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SUMMARY 

Over the past several years, the Nuclear Energy Advanced Modeling and Simulation 

(NEAMS) program of U.S. DOE has focused on developing a neutronics component as part 

of a larger dynamics product meant to analyze both existing and proposed nuclear reactor 

systems. The goal is to reduce the uncertainties and biases in reactor design activities by 

providing enhanced prediction capabilities. As part of the SHARP program, we have invested 

considerable effort into creating the PROTEUS-SN code. The PROTEUS-SN solver was 

intended to treat conventional homogenized assembly to explicit geometry schemes for time 

dependent analysis with coupled thermal-hydraulics and structural mechanics.  

For coupled multiphysics time-dependent simulations, a quasi-static kinetics 

methodology was derived and added to the PROTEUS-SN code. In this method, the point 

kinetics parameters are updated during the transient using a series of steady-state forward and 

adjoint spatial calculations. This method would be sufficient to meet the needs of current 

NEAMS transient analysis in the meantime until fully spatial kinetics methodology is 

implemented with efficient preconditioned-Krylov solvers. An initial verification test was 

performed using the two-dimensional numerical benchmark problem in which the control rod 

was inserted in 0.04 sec and the power was traced up to 100 sec. By comparing the kinetics 

parameters with the conventional methods, the transient capability of PROTEUS-SN has been 

verified to be working correctly. 

This report also discusses the research work accomplished for improving the 

PROTEUS-SN code. The specific aspects that we studied include updating  the even-parity 

methodology for which we identified two options: Stabilized Upwind Petrov-Galerkin 

(SUPG) and Generalized Least Squares (GLS). From the demonstrated benchmark problems, 

the SUPG and GLS forms showed considerable improvements over the even-parity 

methodology. This does not mean that SUPG and GLS can unconditionally give better 

solutions than the discontinuous Galerkin method, but at least the condition number issues we 

experienced with the even-parity based PROTEUS-SN can be resolved by using SUPG or 

GLS for fully heterogeneous geometry with strongly varying material cross-sections.  We also 

demonstrate the optimization work required to develop this solver in to a product comparable 

to existing production codes. 
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1 Introduction 

Under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of 

U.S. DOE, the SHARP team at ANL has continued the development of a suite of modern 

simulation tools for use in all reactor types of interest. The general goal is to reduce the 

uncertainties and biases in various areas of reactor design activities by providing enhanced 

prediction capabilities. As a fast reactor component of SHARP, a high-fidelity deterministic 

neutron transport code named PROTEUS-SN [1-6] was developed specially for analysis and 

design of sodium fast reactors (SFRs). The application scope of PROTEUS-SN was to range 

from conventional homogenized assembly approaches to explicit geometry, time-dependent 

transport calculations coupled with thermal-hydraulics and structural mechanics for reactor 

accident simulations. 

To support the time-dependent multi-physics modeling capability that is one of the 

goals of NEAMS, we added a time-dependent modeling capability to PROTEUS-SN. Because 

the current production version of PROTEUS-SN does not have a top level Krylov (GMRES) 

algorithm, we could not realistically implement any of the more rigorous fully-implicit 

kinetics schemes and thus rely on quasi-static kinetics approximations. In this methodology, 

the point kinetics parameters are updated at each time step via a steady-state forward and 

adjoint flux calculation. It should be noted that a quasi-static kinetics approach should be 

sufficient to meet the needs of current NEAMS transient analysis until a more rigorous 

kinetics methodology is implemented which requires an efficient GMRES solution algorithm.  

The version of PROTEUS-SN that SHARP has relied upon was initially developed in 

2008-2009 and was rapidly built to prove that we could fully utilize a supercomputer 

(>200,000 cores) which had not been demonstrated before. PROTEUS-SN was able to 

achieve great scaling on large unstructured mesh problem sizes whose, to date, peers have 

been a few structured grid solvers. To accomplish this feat, a simplistic solution algorithm 

was chosen such that the demonstration product could be built rapidly. As a consequence, the 

code may not be well posed to solve problems with >10
9
 elements and has been observed to 

run slowly on thermal reactor problems. Note that the simplistic algorithm was the primary 

reason that we initially implemented a quasi-static kinetics approach to PROTEUS-SN for its 

kinetics capability, even though the approach is not the best choice for heterogeneous 

geometries.   

In this report we also demonstrate the research work required to complete 

modifications to PROTEUS-SN and make it the production version that demonstrates 

improved performance on transport calculations for heterogeneous geometry problems. The 

specific aspects that we studied include analysis on other continuous Galerkin based 

formulations for the first-order neutron transport equation: Stabilized Upwind Petrov-Galerkin 

(SUPG) and Generalized Least Squares (GLS) methods. While it is possible to replace the 

even-parity methodology in PROTEUS-SN with a SUPG or GLS scheme, this does not 

address the fundamental problem of memory usage and poor computing efficiency that 

prevents PROTEUS-SN from handling the large dynamics problems targeted by NEAMS. To 

address this issue, we provide a demonstration of the research necessary to build, optimize 

and improve the PROTEUS-SN solver. 
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In the following section we discuss the updates to the PROTEUS-SN code to allow 

transient modeling. From there we discuss the work done to address the methodological 

problems with the existing PROTEUS-SN solver and allude to the actual requirements 

necessary to provide PROTEUS-SN with a production capability. 

2 Updating the PROTEUS-SN Solver for Transient Analysis 

Given the restrictions placed upon this work by the status of the existing PROTEUS-

SN code and the desire to enable some transient modeling within the NEAMS activity, the 

quasi-static kinetics capability [7] was added to the PROTEUS-SN solver [1-3] as a balance 

between cost and accuracy. This is of course the bare minimum kinetics capability where 

improved quasi-static [8-9] is the typically accepted scheme followed by full discretizations 

of the time dependent transport equation [9]. Because the version of PROTEUS-SN that we 

are using does not have a top level GMRES algorithm, we cannot realistically implement any 

of the more rigorous schemes and thus rely upon the basic kinetics algorithm. The remainder 

of this section focuses on the derivation of the kinetics methodology, its implementation into 

PROTEUS-SN, and example results. 

2.1 Kinetics Methodologies 

Any kinetics derivation starts with the time dependent transport equation 

1 ˆ ˆ ˆ ˆ ˆ( , , , ) ( , , , ) ( , , ) ( , , , ) ( , , , )tr E t r E t r E t r E t S r E t
v t

  


      


, (2.1) 

and the composite source 

ˆ ˆ ˆ( , , , ) ( , , , ) ( , , , )S r E t W r E t F r E t     ,  (2.2) 

which is separated into scattering, ˆ( , , , )W r E t , and fission sources ˆ( , , , )F r E t . The fission 

source requires a special time dependent treatment because of the time required for an excited 

state nucleus to decay and release neutrons. The typical modeling approach is to assume a 0
th

 

order finite element which breaks the continuum of delay neutrons into a few “families” each 

of which has a time decay constant, m  and generation probability m . The remaining 

“prompt” or instantaneous neutrons are denoted using p . The fission source in this case is 

written as the system of coupled equations where i denotes each isotope at a given position in 

space and m denotes each family. 
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    (2.4) 

Clearly from the above system, implementation of a standard kinetics algorithm will 

add a considerable number of degrees of freedom to the problem being solved (20 actinides 
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with 6 delay families is 120 degrees of freedom per mesh that contains fuel noting that the 

precursors are a function of energy).  

