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1. Introduction 

 MOCFE-Bone is a mini-application that simulates the main procedures in a 3D method of 
characteristics (MOC) code for numerical solution of the steady state neutron transport equation.  3D- 
MOC was chosen as a specific methodology of interest in exascale computing for nuclear reactor 
applications because of its heterogeneous geometry capability, high degree of accuracy, and potential for 
scalability. 

 In developing the mini-app, we focused on emulating the behavior of a production 3D MOC tool 
without requiring the input overhead associated with such a code. The MOCFE code [1] at Argonne 
National Laboratory was used to investigate and characterize the behavior of the mini-app; the results of  
are presented here. Note that the existing MOCFE code resulted from research forays into the potential of 
3D-MOC for large scale parallelism and is not a production level tool nor is it optimally implemented. 
Parts of the mini-app therefore reflect lessons learned and represent how a production-level tool would be 
written from this point forward rather than simply duplicating MOCFE, which has known scalability 
issues (i.e. parallelization in energy). 

2. Purpose 

 MOCFE-Bone is not meant to provide actual solutions to a given problem, as it does not properly 
connect the systems of equations. MOCFE-Bone simulates the communication and computational 
requirements of a 3D-MOC production code in correct proportions for use on different architectures.  It 
requires only a few command line arguments to run.  This document describes how to access, compile, 
and use the mini-app.  

3. MOCFE-Bone Description 

 We briefly describe the MOC methodology, discuss the features of MOCFE-Bone, and draw 
comparisons between its behavior and a production 3D MOC code. 

3.1 Methodology 

 The (steady-state) neutron transport equation describes the neutron flux as a continuous function 
of energy, angle, and space. We choose to use a deterministic formulation which requires the creation of 
effective multi-group cross sections, the details of which are beyond the scope of this report other than to 
state that they exist in a form where one can get representative solutions to the multigroup equation 

,
1 ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ) ( ) ( , , ) ( , , )g g t g g g
g

r t r t r r t S r t
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∂
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Numerous methods, including MOC, have been successfully used to discretize and solve this equation in 
these three spaces. In all of the codes a mesh of some form is used to identify different materials in the 
domain. MOCFE and MOCFE-Bone both rely on a finite element mesh.  

 The main difference between MOC and other approaches is that MOC solves Eq. (1) along 
straight, parallel lines that traverse the problem domain (as opposed to using the finite element method as 
an interpolative basis). First, the angular variable in Eq. (1) is discretized into set of directions derived 
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from an angular cubature, an example of which is shown in Figure 1. In the figure, the black dots show 
the points where a given direction intersects the unit sphere and the coloring shows the weights assigned 
to each direction (needed to integrate the scattering kernel).  

 
Figure 1. Angular cubature on the unit sphere. 

 For each direction, a series of straight lines, termed characteristic lines or trajectories, are laid out 
on the geometric domain as shown in Figure 2. As one can see in Figure 2, the trajectories are not equally 
spaced through the domain. 

 
Figure 2. Example of characteristic lines traversing a finite element domain. 

The introduction of characteristic lines turns Eq. (1) into T coupled differential equations for each 
direction where T  is the total number of characteristic lines for a given direction. (Technically the number 
of trajectories T can be different for each direction, but we assume an average value here.)  If N is the 
number of directions in the cubature, the N·T equations are coupled together on an element-wise basis by 
the scattering (and fission) source kernel.  

  The advantage of MOC is that each characteristic line is an independent differential equation that 
has a simple analytical solution. Each trajectory is assigned an area such that the set of trajectories 
crossing the domain defines the total volume of the domain and, by extension, the total volume of each 
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element in the domain. The global number of trajectories for MOCFE-Bone is influenced by the user 
input “TrajectoryArea.”  Specifying a smaller trajectory area (and hence requiring more trajectories) adds 
computational expense but provides a more accurate solution.  

 The workflow in any MOC code includes (1) problem definition, (2) ray tracing (considerable 
component of the setup cost), and (3) numerical solution of the global problem via an iterative method. 

