

ANL/NE-12/59

MOCFE-Bone: The 3D MOC Mini-Application for
Exascale Research

Nuclear Engineering Division

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available
on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831-0062
 phone (865) 576-8401
 fax (865) 576-5728
 reports@adonis.osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/NE-12/59

MOCFE-Bone: The 3D MOC Mini-Application for Exascale
Research

prepared by
E. R. Wolters and M. A. Smith
Nuclear Engineering Division, Argonne National Laboratory

December 19, 2012

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

5

1. Introduction

 MOCFE-Bone is a mini-application that simulates the main procedures in a 3D method of
characteristics (MOC) code for numerical solution of the steady state neutron transport equation. 3D-
MOC was chosen as a specific methodology of interest in exascale computing for nuclear reactor
applications because of its heterogeneous geometry capability, high degree of accuracy, and potential for
scalability.

 In developing the mini-app, we focused on emulating the behavior of a production 3D MOC tool
without requiring the input overhead associated with such a code. The MOCFE code [1] at Argonne
National Laboratory was used to investigate and characterize the behavior of the mini-app; the results of
are presented here. Note that the existing MOCFE code resulted from research forays into the potential of
3D-MOC for large scale parallelism and is not a production level tool nor is it optimally implemented.
Parts of the mini-app therefore reflect lessons learned and represent how a production-level tool would be
written from this point forward rather than simply duplicating MOCFE, which has known scalability
issues (i.e. parallelization in energy).

2. Purpose

 MOCFE-Bone is not meant to provide actual solutions to a given problem, as it does not properly
connect the systems of equations. MOCFE-Bone simulates the communication and computational
requirements of a 3D-MOC production code in correct proportions for use on different architectures. It
requires only a few command line arguments to run. This document describes how to access, compile,
and use the mini-app.

3. MOCFE-Bone Description

 We briefly describe the MOC methodology, discuss the features of MOCFE-Bone, and draw
comparisons between its behavior and a production 3D MOC code.

3.1 Methodology

 The (steady-state) neutron transport equation describes the neutron flux as a continuous function
of energy, angle, and space. We choose to use a deterministic formulation which requires the creation of
effective multi-group cross sections, the details of which are beyond the scope of this report other than to
state that they exist in a form where one can get representative solutions to the multigroup equation

,
1 ˆ ˆ ˆ ˆ ˆ(, ,) (, ,) () (, ,) (, ,)g g t g g g
g

r t r t r r t S r t
v t

ψ ψ ψ∂
Ω +∇⋅Ω Ω +Σ Ω = Ω

∂
. (1)

Numerous methods, including MOC, have been successfully used to discretize and solve this equation in
these three spaces. In all of the codes a mesh of some form is used to identify different materials in the
domain. MOCFE and MOCFE-Bone both rely on a finite element mesh.

 The main difference between MOC and other approaches is that MOC solves Eq. (1) along
straight, parallel lines that traverse the problem domain (as opposed to using the finite element method as
an interpolative basis). First, the angular variable in Eq. (1) is discretized into set of directions derived

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

6

from an angular cubature, an example of which is shown in Figure 1. In the figure, the black dots show
the points where a given direction intersects the unit sphere and the coloring shows the weights assigned
to each direction (needed to integrate the scattering kernel).

Figure 1. Angular cubature on the unit sphere.

 For each direction, a series of straight lines, termed characteristic lines or trajectories, are laid out
on the geometric domain as shown in Figure 2. As one can see in Figure 2, the trajectories are not equally
spaced through the domain.

Figure 2. Example of characteristic lines traversing a finite element domain.

The introduction of characteristic lines turns Eq. (1) into T coupled differential equations for each
direction where T is the total number of characteristic lines for a given direction. (Technically the number
of trajectories T can be different for each direction, but we assume an average value here.) If N is the
number of directions in the cubature, the N·T equations are coupled together on an element-wise basis by
the scattering (and fission) source kernel.

 The advantage of MOC is that each characteristic line is an independent differential equation that
has a simple analytical solution. Each trajectory is assigned an area such that the set of trajectories
crossing the domain defines the total volume of the domain and, by extension, the total volume of each

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

7

element in the domain. The global number of trajectories for MOCFE-Bone is influenced by the user
input “TrajectoryArea.” Specifying a smaller trajectory area (and hence requiring more trajectories) adds
computational expense but provides a more accurate solution.