2.2 Point Kinetics Method 

In point kinetics, we eliminate the space and isotopic dependence by computing “core” 

averaged quantities. The transport equation is also truncated such that “linear reactivity 

effects” are added such as sodium density coefficient of reactivity. The point kinetics equation 

begins assuming a separation of the time and space-angle-energy dependence of the flux and 

precursor concentrations. This means that a “steady state” shape exists which is the solution to 

the time independent equation: 

0 0 0 0

0

0 , , , 0

1ˆ ˆ ˆ ˆ ˆ( , , ) ( , ) ( , , ) ( , , ) ( , , ),

ˆ ˆ( , , ) ( ) ( , ) ' ( , ') ' ( , ', ').

t

i T i T i f i

i

r E r E r E W r E F r E
k

F r E N r r E dE r E d r E

 

   

       

     

 (2.5) 

The initial precursor concentrations are found to be  

, , 0

, ,0

ˆ' ( , , ') ' ( , ', ')
( , , )

( )

i i i m f i

m i

m

N dE r E E d r E
C r E t

r

  



 


  . (2.6) 

Note that equation 2.5 uses the total ,T i  corresponding to substituting equation 2.6 

into equation 2.3. With this, we can assume the flux and precursor concentrations can be 

written as  

0
ˆ ˆ( , , , ) ( ) ( , , )r E t n t r E      (2.7) 

, , ,0 , 0
ˆ( , , ) ( ) ( , , ) ( ) ( , , )m i m i m iC r E t b t C r E t c t r E   . (2.8) 

Equation 2.7 is valid so long as the time dependent constant is taken to be the operator 

(delay fission source divided by decay constant) appearing in equation 2.6. Plugging these 

into equations 2.1 through 2.3 yields 

 

0 , , 0

1

0 0 0

, , , 0

1 ˆ ˆ( ) ( , , ) ( ) ( , , )

ˆ ˆ ˆ ˆ ˆ( ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )
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i m
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n t r E r E t r E W r E F r E
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. (2.9) 

Note that the steady state transport equation is nearly present as a multiplier on ( )n t  except 

that the 0k  eigenvalue concept is not present and the fission source only includes the prompt 

contribution. By adding the missing component one can collapse the equation to 

0 , , 0 0

1 0

1 1ˆ ˆ ˆ ˆ( ) ( , , ) ( ) ( , , ) ( ) ( , , ) ( , , )
M

m i m i p

i m

n t r E c t r E n t F r E F r E
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 . (2.10) 



Continued Research for Improvement of PROTEUS-SN 

M. A. Smith, V. S. Mahadevan, and E. R. Wolters  7 

   ANL/NE-13/12 

The typical approach in point kinetics is to eliminate the space-angle-energy dependence of 

the flux equation in favor of a one-group “homogeneous” diffusive system. This allows one to 

utilize the equations  

1

( ) ( )
( ) ( )

M

m m

m

n t p t
n t c t

t






 
 

 
   (2.11) 

( )
( ) ( )m m

m m

c t
n t c t
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  (2.12) 

0

1 1
( )

( )
p t

k k t
  .  (2.13) 

In this case, we can compute initial conditions for (0)mc , but not for (0)n , noting that 

(0) 0p   for any reactor system via: 

(0) (0)m
m
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c n






  (2.14) 
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To obtain the initial condition for (0)n , one can effectively assume anything (say 2.3), but it 

should be scalable to the power of the system in question. In this case, we assume a solution 

of equation 2.5 exists with a stated power such that n(0) = 1. At any time step, we can then 

use equation 2.7 to renormalize the magnitude of 0
ˆ( , , )r E  . 

There are many ways to discretized equations 2.11 and 2.12 and we show only the 

most basic one here which does exist as one option in PROTEUS-SN.  We can integrate 

equations 2.11 and 2.12 over the time interval jt  to 1jt   using a fully implicit formulation to 

get 

1 1

1 , 1

11

M
j j j

j m m j

mj j

n n p
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Assuming a linear change in ( )p t  over a time step we can write 

1

1

1 1
j

j j

p
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Rearranging terms, we obtain 

 1
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This system is obviously dependent upon the time step size  1 1j j jt t t     and the 

computed 1jk   at the end of the time step. These equations are rather easy to implement in a 

linear algebra solver and propagate for a given time step size.  

In a conventional point kinetics system, the reactivity appearing in equations 2.11 and 

2.12 is written as 

* *( ) temperature densityp t f T f f F      .  (2.21) 

where the reactivity coefficients *f  (such as sodium density or fuel temperature) and its 

associated dependent variable *F  are typically coarse grained quantities obtained from the 

other physics areas. Note that each of these terms can be broken down into a sum of 

contributions from each mesh in the domain, but that under no circumstance is the neutronics 

calculation recomputed during the transient modeling. 

2.3 Quasi-static Kinetics Methodology 

The basic difference between quasi-steady state kinetics implementations and point 

kinetics is that the reactivity equation given by equation 2.21 is replaced with a series of 

steady state neutronics calculations. In conventional quasi-steady state kinetics, a separation 

of the time and space-angle-energy dependence is assumed for the flux and precursor 

concentrations to get 

ˆ ˆ( , , , ) ( ) ( , , , )r E t n t r E t      (2.22) 

, , ,0 ,
ˆ( , , ) ( ) ( , , ) ( ) ( , , , )m i m i m iC r E t b t C r E t c t r E t   . (2.23) 

The primary goal is to isolate the space shape of the flux from the time dependence. In this 

manner, we take a solution to the steady state neutron transport equation of 

1ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ( , , )T r E r E W r E F r E
k

       (2.24) 

where the operators are defined to be 

ˆ ˆ( , , ) ( , )tT r E r E    (2.25) 

, , ,
ˆ ˆ( , , ) ( ) ( , ) ' ( , ') ' ( , ', ')i T i T i f i

i

F r E N r r E dE r E d r E          (2.26) 

ˆ ˆ ˆ ˆ( , , ) ' ' ( , , ', , ') ( , ', ')sW r E dE d r E E r E        . (2.27) 

We can also obtain the adjoint flux solution ˆ( , , )r E    for the transport equation 

* * *1ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ( , , )T r E r E W r E F r E
k

       , (2.28) 

noting that the eigenvalue between the forward (equation 2.24) and adjoint equations is 

identical.  