3.2 Numerical Solver 

 A discretized neutron transport problem can ultimately be written as a linear matrix-vector 
product, Ax=b, where x is the vector of unknowns (various moments of the neutron flux). MOCFE-Bone 
uses a multigroup Krylov formulation (restarted GMRES) to solve this system of equations. In contrast, 
MOCFE uses a Krylov formulation (restarted GMRES) for the within-group system of equations, and 
Gauss-Seidel for the multigroup solution to connect different energy groups.  For problems with one 
energy group, these two methods are equivalent.  When the number of energy groups is greater than one, 
the two formulations differ.  However, experience indicates that the methodology in MOCFE-Bone 
(Multigroup Krylov) is the preferred way to implement any future MOC code because of the improved 
scalability in energy. We note that the matrix A is never explicitly formed.  The action of A is 
implemented through on-the-fly actions that require much less memory than does storing A explicitly. 

 Because the MOCFE-Bone mini-app is intended only to emulate certain performance 
characteristics and not actually solve problems, certain features necessary in a production level MOC 
solver were not implemented.  One example is the simplified implementation of spatial decomposition. 

3.3 Spatial Domain Decomposition (Strong Spatial Scaling) in MOCFE and MOCFE-Bone 

 In MOC, spatial decomposition yields a smaller per-process geometric domain, but “broken 
trajectory flux” moments must be added to the vector space of unknowns. These moments arise from the 
fact that the actual solution vector in MOC is the solution at every (element) intersection point along 
every trajectory in the domain. Storing such a large global vector space is impractical, and thus in serial 
we can  instead store only the average element flux (a vector space about ~10,000 times smaller). In 
parallel, however, these moments are required to properly connect the spatial sub-domains and must be 
included in the global vector space. The communication between processors is thus the transmission of 
the trajectory flux moments between processors with adjacent sub-domains. 

 Previous studies showed that spatial decomposition of a given problem increases the GMRES 
(inner) iteration count in MOCFE [1]. This means that more work must be performed as the problem is 
spatially decomposed, which reduces the strong spatial scaling efficiency. Table 1 shows the iteration 
growth observed for single VHTR fuel block with reflected boundaries taken from Reference 1.  In Table 
1, a considerable increase in the number of inner (GMRES) iterations is seen when going from serial to 
parallel followed by a nearly constant regime and then another increase in the iteration count as the 
element count per process decreases. 
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Table 1. GMRES iteration growth observed in single VHTR fuel block problem under strong 
spatial scaling in MOCFE. 

Elements per 
Process 

# Spatial 
Processors 

# GMRES 
Iterations 

20,044 1 681 
10,022 2 1158 
5,011 4 1162 
2,505 8 1239 
1,252 16 1214 
626 32 1192 
313 64 1313 

 

 Here we discuss the origin and significance of the iteration growth behavior in MOCFE noting 
that the following factors can affect the number of iterations: communication latency, increased vector 
space due to storing broken trajectory fluxes in parallel, and scattering properties. 

 Two one-group test problems were used to display the iteration growth in MOCFE resulting from 
spatial decomposition: (1) a transmission (no scattering) problem and (2) a strongly scattering problem.  
Note that the average trajectory area (TA) was varied from 0.02 to 0.005 for these two problems in order 
to determine the effect of trajectory density, if any, on iteration count. The physical element size (0.3125 
cm x 0.3125 cm x 0.35 cm) and mesh (32x32x32 elements) are fixed for both problems. 

 The transmission problem is not representative of reactor physics problems, as almost all medium 
have considerable amounts of (within-group) scattering. For the transmission problem, the cross sections 
were selected such that the global domain is well connected (each element is about 3% of a mean free 
path, with the entire domain being about 1 mfp) and the scattering source is effectively zero.  Table 2 
tabulates the average number of iterations per fission source (outer) iteration required for convergence in 
MOCFE, which is plotted in Figure 3. Note that we used not only the MOCFE GMRES algorithm, but 
also the common source iteration algorithm (simplest scheme with low memory overhead using 
Richardson iteration), which is identically a block Jacobi scheme when used in parallel.  
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Figure 3. Transmission problem: inner iteration growth under strong spatial scaling. 

