuracy of the approximation as it 
should only require a vacuum boundary condition.  

For completeness, the 120 degree periodic global surface current numbering is given in 
Figure 7.13. In this case we see surfaces 1-42 are conventional outgoing partial currents while 
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surfaces 43-52 are domain boundary conditions, and surfaces 53-58 are periodic boundary 
conditions that need the mappings. 

 
Figure 7.13. 120 Degree Periodic Global Surface IDs for ±j  Partial Currents. 

Based upon the mappings needed in Figure 7.6 and Figure 7.7, we should uniquely define 
the incoming currents as shown in Figure 7.11 through Figure 7.13 where the coloring indicates 
the type of rotation necessary. Because of the extra complexity in getting the 30 degree 
symmetry problem to work, we were not able to complete its implementation into the source 
code. Note that we were careful to order the periodic surfaces such that similar mappings are 
collected together. 
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8 Results 

8.1 Introduction 

With the above modifications to the VARIANT coding, we now consider the impact of 
the various changes. First, we note that DIF3D 11.0 was rigorously tested using numerous 
validation benchmarks, the complete details of which are not shown here for brevity. We also 
note that the following results do not include the alterations made to DIF3D 11.0 by fixing either 
the hexagonal periodic boundary conditions or the ω acceleration or adding Tchebychev 
acceleration. What is important is that those tests not only compare eigenvalue results, but also 
detailed flux and power distributions. Second, the convergence criteria used in all of the 
following calculations is well beyond what most users would apply normally converging the 
eigenvalue to 10-9, the point wise flux to 10-7 and the RMS flux to 10-8. As a consequence, one 
should not assume that the computational burden seen in this report would be common when 
they execute VARIANT (we can comfortably estimate the average user settings to require at 
most half of the time reported for any calculation in this report). Finally, to maintain simplicity, 
we only focus on the eigenvalue comparison in this report (assuming the flux solution matches) 
and choose to only consider three-dimensional benchmark problems for which the VARIANT 
code is primarily used. The benchmarks we give results for are the Takeda benchmarks [20]. 
along with assembly homogenized models of the EBR-II reactor [21], the ABR reactor [22], and 
the MONJU reactor [23].  

8.2 TAKEDA-2 Benchmark 

The first benchmark considered is a three-dimensional Cartesian geometry benchmark 
problem specified by Takeda [20]. It provides two-group cross section data with an isotropic 
scattering kernel and focuses on two different configurations where a control rod position is 
varied. The details of the geometry can be found in the reference and are not repeated here for 
brevity, but it is worth mentioning that the problem employs 90 degree radial symmetry. In 
addition to this, we also only present results for the rodded configuration because the unrodded 
configuration exhibits a similar behavior. Table 8.1 gives the eigenvalue results obtained with 
the new and production versions of VARIANT for the unrodded configuration in addition to the 
performance data.  

Table 8.1. Eigenvalue and Performance for the Takeda 2 Benchmark 
 Version 9.0 Version 10.0 Version 10.0 & Alt PN 

eigenvalue Time (sec) eigenvalue Time (sec) eigenvalue Time (sec) 
6,6,1 P1 0.96913 3.5 0.96913 5.5 0.96913 5.3 
6,6,1 P3 0.97349 12 0.97349 13 0.97349 22 
6,6,1 P5 0.97364 40 0.97364 41 0.97363 70 
6,6,1 P7   0.97369 147   
6,6,1 P9   0.97371 352   
6,8,2 P5   0.97359 223   
6,8,3 P5   0.97358 457   
8,8,3 P5   0.97358 509   
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As can be seen there are no significant difference in the eigenvalue results. Using the 
higher order capabilities of the new version we can also see that further refinement of the spatial 
flux, source, and leakage amount to a rather minor impact on the eigenvalue as does refinement 
of the angular approximation past P5. The use of the alternate set of trial functions proposed by 
Yang yielded identical answers to the old functions, but significantly more computational effort 
was required. This result is consistent with every benchmark problem we include in this report 
and all those we run but did not include and thus do not include any additional results in this 
report using those functions. As for an explanation, we suspect the new set of functions degrades 
the spectral radius of the within group equations and thus always require more computational 
effort than the original set proposed by Lewis. This does open the possibility that yet another set 
of functions will produce a spectral radius which is consistently less than the current set and thus 
improve the existing performance. Finally, there are relatively minor if not insignificant 
differences in the computational timings reported which is expected given the changes. 

Overall we feel we should ignore any timing results for small scale problems such as 
Takeda unless more care is taken to run the machine under the exact same load and input every 
time. What this benchmark really tells us is that the new version of VARIANT produces 
solutions to this benchmark problem that are either consistent with the previous versions or 
superior to it in a comparable amount of time.  