We write equations 2.24 and 2.28 in discrete forms thus yielding the matrix vector 

systems: 
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1

T W A F
k

       (2.29) 

 * * * * * * *1
T W A F

k
     .  (2.30) 

Looking back at equations 2.22 and 2.23, we can assume they infer 

 ˆ ˆ( , , , ) ( ) ( , , , ) ( )r E t n t r E t n t t        (2.31) 

 , , ,
ˆ( , , ) ( ) ( , , , ) ( )m i m i m iC r E t c t r E t c t t    ,  (2.32) 

we can write the time dependent transport and precursor equations as: 

     , ,

,

1
( ) ( ) ( )p m i m i

m i

A t F t n t t c t t
v t

  
 
   

 
  (2.33) 

     , , , , ,( ) ( ) ( ) ( )m i m i d m i m ic t t F t n t t c t t
t

   


 


. (2.34) 

At this point, the form is exact as the operators change with respect to time.  

Focusing on equation 2.33 first, we expand the derivative to write 

 
 

      , ,

,

1 ( ) 1
( ) ( ) ( ) ( )p m i m i

m i

tn t
t n t A t F t n t t c t t

v t v t


   


   

 
 . (2.35) 

We can similarly expand equation 2.34 to obtain 
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t c t F t n t t c t t

t t


   


  

 
. (2.36) 

In the next step, we assume the time derivative of the shape function over a given time step is 

negligible such that 

 
0

t

t





.  (2.37) 

This simplifies equations 2.14 and 2.15 to 

        , ,

,

1 ( )
( ) ( ) ( )p m i m i

m i

n t
A t F t n t t c t t t

v t
   


  


 . (2.38) 

     ,

, , , ,

( )
( ) ( ) ( )

m i

m i d m i m i

c t
t F t n t t c t t

t
   


 


. (2.39) 

To initialize the system, we assume there are an initial forward and adjoint flux solutions 0  

and 
*

0 . We weight equations 2.38 and 2.39 with the adjoint flux to get: 

     

 

 

 

* * * 1
0 0 0

, ,* *
,0 0

( ) ( )
( ) ( )

T T T

p v

m i m iT T
m i

A t t F t t t n t
n t c t

t t t

     


   

 
 


 . (2.40) 
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0
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T
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.  (2.41) 

Writing the point kinetics equations with isotopic precursor concentrations we get 

, ,

,

( ) ( )
( ) ( )m i m i

m i

n t p t
n t c t
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   (2.42) 
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, ,

, ,

( )
( ) ( )

m i m i

m i m i

c t
n t c t

t





 

 
.  (2.43) 

which are basically the same as equations 2.11 and 2.12. Comparing equations 2.42 and 2.43 

to equations 2.40 and 2.41, we find the following definitions make the two systems of 

equations equivalent: 

 

 

* 1
0

*

0

1

T
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T
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.  (2.46) 

The preference is to eliminate the operator usage in equation 2.45 in favor of the 

simple reactivity form of equation 2.45, thus we expend some effort here to show the 

transformation. First, we note the constraint imposed by 44 and assume we will see a 

normalization factor associated with      ˆt f t t    such that  
 

 

* 1
01

*

0

T

v

T

t
f t

t

 

 

  . 

Focusing just on the operator terms, we know the initial condition to be given as 

* *

0 0 0 0

0

1
(0) (0)T TA F

k
    .  (2.47) 

We can assume the perturbed operator has a steady state flux solution defined by 

* *

0 0

1
( ) ( ) ( ) ( )

( )

T TA t t F t t
k t

    .  (2.48) 

Modifying equation 2.24 to be in this form, we can write 
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. (2.49) 

Taking note of the point kinetics definitions for   and ,m i  given as 
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and the constraint imposed by equation 2.23, we can further modify equation 2.49 as 
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. (2.51) 

Clearly equation 2.51 can be made equivalent if the initial eigenvalue is 1 and the fission 

source remains unchanged over the given time step. Further manipulation to incorporate the 

exact form is difficult as the underlying ,m i  can change with time due to spectral changes in 
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the cross section data (or more unlikely, changes in fissionable material content). Focusing on 

equation 2.46, we can introduce the scaling factor and get 
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. (2.52) 

We note this does not change the fact that the inner products still have to be computed.  

2.4 Implementation 

Equations 2.42 and 2.43 form the basis of the kinetics methodology implemented into 

the PROTEUS-SN code although we note that one could make the kinetics parameters   and 

  functions of time. Focusing on the basic implementation, we have initial conditions: 
* *1
0 0 0 , , ,0 0* * * *

0 0 0 0 0 0 0 0 0 , ,0* *

0 0 0 0 0 0 0 0

1 1
T T

m i dv

m iT T

F
A F A F

k k F F

   
    

   
      (2.53) 

With the solutions to these equations and the power level  0n , we can obtain the initial 

precursor concentrations 
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,0 0

0

m

m

m

c n




 

.  (2.54) 

At the end of each time step, we obtain a steady state flux solution to the new problem 

configuration 

1
t t t t

t

A F
k

  .  (2.55) 

The eigenvalue tk  is used to define the reactivity 

1

1 1
t

t t
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    (2.56) 

which in turn is used in the point kinetics equations reiterated as: 
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.  (2.58) 

From here, we have demonstrated the necessary steps to discretize and solve equations 

2.57 and 2.58 noting that we use the option defined earlier in equations 2.16 through 2.20. As 

one would expect, one could, and in some circumstances should, update the kinetics 

parameters appearing in equations 2.57 and 2.58 with the progression in time. As an example, 

the movement of fuel out of the core or massive removal of coolant will change these 

parameters significantly relative to their initial conditions. However, given the relatively 

inaccurate approach that quasi-static kinetics poses, it is safe to assume that the changes in the 

kinetics parameters will be minor such that one only needs to update them infrequently.  
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In the PROTEUS-SN code, the kinetics input option “UPDATE_LAMBDABETA 

NO” specifies the solution of equations 2.53 through 2.58 while “UPDATE_LAMBDABETA 

YES” will alter the equations to the form: 

, ,

,

( )
( ) ( )t t

m i m i

m it
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t
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,  (2.60) 

where the kinetics parameters are updated at the end of each time step by additionally 
solving the equations 
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, , ,* * * *

, ,* *

1
T T

t t t m i d t tv

t t t t t m i tT T

t t t t t t t

F
A F

k F F

   
  

   
    . (2.61) 

It is not clear how reliable this scheme is and we suggest considerable caution when 
using either kinetics options in PROTEUS-SN. 

2.5 Numerical Examples 

While several verification test problems were created, we only present one here for 

brevity and note that we were unable to include the new version into the coupled physics 

milestone due at the end of the year. Figure 2.1 shows the geometry definition for the 2D 

benchmark we used to verify the PROTEUS-SN transient capability where the bottom and left 

boundary conditions are reflected and the top and right boundary conditions are void. 

 

 

 
Figure 2.1. Two-Dimensional Fast Reactor Geometry used in Transient Benchmark 
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One can see that Figure 2.1 is a rather simplistic reactor geometry and that the part of interest 

for this work is the change in the composition of the control rod. The benchmark problem 

came with 3 group fast spectrum cross section data and 2 delay families rather than the typical 

33 group cross section data and 6 delay families. The details of the cross section data are 

neglected for brevity. Table 2.1 shows the transient setup for the kinetics problem associated 

with Figure 2.1 along with the steady state eigenvalue solutions and computed power. Figure 

2.2 plots the detailed power distribution over the 100 second time frame where the short term 

effects occurring in the first 0.04 seconds are given on the left and the long term transient 

change is given on the right. 