 The workflow in any MOC code includes (1) problem definition, (2) ray tracing (considerable
component of the setup cost), and (3) numerical solution of the global problem via an iterative method.

3.2 Numerical Solver

 A discretized neutron transport problem can ultimately be written as a linear matrix-vector
product, Ax=b, where x is the vector of unknowns (various moments of the neutron flux). MOCFE-Bone
uses a multigroup Krylov formulation (restarted GMRES) to solve this system of equations. In contrast,
MOCFE uses a Krylov formulation (restarted GMRES) for the within-group system of equations, and
Gauss-Seidel for the multigroup solution to connect different energy groups. For problems with one
energy group, these two methods are equivalent. When the number of energy groups is greater than one,
the two formulations differ. However, experience indicates that the methodology in MOCFE-Bone
(Multigroup Krylov) is the preferred way to implement any future MOC code because of the improved
scalability in energy. We note that the matrix A is never explicitly formed. The action of A is
implemented through on-the-fly actions that require much less memory than does storing A explicitly.

 Because the MOCFE-Bone mini-app is intended only to emulate certain performance
characteristics and not actually solve problems, certain features necessary in a production level MOC
solver were not implemented. One example is the simplified implementation of spatial decomposition.

3.3 Spatial Domain Decomposition (Strong Spatial Scaling) in MOCFE and MOCFE-Bone

 In MOC, spatial decomposition yields a smaller per-process geometric domain, but “broken
trajectory flux” moments must be added to the vector space of unknowns. These moments arise from the
fact that the actual solution vector in MOC is the solution at every (element) intersection point along
every trajectory in the domain. Storing such a large global vector space is impractical, and thus in serial
we can instead store only the average element flux (a vector space about ~10,000 times smaller). In
parallel, however, these moments are required to properly connect the spatial sub-domains and must be
included in the global vector space. The communication between processors is thus the transmission of
the trajectory flux moments between processors with adjacent sub-domains.

 Previous studies showed that spatial decomposition of a given problem increases the GMRES
(inner) iteration count in MOCFE [1]. This means that more work must be performed as the problem is
spatially decomposed, which reduces the strong spatial scaling efficiency. Table 1 shows the iteration
growth observed for single VHTR fuel block with reflected boundaries taken from Reference 1. In Table
1, a considerable increase in the number of inner (GMRES) iterations is seen when going from serial to
parallel followed by a nearly constant regime and then another increase in the iteration count as the
element count per process decreases.

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

8

Table 1. GMRES iteration growth observed in single VHTR fuel block problem under strong
spatial scaling in MOCFE.

Elements per
Process

Spatial
Processors

GMRES
Iterations

20,044 1 681
10,022 2 1158
5,011 4 1162
2,505 8 1239
1,252 16 1214
626 32 1192
313 64 1313

 Here we discuss the origin and significance of the iteration growth behavior in MOCFE noting
that the following factors can affect the number of iterations: communication latency, increased vector
space due to storing broken trajectory fluxes in parallel, and scattering properties.

 Two one-group test problems were used to display the iteration growth in MOCFE resulting from
spatial decomposition: (1) a transmission (no scattering) problem and (2) a strongly scattering problem.
Note that the average trajectory area (TA) was varied from 0.02 to 0.005 for these two problems in order
to determine the effect of trajectory density, if any, on iteration count. The physical element size (0.3125
cm x 0.3125 cm x 0.35 cm) and mesh (32x32x32 elements) are fixed for both problems.

 The transmission problem is not representative of reactor physics problems, as almost all medium
have considerable amounts of (within-group) scattering. For the transmission problem, the cross sections
were selected such that the global domain is well connected (each element is about 3% of a mean free
path, with the entire domain being about 1 mfp) and the scattering source is effectively zero. Table 2
tabulates the average number of iterations per fission source (outer) iteration required for convergence in
MOCFE, which is plotted in Figure 3. Note that we used not only the MOCFE GMRES algorithm, but
also the common source iteration algorithm (simplest scheme with low memory overhead using
Richardson iteration), which is identically a block Jacobi scheme when used in parallel.

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

9

Figure 3. Transmission problem: inner iteration growth under strong spatial scaling.

Table 2. Transmission problem: average # inners per outer iteration under strong spatial scaling.

