

ANL/MCS-TM-336

Meshkit

Mathematics and Computer Science Division

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE’s SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandra, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/MCS-TM-336

prepared by

Rajeev Jain, Timothy J. Tautges
Mathematics and Computer Science Division, Argonne National Laboratory

September 30, 2013

Meshkit

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	

	 i	 ANL/MCS-‐TM/336	

SUMMARY	

MeshKit is an open-source library for mesh generation and related algorithms.
MeshKit is designed both for users that perform mesh generation and for developers that
develop meshing algorithm/application(s). MeshKit includes new meshing algorithms
implemented first in this library, as well as interfaces to meshing algorithms/packages
developed in DOE Labs and elsewhere. MeshKit uses a directed graph-based approach for
organizing meshing problems that supports both traditional BREP-driven meshing as well as
more general meshing processes and tools. One such tool is the Reactor Geometry (and
mesh) Generator (RGG); RGG generates hexagonal and rectangular reactor geometries and
meshes from text-based input in serial and parallel. It has been used to support a variety of
reactor simulation codes and reactor types. Although primarily a library, MeshKit is also
supporting a collaboration with Kitware to develop a graphical/GUI interface to the library.

MeshKit	
	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	 ii	

TABLE	 OF	 CONTENTS	

Summary ... i	

Table of Contents ... ii	
List of Figures ... iv	

List of Tables ... iv	
1	 Introduction .. 5	

2	 Dependencies and Optional External Components ... 5	
2.1	 Mandatory Components ... 6	
2.2	 Optional Components ... 6	

3	 Design .. 7	

3.1	 Graph-Based Organization of Meshing Problem ... 7	
3.2	 MeshKit Code Design .. 9	
3.3	 Documentation ... 11	
3.4	 Python Scripting ... 11	

4	 Algorithms ... 11	
4.1	 Structured Meshing .. 11	

4.1.1	 Structured Block Mesher: SCDMesh .. 11	
4.1.2	 Embedded Boundary Mesher: EBMesh .. 12	

4.2	 Unstructured Meshing .. 13	
4.2.1	 Interval Matching Algorithm: IntervalAssignment ... 13	
4.2.2	 Simple Vertex Mesher: VertexMesher .. 14	
4.2.3	 Edge Mesher: EdgeMesher .. 14	
4.2.4	 Sweeping Algorithm: OneToOneSweep ... 14	
4.2.5	 Mapping Algorithm: TFIMapping ... 14	
4.2.6	 2D Quad Mesher: QuadMesher ... 15	
4.2.7	 Extrusion Algorithm: ExtrudeMesh .. 15	
4.2.8	 Parallel Mesh Generation: ParallelMesher .. 16	
4.2.9	 External: CAMAL Library: CAMALPaver, CAMALTriAdvance,
CAMALTetMesher .. 17	
4.2.10	 External: Triangle Library: TriangleMesher .. 17	
4.2.11	 External: NetGen Library: NGTetMesher ... 17	

4.3	 Mesh Modification ... 18	
4.3.1	 Mesh Decimation Algorithm: QslimMesher ... 18	
4.3.2	 Copy Algorithms: CopyGeom, CopyMesh ... 18	
4.3.3	 Boundary Layer Mesher: PostBL .. 18	
4.3.4	 Mesh-Based Geometry Modifications: MBGeomOp, MBSplitOp, MBVolOp 19	
4.3.5	 Mesh Merging Algorithm: MergeMesh ... 20	
4.3.6	 Sealing Facet Based Geometry: MakeWaterTight .. 20	
4.3.7	 External: Mesh Optimization Algorithm: MesquiteOpt 20	

4.4	 Application Specific ... 20	

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	

	 iii	 ANL/MCS-‐TM/336ANL/MCS-‐TM/336	

4.4.1	 Nuclear Reactor Modeling: Assembly Geometry Creation Tool: AssyGen 20	
4.4.2	 Nuclear Reactor Modeling: Core Mesh and Geometry Creation Tool: CoreGen
 21	
4.4.3	 Climate Application: Ice Sheet Mesh Generation ... 22	

5	 Conclusions .. 23	
6	 Acknowledgements .. 24	

7	 References .. 24	
Appendix A.	 Configure/Build/Installation of MeshKit ... 25	

MeshKit	
	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	 iv	

LIST	 OF	 FIGURES	

Figure 1. The graph for a 2-step tetmesh-then-refine operation, along with the root and
leaf nodes of the graph. .. 8	

Figure 2. Digraph-based mesh generation example: sweep-meshing a cylinder. 9	
Figure 3. CAD geometry and the structured mesh generated by SCDMesh algorithm. 12	
Figure 4. Input and output from EBMesh tool. (a) STL 3D “statue” and “horse” models.

(b) Cartesian mesh elements of 3D STL models. ... 13	
Figure 5. (a) Input one dimension line, (b) Output mesh. ... 14	
Figure 6. (a) 2D Rectangle geometry, (b) A meshed 2D rectangle. .. 14	
Figure 7. Results from quad mesher algorithm. .. 15	
Figure	 8.	 Generation	 of	 an	 extruded	 mesh	 by	 copy/moving	 a	 single	 unit	 cell	 into	

four,	 then	 extruding	 axially. ... 16	
Figure	 9.	 Results from parallel tetrahedral mesh generation of a VHTR geometry (a)

Geometry file indicating partitions. (b) Comparison of speed-up obtained by
using different partitioning methods. ... 17	

Figure	 10.	 Trivial example showing input and output mesh from QslimMesher. 18	
Figure	 11.	 User specified digraph for creating reactor assembly mesh with boundary

layers. ... 18	
Figure	 12.	 19 assembly reactor core mesh: (a) Original mesh. (b) Close-up of original

mesh showing fluid and gap regions. (c) Close-up of original mesh showing
boundary layers on fluid and gap regions. ... 19	

Figure 13. First two stages of the geometry/mesh process, where AssyGen and
CUBIT/MeshKit are executed for each assembly type. ... 21	

Figure 14. (a) Simple example demonstrating CoreGen input and output files. (b) (A)
Copy/move task distribution among processors for the same problem in Fig.
14(a) and (B) final core-mesh with numbered assemblies are shown. 21	

Figure 15. Homogenized EBRII core with XX09 assembly. Inlet, outlet, isometric and
sectioned views are zoomed to shown the fuel and other instrumentation pins in
the model. ... 22	

Figure 16. Stages in creation of Ice sheets mesh model using satellite data. (a) Region of
interest. (b) BREP-based geometry model. (c) Final hexahedral mesh showing
elevation data. (d) Some simulation results. .. 23	

LIST	 OF	 TABLES	

Table 1. Simple C++ code showing mesh generation process in MeshKit 10	

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	 	 5	

ANL/MCS-‐TM/336	

1 Introduction	

Mesh generation is a challenging field of science that has made rapid advancement
over the years. New discretization techniques, improvements in computer hardware and
robust solver methods have driven the research in this field. While several open source and
commercial mesh generation tools were already available when this project was started, each
of these tools were deficient in some way, either being too restrictive in their licensing (e.g.
GPL), focused on only one specific meshing technology (triangles, tetrahedral), or lacking
support for other parts of the meshing process (e.g. geometric model query). MeshKit is
meant to overcome these problems, as well as to serve as a delivery vehicle for specific
meshing tools and algorithms being developed for various program sponsors.