 

Table 2.1. Time Dependent Control Rod Changes and Resulting Kinetics Power 

Time (seconds) Fractional 

Control Rod Insertion 

Steady State 

Eigenvalues 

Computed 

Power (Watts) 

0.0 0.0%  100.0 

0.0005 2.5% 1.17714 95.1 

0.0010   85.3 

0.0100   84.3 

0.0105 5.0% 1.17638 80.7 

0.0110   74.1 

0.0200   73.5 

0.0205 7.5% 1.17562 70.6 

0.0210   65.5 

0.0300   65.1 

0.0305 10.0% 1.17493 62.9 

0.0310   59.1 

0.0400   58.9 

0.0405 12.5% 1.17422 57.0 

0.0410   53.9 

0.0500   53.7 

0.0750   53.4 

0.1000   53.1 

0.2000   52.3 

0.5000   49.8 

1.0000   45.9 

2.0000   40.7 

5.0000   34.4 

10.000   30.0 

100.000   13.3 
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Figure 2.2. Transient Power Change Over Time 

As can be seen in Figure 2.2, the ~300 pcm change in the eigenvalue spread out over five time 

steps has the characteristic prompt neutron drop followed by the gradual decay. This result is 

exactly the expected result from theory and we note that increasing or decreasing the control 

rod “insertion” alters the power as one would expect. This benchmark was chosen because it 

could easily be verified using the PERSENT perturbation theory code [10-16] at each steady 

state configuration. The initial Λ and β from PERSENT were computed to be 5.03·10
-7

 and 

0.00325 while PROTEUS-SN found them to be 5.07·10
-7

 and 0.00324. The difference is 

believed to be a consequence of the space-angle refinement and was not investigated further 

in this work. The same quantities at the end of the calculation are 5.04·10
-7

 and 0.00324 

which is not unusual given the relatively small material change made to the system.  

 

 

 

  
Figure 2.3. Initial (Left) and Final (Right) Normalized Power Profiles  
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Figure 2.4. Power Shape at Select Time Points 
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Figure 2.3 plots the normalized radial power profiles from the beginning and end of 

the calculation to highlight the impact of the asymmetric control rod “insertion.” Figure 2.4 

shows selected plots of the power distribution over the first 10 seconds combining the radial 

shape with the reduction in power seen in Figure 2.3. Finally, Figure 2.5 shows the overall 

change in the power from the initial condition to the final condition. Starting with Figure 2.4, 

one can clearly see the impact of the control rod “insertion” as a localized alteration of the 

flux profile near the modified control rod position. Looking at Figure 2.4, clearly the power 

drop dominates the radial shape changes in the flux magnitude over the time scale and thus 

mostly obscures the ability to see the build in of the radial shape change. However, looking at 

time step 0.0105 seconds, one can clearly see that an asymmetry in the flux solution near the 

control rod indicating that the radial shape change is almost immediate. With regard to Figure 

2.5 we only included it for completeness and to denote the fact that PROTEUS-SN transient 

capability can be used for short term and long term transient modeling. 

In general, the actual shape changes in the flux distribution are hard to discern on 

kinetics problems due to the relatively small magnitude insertion being studied. In this case, a 

300 pcm insertion of reactivity is nearly prompt sub-critical. For problems with rather minor 

changes in the radial profile such as this one, we can expect the quasi-static kinetics scheme to 

be very accurate even with its known limitations. No additional effort was taken to investigate 

the accuracy of this calculation relative to other kinetics codes or a known reference solution. 

 

   
Figure 2.5. Initial (Left) and Final (Right) Power Shape  

3 Methodological Work 

The most concerning part of the preceding PROTEUS-SN transient work is that there 

was insufficient time to verify or validate that it was the appropriate approach to follow. 

There are considerable issues with deterministic transport codes associated with transitioning 

from an assembly homogenized methodology to a fully heterogeneous one and making 

assumptions about the dynamics modeling capability will have serious consequences with 

regard to solution accuracy. The consistent problems we have had with defining cross sections 

for these heterogeneous calculations over the past three years along with the inadequacies of 
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the quasi-static kinetics and even-parity discrete ordinate methodology make it hard to 

promote the PROTEUS-SN development within the broader neutronics community.  

In an attempt to fix one of these issues, we have started research on alternative 

methodologies that resolve the condition number issues which plague the even-parity method. 

To date, we have spent time researching scalable multigrid preconditioners for FEM 

discretizations of the even-parity transport equation [18]. From our experiences, the second-

order forms (even-parity or self-adjoint angular flux) become ill-posed or severely ill-

conditioned when applied to strongly heterogeneous media with fine spatial meshes along 

with any problem containing low density (void) regions. To counter these problems we 

investigated a family of Least Squares (LS), Generalized Least Squares (GLS), and stabilized 

continuous Galerkin (SUPG) FEM formulations. The motivation of course is to take 

advantage of the past research on the even-parity transport equation that was demonstrated to 

be well posed for petascale and beyond architectures. 

To understand the basics of the SUPG continuous FEM discretization, we will only 

consider the within group neutron transport equation, since the multi-group energy and 

discrete ordinates (SN) based angular discretizations yield a coupled set of similar discrete 

equations. 

Ñ×Ŵy(r ,Ŵ)+ S
t
(r )y(r ,Ŵ) = S(r ,Ŵ) ,  (3.1) 

where the composite source 

S(r ,Ŵ) =W (r ,Ŵ)+F(r ,Ŵ) = dWò S
s
(r ,Ŵ'×Ŵ)y(r ,Ŵ')+F(r ,Ŵ), (3.2) 

can be considered to consist of scattering, W (r ,Ŵ) , and a fixed source F(r ,Ŵ) . With SN 

angular discretization, this can be considered a set of coupled equations of the form 
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In this context, the weak form of Equation 3.1 can be written as: 
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(r )( )  represents a volumetric stabilization term for which we 

studied three formulations: 
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The most obvious difference between the LS, SUPG and GLS is the lack of a   factor. This 

factor in SUPG and GLS is used to introduce an element-wise stabilization to improve the 

condition number and reduce the non-physical oscillations. Of course without such a factor, 

the LS is observed to be well applicable to void regions due to excess artificial diffusivity, but 

it fails to address the underlying condition number problems associated with widely varying 

cross section values in the domain. In this regard, we dropped the LS as a potential option and 

focused the remainder of the work on studying the GLS and SUPG methodologies.  

Because of limited funding this year, the above formulation is only implemented in a 

test code that solves a one-speed fixed source problem. While this does limit the problems 

that can be studied, we can use this test code to investigate most of the issues that would result 

when applied to a full scale heterogeneous reactor problem by carefully understanding the 

issues arising in PROTEUS-SN. In the current report, we only summarize the work that was 

included in a recently published paper [17]. 