8.3 Takeda-4 Benchmark 

The second benchmark considered is a three-dimensional Hexagonal geometry 
benchmark problem specified by Takeda [20]. It provides four-group cross section data with an 
isotropic scattering kernel and focuses on two different configurations where a control rod 
position is varied. The details of the geometry can be found in the reference and are not repeated 
here for brevity, but it is worth mentioning that the benchmark has 30 degree symmetry and thus 
only a 60 degree sector is used in the calculation. In addition to this, we only present results for 
the half-rodded configuration because the rodded and unrodded configurations exhibit a similar 
behavior to the half-rodded configuration. Table 8.2 gives the eigenvalue results obtained with 
the new and production versions of VARIANT for the half-rodded configuration in addition to 
the performance data.  

Once again we can see identical results with respect to the eigenvalue solutions and little 
variability in the machine run times. We can also see the SPN calculations are consistent between 
the new and old version, but neither produces the correct transport solutions. This type of 
behavior is consistent with other researchers who have used SPN and there is no clear indicator of 
what the degree of inaccuracy will be when using SPN. We did not include the results for the 
alternate set of trial functions since they did not provide any more useful information than that 
found in the previous benchmark. Similar to the Takeda-2 benchmark, we can conclude that the 
new version is producing results consistent with the old version and the performance data is 
similar. 
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Table 8.2. Eigenvalue and Performance for the Takeda-4 Benchmark 
 Version 9.0 Version 10.0 

eigenvalue Time (sec) eigenvalue Time (sec) 
6,6,1 P1 0.96063 2.0 0.96063 1.6 
6,6,1 P3 0.98310 3.8 0.98310 3.5 
6,6,1 P5 0.98530 16 0.98530 16 
6,6,1 P7   0.98589 90 
6,6,1 P9   0.98610 386 
6,8,2 P5   0.98452 289 
6,8,3 P5   0.98431 645 
8,8,3 P5   0.98431 648 

6,6,1 SP1 0.96063 2.0 0.96063 2.0 
6,6,1 SP3 0.98153 1.6 0.98153 1.8 
6,6,1 SP5 0.98283 2.0 0.98283 2.3 
6,6,1 SP7   0.98313 2.8 
6,6,1 SP9   0.98324 3.2 

8.4 EBR-II Benchmark 

The next benchmark we consider is an assembly homogenized model of the EBR-II 
benchmark [21]. Unlike the previous benchmarks, this one is much larger consisting of 5.6 times 
as many nodes as the Takeda 4 benchmark and it uses 9 groups instead of 4 groups. It also 
defines a P1 anisotropic scattering kernel unlike the previous benchmarks which used isotropic 
scattering. Table 8.3 gives the eigenvalue and performance data for the EBR-II benchmark.  

Table 8.3. Eigenvalue and Performance for the EBR-II Benchmark 
 Version 9.0 Version 10.0 

eigenvalue Time (sec) eigenvalue Time (sec) 
6,6,1 P1 1.00378 27 1.00378 12 
6,6,1 P3 1.02614 172 1.02614 97 
6,6,1 P5 1.02772 939 1.02772 247 
6,6,1 P7   1.02821 596 
6,6,1 P9   1.02841 1716 
6,8,2 P5   1.02737 1086 
6,8,3 P5   1.02728 2575 
8,8,3 P5   1.02726 3956 

6,6,1 SP1 1.00378 29 1.00378 12 
6,6,1 SP3 1.02301 62 1.02301 24 
6,6,1 SP5 1.02373 80 1.02373 29 
6,6,1 SP7   1.02393 40 
6,6,1 SP9   1.02402 44 
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Similar to the previous benchmarks, we again see no differences in the eigenvalue 
solutions. Note that both the spatial and angular approximations are more important in this 
benchmark and we should consider using either quadratic or cubic order interface conditions 
with P7, although the error in the eigenvalue is effectively cancelled out in this case (the flux 
solution might not be equivalent). Further refinement of the source is generally unimportant 
which is consistent with almost all VARIANT benchmarks where a 4th order source 
approximation is generally sufficient for eigenvalue convergence. 

Unlike the previous benchmarks, we see a substantial and consistent difference in the 
computational performance which grows as the angular approximation increases. For the P5 
calculation in particular (highlighted in red), we were very careful to run the calculation in the 
same manner using the new and production versions of VARIANT. This behavior was expected 
and hoped for given our recent changes to improve the computational performance. The common 
variance observed during this effort was 10%. As discussed, the new version removes the bulk of 
the computational effort associated with the anisotropic scattering source operations. It is 
important to point out that we can expect some difference in the answers between the new and 
old version because of the changes in the spatial and angular matrices. The use (and elimination) 
of tolerance statements in the new version can also have an impact in addition to the removal of 
numerous hard wired stuff and the replacement of single precision math with double precision 
math. In the end, we believe the new version is more accurate and choose to ignore these 
differences for now. Only detailed benchmarking will be able to prove whether any version of 
VARIANT is accurate and we will continue in the future to guarantee both the accuracy and 
efficiency. 