 

Table 2. Transmission problem: average # inners per outer iteration under strong spatial scaling. 

Spatial 
Processors 

Transmission 
TA=0.02 

(GMRES ) 

Transmission 
TA=0.015 
(GMRES)  

Transmission 
TA=0.01 
(GMRES) 

Transmission 
TA=0.005 
(GMRES) 

Transmission 
TA=0.02 
(Source 

Iteration) 
1 2.0 2.0 2.0 2.0 4.0 
2 4.0 4.0 4.0 4.0 5.0 
4 7.4 7.1 6.6 5.7 7.0 
8 9.7 9.6 9.4 8.2 11.0 

16 13.6 13.9 13.8 13.2 16.0 
32 20.5 20.5 19.7 19.6 25.0 

 

 Note that the trajectory density (TA) has no real impact on the iteration count for this problem. 
From Figure 3, one can see that the parallel methodology of MOC effectively degrades into a block 
Jacobi scheme, although even a rudimentary preconditioner would considerably change that behavior.  
The primary problem with using a block Jacobi methodology is exactly what is observed above: the 
introduction of sub-domains translates directly into latency in the algorithm for which unpreconditioned 
GMRES is no better than source iteration. In this example, the iteration count grows almost linearly with 
processor count, which is closely tied to the domain decomposition algorithm. 

  Comparison with the MOCFE VHTR problem in Table 1 shows that the iteration growth in Table 
2 is much more severe and that no stable plateau in iterations is present. We can conclude that the VHTR 
problem is not a transmission-only case, although transmission can factor into the performance. While we 
can construct algorithms that are modestly scalable for transmission only, considerable work is required 
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to deploy those schemes on parallel machines and maintain scalability. In the literature one finds few 
examples of such schemes being scalable on more than a few hundred to a few thousand processors for 
non-idealized problems. More problematic for such sweeping schemes are the facts that (1) all reactor 
physics problems do have scattering and (2) if one is presented with a pure-absorber transport problem, 
one should use the point kernel technique because it will give the exact answer with far less coding effort 
than MOCFE requires. In conclusion, the pure transmission case above shows that the unpreconditioned 
GMRES algorithm breaks down into a block Jacobi scheme when no scattering is present. 

 Given the preceding problem, one should not be surprised that the second problem studied has 
considerable scattering and therefore better represents the reactor physics problems of interest. The cross 
section data for the second problem was selected such that each element is ~1 mean free path across with 
a global domain size of ~32 mfp. The scattering ratio is close to unity, which is unrealistically high but 
displays the other physics limit of the MOCFE code (on the other end of the spectrum from a pure 
transmission problem). Table 3 tabulates the MOCFE iteration count for the scattering test problem, and 
Figure 4 plots the data. 

 

Figure 4. Inner iteration growth under strong spatial scaling for scattering problem. 

Table 3. Scattering problem: average # inner iterations per outer iteration under strong spatial scaling. 

Spatial 
Processors 

Scattering 
TA=0.02 

(GMRES ) 

Scattering 
TA=0.015 
(GMRES)  

Scattering 
TA=0.01 
(GMRES) 

Scattering 
TA=0.005 
(GMRES) 

1 13.0 13.1 12.9 15.6 
2 28.8 27.5 27.2 24.6 
4 32.4 32.3 31.7 32.8 
8 38.3 38.3 38.7 39.4 

16 37.6 37.2 36.8 40.1 
32 39.2 39.6 42.2 41.7 
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 As seen in Table 3, the scattering problem requires a considerably larger number of iterations in 
serial relative to the transmission-only case. We did not attempt to use source iteration on this problem 
because doing so would require >>100  iterations unless one implements diffusion synthetic acceleration 
(i.e. a preconditioner). Instead of growing linearly (as seen in the transmission only problem), the iteration 
count stabilizes after an initial jump from serial to parallel, a result that is consistent with the VHTR 
results from MOCFE in Table 1. In effect, the VHTR problem lies somewhere between the two bounding 
cases of Table 2 and Table 3. 