3.1 A Test Problem to Verify Spatial Mesh Convergence  

The first problem studied using the test code has an assumed manufactured solution 

for each direction n in the set of directions N, given as  

y
n
(r ) =

N +1( )
2

sin
p × x

L

æ

è
ç

ö

ø
÷sin

p × y

L

æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú.  (3.6) 

In Equation 3.6, L is the spatial length of the square 2-D domain, which has all void boundary 

conditions. For simplicity, a total macroscopic cross-section of 0.1 cm
-1 

and scattering ratio of 

0.5 was used. The purpose of this test problem is to display the spatial convergence of the 

methodology and ensure that no problems arise with the formulation with progressive mesh 

refinement. In addition to SUPG and GLS, we also coded up the even-parity (EP) 

methodology that PROTEUS-SN is based upon along with the standard discontinuous 

Galerkin methodology (DG) that forms the bulk of all SN-based transport solvers for the past 

30 years. 

Figure 3.1 shows the solution accuracy convergence of linear quadrilateral FEM 

meshes with the various formulations. Since the analytical solution for the problem is known 

a-priori, we can compute the global solution accuracy in L2 norm via integrals with high order 

quadrature. It is evident from the plot that the DG formulation yields the correct numerical 

order of convergence as expected from theory, O(h
2
) where h is the element size. The 

stabilized Galerkin methods namely SUPG and GLS have comparable convergence to the DG 

scheme and are as accurate with lesser degrees-of-freedom (DOF). On the other hand, the 

even-parity formulation clearly has consistently more error although it maintains a nearly 

quadratic rate of convergence with uniform refinement. The initial slow convergence of the 

even-parity method has also been observed with PROTEUS-SN and is due to the poor 

evaluation of the double derivative integral that linear basis functions provide.  

Figure 3.2 shows the convergence of cubic quadrilateral FEM meshes where the 

expected theoretical convergence rate is O(h
4
). Once again, all the formulations tested yield 

the expected convergence order as the mesh is uniformly refined. From both Figures 3.1 and 

(3.2), we can conclude that the implementation of the SUPG and GLS formulations are 
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consistently accurate and note that the SUPG and GLS methods produce identical 

convergence plots for all cases. This is an artifact of the choice of total cross-section Σt < 1 

which suppresses the impact of the additional term in the GLS scheme. In numerical 

experiments, it was observed that the GLS stabilization yields much less numerical dispersion 

when a larger total cross-section is used and is generally more accurate than the SUPG 

method. 

  

 
Figure 3.1. Spatial Convergence of Linear Basis Functions 

 

 
Figure 3.2. Spatial Convergence of Cubic Basis Functions 

3.2 A Test Problem to Investigate Condition Number Issues 

The second test problem has been designed specifically to analyze the effect of 

material property variations on the condition number of the formulation, since truly 
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heterogeneous problems will have large jumps in material properties. The domain for the test 

case is a checkerboard layout of cross section data shown in Figure 3.3. An isotropic source is 

imposed in the central square as indicated by the “S” and unless otherwise specified, all 

discretizations are performed using finite elements with linear basis functions. The purpose of 

this test is to measure the condition number of the bilinear operator, which can provide 

insights about the particular methodology: 1) can solve the operator to obtain an accurate 

solution and, 2) the solution procedure can be computed with a reasonable amount of 

computational effort.  

As an example, for the even-parity methodology, the inclusion of a low-density region 

has caused the condition number of the overall system to observably increase and while not 

precluding a meaningful solution, the computational cost involved in getting that solution 

dramatically increases. For all methodologies, the weak form of the streaming-collision 

operator is explicitly formed and its highest and lowest singular values are measured based on 

the singular value decomposition (SVD) method with QR deflation [20]. 

 
 

 
Figure 3.3. Checkerboard Problem Domain with Alternating Low (blue) and High (red) 

Material Cross Section 

 

In general, we can state that any methodology with a high condition number (>10
8
) 

has limited practical use. For all of the test cases we consider here, we take the DG-FEM 

methodology as the reference with respect to both the solution and “best” condition number 

estimate. We introduce the parameter (µ) as the ratio of largest to smallest cross-section as a 

gauge for this problem as the condition number can be shown to be a function of µ. Figure 

(3.4) plots the computed condition numbers of all four methodologies when the total cross 

section values are 1.0 (red) and 0.1 (blue) while Figure 3.5 plots the results for total cross 

section values of 1.0 (red) and 0.001 (blue).  
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Figure 3.4. Condition Number Variations Depending on µ=10 for All Methods (DG, EP, 

SUPG, and GLS) 

 

 
Figure 3.5. Condition Number Variations Depending on µ=1000 for All Methods (DG, EP, 

SUPG, and GLS) 

Focusing first on the EP methodology, one can easily see that the condition number 

becomes considerably worse from Figure 3.4 to Figure 3.5 increasing by a factor of 100 at 

100000 DOFs. This is consistent with the observed behavior of PROTEUS-SN where the 

required iterations to converge a given problem transition from a few thousand to a few 

million. The condition number for the EP method increases as O(h
2
µ

2
), whereas the condition 

number of the DG  operator is observed to be O(hµ
0.25

). This clearly indicates that the cross 

section values in even-parity based codes (and by extension self-adjoint angular flux or dual 
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parity codes) are strongly restricted which translates to serious consequences when modeling 

heterogeneous geometry. The SUPG and GLS stabilized approaches perform nearly identical 

and have a comparable condition number with our reference DG operator. Similar to DG, we 

can estimate the condition number of SUPG and GLS to proportionally change as O(hµ
0.25

).  

From Figure 3.4 and 3.5, it is clear that SUPG and GLS forms offer considerable 

improvements over the even-parity methodology and are a competitive alternate to DG 

formulation. This does not mean that SUPG and GLS can unconditionally give better 

solutions than DG, but only that the condition number issues we experienced with the even-

parity based PROTEUS-SN can be resolved by switching the formulation to SUPG or GLS. 

There is still considerable research that needs to be performed on these methods to determine 

the optimal amount of stabilization needed in the context of routine reactor analysis problems 

where the DG and the EP methodologies have been validated before. Unfortunately, further 

research efforts will not be part of NEAMS scope due to the recent change in focus. 

3.3 Assessment of the SUPG and GLS Operators 

The even-parity (EP), self-adjoint angular flux (SAAF), stabilized upwind Petrov-

Galerkin (SUPG), least squares (LS), and generalized least squares (GLS) methodologies can 

all be represented using a similar set of element-wise operators. First, we define a modified 

version of equation 3.3 to encompass all forms including SAAF (but not EP) as 
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We next assume each methodology has a weak form discretization for each element and 

direction of the form 
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where the constants needed for each method are defined in Table 3.1. 