8.5 ABR Benchmark 

One of the first benchmarks that the VARIANT code was found to be inadequate for is 
the ABR benchmark [22]. This benchmark problem is much larger than the EBR-II because it 
requires the solution of the full core (no symmetry) and has 2.9 times as many nodes as the EBR-
II benchmark. The original researchers wanted to investigate the inaccuracies of the cross section 
data with respect to energy refinement. To do this one increases the number of energy groups 
which necessitates an improved model of the anisotropic scattering kernel.  This type of analysis 
also requires that the solution is well converged with respect to both space and angle at all 
energy resolutions to avoid polluting the solution with differing amounts of error due to an 
inadequately refined space-angle approximation. In this particular case the researchers were 
attempting to run a 230 group calculation with a P5 anisotropic scattering kernel. The existing 
VARIANT code was incapable of producing a solution after several days of computational 
effort. 

Since we cannot run the 230 group problem with the production version and the 
researchers did not provide us with cross section data other than 33 group, we only consider the 
33 group calculations which includes a P3 anisotropic scattering kernel. Table 8.4 gives the 
eigenvalue and performance information for the ABR benchmark. We went ahead and included 
the SPN results for completeness (i.e. to verify a P3 anisotropic scattering kernel), but we note 
that the solutions are fundamentally unimportant. 
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Table 8.4. Eigenvalue and Performance for the ABR Benchmark 
 Version 9.0 Version 10.0 

eigenvalue Time (min) eigenvalue Time (min) 
6,6,1 P1 1.00805 7.2 1.00805 5.5 
6,6,1 P3 1.01952 28 1.01962 15 
6,6,1 P5 1.02057 161 1.02057 31 
6,6,1 P7   1.02087 67 
6,6,1 P9   1.02098 258 
6,7,2 P5   1.02031 189 
6,8,3 P5   1.02021 528 
8,8,3 P5   1.02018 702 

6,6,1 SP1 1.00805 7.3 1.00805 5.3 
6,6,1 SP3 1.01583 8.9 1.01583 4.1 
6,6,1 SP5 1.01626 12 1.01626 4.6 
6,6,1 SP7   1.01637 5.2 
6,6,1 SP9   1.01641 5.8 

Once again the eigenvalue solutions are identical between the production and new versions. 
While this doesn’t mean that the solutions are correct given that this work has produced a new 
version but also corrected the existing production version. The only reliable means to eliminate 
concerns is to compare the code against another transport code which treats the anisotropic 
scattering kernel correctly (i.e. not MCNP). Similar to the EBR-II benchmark, the ABR requires 
higher than a P5 approximation to guarantee convergence of the eigenvalue. However, similar to 
the EBR-II benchmark, refining the spatial approximation appears to negate the impact of the 
refined angular approximation such that we can expect the fully converged eigenvalue to be near 
that of the P5 solution using the indicated settings.  

The most important thing to note is the improved computational performance of the new 
version. In the 9 group EBR-II benchmark we can discern a 74% reduction in the computational 
effort (factor of 3.8) for the P5 calculation while we achieve an 80% reduction (factor of 5.2) for 
the 33 group ABR benchmark. This is consistent with our expectations given that the 
computational effort required to apply the T matrix multiplications increases as the number of 
energy groups increases (not linear because of the number of outer iterations required to 
converge). Unfortunately these timing numbers are somewhat incorrect because of the machine 
architecture. As an example, we consider the P9 calculation. The process id time reported by 
DIF3D was 258 minutes, but the wall-clock time reported was 372 minutes. After some 
investigation we found this was the time required to read/write the flux records on the disk which 
is a constraint placed upon VARIANT by BPOINTER. This was corrected in DIF3D-11 by 
removing BPOINTER storage of all large arrays within VARIANT as discussed in Section 6. 
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8.6 MONJU Benchmark 

The next benchmark we present results for is derived from the MONJU fast reactor in 
Japan [23]. Similar to the ABR benchmark, the researchers again wanted to investigate the 
inaccuracies of the cross section data with respect to energy refinement. The geometry has 
roughly the same number of nodes as the EBR-II benchmark and the researchers provided cross 
section data at 9 group, 33 group, 70 group, and 230 group all with a P5 anisotropic scattering 
kernel. While some of the 70 group calculations could be executed with DIF3D 9.0 and 10.0, no 
significant results could be obtained above that resolution.  