 The transmission component is obviously driving the increased costs. In effect this shows that the 
unpreconditioned GMRES algorithm used in MOCFE will always have a scalability issue when compared 
with the serial run case. Of course we cannot run many interesting reactor physics problems on a serial 
workstation, and thus we can get scalability numbers only for overly simplistic problems like the single 
VHTR assembly or the two test problems cited above. What makes the parallel methodology of MOCFE 
different from existing approaches is the acceptance that, given we are going to use a parallel machine, 
what we really desire is a consistent scalability without a punishingly difficult to use (or tune) algorithm. 
In this context, the nearly flat iteration count observed for parallel calculations in Table 3, and that 
reported in Reference 1 for the full core VHTR, makes the MOCFE methodology viable for providing the 
desired solution capability. The facts that one can create a preconditioner that accounts for some part of 
the transmission and that larger reactor physics problems are more dominated by scattering (i.e. not 
homogeneous) rather than transmission-only provides more support for this choice. To summarize, we 
have displayed the following behavior for MOCFE: 

1. The serial case always requires the fewest number of iterations.  

2. There is always a penalty in the form of iteration growth when going from serial to parallel 
spatial decomposition. This is due to the additional degrees of freedom (broken trajectory 
fluxes along interior spatial domain boundaries) which are added to the system of equations 
and also need to be communicated between neighboring processors, as well as the latency in 
transmitting information across several processor domains. 

3. For realistic (scattering) problems, the iteration count stays roughly constant (and thus 
scalable) for parallel calculations given that the number of elements per process is at least 
1,500. (i.e., do not decompose to 1 element per process – use at least 1,500 elements per 
process). 

With the behavior of MOCFE displayed, we return the focus to MOCFE-Bone.  

  In MOCFE-Bone, the spatially-decomposed domains are not connected: the right amount of data 
is communicated to the correct processors, but it is not used (it is zeroed out). The reason behind this is 
that MOCFE-Bone poses the ideal case of neighbor to neighbor exchange (six neighbors for an interior 
domain) and that a true unstructured mesh will have more than six neighbors. The intent is to make 
MOCFE-Bone emulate MOCFE by using additional input to allow additional artificial connections to 
appear for more neighbors where the total message size is kept constant (i.e., correctly proportioned to the 
trajectories traversing the sub-domain). Additional input is also going to be added to vary the trajectory 
density (roughly constant in MOCFE-Bone), which appears as a load imbalance in MOCFE and can be 
emulated easily in MOCFE-Bone. Both of these factors affect scalability and one can thus use the 
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MOCFE-Bone to construct the bounds on scalability for a given machine: the idealized case (current 
MOCFE-Bone) and the largest tractable communication pattern and acceptable load imbalance.  

  To use MOCFE-Bone the user should select an intelligent number of iterations (measurements) 
relative to the GMRES backvectors based on the behavior of MOCFE for large scale problems which we 
loosely state as 60 iterations for 30 GMRES backvectors (per outer iteration). Obviously, one need 
not run 5,000 iterations as seen for the full core VHTR problem in Reference 1, but one should at a 
minimum use 60 iterations with 30 GMRES backvectors (to get the proper ratio of GMRES work to 
MOC-based work). If that is an insufficient number of measurements, then we suggest increasing the 
iteration count as needed, such as using 240 iterations with 30 backvectors. To simulate X outer 
iterations, one can multiply the number of GMRES iterations by X and keep the backvectors constant. 

3.4 Discretization in Space, Energy, and Angle 

 Here we briefly describe the space, energy, and angle discretizations used in MOCFE and 
MOCFE-Bone. 

Space Discretization 

 Defining trajectories for an unstructured mesh is complicated and requires substantial amounts of 
coding. In order to reduce that overhead, MOCFE-Bone was built around 3D structured Cartesian element 
geometry. (MOCFE uses unstructured grids with prisms, tetrahedral, and/or hexahedral elements where 
defining trajectories requires considerable computational effort). The choice of structured geometry in the 
mini-app, as opposed to unstructured geometry, has an impact on both the computational and 
communication effort. 