The MeshKit design philosophy is two-fold. First, it provides a collection of meshing
algorithms and other tools commonly needed for mesh generation (coordination of BREP-
based meshing process, mesh smoothing, etc.). The tools and algorithms in this release are
sufficient for basic generation of both triangle/tetrahedron and quadrilateral/hexahedron
meshes on CAD-based and discrete model geometry. Second, MeshKit can also serve as a
platform for advanced meshing algorithm research, providing infrastructure and lower-
dimensional mesh generation algorithms that would otherwise have to be developed before
researching advanced algorithms. MeshKit also supports the connection of external meshing
algorithms to the rest of the library, enabling the use of proprietary or experimental
algorithms.

MeshKit is implemented in C++, and provides a traditional C++-based API for
interactions with other codes. A Python interface is also provided, for interactive access to
the library. Various options are available for graphical visualization of meshing results. The
MOAB library implements a ParaView plugin that can be used to import MOAB models
directly into ParaView. The VisIt visualization tool can also be configured and built with
MOAB to provide a similar import capability. MOAB can also export mesh and associated
data in various formats, including Vtk. Finally, a collaboration is underway with KitWare,
Inc, to build a graphical/GUI tool for interacting with MeshKit; this will support an
interactive, GUI-driven mesh generation process, similar to that provided with CUBIT [1] and
various other proprietary or commercial meshing tools.

The report is structured as follows. In Section 2 we highlight all required and optional
external packages that MeshKit relies on for various functionalities. Section 3 describes the
design philosophy and overall organization of the library. Summary of current algorithms and
results are given in Section 4. The report is concluded in Section 5 with an outline of future
work.

2 Dependencies	 and	 Optional	 External	 Components	

MeshKit is implemented as a library to allow its use in both interactive and non-
interactive applications. Similarly, it uses separate libraries for representation and query of
both geometry and mesh data, to allow external applications to import and query those data
without having to depend on MeshKit and all the libraries it depends on. Although this

	 MeshKit	
6	 	 	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	

complicates slightly the configuration and build process for MeshKit, it also increases
flexibility and versatility. Libraries used by MeshKit are either mandatory or required,
depending on function. Both types are described next. The locations of both mandatory and
optional dependencies for MeshKit are specified at configuration time (see Appendix A for
configure/build instructions for MeshKit).

2.1 Mandatory	 Components	

MeshKit relies on several libraries for representation and evaluation of geometry and
mesh data. The CGM library [2] is used for query and modification of CAD-based geometry.
CGM provides a consistent topological model and interface to geometry in a variety of solid
model formats, including ACIS [3] and Open.CASCADE [4]; the Open.CASCADE interface
is significant because this provides a fully open-source solution for CAD model interactions.
CGM also provides “virtual geometry” functionality, which can be used to suppress details in
the topological model without corresponding modifications to the CAD geometry. MeshKit
uses the MOAB library for its mesh representation [5]. MOAB represents structured,
unstructured, and polygonal/polyhedral meshes in an array-based format that is both memory
and time efficient. Although not used in MeshKit, a third library, Lasso [6], can be used to
recover mesh to geometry relations, for supporting advanced processes like Adaptive Mesh
Refinement. In addition to the native APIs in CGM and MOAB, various algorithms in
MeshKit use the ITAPS geometry (iGeom) and mesh (iMesh) interfaces [7]; these algorithms
can be connected directly to any geometry or mesh libraries providing implementations of
these interfaces.

2.2 Optional	 Components	

MeshKit includes several Argonne-developed as well as external meshing and related
packages whose licenses are compatible with direct inclusion. MeshKit can also be
configured to use external mesh generation packages. At the current time, these include:

• Triangle: The widely popular Triangle [8] provides a 2D triangle mesh
generation algorithm.

• CAMAL/CUBIT: Sandia National Lab’s proprietary CAMAL library [9] has
been integrated and it provides access to tetrahedral, tri-advance and paving
algorithms.

• NetGen: An open source automatic tetrahedral mesh generation library [10].
• Mesquite: Open source mesh optimization package MESQUITE [11] has also

been integrated to work with any of the above meshing algorithms or
MeshKit’s native algorithms.

• IPOPT: Ipopt [12] an optimization library can also be configured with
MeshKit. This library is used by interval assignment algorithm developed in
MeshKit.

• MPI: Some of the parallel capabilities in MeshKit also make use of the MPI
libraries.

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	 	 7	

ANL/MCS-‐TM/336	

3 Design	

In this section the design philosophy, code design, documentation and python
scripting interface of MeshKit are presented.

3.1 Graph-‐Based	 Organization	 of	 Meshing	 Problem	

Most current meshing environments are targeted toward a Boundary REPresentation
(BREP)-based approach, backed by a geometric model and associated topology
(vertices/edges/faces/regions and adjacency relations between them). The meshing process
usually proceeds by meshing BREP entities in increasing topological dimension, starting with
vertices, then edges, and so on. However, this model is deficient in several ways. First, not
every meshing process needs or has a geometric model representing the entire domain to be
meshed. The best example of this is the Reactor Geometry (&mesh) Generator (RGG) tool
[13], where individual assembly types have geometric models but are then copy/moved into a
lattice of assembly models forming a reactor core. Second, a meshing procedure may not
involve only a once-through meshing of each BREP entity; again, RGG is a good example of
this, where the first part of the process involves meshing BREP models, but the last step
involves copy/moving mesh subsets into a larger core lattice. Finally, the procedure-driven
approach to meshing represented by most CAD-based meshing tools fails to capture the
parallelism and dependency structure that can be found in most meshing problems (including
BREP-based ones); representing and exploiting this richer structure provides more flexibility
while still being applicable to BREP-based problems.

MeshKit models the general meshing problem as a directed graph-based process, with
graph nodes representing individual steps in the process and graph edges representing
dependencies between those steps. For convenience, the graph always has a single root and
leaf node, with one or more possibly-independent paths between them. Each graph node
represents an explicit step in the meshing process, whether that involves generation of new
mesh or performing some other operation on existing mesh. The part of the model operated
on by that operation is stored as input for that node, along with any control parameters
specific to the operation. The meshing process is executed by traversing the graph twice,
once in reverse direction (from leaf to root), to perform necessary setup actions and create
upstream graph nodes not explicitly created by the application, then in forward direction, to
perform the action represented by each graph node.