For brevity, we choose not to execute all of the necessary space-angle calculations. 
Instead, we just selected a few space-angle resolutions similar to that done in the previous 
benchmarks which indicate the importance of the various approximations that go into the 
VARIANT code. We also chose to use a simplified geometry and leave the desired geometry 
(~10 times larger than the simplified) for the follow on section. We solved all four energy 
resolutions using the selected space-angle approximations using the new version, but restricted 
the production version because of the overwhelming computational effort required. The 
eigenvalue and computational performance information for all four energy resolutions is 
provided in Tables 8.5 through 8.9. Note that the SPN calculation option is not included because 
of its relative lack of importance. 

Table 8.5. Eigenvalue and Performance for the 9g MONJU Simplified Benchmark 
 Version 9.0 Version 11.0 

eigenvalue Time eigenvalue Time 
6,6,1 P1 K0 0.99787 13 sec 0.99787 16 sec 
6,6,1 P1 K1 0.99564 26 sec 0.99564 19 sec 
6,6,1 P3 K3 1.00143 10 min 1.00143 1.7 min 
6,6,1 P5 K0   1.00432 1.5 min 
6,6,1 P5 K1   1.00083 2.5 min 
6,6,1 P5 K3   1.00171 5.3 min 
6,6,1 P5 K5 1.00172 2.4 hr 1.00172 6.4 min 
6,6,1 P7 K5   1.00180 19 min 
6,6,1 P9 K5   1.00182 34 min 
6,7,2 P5 K5   1.00165 30 min 
6,8,3 P5 K5   1.00162 52 min 
8,8,3 P5 K5   1.00162 1.7 hr 

Once again the eigenvalue solutions are identical between the new and production 
version. The computational times are again dramatically improved using the new version which 
is far beyond that observed in the previous benchmarks which is again the main purpose of the 
new work. Focusing on the P5 approximation with a P5 scattering kernel we have an 80% 
reduction at 9 groups (factor of 9.3), a 95% reduction at 33 groups (factor of 10.3), and a 99% 
reduction at 70 groups (Factor of 20.4). Similar to the previous calculations we see a dramatic 
reduction in the computational effort as the number of energy groups goes down. More 
importantly is that we do not see a large growth in the computational effort as the scattering 
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kernel size increases. Assuming that the factor of ~33 in computational performance observed in 
the 33 group and 70 group calculations holds, we can estimate that the 230 group calculation 
using DIF3D 9.0 would require about 33 days which is obviously not a practical exercise to 
perform at this point. 

Table 8.6. Eigenvalue and Performance for the 33g MONJU Simplified Benchmark 
 Version 9.0 Version 11.0 

eigenvalue Time eigenvalue Time 
6,6,1 P1 K0 0.99726 22 sec 0.99726 24 sec 
6,6,1 P1 K1 0.99512 1.9 min 0.99512 1.0 min 
6,6,1 P3 K3 1.00114 1.3 hr 1.00114 8.9 min 
6,6,1 P5 K0   1.00378 5.0 min 
6,6,1 P5 K1   1.00059 10.0 min 
6,6,1 P5 K3   1.00144 24 min 
6,6,1 P5 K5 1.00144 16 hr 1.00144 31 min 
6,6,1 P7 K5   1.00153 1.4 hr 
6,6,1 P9 K5   1.00155 2.4 hr 
6,7,2 P5 K5   1.00138 2.3 hr 
6,8,3 P5 K5   1.00134 3.6 hr 
8,8,3 P5 K5   1.00131 8.0 hr 

Table 8.7. Eigenvalue and Performance for the 70g MONJU Simplified Benchmark 
 Version 9.0 Version 11.0 

eigenvalue Time eigenvalue Time 
6,6,1 P1 K0 0.99698 46 sec 0.99698 50 sec 
6,6,1 P1 K1 0.99484 5.9 min 0.99484 3.1 min 
6,6,1 P3 K3 1.00097 4.6 hr 1.00097 27 min 
6,6,1 P5 K0   1.00355 11 min 
6,6,1 P5 K1   1.00047 25 min 
6,6,1 P5 K3   1.00129 1.1 hr 
6,6,1 P5 K5 1.00130 53 hr 1.00130 1.5 hr 
6,6,1 P7 K5   1.00139 4.6 hr 
6,6,1 P9 K5   1.00143 6.6 hr 
6,7,2 P5 K5   1.00123 7.8 hr 
6,8,3 P5 K5   1.00119 9.6 hr 
8,8,3 P5 K5   1.00105 20 h 
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Table 8.8. Eigenvalue and Performance for the 230g MONJU Simplified Benchmark 
 Version 9.0 Version 11.0 

eigenvalue Time eigenvalue Time 
4,6,1 P1 K0 0.99577 3.6 min 0.99577 4.4 min 
4,6,1 P1 K1 0.99387 1.7 hr 0.99387 40 min 
4,6,1 P3 K3 1.00009 83 hr 1.00009 8.2 hr 
4,6,1 P5 K0   1.00245 37 min 
4,6,1 P5 K1   0.99966 3.1 hr 
4,6,1 P5 K3   1.00043 16 h 
4,6,1 P5 K5   1.00043 24 h 
4,6,1 P7 K5   1.00053 36 h 
4,6,1 P9 K5   1.00057 43 h 