Spatial
Processors

Transmission
TA=0.02

(GMRES)

Transmission
TA=0.015
(GMRES)

Transmission
TA=0.01
(GMRES)

Transmission
TA=0.005
(GMRES)

Transmission
TA=0.02
(Source

Iteration)
1 2.0 2.0 2.0 2.0 4.0
2 4.0 4.0 4.0 4.0 5.0
4 7.4 7.1 6.6 5.7 7.0
8 9.7 9.6 9.4 8.2 11.0

16 13.6 13.9 13.8 13.2 16.0
32 20.5 20.5 19.7 19.6 25.0

 Note that the trajectory density (TA) has no real impact on the iteration count for this problem.
From Figure 3, one can see that the parallel methodology of MOC effectively degrades into a block
Jacobi scheme, although even a rudimentary preconditioner would considerably change that behavior.
The primary problem with using a block Jacobi methodology is exactly what is observed above: the
introduction of sub-domains translates directly into latency in the algorithm for which unpreconditioned
GMRES is no better than source iteration. In this example, the iteration count grows almost linearly with
processor count, which is closely tied to the domain decomposition algorithm.

 Comparison with the MOCFE VHTR problem in Table 1 shows that the iteration growth in Table
2 is much more severe and that no stable plateau in iterations is present. We can conclude that the VHTR
problem is not a transmission-only case, although transmission can factor into the performance. While we
can construct algorithms that are modestly scalable for transmission only, considerable work is required

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

10

to deploy those schemes on parallel machines and maintain scalability. In the literature one finds few
examples of such schemes being scalable on more than a few hundred to a few thousand processors for
non-idealized problems. More problematic for such sweeping schemes are the facts that (1) all reactor
physics problems do have scattering and (2) if one is presented with a pure-absorber transport problem,
one should use the point kernel technique because it will give the exact answer with far less coding effort
than MOCFE requires. In conclusion, the pure transmission case above shows that the unpreconditioned
GMRES algorithm breaks down into a block Jacobi scheme when no scattering is present.

 Given the preceding problem, one should not be surprised that the second problem studied has
considerable scattering and therefore better represents the reactor physics problems of interest. The cross
section data for the second problem was selected such that each element is ~1 mean free path across with
a global domain size of ~32 mfp. The scattering ratio is close to unity, which is unrealistically high but
displays the other physics limit of the MOCFE code (on the other end of the spectrum from a pure
transmission problem). Table 3 tabulates the MOCFE iteration count for the scattering test problem, and
Figure 4 plots the data.

Figure 4. Inner iteration growth under strong spatial scaling for scattering problem.

Table 3. Scattering problem: average # inner iterations per outer iteration under strong spatial scaling.

Spatial
Processors

Scattering
TA=0.02

(GMRES)

Scattering
TA=0.015
(GMRES)

Scattering
TA=0.01
(GMRES)

Scattering
TA=0.005
(GMRES)

1 13.0 13.1 12.9 15.6
2 28.8 27.5 27.2 24.6
4 32.4 32.3 31.7 32.8
8 38.3 38.3 38.7 39.4

16 37.6 37.2 36.8 40.1
32 39.2 39.6 42.2 41.7

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

11

 As seen in Table 3, the scattering problem requires a considerably larger number of iterations in
serial relative to the transmission-only case. We did not attempt to use source iteration on this problem
because doing so would require >>100 iterations unless one implements diffusion synthetic acceleration
(i.e. a preconditioner). Instead of growing linearly (as seen in the transmission only problem), the iteration
count stabilizes after an initial jump from serial to parallel, a result that is consistent with the VHTR
results from MOCFE in Table 1. In effect, the VHTR problem lies somewhere between the two bounding
cases of Table 2 and Table 3.

 The transmission component is obviously driving the increased costs. In effect this shows that the
unpreconditioned GMRES algorithm used in MOCFE will always have a scalability issue when compared
with the serial run case. Of course we cannot run many interesting reactor physics problems on a serial
workstation, and thus we can get scalability numbers only for overly simplistic problems like the single
VHTR assembly or the two test problems cited above. What makes the parallel methodology of MOCFE
different from existing approaches is the acceptance that, given we are going to use a parallel machine,
what we really desire is a consistent scalability without a punishingly difficult to use (or tune) algorithm.
In this context, the nearly flat iteration count observed for parallel calculations in Table 3, and that
reported in Reference 1 for the full core VHTR, makes the MOCFE methodology viable for providing the
desired solution capability. The facts that one can create a preconditioner that accounts for some part of
the transmission and that larger reactor physics problems are more dominated by scattering (i.e. not
homogeneous) rather than transmission-only provides more support for this choice. To summarize, we
have displayed the following behavior for MOCFE:

1. The serial case always requires the fewest number of iterations.

2. There is always a penalty in the form of iteration growth when going from serial to parallel
spatial decomposition. This is due to the additional degrees of freedom (broken trajectory
fluxes along interior spatial domain boundaries) which are added to the system of equations
and also need to be communicated between neighboring processors, as well as the latency in
transmitting information across several processor domains.