 

Table 3.1. Primary Coefficient Matrix Constant Definitions for Various Methodologies 

Methodology   1a  2a  3a  4a  5a  

SAAF (self-adjoint angular flux) 1 0 0 0 0 1 

SUPG (Stabilized Upwind Pet. Gal)   0 1 0 1 1 

GLS (Galerkin Least Squares)   1 1 1 1 1 

LS (Least Squares) 1 1 1 1 0 ,t e  

SGS (Sub-Grid least Squares   1 1 -1 1 1 
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In its present form, PROTEUS-SN assembles the element matrices defined by equation 3.9 as 

part of its preconditioner and applies them as part of a matrix-free CG based solution 

algorithm. At issue is that the performance of the assembled matrix-vector preconditioner 

system is very poor; it achieves a mere 3-5% of the peak performance of the machine and it 

consumes a bulk of the available memory on the computer which limits the modeling ability 

of PROTEUS-SN by restricting the fidelity of the cross section data and geometry. The 

approach taken for the matrix-free coefficient application was observed to have even worse 

peak performance as the approach taken was not focused on performance, but only 

functionality. 

Part of the previous year’s work was to start looking at replacing the inefficient 

solution algorithm of PROTEUS-SN with a spatial multi-grid preconditioner system [18]. In 

that work, we narrowed down the focus on doing tetrahedral tessellation of the 3D mesh with 

multiple levels of structured grid preconditioners based upon our earlier observations. In each 

level of the system, we utilize the operator defined by equation 3.9, but because we choose to 

limit the operator application to tetrahedral and structured hexahedral meshes, we can take 

advantages of the matrix properties to improve the computational efficiency. Taking 

tetrahedral elements as an example, the spatial matrices defined by equation 3.9 can be broken 

into the component pieces: 
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As can be seen, the tetrahedral spatial matrices can be reduced into a series of Boolean 

matrices followed by scalar which are very sparse. While multiplications and additions are 

equivalent in terms of cost, one should note that on a row wise basis, there are only a few 

unique Boolean operations and we can further combine the coefficients as an option. The goal 

of course is to minimize the work done to apply the operator and the memory footprint 

required to process it. 

3.4 Performance Results of the Tetrahedral F matrix 

As part of the work to study this aspect, we investigated the performance issues 

associated with implementing the coefficient matrix-vector application in several matrix-free 

ways. Using PAPI (Performance Application Programming Interface) to instrument the source 

code, we began with a simplified version of equation 3.9, which we took the A matrix to have 

only one component matrix (the F matrix, mass matrix or T1 matrix). Thus, the application of 

the simplified A matrix to a vector can be written as 

, , , , 1 , ,e a g e a g e a gY T X  .  (3.14) 

Note that energy and angle are treated identically in this case. There are several ways to 

implement equation 3.14, the most naïve of which is to form and store the spatial matrix: 

 

 
Figure 3.6. Matrix Based “Apply F” for a Single Angle and Single Energy Group 

The equivalent form for matrix-matrix products is clearly better for higher order finite 

element approaches, but since we are only interested in linear tetrahedrons which have a 

constant Jacobian, the matrix-free equivalent can be written as: 

 

 
Figure 3.7. Matrix-free “Apply F” for a Single Angle and Single Energy Group 

In the above example, the F matrix is known to be the constant four by four matrix for linear 

tetrahedrons: 

DO E = 1,NumElements 

 ! 2 loads to resolve (1,E) and 1 load to get X(1,E) = 3 loads 

 ! 2 loads to resolve (E) and 1 load to get C(E) 

 ! We have four lines of code which constitute 

 !(3)*4 + (3)*4 + (3      3       3      3     3)*4 = 84 loads 

   Y(1,E) = C(E)*(X(1,E)+X(1,E)+X(2,E)+X(3,E)+X(4,E)) ! 5 flops and 1 store 

   Y(2,E) = C(E)*(X(2,E)+X(1,E)+X(2,E)+X(3,E)+X(4,E)) ! 5 flops and 1 store 

   Y(3,E) = C(E)*(X(3,E)+X(1,E)+X(2,E)+X(3,E)+X(4,E)) ! 5 flops and 1 store 

   Y(4,E) = C(E)*(X(4,E)+X(1,E)+X(2,E)+X(3,E)+X(4,E)) ! 5 flops and 1 store 

END DO ! 1 Int E++, 1 Branch, 1 load/store for E and 1 load for NumElements 

DO E = 1,NumElements 

   DO V = 1,4 

      Y(V,E) = 0.0d0 

      DO VV = 1,4 

         Y(V,E) = Y(V,E) + C(E)*F(VV,V,E)*X(VV,E) ! 3 flops 

      END DO 

   END DO 

END DO 
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The constant values are substituted in rather than stored for every element in the matrix-free 

form. However, to optimize vectorization, the ideal approach should reverse the index 

ordering to have the “Element” index on the inside: 

 

 
Figure 3.8. Alternate Matrix-free “Apply F” for a Single Angle and Single Energy Group 

Examining these three code implementations can be instructive as it gives us the basic 

understanding of how the compiler is modifying the code and how PAPI measures 

performance.  In all three cases, the number of flops is easy to determine as the hardware 

counter only considers floating point operations. The loads and stores are much more 

complicated and we only can assert some aspects of what is required to get data. For any of 

the above implementations, we can state: 

 Access of C(E) requires 1 base pointer address load, 1 offset value to load, and 1 load 

for the actual array value (total of 3 loads). 

 Access of X(1,E) or Y(1,E) requires 1 base pointer address load, 1 offset value to load, 

and 1 load for actual array value (total of 3 loads). There is additional pointer math 

that occurs which should involve an intermediate load and store, but there are several 

options for each version. 

 Loading the index variables E and NumElements (total of 2 loads) 

With these guidelines, we included the best idea of how the loads are distributed for the 

matrix-free scheme in Figure 3.7 for an un-optimized compilation. As will be shown shortly, 

our crude breakdown is not entirely accurate or representative, but it is reasonably close. 

Using the Intel 12.1 compiler, the three coding approaches were compiled using –O0 

(un-optimized) and the flops, loads, and stores were measured using the following PAPI 

(version 5.1.1) events on Theo, an Intel Xeon X5760 chip. We note that some of these are 

averages as the measurements in PAPI did fluctuate slightly depending upon runtime issues 

(i.e. random noise). 

 

PAPI_FP_INS: Floating point instructions executed 

PAPI_LD_INS: Load instructions executed 

PAPI_SR_INS: Store instructions executed 

 

DO E = 1,NumElements 

   Y(E,1) = C(E)*(X(E,1)+X(E,1)+X(E,2)+X(E,3)+X(E,4)) ! 5 flops  

   Y(E,2) = C(E)*(X(E,2)+X(E,1)+X(E,2)+X(E,3)+X(E,4)) ! 5 flops  

   Y(E,3) = C(E)*(X(E,3)+X(E,1)+X(E,2)+X(E,3)+X(E,4)) ! 5 flops  

   Y(E,4) = C(E)*(X(E,4)+X(E,1)+X(E,2)+X(E,3)+X(E,4)) ! 5 flops  

END DO 
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Table 3.2. PAPI Measurements of Matrix Based “Apply F” (-O0) 

Number of 

Elements 

0 

(Overhead) 
1 2 3 4 1000 

FLOPS 0 32 64 97 129 32080 

Loads 57 368 679 990 1301 311066 

Stores 35 81 127 173 219 46044 

 

Table 3.3. PAPI Measurements on Matrix-free “Apply F” (-O0) 