8.7 Higher Order Scattering Kernel 

The final benchmark we want to present results for is the only remaining concern left 
with VARIANT: higher order anisotropic scattering capabilities. In all of the previous 
calculations we only consider results for up to a P5 scattering kernel because the production 
version of VARIANT had a P5 flux limitation. We removed that restriction in the new version 
and thus can run scattering kernel approximations as high as the flux approximation. 
Unfortunately we could not come up with any meaningful benchmark problems because the 
memory requirements needed to use a P7 or higher scattering kernel were beyond the capabilities 
of the BPOINTER limitations in DIF3D-10.0 and earlier. Most of our test problems focused on 
Cartesian and hexagonal geometries with maximal symmetry and the specific results are 
neglected here. To summarize them, P7 anisotropic scattering isn’t that important as evident from 
the preceding MONJU calculations which indicate at most 10 pcm can be gained between P3 and 
P5. 
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Table 8.9. Eigenvalue and Performance for the MONJU Benchmark 
 9 group 33 group 70 group 

k-eff Time k-eff Time k-eff Time 
4,6,1 P1 K1 0.98786 1.5 min 0.98961 8.5 min 0.99002 26 min 
4,6,1 P3 K1 0.99377 11 min 0.99638 1.3 hr 0.99686 4.6 hr 
4,6,1 P3 K3 0.99454 17 min 0.99648 2.1 hr 0.99696 8.9 hr 
4,6,1 P5 K1 0.99421 20 min 0.99702 1.5 hr 0.99751 4.7 hr 
4,6,1 P5 K3 0.99514 43 min 0.99709 3.8 hr 0.99759 10.2 hr 
4,6,1 P5 K5 0.99514 55 min 0.99710 5.7 hr 0.99759 14.8 hr 
4,6,1 P7 K1 0.99433 50 min 0.99721 3.9 hr 0.99771 8.5 hr 
4,6,1 P7 K3 0.99528 50 min 0.99726 7.0 hr 0.99777 15.8 hr 
4,6,1 P7 K5 0.99530 1.4 hr 0.99727 13.1 hr 0.99777 35.0 hr 
4,6,1 P9 K1 0.99438 3.1 hr 0.99729 12.5 hr 0.99780 25.6 hr 
4,6,1 P9 K3 0.99534 3.6 hr 0.99733 15.0 hr 0.99784 35.4 hr 
4,6,1 P9 K5 0.99536 5.5 hr * * * * 

 116 group 230 group  
k-eff Time k-eff Time 

4,6,1 P1 K1 0.98961 2.6 hr 0.98939 12.1 hr 
4,6,1 P3 K1 0.99650 14.8 hr 0.99629 47.7 hr 
4,6,1 P3 K3 0.99661 28.6 hr 0.99640 85.5 hr 
4,6,1 P5 K1 0.99716 10.3 hr 0.99695 44.2 hr 
4,6,1 P5 K3 0.99724 30.6 hr 0.99703 106.1 hr 
4,6,1 P5 K5 0.99725 36.4 hr 0.99704 164.5 hr 
4,6,1 P7 K1 0.99737 18.1 hr 0.99715 48.5 hr 
4,6,1 P7 K3 0.99743 42.9 hr 0.99721 124.9 hr 
4,6,1 P7 K5 * * 0.99722 251.9 hr 
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9 Conclusions  

The above work shows how modern coding structures (Fortran 90+) were introduced into 
the DIF3D code to enable improved calculation capabilities. The previous code relied upon hard 
coded data statements containing the space-angle matrices which were selected based upon the 
computational limitations in the mid 90s. The new version employs generation routines which 
allow upwards of 99th order spatial and 99th order angular trial functions to be used. Though 
these are rather impractical today, they will likely become more realistic with time as higher 
order approximations can be necessary during the validation process. This work eliminated the 
poor performance of calculations involving anisotropic scattering which was an artifact of the 
implementation choice presented by Fortran 77. While the new routine makes a substantial dent 
in the computational effort required by most routine users of VARIANT (P5 flux with P3 
scattering), we suspect there is still more room for performance improvements with the ongoing 
research into using Krylov solvers in a parallel computing environment with the VARIANT 
methodology. While this is likely not going to be implemented in DIF3D it shows how valuable 
the VARIANT tool is and could be if the remaining performance issues that limit its use are 
removed.  