 Both MOCFE and MOCFE-Bone use a flat source approximation (the source within an element is 
restricted to a flat function in space) where we know that a linear one is needed. This limits the variation 
of the flux over an element, and requires substantially more elements to get an accurate solution. Because 
of the large number of global elements required, parallelism in space is needed to solve any practical 3D 
problem. In the previous section, the impact of using disconnected spatially-decomposed domains in 
MOCFE-Bone was discussed and circumvented by specifying the appropriate number of iterations to 
perform. Additionally, the communication patterns are different in MOCFE-Bone, as discussed here.  

 The structured geometry in MOCFE-Bone naturally results in different communication patterns 
from MOCFE because of the pre-determined location of nearest neighbors in a structured grid.  For 
example, a process owning a box-shaped local domain in MOCFE-bone has at most six nearest neighbors 
in 3D (north, east, west, south, top, and bottom). The number of nearest neighbors could be much higher 
in MOCFE due to unstructured grid partitioning. The MOCFE-Bone mini-app currently communicates to 
its six nearest neighbors and is ideal with regard to communication. One can make the MOCFE-bone 
code emulate the unstructured mesh behavior by reducing the amount of information to communicate and 
connecting to more “neighbors”; this project has been identified as future work.  

Energy Discretization 

 MOCFE-Bone uses the multigroup approximation common to nearly all deterministic transport 
methods.  The same approximation is used in MOCFE; however, the method used to solve the group 
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fluxes differs in MOCFE and MOCFE-Bone. MOCFE uses a Krylov within-group formulation, and 
Gauss-Seidel to solve the multigroup system, which does not lend itself to efficient scaling in energy.  
Using the lessons learned from MOCFE, we built MOCFE-Bone with a Krylov multigroup formulation, 
which is scalable in energy with respect to the time-dependent problems of interest. 

Angular Discretization 

 Like MOCFE, MOCFE-Bone uses discrete angles (ordinates) on the unit sphere. Each discrete 
angle has a corresponding set of trajectories lying parallel to it that traverse the domain. Parallelism in 
angle for MOCFE and MOCFE-Bone indicates that each processor evaluates trajectories and degrees of 
freedom corresponding to a subset of angles.  MOCFE has demonstrated 90% strong scaling in angle and 
93% weak scaling in angle [1], and the mini-app should also exhibit these good angle-scaling properties.  
Since the angular cubatures used in MOCFE and MOCFE-Bone are slightly different, we impose using a 
multiple of 8 angles in MOCFE-Bone to emulate a realistic cubature. 

4. Accessing the Source Code 

 We assume that interested readers of this manual are aware of and have access to the exascale 
SVN repository. The most recent source code for MOCFE-Bone can be downloaded from the repository: 

https://lewis.ci.uchicago.edu/repos/ne-codesign/mini_apps/mocfe_bone 

The MOCFE-Bone source code is under development, and the most recent version may be obtained by 
using svn update commands. 

5. Linking and Compiling 

 MOCFE-Bone is written in Fortran and uses MPI for parallelism. The makefiles “Makefile.txt” 
and “Makefile_BGP.txt” are provided. The user should specify the installed MPI directory and preferred 
compilers if they differ from those specified in the makefile.  

 The user should then copy the appropriate text file into a new file called “Makefile” and type 
“make”.  An executable called “emulate_MOC.x” will be created. 

6. Usage 

 The mini-app does not require any input files and instead uses a limited number of command line 
options.  Here we describe what the mini-app is simulating and what the user can change with the input 
options. 

Physical Size 

 The physical dimensions of an element (0.125 cm x 0.125 cm x 0.14 cm) are hard-wired inside 
the code. This element size is consistent with the typical element size in MOC transport methods using 
flat sources (roughly 512 elements per cubic cm). Increasing the problem size in MOC (weak scaling) 
typically corresponds to increasing the physical dimensions of the problem, without refinements of the 
mesh.  For this reason, the physical dimension of each cell has been hardwired.  We emphasize that when 
one specifies more elements, one is running a physically larger problem. Additionally, when you specify 

https://lewis.ci.uchicago.edu/repos/ne-codesign/mini_apps/mocfe_bone
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asymmetric spatial decomposition (e.g. 2 procs in X, 2 procs in Y, 1 proc in Z) the system physically 
extends in dimensions X and Y because the definition of MeshScale and the hard-wired geometry (see 
below). 