Number of 

Elements 
0  

(Overhead) 
1 2 3 4 1000 

FLOPS 0 20 40 60 80 20120 

Loads 57 140 223 306 389 83064 

Stores 35 40 45 50 55 5042 

Table 3.4. PAPI Measurements on Alternate Matrix-free “Apply F” (-O0) 

Number of 

Elements 
0  

(Overhead) 
1 2 3 4 1000 

FLOPS 0 20 40 60 80 20072 

Loads 57 189 321 453 585 132064 

Stores 35 41 47 53 59 6042 

 

From Tables 3.2 through 3.4, we can see there is a clear improvement in the number of 

FLOPS from the matrix based approach to the matrix-free approaches, but virtually no 

difference between the two matrix-free approaches again noting that we observed spurious 

noise in the PAPI_FP_INS measurement. More important than the reduced number of FLOPS 

was the observed factor of 4 reduction in the loads between matrix-based and matrix-free 

methods, and the factor of 2.4 reduction for the alternate matrix-free one. The reduction in the 

number of stores is even more significant, yielding a factor of 9 reduction from the matrix 

based approach to the matrix-free approach and a factor of 7.7 reduction for the alternate 

matrix-free approach. This can be explained as the elimination of the initialization line and the 

extra do loop that appears in Figure 3.6 relative to Figures 3.7 and 3.8. We can summarize the 

data in Tables 3.2 through 3.4 in Table 3.5. We note that all three options display a poor 

bytes/flop ratio given that we desire the ratio f to be near or less than 1.0 as will be shown 

later.  This ratio represents the amount of data to be moved per floating point operation. In 

future architectures, the expense of memory movement will continue to outgrow the expense 

of floating point operations. We therefore wish to significantly reduce data loads and stores 

required per floating point operation.  

Table 3.5. Summary of PAPI Measurements of –O0 for “Apply F”. 

Version Standard Matrix-Free 
Alternate  

Matrix-Free 

FLOPS / element 32 20 20 

Loads / element 311 83 132 

Stores / element 46 5.0 6.0 

(Loads+Stores)/FLOPS 11.2 4.4 6.9 

f = bytes/flop 90 35 55 
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With respect to our estimated number of flops, loads, and stores in Figure 3.7, Table 

3.5 indicates that the flops and stores are consistent with our understanding of the algorithm 

while the total number of loads (86 versus 83) is somewhat incorrect. This is understandable 

given that we did not look at the object or assembly level coding generated by the compiler 

and it is not clear how the pointer math is being done. The increased number of loads seen in 

Table 3.4 (alternate matrix-free) compared with Table 3.3 (matrix-free), can be attributed to 

the compiler being able to reuse the pointer math variables rather than calculating each 

pointer address uniquely.  

The preceding measurements were done to ensure that we could understand where the 

loads, stores, and flops were coming from the actual source code we were writing. From here, 

we investigated the optimized results for the same three pieces of coding. Tables 3.6 through 

3.8 provide the same PAPI measurements for the three pieces of coding using “-O3” and 

Table 3.9 summarizes the data similar to that done in Table 3.5. 

 

Table 3.6. PAPI Measurements of Matrix Based “Apply F” (-O3) 

Number of 

Elements 

0 

(Overhead) 
1 2 3 4 1000 

FLOPS 0 32 32 64 64 16005 

Loads 56 92 156 191 251 48067 

Stores 31 39 75 82 114 20042 

Table 3.7. PAPI Measurements on Matrix-free “Apply F” (-O3) 

Number of 

Elements 
0  

(Overhead) 
1 2 3 4 1000 

FLOPS 0 7 16 21 28 7060 

Loads 53 61 71 80 89 9060 

Stores 28 31 36 40 44 4035 

Table 3.8. PAPI Measurements on Alternate Matrix-free “Apply F” (-O3) 

Number of 

Elements 
0  

(Overhead) 
1 2 3 4 1000 

FLOPS 0 20 20 37 41 10335 

Loads 58 62 64 73 69 3064 

Stores 33 36 41 46 48 4039 

Table 3.9. Summary of PAPI Measurements of –O3 for “Apply F”. 

Version Matrix Based Matrix-Free 
Alternate  

Matrix-Free 

FLOPS / element 16 7.1 10 

Loads / element 48 9.1 3.1 

Stores / element 20 4.0 4.0 

(Loads+Stores)/FLOPS 4.3 1.8 0.71 

f = bytes/flop 34 14 5.7 
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To begin, the PAPI overhead between optimized and unoptimized compilations is 

nearly constant and thus can be ignored. From there, we can consider the matrix based results 

in Table 3.6 and compared against its companion results in Table 3.2. One can clearly see that 

optimization (vectorization) of the matrix-based version reduces the flops and stores by a 

factor of 2 from the un-optimized version, and the loads by a factor of 6.5. While this is good, 

at best it brings us to the performance of the un-optimized version of the matrix-free approach 

with respect to f. The matrix-free approach, which is the equivalent of hand unrolling the 

matrix based approach and hard wiring the matrix coefficients, shows comparable 

improvement in performance to the matrix based approach. The number of flops is reduced by 

2.3, the loads by 9.2, and the stores are relatively unchanged. The most improved approach is 

the alternative matrix-free approach which sees a factor of 2 reduction in flops, a 42-fold 

reduction in loads and 1.5-fold reduction in stores. Comparing the numbers to each other in 

Table 8, we can clearly see the ratio f is approaching the desired 1.0 or less target but it is still 

considerably high. 

To understand the importance of f, we must look at the performance which we define 

as  

( )

Flops
P

Time s
 ,  (3.16) 

where the best possible performance is the ratio of the clock speed 2cycleR GHz  to the clock 

cycles per flop of 1f

cycles
T

flop
  

2
cycle

Peak

f

R Gflops
P

T s
 .  (3.17) 

The number of flops is generally fixed given a targeted problem size and a given algorithm, 

but the time required to execute those flops is dependent upon how the problem size and 

algorithm coding interacts with the machine hardware.  

One way of estimating the time required to execute a given number of flops is to use 

 
1

1 1

1

( )
J

f j j j

j

Time s Flops T t Loads t t M






       , (3.18) 

which assumes J-1 levels of cache with “J” inferred as the main memory index of the 

machine. In equation 3.18, 1t  represents the average time required to retrieve a single floating 

point value from L1 cache (the closest cache to the core processing unit) and load it into the 

CPU register. Similarly, the variables 2 3 1, , , Jt t t   represent the average time required to 

retrieve a single floating point value from the higher level caches and transfer it to the CPU 

register. The value jM  stated simply is the total number of cache misses that occur in Cache j 

as a result of performing “Loads” worth of data from memory into the registers such that 

Flops worth of work can be done. The advantage of this performance model is that it allows 

one to abstract how an entire code actually interacts with the machine memory hierarchy. It 

therefore relies upon multiple measurements to determine values for 1 2, , , Jt t t . While this is 

a great idea to use for a full code, our usage of them for a single subroutine is not as good 

because these numbers are fundamentally tied to the memory usage of each subroutine within 
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a broader code and the typical measurements are generic in their purpose. As such, this 

performance model does not directly inform us as to the importance of our specific coding 

decisions, but allows us to assess them in a generic fashion. 