For example, in the case of tetrahedral meshing then refinement, the graph would have
two nodes, one for generating the initial mesh, and the other for refining that mesh. The
(single) edge linking the two nodes represents the dependency between these operations. The
graph for this simple process is shown in Fig. 1. In many cases, tetrahedral meshing is a fully
automatic process, with the user specifying only the meshing scheme (represented by a
“tetmesh” graph node), along with a target geometric volume and mesh size (input data on
that graph node). The refinement process is represented by a second node, with refinement
level specified as input to that node.

	 MeshKit	
8	 	 	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	

Figure	 1.	 	 The	 graph	 for	 a	 2-‐step	 tetmesh-‐then-‐refine	 operation,	 along	 with	 the	 root	 and	 leaf	 nodes	 of	 the	

graph.	

From the user point of view, the meshing process in Fig. 1 is quite simple. However,
inside the meshing implementation, there are more steps involved than simply generating a
volume mesh then refining it, especially for BREP-based meshing. For example, in most
cases, tetrahedral meshing of a BREP volume does not happen in one step, but rather uses a
previously-generated triangle mesh of its boundary as a starting point. Similarly, generation
of the triangle mesh for each BREP face usually starts from a discretization of the edges
bounding the face. These operations should be represented by distinct nodes in the graph,
since they are performed by separate meshing algorithms and we would like to associate
graph nodes with individual meshing operations. On the other hand, these nodes can be
constructed automatically (based on input requirements of the volume meshing operation),
and forcing the user to understand the full graph may be overwhelming even for this simple
process. We resolve this issue by having graph nodes be one of two types, those generated
explicitly by the user and others generated automatically to meet requirements of downstream
graph nodes. Automatically-generated nodes appear during the “setup” phase of traversal;
since they are requirements of the graph nodes generating them, naturally they appear
upstream in the graph. Since the graph is being traversed in reverse order when these nodes
are created, they will be visited during the same “setup” traversal, and may generate new
graph nodes to fulfill their dependency requirements. When setup traversal arrives at the
(single) root node, all graph nodes have had their dependency requirements specified, and the
“execution” phase of traversal can begin.

An example of a more complex meshing process is shown in Fig. 2. The user-
specified part of the problem is a sweeping operation of a single source surface mesh to a
single target surface. The user specifies that sweeping should be used to mesh volume V1
(which also results in generation of the mesh on the target surface S2), and that the source
surface S1 should be meshed with a “QuadMesh” algorithm. Based on that input, the Sweep
algorithm determines that surface S3 must be meshed with a MapMesh algorithm, and these
algorithms require the meshing of edges bounding these surfaces. To meet requirements
inherent in all quad and hex-based meshing algorithms, an IntervalMatch algorithm must be
used to solve global interval constraints on all edges and surfaces bounding the volume. This
tool must be executed before meshing of any edges or surfaces, and thus appears first in the
graph. Automatically-created graph nodes are drawn in a different color in Fig. 2, to indicate
their difference from explicitly-created nodes. Note that there are far more automatically-
created nodes in the graph, and that the user need only concern themselves with the explicit
nodes.

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	 	 9	

ANL/MCS-‐TM/336	

	
Figure	 2.	 	 Digraph-‐based	 mesh	 generation	 example:	 sweep-‐meshing	 a	 cylinder.	

Using a graph-based approach for the meshing process has several advantages over the
more traditional BREP-based method:

1. It is easy to make local changes to the meshing process and to determine exactly which
other steps of the meshing procedure need to be re-executed. Namely, if one graph node
is changed (usually because input affecting the meshing operation is changed), that node
and all descendants in the graph must be re-executed.

2. Conflicting input in the meshing specification appears explicitly as cycles in the (directed)
graph, making them easy to detect and avoid.

3. The resulting graphs are much less complex than those representing the BREP, while still
capturing the relevant dependencies between meshing operations.

4. Parallelism is represented explicitly in the graph, and can be exploited by executing
independent nodes concurrently. (See Section 4.4.2 for an example).

3.2 MeshKit	 Code	 Design	

MeshKit is implemented in C++, and is best used by applications through that
programming language. Broadly, the library is implemented in terms of a library instance
class, classes used for the graph and various types of graph nodes, and utilities for other types
of data involved in the meshing process. All geometry and mesh data is stored in the CGM
and MOAB libraries, respectively, with a corresponding class in MeshKit strictly for
convenience and for maintaining geometry-mesh relations.

Four fundamental classes in MeshKit are:

1. MKCore: This is the instance class that keeps a reference to geometry, mesh
and relational interfaces instances used in MeshKit. This class also is derived

	 MeshKit	
10	 	 	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	

from MKGraph, so each instance of MKCore represents a single mesh graph as
well.

2. ModelEnt: This is a convenience class for accessing the mesh and (if present)
the geometry library representations of this object. There will always be a
mesh library representation (in the form of a MOAB Entity Set), since that
representation is inexpensive to construct/represent and is needed to store
mesh. ModelEnt also keeps a reference to the MKCore instance to which it is
associated, and can retrieve references to the geometry and mesh instances
through that class.

3. MeshOp: This class is derived from MeshScheme, which is derived from
GraphNode. Each MeshOp or MeshScheme can be inserted in the MKGraph,
and must supply definitions of the setup_this() and execute_this() functions
(which define the actions to be done during the setup and execute phases of
graph traversals, respectively).

4. SizingFunction: This class represents a sizing function that can be used by
meshing algorithms. SizingFunction instances are stored in an indexed table in
MKCore, allowing them to be shared by more than one MeshOp.

In its simplest form, MeshKit can be used by specifying the geometry, a mesh scheme,
and a desired mesh size, then executing the meshing operation. Table 1 shows a simple
example, where a geometry file is loaded, then volume entities are meshed with the NetGen
tet mesher. Behind the scenes, a tri mesher is added to the graph, then setup is called on that
tri mesher; it in turn creates an edge mesher and assigns all geometric edges to it. If not
specified directly, the size used to mesh each entity is the first one registered with the
MeshKit instance. Once generated, the mesh can be retrieved with various functions on the
MeshKit instance, or directly through the MOAB or iMesh interfaces.