Composition/Geometry 

 Material cross sections are hard-wired inside the code such that a well-posed system of equations 
will be produced for any number of energy groups.  The physical pattern of cross sections is a “red/black” 
checkerboard, where two compositions alternate in a red/black pattern in 3D.  The black composition has 
a high total cross section and has no fission.  The red composition has a low total cross section and has 
fission.  This pattern creates a meaningfully “difficult” problem for the GMRES solver, although the 
solver will execute the specified number of iterations regardless of how quickly it converges (due to the 
disconnection of spatially-decomposed domains). 

User-Specified Input 

 Command-line input is used to define the number of energy groups, number of angles, number of 
mesh cells per spatial process, and the parallelization in energy, angle, and space.  Additionally, the 
trajectory spacing, number of Krylov iterations and number of Krylov backvectors are provided on the 
command line.  The 11 input arguments are described in Table 4 and must be provided to MOCFE-Bone 
in the same order: 

emulate_MOC.x <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> 

 

Table 4. Input arguments for MOCFE-Bone. 

Arg. Name Description Type Possible Values 
<1> Group_Visible Number of energy groups to 

simulate. 
Int 1,2, … 

<2> GroupsPerProcess Number of energy groups to 
assign per process 
(parallelism in energy) 

Int Min value 1 (maximum 
parallelism) 
Max value Group_Visible (no 
parallelism) 

<3> Angle_Visible Number of angular directions 
to simulate 

Int Multiple of 8: 8,16, 24, 32… 

<4> AnglesPerProcess Number of angular directions 
to assign per process 
(parallelism in angle) 

Int Min value 1 (maximum 
parallelism) 
Max value Angle_Visible (no 
parallelism) 

<5> MeshScale Number of cells in the X,Y, 
and Z directions per process. 
MeshScale^3 gives the total 
number of elements per 
process. 
 

Int 1,2, … (max value limited by 
machine memory) 
Recommended to use at least 8, 
which gives 512 cells per process. 
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Arg. Name Description Type Possible Values 
<6> ParallelInX Number of X-axis processors 

to partition into. 
The total number of 
elements along the X-axis is 
MeshScale*ParallelInX. 

Int Min value 1 (no parallelism in X)  
Max value limited by # processors 
available 

<7> ParallelInY Number of Y-axis processors 
to partition into. 
The total number of 
elements along the Y-axis is 
MeshScale*ParallelInY. 

Int Min value 1 (no parallelism in X)  
Max value limited by # processors 
available 

<8> ParallelInZ Number of Z-axis processors 
to partition into. 
The total number of 
elements along the Z-axis is 
MeshScale*ParallelInZ. 

Int Min value 1 (no parallelism in X)  
Max value limited by # processors 
available 

<9> TrajectorySpacing Maximum trajectory area 
(cm2) during the trajectory 
creation process 

Real <1.0 
Recommended to use at most 
0.1. Decrease this number if the 
output reports “missed” 
elements. 

<10> KrylovIteration Total number of Krylov 
(GMRES) iterations to run 

Int ≥ 60 
Increase this number to simulate: 
- a more difficult problem 
- known iteration growth in 
parallel spatial decomposition 
One may also want to increase 
this to get more timing 
measurements. 

<11> KrylovBackVectors Number of backvectors to 
use in restarted GMRES 
method 

Int ≥  30  
Restarted GMRES is not 
guaranteed to converge unless 
the number of backvectors is 
sufficient.  We recommend at 
least 30 to simulate a practical 
calculation. 

 

7. Example Inputs 

 In this section we provide a few examples of MOCFE-Bone input and explain the use of each 
input parameter. 