The new routines added to DIF3D have been thoroughly tested and validated for 
Cartesian and hexagonal geometries in both two- and three-dimensions. As discussed, the 
memory usage of VARIANT was substantially reduced without a significant impact upon the 
computational effort by employing non-zero storage based algorithms. We presented eigenvalue 
and computational performance results for higher order angular and spatial approximations 
which proved the vast improvement in performance that was gained with the recent changes. We 
also note that the new modifications to the anisotropic scattering treatment allowed problems to 
be solved which were previously not solvable with VARIANT and difficult to solve with any 
other existing transport solvers. In all cases the solutions obtained using the new version exactly 
matched those of the existing production version although it is important to note that the 
production version (DIF3D-9.0) had to be corrected to guarantee the agreement. 

In addition to the improvements, there were considerable errors in the implementation for 
hexagonal 60 and 120 periodic geometry models that were corrected. Those changes 
unfortunately have temporarily eliminated the ability to run 30 degree symmetry models, but this 
should be minor for most problems of interest. In an attempt to improve the performance, the 
coarse mesh rebalance acceleration and fission source extrapolation were removed due to their 
inconsistent performance and periodic instabilities. They were temporarily replaced with 
Tchebychev acceleration which is not as effective, but is more reliable. While the CMR 
acceleration was clearly the primary acceleration technique, it was not uncommon for users to 
disable it which might have been a result of the errors found in the hexagonal 60 and 120 
periodic boundary conditions. Errors were also identified in the ω acceleration and SPN 
anisotropic scattering both of which were completely fixed. To compensate for any potential 
convergence troubles, an algorithm to increase the inner iterations when convergence is stalling 
was added to the code. 

In conclusion, the new version of VARIANT incorporated in DIF3D-11 allows users to 
fully validate their calculations by removing all concerns of space-angle refinement and resolves 
numerous bugs. Eighth order flux, eighth order source, and cubic order Lagrange multiplier 
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spatial approximations were demonstrated. Angular approximations ranging from P1 through P11 
and SP1 through SP9 were also demonstrated. While these new capabilities are well beyond the 
original design concept of VARIANT, they have proven to be a valuable addition to the existing 
suite of reactor analysis tools. Finally, the new improvement to VARIANT facilitates the 
existing users of DIF3D to study ever more difficult problems and is a testament to the 
importance of the VARIANT tool for existing research being carried out at Argonne National 
Laboratory. 
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11 Appendix A. Modifications to DIF3D Input Descriptions 
 
C----------------------------------------------------------------------- 
CR PARAMETERS FOR VARIATIONAL NODAL OPTION (TYPE 12) - 
C - 
CL FORMAT-----(I2,4X,11I6) - 
C - 
CD # COLUMNS CONTENTS...IMPLICATIONS, IF ANY - 
CD = ======= =======================================================- 
CD 1 1-2 12 - 
CD - 
CD 2 7-12 NODAL SPATIAL APPROXIMATION. - 
CD ENTER ONE OF THE FOLLOWING - 
CD LMN = CLASSICAL VARIANT - 
CD LLMMXN = NEW VARIANT INPUT STYLE - 
CD - 
CD L IS THE ORDER OF THE POLYNOMIAL APPROXIMATION OF THE - 
CD SOURCE WITHIN THE NODE. - 
CD M IS THE ORDER OF THE POLYNOMIAL APPROXIMATION OF THE - 
CD FLUXES WITHIN THE NODE. - 
CD N IS THE ORDER OF THE POLYNOMIAL APPROXIMATION OF THE - 
CD LEAKAGES ON THE SURFACES OF THE NODES. - 
CD X IS THE ORDER REDUCTION TO BE APPLIED IN THE Z - 
CD DIRECTION. FOR A FULLY MTH ORDER APPROXIMATION - 
CD USE 0. - 
CD - 
CD HEXAGONAL AND CARTESIAN GEOMETRY: - 
CD L = 1... LINEAR SOURCE APPROXIMATION. - 
CD L = 2... QUADRATIC SOURCE APPROXIMATION. - 
CD L > 2... LTH ORDER SOURCE APPROXIMATION. - 
CD M = 1... LINEAR FLUX APPROXIMATION. - 
CD M = 2... QUADRATIC FLUX APPROXIMATION. - 
CD M > 2... MTH ORDER FLUX APPROXIMATION. - 
CD N = 0... FLAT LEAKAGE APPROXIMATION. - 
CD N = 1... LINEAR LEAKAGE APPROXIMATION (DEFAULT). - 
CD N > 1... NTH ORDER LEAKAGE APPROXIMATION. - 
CD X >=0... ORDER REDUCTION IN THE Z DIRECTION - 
CD - 
CD LEADING ZEROS ARE IRRELEVANT. - 
CD DEFAULT VALUES ARE L=N+1 M=4 N=1, LLMMXN= 20401 - 
CD - 
CD FOR CLASSICAL VARIANT STYLE 3-D INPUT: - 
CD X = 1 WHEN M = 5 AND X = 2 WHEN M > 5 - 
CD FOR HEXAGONAL GEOMETRY IT IS SUGGESTED THAT M >= 5 - 
CD - 
CD 3 13-18 NODAL ANGULAR APPROXIMATION. - 
CD ENTER ONE OF THE FOLLOWING THREE OPTIONS - 
CD MN = CLASSICAL VARIANT INPUT STYLE - 
CD MMNN = UPDATED VARIANT INPUT STYLE - 
CD HMMNN = NEW VARIANT INPUT STYLE - 
CD - 
CD H IS THE PN ANGULAR TRIAL FUNCTION SET TO USE (1 OR 3) - 
CD M IS THE ORDER OF THE PN EXPANSION OF THE FLUX. - 
CD N IS THE ORDER OF THE PN EXPANSION OF THE LEAKAGE. - 
CD - 
CD HEXAGONAL AND CARTESIAN GEOMETRIES: - 
CD H = 1... STANDARD FUNCTIONS, CIRCA 1992 (DEFAULT). - 
CD H = 3... YANG FUNCTIONS, CIRCA 2002. - 
CD M = 1... P1 FLUX EXPANSION. - 
CD M = 3... P3 FLUX EXPANSION (DEFAULT). - 
CD M > 3... PM FLUX EXPANSION, M MUST BE ODD - 
CD N = 1... P1 LEAKAGE EXPANSION. - 
CD N = 3... P3 LEAKAGE EXPANSION (DEFAULT). - 
CD N > 3... PN LEAKAGE EXPANSION, N MUST BE ODD - 
CD - 
CD M MUST EQUAL N, REDUCED ORDER 31 WAS OBSOLETE. - 
CD DEFAULT VALUE IS 10303. DIFFUSION IS 11=0101=10101 - 
CD - 
CD EXAMPLES: 77=0707=10707 ; 30909 ; -9999 ; 11111 - 
CD - 
CD IF MN IS NEGATIVE, SIMPLIFIED SPHERICAL HARMONICS(SPN) - 
CD ARE USED (EXAMPLE -33=-0303=-10303). - 
CD YANG FUNCTIONS DO NOT APPLY TO SPN - 
CD - 