3. For realistic (scattering) problems, the iteration count stays roughly constant (and thus
scalable) for parallel calculations given that the number of elements per process is at least
1,500. (i.e., do not decompose to 1 element per process – use at least 1,500 elements per
process).

With the behavior of MOCFE displayed, we return the focus to MOCFE-Bone.

 In MOCFE-Bone, the spatially-decomposed domains are not connected: the right amount of data
is communicated to the correct processors, but it is not used (it is zeroed out). The reason behind this is
that MOCFE-Bone poses the ideal case of neighbor to neighbor exchange (six neighbors for an interior
domain) and that a true unstructured mesh will have more than six neighbors. The intent is to make
MOCFE-Bone emulate MOCFE by using additional input to allow additional artificial connections to
appear for more neighbors where the total message size is kept constant (i.e., correctly proportioned to the
trajectories traversing the sub-domain). Additional input is also going to be added to vary the trajectory
density (roughly constant in MOCFE-Bone), which appears as a load imbalance in MOCFE and can be
emulated easily in MOCFE-Bone. Both of these factors affect scalability and one can thus use the

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

12

MOCFE-Bone to construct the bounds on scalability for a given machine: the idealized case (current
MOCFE-Bone) and the largest tractable communication pattern and acceptable load imbalance.

 To use MOCFE-Bone the user should select an intelligent number of iterations (measurements)
relative to the GMRES backvectors based on the behavior of MOCFE for large scale problems which we
loosely state as 60 iterations for 30 GMRES backvectors (per outer iteration). Obviously, one need
not run 5,000 iterations as seen for the full core VHTR problem in Reference 1, but one should at a
minimum use 60 iterations with 30 GMRES backvectors (to get the proper ratio of GMRES work to
MOC-based work). If that is an insufficient number of measurements, then we suggest increasing the
iteration count as needed, such as using 240 iterations with 30 backvectors. To simulate X outer
iterations, one can multiply the number of GMRES iterations by X and keep the backvectors constant.

3.4 Discretization in Space, Energy, and Angle

 Here we briefly describe the space, energy, and angle discretizations used in MOCFE and
MOCFE-Bone.

Space Discretization

 Defining trajectories for an unstructured mesh is complicated and requires substantial amounts of
coding. In order to reduce that overhead, MOCFE-Bone was built around 3D structured Cartesian element
geometry. (MOCFE uses unstructured grids with prisms, tetrahedral, and/or hexahedral elements where
defining trajectories requires considerable computational effort). The choice of structured geometry in the
mini-app, as opposed to unstructured geometry, has an impact on both the computational and
communication effort.

 Both MOCFE and MOCFE-Bone use a flat source approximation (the source within an element is
restricted to a flat function in space) where we know that a linear one is needed. This limits the variation
of the flux over an element, and requires substantially more elements to get an accurate solution. Because
of the large number of global elements required, parallelism in space is needed to solve any practical 3D
problem. In the previous section, the impact of using disconnected spatially-decomposed domains in
MOCFE-Bone was discussed and circumvented by specifying the appropriate number of iterations to
perform. Additionally, the communication patterns are different in MOCFE-Bone, as discussed here.

 The structured geometry in MOCFE-Bone naturally results in different communication patterns
from MOCFE because of the pre-determined location of nearest neighbors in a structured grid. For
example, a process owning a box-shaped local domain in MOCFE-bone has at most six nearest neighbors
in 3D (north, east, west, south, top, and bottom). The number of nearest neighbors could be much higher
in MOCFE due to unstructured grid partitioning. The MOCFE-Bone mini-app currently communicates to
its six nearest neighbors and is ideal with regard to communication. One can make the MOCFE-bone
code emulate the unstructured mesh behavior by reducing the amount of information to communicate and
connecting to more “neighbors”; this project has been identified as future work.