Table	 1.	 	 Simple	 C++	 code	 showing	 mesh	 generation	 process	 in	 MeshKit	

MeshKit::MKCore mk; // by default, creates geometry, mesh, and relations instances
mk.load_geometry(filename); // load a geometric model into MeshKit
MeshKit::MEntVector model_ents;
mk.get_entities_by_dimension(3, vols); // get all geometric volumes
MeshKit::SizingFunction esize(mk, -1, 0.25); // create a sizing function for all mesh
mk.construct_MeshOp("NGTetMesher", vols); // construct a tet mesher and set graph
mk.setup_and_execute(); // execute the meshing graph

For more complicated meshing processes, a directed graph of mesh-based operations
can be specified, with each graph node representing an operation on one or more model
entities. This can represent a simple topology-driven meshing process, where entities are
meshed in order of increasing topological dimension; or it can be a sequence of more general
steps, for example a mesh, smooth, refine sequence. The graph can be set up before any
meshing is done.

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	 	 11	

ANL/MCS-‐TM/336	

3.3 Documentation	

 The MeshKit library is documented in a set of files that can be processed with the
Doxygen tool. MeshKit documentation is generated nightly from the code repository and
made available online at http://www.mcs.anl.gov/~fathom/meshkit-docs/html/index.html.

3.4 Python	 Scripting	

MeshKit is intended primarily as a library for mesh generation and associated tools.
As such, it does not contain direct support for graphics/GUI interactions nor a command
language for driving the tool. However, MeshKit does provide Python interfaces to its tools
and classes, which can be used to drive MeshKit interactively and from script files. This
interface is constructed partly based on PyTAPS [14], which has very detailed documentation
and examples guide online.

4 Algorithms	

In a short span of time several algorithms in MeshKit have been developed and
published. Overall, algorithms can be classified based on licensing, functionality, element
type, dimension etc. Here we classify the algorithms based on their functionality.

4.1 Structured	 Meshing	

MeshKit uses MOAB for mesh representation, which has active development in the
field of structured mesh representation in serial and parallel. At present there is no native
structure mesh writer, the resulting mesh files can be written in unstructured-ASCII Vtk file
format that can be converted to solver specific structured mesh representation using some
other tool. Two key algorithms developed in MeshKit for generating structured meshes are
described next.

4.1.1 Structured	 Block	 Mesher:	 SCDMesh	

This MeshOp generates a simple rectangular structured mesh, sized to completely
surround ModelEnt(s) using a geometric entities bounding box. Options for grid size, mesh
representation and axis type are defined for providing more control over the mesh generation
process. It supports MeshKit’s EBMesh and other structured mesh algorithm(s). Mesh
generated using SCDMesh algorithm is shown in Fig. 3.

	 MeshKit	
12	 	 	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	

Figure	 3.	 CAD	 geometry	 and	 the	 structured	 mesh	 generated	 by	 SCDMesh	 algorithm.	

4.1.2 Embedded	 Boundary	 Mesher:	 EBMesh	

EBMesh tool can generate Cartesian meshes for solvers that use embedded boundary
algorithms. It uses ray-tracing technique based on hierarchical Oriented Bounding Box
(OBBs) in MOAB. Each mesh cell is distinguished as being inside, outside or on the
boundary of the input geometry, which is determined by firing rays parallel to x/y/z
coordinates. EBMesh tool can directly import CAD-based solid model formats and facet-
based formats, output from SCDMesh can be also used as input to EBMesh. Boundary cells
created by this tool have edge-cut fraction and volume cut fraction information for each
material. Detailed explanation, results and comparison with other related tools could be found
in an International Meshing Roundtable paper published in 2010 [15]. Fig. 4 shows input
STL format files produced by 3D scanning, which have complex boundary representations
and the Cartesian mesh generated by EBMesh tool.

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	 	 13	

ANL/MCS-‐TM/336	

(a)	 (b)	 	

Figure	 4.	 Input	 and	 output	 from	 EBMesh	 tool.	 (a)	 STL	 3D	 “statue”	 and	 “horse”	 models.	 (b)	 Cartesian	 mesh	
elements	 of	 3D	 STL	 models.	

4.2 Unstructured	 Meshing	

MeshKit has substantial amount of infrastructure and algorithms for generating
unstructured meshes. MOAB-based representation of the mesh enables access to mesh in
chunks rather than through individual entities. It can represent triangular, quadrilateral,
tetrahedral, hexagonal, polyhedral and higher-order elements. MeshKit also benefits from
various tools such as tree representation, smoothing, adaptive mesh refinement, parallel mesh
communication, and parallel read/write options in MOAB. MeshKit uses CGM for CAD
geometry representation that currently supports OCC and ACIS geometry kernels. This
enables all MeshKit algorithms to function with any geometry engine supported by CGM.
Some robust and widely used external unstructured meshing algorithms such as Triangle and
NetGen have been interfaced with MeshKit. Brief description and results of algorithms
currently available in MeshKit are presented.

4.2.1 Interval	 Matching	 Algorithm:	 IntervalAssignment	

Interval assignment is the problem of assigning an integer number of mesh edges to
each curve so that the assigned value is close to the goal value, and all containing surfaces and
volumes may be meshed independently and compatibly. It is one of the key algorithms for
meshing complicated geometries and preventing meshing algorithms to fail from invalid
sizing specified by the user. Interval assignment algorithm in MeshKit uses a new
optimization function and approach (NLIA), it is found to be faster and more efficient
compared to other interval matching algorithms. Integration of this algorithm with other
MeshKit algorithms is work in progress. Implementation details and findings of interval
matching algorithm can be found in this year’s proceedings of International Meshing
Roundtable [16].

	 MeshKit	
14	 	 	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	

4.2.2 Simple	 Vertex	 Mesher:	 VertexMesher	

This is the basic algorithm that meshes a vertex. Input ModelEnt(s) to this algorithm
must be geometric vertices. VertexMesher mesh operation is inserted into the meshing graph
during the setup phase of most edge meshers.

4.2.3 Edge	 Mesher:	 EdgeMesher	

EdgeMesher generates a mesh for edges, creating the nodes and line segments on
edges. There are four schemes for edge mesher: equal, bias, dual-bias and curvature. It
internally calls VertexMesher. Fig. 5 shows the input and output from an example
documented in MeshKit code repository.

(a)	 (b)	
Figure	 5.	 (a)	 Input	 one	 dimension	 line,	 (b)	 Output	 mesh.	

4.2.4 Sweeping	 Algorithm:	 OneToOneSweep	

OneToOneSweep algorithm generates an all hexahedral mesh by sweeping the source
mesh to the target surface. It uses a harmonic function to mesh the target surface with good
quality, avoiding expensive smoothing operations. The interior nodes between the source and
target surface are generated using cage-based deformation method. Implementation details
and results of sweeping algorithm can be found in this year’s proceedings of International
Meshing Roundtable [17].

4.2.5 Mapping	 Algorithm:	 TFIMapping	

This MeshKit algorithm generates an all-quad mesh by transfinite interpolation with i,
j parameters. Fig. 6 shows the input geometry and output mesh from an example documented
in MeshKit code repository.