Another way to think about the performance model is to build it up from the ideal case 

to the most complicated level. First we break a given piece of coding into a series of floating 

point instructions I  and assume the memory needed by those instructions is housed entirely 

in L1 cache which is the case for the measurements done in Table 3.2 through Table 3.8. In 

this case we can write the time required to execute those instructions as: 

 1 1

1

( )
I

i i f i

i

Time s L t F T S t


      .  (3.19) 

In equation 3.19, iL  represents the number of loads per floating point instruction while iF  

represents the number of floating point operations there are per instruction (single operation 

versus a vector operation) and iS  represents the number of stores per instruction. In this form, 

we assume the time required to perform a load and store are equivalent although we note that 

there are architectures where a store requires less time than a load. We also point out that for 

any given instruction there can be no flops, no loads, and no stores and equation 3.19 is just a 

generic representation. In this approach we can account for how the coding interacts with the 

memory hierarchy with regard to reuse of memory over multiple consecutive floating point 

instructions by including a unique counter of loads and stores for each instruction. As an 

example, we can consider a coding instruction from the top of Figure 4.3 to be broken into the 

three possible load/store/flop scenarios as shown in Figure 3.9. 

 

 
Figure 3.9. Example Coding Instruction and Load/Store/Flop Implementations 

As seen in Figure 3.9, we can deduce several floating point instructions and 

approaches to using memory based on assumptions about how the machine will translate our 

lines of code. From this example, we can also see how memory reuse in the register could 

impact the net number of loads and stores. What actually transpires from the coded instruction 

into the potential paths of floating point operations is of course platform and compiler 

dependent, and this example demonstrates that we cannot realistically build a performance 

model without understanding how the coded instruction is actually translated. The large 

differences between un-optimized results (Table 3.2 through Table 3.4) and optimized results 

(Table 3.6 through Table 3.8) indicate how difficult it is to accomplish this task. 

In the previous section, we used PAPI to measure the actual loads, stores, and flops 

resulting from a sequence of coding statements on a given platform. We can translate this 

from a targeted set of instructions in a subroutine represented by equation 3.19 to an average 

relationship as  

Y(i) = C(i)*X(i) + B(i)*X(i) ! 12 loads, 1 store, & 3 flops 

! or 

temp = C(i)*X(i)      ! 7 loads, 1 store, & 1 flop 

temp2= B(i)*X(i)      ! 4 loads, 1 store, & 1 flop (X is still in register) 

Y(i) = temp + temp2   ! 4 loads, 1 store, & 1 flop (temp2 is still in register) 

! or 

temp = C(i)+B(i)      ! 5 loads, 1 store, & 1 add 

Y(i) = temp * X(i)    ! 4 loads, 1 store, & 1 flop  (temp is still in register) 
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1 1( ) a a f aTime s L t F T S t      .  (3.20) 

We note how similar this is to the first two terms in the performance model of equation 3.18, 

but rather than use it in that way, we want to equate it to the measured behavior of our routine 

and thus define the intermediate constant 

1 1

1

1 1a a
f f a

a a f

L S
t T f t T P

P F f t T


       

 
, (3.21) 

where aP  is the flops/cycles for the test subroutine when the memory fits entirely within L1 

cache. If we assume 1 1
cycle

t
byte

 , then we can re-summarize the performance of our earlier 

routine as shown in Table 3.10. Comparing this with the peak performance of 2 GFlops/s, we 

can see why the desired goal is to minimize f in equation 3.21 as our best routine gets a mere 

15% of the peak performance (0.3/2 = 0.15) 

Table 3.10. GFlops/s Estimate Using the Simplistic L1 Cache Performance Model. 

 
Version Matrix Based Matrix-Free 

Alternate  

Matrix-Free 

Un-optimized f  90 35 55 

GFlops/s 0.02 0.05 0.04 

Optimized  f  34 14 5.7 

Gflops/s 0.05 0.13 0.30 

The preceding analysis is itself a small amount of the work that goes into optimizing a 

code. We note the performance model is not complete and has not been directly compared 

against the measured flop rate on the machine for the subroutine. Because of the complexity 

of the proposed algorithm for rebuilding PROTEUS-SN and the time required to study just 

the simple preceding subroutine, one can understand the actual rebuilding process will take a 

considerable amount of time. In the end, while it was easy to get an initial version of 

PROTEUS-SN working by using the off-the-shelf product PETSc [19], to meet the functional 

needs of a NEAMS coupled dynamics product one has a considerable amount of research to 

carry out to build a quality production level tool that can compete with the plethora of existing 

reactor analysis tools available to potential users. 

4 Conclusions  

For coupled multiphysics time-dependent simulations, a quasi-static kinetics 

methodology was derived and added to the PROTEUS-SN code. In the method, the point 

kinetics parameters are updated at each time step via a steady-state forward and adjoint flux 

calculation. This kinetics methodology should be sufficient to meet the needs of current 

NEAMS transient analysis until a more rigorous kinetics methodology can be implemented. 

An initial verification test was performed using a two-dimensional numerical benchmark 

problem in which the control rod was inserted in 0.04 sec and the power was traced up to 100 

sec. By comparing the kinetics parameters with the conventional methods, the transient 

capability of PROTEUS-SN has been verified to be working correctly. 
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In addition to building a transient capability, we spent time researching an alternate 

methodology for the PROTEUS-SN code based upon Stabilized Upwind Petrov-Galerkin 

(SUPG) and Generalized Least Squares (GLS) methods. The fundamental problem with the 

even-parity methodology is the increase in the condition number associated with mesh 

refinement and low density regions. A test code utilizing PETSc was built to compare the 

SUPG and GLS formulations against the even-parity and the standard discontinuous-Galerkin 

methodologies. The results of this work reproduced the observed problems with the even-

parity methodology and demonstrated that both the SUPG and GLS schemes can avert the 

condition number issues seen in the even-parity method. Further, the SUPG and GLS schemes 

were shown to be consistent with the discontinuous Galerkin method in that neither has a 

distinct advantage with respect to accuracy or condition number although our test problems 

for accuracy estimations were simple. In summary, both the SUPG and GLS continuous finite 

element schemes pose valid research alternatives to the even-parity methodology embedded in 

PROTEUS-SN. 

The final piece of work done was to demonstrate the effort required to take the 

PROTEUS-SN code from its current limitation of 10
12

 degrees of freedom with inefficient 

usage of the computing resources to the 10
14

 degrees of freedom with efficient usage of the 

computing resources. In our work, we focused on rewriting a conventional matrix-vector 

operation which has notoriously high memory requirements and poor computing efficiency 

with an alternative matrix-free scheme that improves the overall efficiency by a factor of 6. 

The conclusions we can draw from this work is that the optimization of PROTEUS-SN solver 

with the stabilized Galerkin methods and matrix-free approaches will need further research 

effort, but significant reductions in memory storage and improvements in performance can be 

achieved such that the large dynamics problems of interest can be accomplished in the near 

future. 
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