Figure 11.1. Updated A.DIF3D File Description  
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In DIF3D 10.0 and 11.0, the VARIANT input description was modified to facilitate 
higher order space-angle expansions. There are also now two sets of angular basis functions for 
the surfaces. The first is the default angular trial function set used in VARIANT since 1992: 
H=1. The second were derived by Yang earlier in Section 3: H=3 (30505 for the example in 
Table A.1). Table 11.1 summarizes the changes made to the angular approximation on the 
A.DIF3D input. 

Table 11.1. Changes to the DIF3D Input Description on Card 12. 
Input Field ±MN ±HMMNN or ±MMNN or ±MN 

± PN (+) or SPN (-) PN (+) or SPN(-) 
H ─ Angular Trial Function Set 
M Order of the PN Flux Expansion Order of the PN Flux Expansion 
N Order of the PN Leakage Expansion Order of the PN Leakage Expansion 

P5 example 55 10505 or 0505 or 55 
SP5 example -55 –10505 or –0505 or –55 
 
A similar change in the input description had to be made for the spatial approximation, which is 
described in Table 11.2. As can be seen in Table 11.2, there is a new variable, X, included in the 
input which is not consistent with that of the preexisting input. The reason for the inconsistency 
is that the production version of VARIANT only allowed a maximum 4th order flux and source 
approximation in the z direction while the x-y flux approximation was extended to 6th order. To 
keep this flexibility, the new variable was added into the DIF3D input definition, although its 
usage is not required for the new input style. 

Table 11.2. Changes to the DIF3D BCD Input Description on Card 12. 
Input Field LMN LLMMXN or LMN 

L Order of the Source Order of the Source 
M Order of the Flux Order of the Flux 
N Order of the Leakage  Order of the Leakage  
X -- Order Reduction in the Z Direction 

Examples 462 040622 or 462 
 442 040402 or 442 

 

To facilitate the needs of PERSENT, a new fixed source file was added to DIF3D the 
details of which are included in Figure 11.2. The NHFLUX and NAFLUX file had to be updated 
similarly and users will find that the VARSRC file below has a nearly identical setup to the 
NHFLUX file which was done for convenience internal to PERSENT. 
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Figure 11.2. Description of New VARSRC Fixed Source File Added to DIF3D-11.0  
C*********************************************************************** 
C                                                                      - 
C                       Created 03/05/12                               -  
C                                                                      - 
C           VARSRC FOR DIF3D-VARIANT                                   - 
C              FIXED SOURCE FILE FORMAT FOR USE WITH VARIANT           - 
C              CONTAINS REGULAR NODAL FLUX-MOMENTS                     - 
C              CALULATIONS IN DIF3D 11.0 AND LATER                     - 
C                                                                      - 
C              CARD 3D FORMAT SAME AS NHFLUX_VARIANT CARDS 1D,3D       -  
C              WITH IWNHFL=1 AND NSURF=1                               - 
C                                                                      - 
C*********************************************************************** 
 