(a)	 (b)	

Figure	 6.	 (a)	 2D	 Rectangle	 geometry,	 (b)	 A	
meshed	 2D	 rectangle.	

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	 	 15	

ANL/MCS-‐TM/336	

4.2.6 2D	 Quad	 Mesher:	 QuadMesher	

Quad mesher is a MeshKit native algorithm that produces a high quality, isotropic all-
quadrilateral mesh for an arbitrary complex surface geometry. Two basic steps used in this
algorithm are triangle to quad mesh conversion and global mesh cleanup operation. Specific
details and results are published [18]. Fig. 7 highlights some of the results produced by quad
mesher.

Figure	 7.	 Results	 from	 quad	 mesher	 algorithm.	

4.2.7 Extrusion	 Algorithm:	 ExtrudeMesh	

ExtrudeMesh is a simple extrusion algorithm that reads in an already meshed 1D or
2D ModelEnt(s) and creates a 2D or 3D mesh respectively. It also allows for extrusion to be
specified along a rotation path. In-order to produce a mesh that is fit for simulation, material
and boundary conditions from the initial mesh are propagated to the final mesh by specifying
grouping sets. CopyMesh algorithm (see Section 4.3.2) also uses the same sets functionality.
MeshKit provides three different types of abstractions for handling groupings based on the
sets they apply to. These three types of sets are:

1. Copy sets: These sets get duplicated and populated with copies of entities in
the original copy set.

2. Expand sets: These sets are expanded, that is copies of entities are put into
same sets containing the entities being copied.

	 MeshKit	
16	 	 	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	

3. Extrude sets: These are sets whose contents are replaced with extruded
version of original entities.

Consider a simple unit cell, consisting of an inner circular surface, representing a fuel
pin, and an outer material, representing a coolant region (see Fig. 8). Both surfaces are
meshed, as are the bounding model edges and vertices. On this model, we have identified one
group of elements in set “F”, corresponding to fuel, and another group as coolant set “C”. We
have also identified a set of mesh faces as volume “V1”. Sets F and C are designated as
“Expand” sets, that is, any copies of mesh faces in these sets will be added to those sets; in
other words, the sets will expand to include copies of the contained faces. The set V1 is
identified as a “Copy” set; any copies of the mesh faces in that set will be put into a copied
set. Next, the pair of surfaces is copy/moved to get four pairs of surfaces, arranged in a
square 2x2 grid. The F and C sets expand to include the corresponding face copies, while the
V1 set is copied three times. Next, the sets of mesh edges bounding the collection are added
to a set designated as “side”, and this set is identified as an “Extrude” set. In addition, the F,
C, and V1-V4 sets are also identified as extrude sets. In the final operation, the eight surfaces
are extruded into the 3rd dimension. In each extrude set, each entity is replaced with the next-
higher-dimension entity or entities produced by the extraction. So, sets F, C, and V1-V4
receive sets of hexahedra resulting from the extrusion of the quadrilaterals in the respective
sets, while the “Side” set receives quadrilaterals, extruded from the edges originally in the set.

Figure	 8.	 Generation	 of	 an	 extruded	 mesh	 by	 copy/moving	 a	 single	 unit	 cell	 into	 four,	 then	 extruding	
axially.	

4.2.8 Parallel	 Mesh	 Generation:	 ParallelMesher	

ParallelMesher MeshOp in MeshKit uses a CAD-based approach, wherein solid model
geometries are distributed using parallel geometry loading feature provided by CGM. MOAB
provides parallel mesh representation and communication routines to handle the mesh.
ParallelMesher is not limited to a specific meshing algorithm, it can use any tri/tet/quad/hex
algorithm available in MeshKit. ParallelMesher meshing procedure is similar to traditional
BREP-based meshing with additional communication between the processor after meshing

Side

F
C

F F

F
V2

V3
V4

V1 V2

V3
V4

V1
Side

Side

F

C
V1

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	 	 17	

ANL/MCS-‐TM/336	

shared vertex/edge and surfaces. Final mesh from this MeshOp can be saved in parallel using
MOAB’s parallel writing capability. Fig. 9 shows a hexagonal VHTR reactor geometry
generated using AssyGen (see Section 4.4.1). It takes 118 seconds to mesh this geometry with
1.74M tetrahedral elements in serial. In parallel, using 12 processors the same model can be
meshed in 14 seconds, which is a speedup of 8.65 and efficiency of 72%. The model for this
test uses ACIS geometry and CGM’s read-and-delete strategy for distributing the geometry in
parallel.

(a)	

(b)

Figure	 9.	 Results	 from	 parallel	 tetrahedral	 mesh	 generation	 of	 a	 VHTR	 geometry	 (a)	 Geometry	 file	
indicating	 partitions.	 (b)	 Comparison	 of	 speed-‐up	 obtained	 by	 using	 different	 partitioning	 methods.	

4.2.9 External:	 CAMAL	 Library:	 CAMALPaver,	 CAMALTriAdvance,	 CAMALTetMesher	

CAMAL is a proprietary mesh library developed at Sandia National Library. Three
mesh operations namely: CAMALPaver, CAMALTriAdvance and CAMALTetMesher are
integrated into MeshKit for generating quadrilateral, triangular and tetrahedral meshes
respectively. It must be noted that all these operation internally create an EdgeMesher and
VertexMesher graph node.

4.2.10 External:	 Triangle	 Library:	 TriangleMesher	

The Triangle library is widely used for generating exact Delaunay triangulation,
constrained Delaunay Triangulation, conforming Delaunay triangulations, Voronoi diagrams
and high-quality triangular meshes. It has a restrictive license for commercial use. MeshKit
provides an interface for this library for generating 2D triangular meshes.

4.2.11 External:	 NetGen	 Library:	 NGTetMesher	

NetGen is an LGPL licensed automatic tetrahedral mesh generation library. MeshKit
has an interface to this library for generating tetrahedral meshes. Multiple interfaces for
generating meshes for same element type provide more flexibility and aid comparison of
mesh quality among algorithms.

	 MeshKit	
18	 	 	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	

4.3 Mesh	 Modification	 	

Copy/move/merge, mesh decimation, boundary layer mesh generation, mesh quality
optimization and facet-based algorithms available in MeshKit are described in this section.

4.3.1 Mesh	 Decimation	 Algorithm:	 QslimMesher	

Source code of qslim mesh decimation library has been integrated in MeshKit. This
algorithm uses edge collapse as a primary simplification method. A cost for each possible
edge collapse is established using quadric-based error concept. See Section 4.4.3 for usage of
this algorithm for climate applications. Fig. 9. shows a trivial example, where 10 triangles
from input 2D mesh are decimated to 8 triangles.

Figure	 10.	 Trivial	 example	 showing	 input	 and	 output	 mesh	 from	 QslimMesher.	