Ex. 1:  Example with no parallelization 

emulate_MOC.x  2 2  8 8  32 1 1 1  0.01 60 30 
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This input specifies 2 energy groups and indicates that both groups are to be assigned to every 
process (i.e., no parallelization in energy). It also says to use 8 angles and to assign all of them to every 
process, (i.e., no parallelization in angle). The MeshScale variable is 32, which indicates that a 32x32x32 
mesh will be placed on each spatial processor.  There is 1 processor along each of the X, Y, and Z-
directions, for a total of 1x1x1 = 1 spatial processors (i.e., serial).  The physical dimensions of this 
problem are therefore (32x0.125) x (32x0.125) x (32x0.14) = 4 cm x 4 cm x 4.48 cm. 

Trajectories will be assigned to the domain surfaces with a minimum density of 1 trajectory/0.01 
cm2, or 100 trajectories/cm2. The Krylov method (restarted GMRES) will be executed for 60 iterations, 
using 30 backvectors.  

Because there is no parallelization in energy, angle, or space, this problem should be invoked 
with 1 processor “mpiexec –n 1 emulate_moc.x 2 2 8 8 32 1 1 1 0.01 60 30” (or an equivalent script 
notation). 

Ex. 2:  Example with parallelization in space 

mpiexec –n 32 emulate_MOC.x  2 2  8 8  32 4 4 2  0.01 120 30 

This problem is the same in energy and angle as example 1 and uses a MeshScale of 32.  There 
are 4 processors in the X direction, 4 processors in the Y direction, and 2 processors in the Z direction for 
a total of 32 spatial processors.  Therefore, the total number of elements is (32x4) x (32x4) x (32x2), that 
is, 1,048,576 elements divided evenly over 32 processors. The physical problem size is, correspondingly, 
(32x4x0.125) x (32x4x0.125) x (32x2x0.14), or 16 cm x 16 cm x 8.96 cm. Trajectories will be assigned to 
the domain surfaces with a minimum density of 1/0.01 cm2, or 100/cm2. The Krylov method (restarted 
GMRES) will be executed for 120 iterations, using 30 backvectors. The number of GMRES iterations 
was chosen to be roughly double the number specified in serial to simulate the iteration growth under 
spatial decomposition. 

Ex. 3:  Example input using parallelization in angle 

mpiexec –n 2 emulate_MOC.x  2 2  8 4  32 1 1 1  0.01 60 30 

This problem is identical to example 1 except that only 4 angles are assigned to each process 
instead of the full 8.  Therefore, 8/4=2 processors are needed to parallelize in angle.  The problem is serial 
in space and energy, so only 1x1x2 = 2 processors are required in total. 

8. Example output 

 The output is printed to the screen and contains an echo of the input options used; counts of the 
global elements, trajectories, and intersections; and a report of any missed elements.  If missed elements 
are reported (should be rare), the user should request a smaller trajectory area as missing elements will 
destroy the load balance. 

 The number of trajectories broken in (X,Y,Z) indicates the additional degrees of freedom added 
to the problem as a result of spatial decomposition. In the following example, parallelization was 
specified only along the X direction, so broken trajectories appear only along X.  The reported time at the 
end of the simulation is the time spent in GMRES only. 
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$ mpiexec -n 2 emulate_MOC.x  1 1 8 8 32 2 1 1 0.1 100 30 