C----------------------------------------------------------------------- 
CS          FILE STRUCTURE                                             - 
CS                                                                     - 
CS          RECORD TYPE                   RECORD    PRESENT IF         - 
CS          ==========================    ======    ==========         - 
CS          FILE IDENTIFICATION                     ALWAYS             - 
CS          SPECIFICATIONS                  1D      ALWAYS             - 
CS                                                                     - 
CS  ***********(REPEAT FOR ALL GROUPS)                                 - 
CS  *       FLUX MOMENTS                    3D      ALWAYS             - 
CS  ***********                                                        - 
C----------------------------------------------------------------------- 
 
 
C----------------------------------------------------------------------- 
C          FILE IDENTIFICATION                                         - 
C                                                                      - 
C    HNAME,(HUSE(I),I=1,2),IVERS                                       - 
C                                                                      - 
C    1+3*MULT=NUMBER OF WORDS                                          - 
C                                                                      - 
C    HNAME             HOLLERITH FILE NAME - NHFLUX - (A6)             - 
C    HUSE(I)           HOLLERITH USER IDENTIFICATION (A6)              - 
C    IVERS             FILE VERSION NUMBER                             - 
C    MULT              DOUBLE PRECISION PARAMETER                      - 
C                          1- A6 WORD IS SINGLE WORD                   - 
C                          2- A6 WORD IS DOUBLE PRECISION WORD         - 
C                                                                      - 
C----------------------------------------------------------------------- 
 
C----------------------------------------------------------------------- 
C          SPECIFICATIONS     (1D RECORD)                              - 
C                                                                      - 
C    NDIM,NGROUP,NINTI,NINTJ,NINTK,ITER,EFFK,POWER,NSURF,              - 
C    NMOM,NINTXY,NPCXY,NSCOEF,ITRORD,IAPRX,ILEAK,IAPRXZ,ILEAKZ,        - 
C    IORDER,NPCBDY,NPCSYM,NPCSEC,IWNHFL,NMOMS (IDUM,I=1,6)             - 
C                                                                      - 
C    30 =NUMBER OF WORDS                                               - 
C                                                                      - 
C    NDIM              (not used)                                      - 
C    NGROUP            NUMBER OF ENERGY GROUPS                         - 
C    NINTI             (not used)                                      - 
C    NINTJ             (not used)                                      -  
C    NINTK             NUMBER OF PLANES                                - 
C    ITER              (not used)                                      -    
C    EFFK              (not used)                                      - 
C    POWER             (not used)                                      - 
C    NSURF             NUMBER OF XY-PLANE SURFACES PER NODE            - 
                         Must = 1 to read with NHFLUX reader           -    
C    NMOM              NUMBER OF EVEN-PARITY FLUX MOMENTS IN VARIANT   -  
C    NINTXY            NUMBER OF MESH CELLS (NODES) ON XY-PLANE        - 
C    NPCXY             (not used)                                      -    
C    NSCOEF            (not used)                                      -    
C    ITRORD            (not used)                                      - 
C    IAPRX             (not used)                                      - 
C    ILEAK             (not used)                                      - 
C    IAPRXZ            (not used)                                      - 
C    ILEAKZ            (not used)                                      - 
C    IORDER            (not used)                                      - 
C    NPCBDY            (not used)                                      - 
C    NPCSYM            (not used)                                      - 
C    NPCSEC            (not used)                                      - 
C    IWNHFL            NHFLUX CONTENT                                  -  
C                        Must=1, SIGNIFIES ONLY FLUXES ARE PRESENT     - 
C    NMOMS             NUMBER OF ODD-PARITY FLUX MOMENTS IN VARIANT    - 
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C    IDUM              (not used)                                      - 
C                                                                      - 
C----------------------------------------------------------------------- 
 
C----------------------------------------------------------------------- 
C          REGULAR FLUX MOMENTS   (3D RECORD)                          - 
C                                                                      - 
C    ((FLUX(I,J),I=1,NMOM+NMOMS),J=1,NINTXY) --SEE STRUCTURE BELOW---  - 
C                                                                      - 
C    (NMOM+NMOMS)*NINTXY*MULT = NUMBER OF WORDS                        - 
C                                                                      - 
C     DO K=1,NINTK                                                     - 
C        READ(N)   *LIST AS ABOVE*                                     - 
C     END DO                                                           - 
C                                                                      - 
C     FLUX(I,J) ARE THE REGULAR FLUX MOMENTS BY NODE FOR THE PRESENT   - 
C          ENERGY GROUP                                                - 
C                                                                      - 
C----------------------------------------------------------------------- 
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