4.3.2 Copy	 Algorithms:	 CopyGeom,	 CopyMesh	

CopyGeom and CopyMesh algorithm copy an input geometry or mesh to a specified
location specified by the user. Similar to ExtrudeMesh, CopyMesh algorithm also accepts
specification of copy, expand and extrude sets. See Section 4.2.8 for an example of
CopyMesh with sets specification. Both CopyMesh and CopyGeom algorithms are used by
the reactor application MeshOp called CoreGen (see Section 4.4.2)

4.3.3 Boundary	 Layer	 Mesher:	 PostBL	

PostBL MeshOp generates boundary layer meshes for an already existing mesh model.
Implementation details and results can be found in this year’s proceedings of International
Meshing Roundtable [19]. Fig 11 shows a users-specified digraph that generates a reactor
assembly with a boundary layer mesh from scratch. The AssyGen (see Section 4.4.1)
operation generates geometry from a text-based input file describing a reactor assembly. This
geometry is input to the QuadMesher (see Section 4.2.6), which feeds into the ExtrudeMesh
(see Section 4.2.7) operation to generate a 3D mesh. Then PostBL, based on user-specified
boundary layer thickness, bias etc. generates the desired boundary layer elements in the
model.

Figure	 11.	 User	 specified	 digraph	 for	 creating	 reactor	 assembly	 mesh	 with	 boundary	 layers.	

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	 	 19	

ANL/MCS-‐TM/336	

PostBL can handle triangular, quadrilateral, tetrahedral and hexahedral meshes. Fig.
12 shows a 19-assembly reactor core that needed meshes along the assembly wall and fuel pin
boundary for better fluid flow simulations.

	

4.3.4 Mesh-‐Based	 Geometry	 Modifications:	 MBGeomOp,	 MBSplitOp,	 MBVolOp	

FBiGeom is an ITAPS-iGeom extension for faceted-based geometry. Several of the
iGeom methods are implemented in MOAB. The topology of the model is represented using
specific tags and sets in MOAB such as GEOM_DIMENSION, GEOM_SENSE and parent
child relationships. MBGeomOp, MBSplitOp, MBVolOp use FBiGeom implementation in
MOAB.

MBGeomOp reads in a manifold surface mesh and produces a geometrized surface by
populating the database with topology tags and sets; this algorithm first computes the
boundary loops and creates the geometry face, curves and vertices. MBSplitOp can be used
for editing, cropping and splitting surfaces created by MBGeomOp. MBVolOp creates a B-

	 	
(a) (b)

	
(c)	

Figure	 12.	 19	 assembly	 reactor	 core	 mesh:	 (a)	 Original	 mesh.	 	 (b)	 Close-‐up	 of	
original	 mesh	 showing	 fluid	 and	 gap	 regions.	 	 (c)	 Close-‐up	 of	 original	 mesh	

showing	 boundary	 layers	 on	 fluid	 and	 gap	 regions.	
	

	 MeshKit	
20	 	 	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	

REP volume of interest using these mesh-based surfaces generated with MBSplitOp. Section
4.4.3 shows the usage of MBGeomOp, MBSplitOp and MBVolOp.

4.3.5 Mesh	 Merging	 Algorithm:	 MergeMesh	

This algorithm reads in a mesh with unmerged vertices and merges them to form a
conformal mesh suitable for analysis. This algorithm is used in CoreGen MeshOp after
copy/move operations are executed.

4.3.6 Sealing	 Facet	 Based	 Geometry:	 MakeWaterTight	

MakeWaterTight tool removes gaps, overlaps and discontinuous topology between
surfaces. It uses MOAB to read facet based models produced by a solid modeling engine in
CGM. It is assumed that the feature size is greater than the facet tolerance, and the facet
tolerance is greater than the merge tolerance. Faceted surfaces are skinned to resolve their
boundary. Bounding edges of each faceted surface are assembled into loops. Loops are cut
into arcs that correspond to faceted curves, using geometric vertices. Each arc is then sealed to
its corresponding curve by using node-node and node-edge contraction. The result is a
watertight model in which adjacent surfaces share the same faceted edges. Implementation
details can be found in an International Meshing Roundtable publication [20].

4.3.7 External:	 Mesh	 Optimization	 Algorithm:	 MesquiteOpt	

Mesquite is an open-source mesh quality optimization package developed at Sandia
National Laboratory. It can be used as a standalone operation or it can be coupled with other
MeshKit algorithms for mesh quality optimization at the end of mesh generation operation.

4.4 Application	 Specific	

RGG is the nuclear reactor application in MeshKit. Two specific mesh operations
implemented for this application are AssyGen and CoreGen. Reactor core model generation is
broken into three steps: assembly geometry creation, meshing and core mesh creation.
Implementation details, examples and enhancements are given in earlier reports [21] [22].
Climate application for generating mesh models of ice sheets is composed of a several
unstructured meshing and mesh-based geometry algorithms in MeshKit.

4.4.1 Nuclear	 Reactor	 Modeling:	 Assembly	 Geometry	 Creation	 Tool:	 AssyGen	

AssyGen is the first step of the three-step core mesh creation process, it reads an input
file describing a reactor assembly lattice and generates an ACIS or OCC –based geometry
file. The second step is meshing, after the first step, user may choose to perform meshing
using the CUBIT mesh script generated by AssyGen or using meshing algorithms in MeshKit.
The first two steps for two different assembly types are shown in Fig. 13. AssyGen and
meshing steps must be performed for each assembly separately. Other results and options
provided by AssyGen tool were published in a paper at the International Congress on
Advances in Nuclear Power Plants [23].

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	 	 21	

ANL/MCS-‐TM/336	

Figure	 13.	 First	 two	 stages	 of	 the	 geometry/mesh	 process,	 where	 AssyGen	 and	 CUBIT/MeshKit	 are	
executed	 for	 each	 assembly	 type.

4.4.2 Nuclear	 Reactor	 Modeling:	 Core	 Mesh	 and	 Geometry	 Creation	 Tool:	 CoreGen	

CoreGen tool reads an input file describing the reactor core arrangement and generates
the reactor core mesh or geometry from its component assemblies. CoreGen uses CopyMesh,
ExtrudeMesh, CopyGeom and MergeMesh algorithms in MeshKit. Fig. 14(a) shows the two
assembly meshes and an interstice mesh file that form a 19-assembly reactor core. A makefile
is generated by CoreGen to automate this process. Fig. 14(b) shows four processors P0-P3
and assemblies numbered in the core, each processor is assigned the task of copy/move(ing) a
specific assembly it loads to a specific core location. Speedup results and details of parallel
version of CoreGen can be found in [23]. CoreGen has been used to create large meshes such
as MONJU, VHTR, HTGR, EBRII, and PWR for different reactor simulation codes.