[MOC emulator] Welcome to the emulated world of MOC 
[MOC emulator] Processed input variables 
[MOC emulator] ReactorType               0 (0,1,2)=(Fast,thermal,a mess).............................. 
[MOC emulator] SolutionMethod            0 Specifies the solution method used......................... 
[MOC emulator] Group_Visible            1 The number of energy groups to simulate.................... 
[MOC emulator] GroupsPerProcess         1 The number of energy groups to assign per process.......... 
[MOC emulator] Angle_Visible            8 The number of angular directions to simulate............... 
[MOC emulator] AnglesPerProcess         8 The number of angular directions to assign per process..... 
[MOC emulator] MeshScale               32 Specifies the number of X,Y,Z cells per process............ 
[MOC emulator] ParallelInX              2 Specifies the number of X-axis processors to partition into 
[MOC emulator] ParallelInY              1 Specifies the number of Y-axis processors to partition into 
[MOC emulator] ParallelInZ              1 Specifies the number of Z-axis processors to partition into 
[MOC emulator] TrajectorySpacing 0.100000000 Specifies the maximum trajectory area to 
assign............ 
[MOC emulator] KrylovIterations       100 Specifies the number of Krylov iterations to run........... 
[MOC emulator] KrylovBackVectors       30 Specifies the number of back vectors to use................ 
[MOC emulator] Global number of elements.............           65536 
[MOC emulator] Global number of trajectories.........           40960 
[MOC emulator] Global number of intersections........ 1.589384000E+06 
[MOC emulator] Max by angle number of trajectories...            3142 
[MOC emulator] Min by angle number of trajectories...            3072 
[MOC emulator] Total elements missed in all angles...               0 
[MOC emulator] Number of trajectories broken in X....            8752 
[MOC emulator] Number of trajectories broken in Y....               0 
[MOC emulator] Number of trajectories broken in Z....               0 
[MOC emulator] Global space-angle dofs...............          574000 
[MOC emulator] Global space-angle dofs...............         574000. 
[MOC emulator] Global space-angle-energy dofs........         574000. 
[MOC emulator] Global trajectory memory storage (MB).             20. 
[MOC emulator] Global Krylov vector storage.....(MB).            276. 
[MOC emulator]...Solving Ax=b with FGMRES 
[MOC emulator]...Convergence checks have been disabled on purpose 
[MOC emulator]...Exactly performing the number of user-specified iterations! 
[MOC emulator]...Iteration      1 
[MOC emulator]...Iteration      2 
... 
[MOC emulator]...Iteration    100 
[MOC emulator] Krylov solver appears to have exited normally 
[MOC emulator] Reason for convergence     1 and norm  3.251141104E-03 FGMRES took 1.459878E+01 seconds 
and   100 iterations 

 

 In addition, a file called “ParallelSetupDetails.out” is created that indicates how the degrees of 
freedom are divided up by processor (rank).  This example has two ranks, and as expected, each rank 
owns half of the total 574,000 space-angle-energy dofs. Additionally, each rank owns half of the element-
wise SN fluxes (elements x angles = 65536 x 8 = 524,288).  The “BC DOMAIN OUT” is the number of 
surfaces that define the boundary of the domain multiplied by the number of exiting directions where “BC 
DOMAIN IN” is the incident directions. The “TRAJ OUT” is the number of broken trajectory moments 
leaving process 1 in all directions while “TRAJ IN” is the number of broken trajectory moments entering 
the domain. These numbers can be highly variable as processors with sub-domains that lie on the domain 
boundary can have zero exiting or entering broken trajectories. These numbers give a sense of the 
GMRES load imbalance associated with a given spatial decomposition. 
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$ more ParallelSetupDetails.out 

|TOTAL|GROUP|ANGLE|SPACE|SPACE-ANGLE|SPACE-ANGLE|ELEMENT|BC DOMAIN|BC DOMAIN| TRAJ| TRAJ| TOTAL|TOTAL |  
|RANK |RANK |RANK |RANK |OWNED      |GHOSTED    |OWNED  |OUT      |IN       | OUT | IN  | TRAJ |INTERS| 
|    0|    0|    0|    0|     287000|      24856| 262144|    20480|    20480| 4376| 4376| 24856|794692|    
|    1|    0|    0|    1|     287000|      24856| 262144|    20480|    20480| 4376| 4376| 24856|794692|        
 
 

9. Summary 

The MOCFE-Bone mini-application is a standalone program for exascale research. The purpose 
of MOCFE-Bone is to model the defining behaviors of a parallel 3D method of characteristics code for 
neutron transport applications, without the overhead of multiple input files. The MOCFE research code at 
Argonne National Laboratory was used as a model to determine what behaviors the mini-application 
should exhibit.  Similarities and differences between MOCFE-Bone and MOCFE are discussed in this 
report. Additionally, a brief discussion was included of the known iteration growth behavior in MOCFE 
under strong spatial scaling. Instructions on how to access, compile, and use MOCFE-Bone were given 
and examples were provided to show proper usage of the code.  
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