(a)
(b)

Figure	 14.	 (a)	 Simple	 example	 demonstrating	 CoreGen	 input	 and	 output	 files.	 (b)	 (A)	 Copy/move	 task	
distribution	 among	 processors	 for	 the	 same	 problem	 in	 Fig.	 14(a)	 and	 (B)	 final	 core-‐mesh	 with	 numbered	

assemblies	 are	 shown.	

	 MeshKit	
22	 	 	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	

As a part of the collaboration with Kitware to develop a graphical/GUI interface to
MeshKit, initial version of GUI for generating RGG models has been developed. Recent mesh
generation work involved generating models for complicated assemblies such as XX09. The
XX09 assembly is used in Shutdown Heat Removal Tests (SHRT) that demonstrated passive
safety features of the EBR-II Experimental Breeder Reactor. A homogenized EBRII core
mesh is shown in Fig. 15. This core model contains 7.9M hex8 elements for neutronics mesh
and 4.4M hex27 elements for thermo-hydraulics mesh. The geometry for XX09 and other
homogenized assemblies are generated using AssyGen, then meshing is performed using
CUBIT and finally CoreGen creates the resulting EBRII core mesh.

Figure	 15.	 Homogenized	 EBRII	 core	 with	 XX09	 assembly.	 Inlet,	 outlet,	 isometric	 and	 sectioned	 views	 are	

zoomed	 to	 shown	 the	 fuel	 and	 other	 instrumentation	 pins	 in	 the	 model.	

4.4.3 Climate	 Application:	 Ice	 Sheet	 Mesh	 Generation	

This project involved creation of hexahedral ice sheet models. Data for creating top
surface of ice is obtained from satellite data and bed surface from the ground-penetrating
radar data. Sets of points with elevation data are triangulated to obtain the initial
approximation of the surfaces. Triangulation is done using Triangle algorithm (see Section
4.2.10). The bed and top surfaces are geometrized using MBGeomOp (see Section 4.3.4), then
mesh decimation is done using QSlim (see Section 4.3.1). MBSplitOp and MBVolOp are
used to create the region of interest, which is prescribed by using a polygonal line and the
direction of splitting. The final geometry is a BREP model of the region of interest and can be
meshed using EdgeMesher, CAMALPaver and OneToOneSweep algorithms all described in
Section 4.2.

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	 	 23	

ANL/MCS-‐TM/336	

Fig. 16 shows a part of the process for generation of hexahedral mesh for ice sheet
modeling. Fig. 16(a) indicates the region of interest with black contour lines on the simplified
terrain model. This simplified model is obtained after triangulation of the initial satellite data,
geometrization using MBGeomOP and decimation using QSlim. Fig. 16(b) is the BREP
model of the volume of interest generated by MBSplitOp and MBVolOp. Fig. 16(c)
highlights the elevation data on a hexahedral mesh generated using MeshKit algorithms. Fig.
16(d) shows simulation results of ice flow velocity through the terrain.

(a)
(b)

 (c)
(d)

Figure	 16.	 Stages	 in	 creation	 of	 Ice	 sheets	 mesh	 model	 using	 satellite	 data.	 (a)	 Region	 of	 interest.	 (b)	
BREP-‐based	 geometry	 model.	 	 (c)	 Final	 hexahedral	 mesh	 showing	 elevation	 data.	 (d)	 Some	 simulation	

results.	

5 Conclusions	 	

This report describes the MeshKit v1.0 release, including the MeshKit design, the
algorithms available in this version, and installation and use of the library. MeshKit uses a
graph-based process for specifying the overall meshing approach, with graph nodes
representing meshing and other operations, and graph edges as dependencies between those
operations. This approach supports the traditional BREP-driven meshing process found in

	 MeshKit	
24	 	 	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	

most other meshing tools, while also enabling a wider variety of meshing processes not
strictly based on BREP models.

This release of MeshKit contains meshing algorithms for both tri/tet and quad/hex
mesh generation. In some cases these algorithms are part of 3rd party meshing tools wrapped
by MeshKit, while in other cases the algorithms are implemented directly in MeshKit.
MeshKit also the Reactor Geometry (& mesh) Generation (RGG) tool; the graph-baed design
enables RGG to interoperate with other meshing algorithms and allow setup of complete
reactor mesh generation problem from creation of assembly geometry to core mesh creation in
the same program. Due to its unique and modular approach of development, we believe that
the development of this library will benefit other user and developer communities outside the
nuclear reactor modeling community.

Over the last one-year new algorithms for post-mesh boundary layer generation, swept
mesh generation and interval assignment have been developed in MeshKit. Current work
involves integration of interval assignment with other algorithms in MeshKit, adding more
examples to the doxygen-based documentation and formalization of CoreGen/AssyGen
process with GUI development work performed by Kitware. Several new developments in the
area of mesh refinement, automatic mesh scheme selection, support for higher order elements
and integrating a mesh quality evaluation library are planned.

6 Acknowledgements	

We thank the Fathom group at Argonne, who maintains the libraries required by
MeshKit. This work was supported in part by the U.S. Department of Energy Office of
Nuclear Energy Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program; by
the U.S. Department of Energy Scientific Computing Research, Office of Science; and by the
U.S. Department of Energy’s Scientific Discovery through Advanced Computing program,
under Contract DE-AC02-06CH11357.

7 References	
1. Sjaardema, G.D, Tautges, T. J, Wilson, T. J, Owen, S. J, Blacker, T. D, Bohnhoff, W. J,

Edwards, T. L, Hipp, J. R, Lober, R. R, and Mitchell, S. A (1994). CUBIT mesh
generation environment, users manual, vol 1. Sandia National Laboratories, Albuquerque.

2. Tautges, T. J (2005) CGM: a geometry interface for mesh generation, analysis and other
applications. Eng Comput 17:486–490.

3. Spatial website (2010) http://www.spatial.com/
4. Open CASCADE technology website (2000–2010) http://www.opencascade.org.
5. Tautges, T. J, Meyers, R, Merkley, K, Stimpson, C, Ernst, C (2004). MOAB: A mesh-

oriented database, SAND2004-1592. Sandia National Laboratories, Albuquerque.
6. Lasso: http://trac.mcs.anl.gov/projects/ITAPS/wiki/Lasso.
7. Ollivier-Gooch, C., Diachin, L., Shephard, M. S., Tautges, T., Kraftcheck, J., Leung, V.,

and Miller, M. (2010). An interoperable, data-structure-neutral component for mesh query
and manipulation. ACM Transactions on Mathematical Software (TOMS), 37(3), 29.

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	 	 25	

ANL/MCS-‐TM/336	

8. Shewchuk, J. R. (1996). Triangle: Engineering a 2D Quaility Mesh Generator and
Delaunay Triangulator. Applied Computational Geometry Towards Geometric
Engineering. (pp. 203-222)

9. CAMAL - The CUBIT Adaptive Meshing Algorithm Library, Sandia National
Laboratories, Albuquerque.

10. Schöberl, J. (1997). NETGEN An advancing front 2D/3D-mesh generator based on
abstract rules. Computing and visualization in science, 1(1), 41-52.

11. Knupp, P. (2006, September). Mesh quality improvement for SciDAC applications. In
Journal of Physics: Conference Series, Vol. 46, No. 1.

12. Wächter, A., and Biegler, L. T. (2006). On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical
Programming, 106(1), 25-57.

13. Tautges, T. J., and Jain, Rajeev. (2012). Creating geometry and mesh models for nuclear
reactor core geometries using a lattice hierarchy-based approach. Engineering with
Computers, 28(4), 319-329.

14. PyTAPS, website, https://pypi.python.org/pypi/PyTAPS/.
15. Kim, H., and Tautges, T. J. (2010). EBMesh: An Embedded Boundary Layer Meshing

Tool. In Proceedings of the 19th International Meshing Roundtable (pp. 227-242).
16. Mitchell, S. (2014). Simple and Fast Interval Assignment Using Nonlinear and Piecewise

Linear. In Proceedings of the 22nd International Meshing Roundtable (pp. 203-221).
17. Cai, S., and Tautges, T. (2014). Robust One-to-One Sweeping with Harmonic ST

Mapping and Cages: Post-mesh Boundary Layer Generation Tool. In Proceedings of the
22nd International Meshing Roundtable (pp. 1-18).

18. Verma, C. S., and Tautges, T. (2012). Jaal: Engineering a high quality all-quadrilateral
mesh generator. In Proceedings of the 20th International Meshing Roundtable (pp. 511-
530).

19. Jain, Rajeev, and Tautges, T. J. (2014). PostBL: Post-mesh Boundary Layer Generation
Tool. In Proceedings of the 22nd International Meshing Roundtable (pp. 445-464).

20. Smith, B., Wilson, P. and Tautges, T. J. (2010). Sealing Faceted Surfaces to Achieve
Watertight CAD Models. In Proceedings of the 19th International Meshing
Roundtable (pp. 177-194).

21. Tautges, T. J., and Jain, Rajeev. (2010). Mesh Copy/Move/Merge Tool for Reactor
Simulation Applications. Report of US DOE, Reactor Campaign. ANL/MCS-TM-343.

22. Tautges, T. J., and Jain, Rajeev. (2011). Report of FY11 Extension to MeshKit and RGG.
Report of US DOE, Reactor Campaign. ANL/MCS-TM-316.

23. Jain, Rajeev and Tautges, T. J. (2012). RGG: Reactor Geometry (and Mesh) Generator.
International Congress on the Advances in Nuclear Power Plants, Chiacgo.

24. CGM Installation Instructions:
https://trac.mcs.anl.gov/projects/ITAPS/wiki/CgmFromScratch

25. MOAB Installation Instructions:
https://trac.mcs.anl.gov/projects/ITAPS/wiki/BuildingMoab

Appendix	 A. Configure/Build/Installation	 of	 MeshKit	

MeshKit is maintained as Open Source Software under an LGPL license, and is
therefore distributed in source code form. The library uses several required and optional

	 MeshKit	
26	 	 	 	 September	 30,	 2013	

ANL/MCS-‐TM/336	

libraries which must be built and installed prior to MeshKit installation. MeshKit is currently
supported on Linux and Linux-like operating systems (including MacOS); support for
Microsoft Windows is under development and should be available by the next release.

Prerequisites

MeshKit requires the following libraries to be installed before configuration:

• CGM: a library for representation, query and modification of geometric
models; see [24] for details on obtaining and building CGM.

• MOAB: a library for representing structured and unstructured mesh; see [25]
for details on obtaining and building MOAB.

• Autotools: this is a set of Linux utilities for configuring software packages.
Autotools can be found in most Linux package managers, and usually consists
of the Autoconf and Automake packages.

In addition, if a parallel version of MeshKit is desired, the user must have the Message
Passing Interface (MPI) available on their computer; binary versions of MPI can be found in
most Linux package managers.

Download, Configure, Build, Install

MeshKit source code is maintained in a world-readable svn repository, located at
https://svn.mcs.anl.gov/repos/fathom/MeshKit/trunk/. By default, MeshKit uses a GNU
Autotools-based configuration process. The following steps should be used to configure,
build, and install MeshKit:

• Unpack the source tarball into a directory referred to below as <MK_DIR> and
change directory into that location.

• Execute ‘autoreconf –fi’. This executes a series of tools in the autotools suite,
storing some generated files in the ‘config’ subdirectory.

• Execute ‘./configure’ with appropriate options. Two configure options are
required, specifying the locations of CGM (--with_igeom=<location>) and
MOAB (--with-imesh=<location>). Other useful configure options are the
installation location (--prefix=<location>) and specifying debug or optimized
builds (--enable-debug, --enable-optimized, respectively). For a complete list
of options, execute the command ‘./configure –help’. After a successful
configuration, a set of Makefile’s are generated in the proper subdirectories.

• To complete the build of MeshKit, execute ‘make’.

MeshKit	
Rajeev	 Jain,	 Timothy	 J.	 	 Tautges	 	 27	

ANL/MCS-‐TM/336	

• To install MeshKit, execute ‘make install’. If the install location was not
specified on the configure line, one can specify a location in this step by using
the command ‘make prefix=<location> install’.

For those wishing to use the Python interface, MeshKit and its dependencies should be
configured to build shared libraries, using the ‘--enable-shared’ configure option where
appropriate.

Once the MeshKit library has been built, it is ready for inclusion into user-developed
applications (any MeshKit-packaged programs, e.g. those that constitute RGG, will be
installed in the ‘bin’ directory). To aid in building user-developed applications, MeshKit also
writes a file ‘meshkit.make’, which can be included directly into application makefiles. This
file defines the following make variables useful for building MeshKit-based applications:

• MESHKIT_INCLUDES, MESHKIT_CPPFLAGS: compiler options
pointing to all directories containing include files available to applications,
including those for CGM and MOAB; also, CPP definitions controlling which
optional external meshing tools have been configured into MeshKit.

• MESHKIT_LIBS_LINK: linker options necessary to satisfy all functions
included in MeshKit.

The ‘examples’ subdirectory in the MeshKit source installation contains an example
makefile showing how these make variables can be used to compile and link MeshKit-based
applications.

	

	

Mathematics	 and	 Computer	 Science	 Division	
Argonne	 National	 Laboratory	
9700	 South	 Cass	 Avenue,	 Bldg.	 	 240	
Argonne,	 IL	 60439	
	
www.anl.gov	

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