Energy Discretization

 MOCFE-Bone uses the multigroup approximation common to nearly all deterministic transport
methods. The same approximation is used in MOCFE; however, the method used to solve the group

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

13

fluxes differs in MOCFE and MOCFE-Bone. MOCFE uses a Krylov within-group formulation, and
Gauss-Seidel to solve the multigroup system, which does not lend itself to efficient scaling in energy.
Using the lessons learned from MOCFE, we built MOCFE-Bone with a Krylov multigroup formulation,
which is scalable in energy with respect to the time-dependent problems of interest.

Angular Discretization

 Like MOCFE, MOCFE-Bone uses discrete angles (ordinates) on the unit sphere. Each discrete
angle has a corresponding set of trajectories lying parallel to it that traverse the domain. Parallelism in
angle for MOCFE and MOCFE-Bone indicates that each processor evaluates trajectories and degrees of
freedom corresponding to a subset of angles. MOCFE has demonstrated 90% strong scaling in angle and
93% weak scaling in angle [1], and the mini-app should also exhibit these good angle-scaling properties.
Since the angular cubatures used in MOCFE and MOCFE-Bone are slightly different, we impose using a
multiple of 8 angles in MOCFE-Bone to emulate a realistic cubature.

4. Accessing the Source Code

 We assume that interested readers of this manual are aware of and have access to the exascale
SVN repository. The most recent source code for MOCFE-Bone can be downloaded from the repository:

https://lewis.ci.uchicago.edu/repos/ne-codesign/mini_apps/mocfe_bone

The MOCFE-Bone source code is under development, and the most recent version may be obtained by
using svn update commands.

5. Linking and Compiling

 MOCFE-Bone is written in Fortran and uses MPI for parallelism. The makefiles “Makefile.txt”
and “Makefile_BGP.txt” are provided. The user should specify the installed MPI directory and preferred
compilers if they differ from those specified in the makefile.

 The user should then copy the appropriate text file into a new file called “Makefile” and type
“make”. An executable called “emulate_MOC.x” will be created.

6. Usage

 The mini-app does not require any input files and instead uses a limited number of command line
options. Here we describe what the mini-app is simulating and what the user can change with the input
options.

Physical Size

 The physical dimensions of an element (0.125 cm x 0.125 cm x 0.14 cm) are hard-wired inside
the code. This element size is consistent with the typical element size in MOC transport methods using
flat sources (roughly 512 elements per cubic cm). Increasing the problem size in MOC (weak scaling)
typically corresponds to increasing the physical dimensions of the problem, without refinements of the
mesh. For this reason, the physical dimension of each cell has been hardwired. We emphasize that when
one specifies more elements, one is running a physically larger problem. Additionally, when you specify

https://lewis.ci.uchicago.edu/repos/ne-codesign/mini_apps/mocfe_bone

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

14

asymmetric spatial decomposition (e.g. 2 procs in X, 2 procs in Y, 1 proc in Z) the system physically
extends in dimensions X and Y because the definition of MeshScale and the hard-wired geometry (see
below).

Composition/Geometry

 Material cross sections are hard-wired inside the code such that a well-posed system of equations
will be produced for any number of energy groups. The physical pattern of cross sections is a “red/black”
checkerboard, where two compositions alternate in a red/black pattern in 3D. The black composition has
a high total cross section and has no fission. The red composition has a low total cross section and has
fission. This pattern creates a meaningfully “difficult” problem for the GMRES solver, although the
solver will execute the specified number of iterations regardless of how quickly it converges (due to the
disconnection of spatially-decomposed domains).

User-Specified Input

 Command-line input is used to define the number of energy groups, number of angles, number of
mesh cells per spatial process, and the parallelization in energy, angle, and space. Additionally, the
trajectory spacing, number of Krylov iterations and number of Krylov backvectors are provided on the
command line. The 11 input arguments are described in Table 4 and must be provided to MOCFE-Bone
in the same order:

emulate_MOC.x <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11>

Table 4. Input arguments for MOCFE-Bone.

Arg. Name Description Type Possible Values
<1> Group_Visible Number of energy groups to

simulate.
Int 1,2, …

<2> GroupsPerProcess Number of energy groups to
assign per process
(parallelism in energy)

Int Min value 1 (maximum
parallelism)
Max value Group_Visible (no
parallelism)

<3> Angle_Visible Number of angular directions
to simulate

Int Multiple of 8: 8,16, 24, 32…

<4> AnglesPerProcess Number of angular directions
to assign per process
(parallelism in angle)

Int Min value 1 (maximum
parallelism)
Max value Angle_Visible (no
parallelism)

<5> MeshScale Number of cells in the X,Y,
and Z directions per process.
MeshScale^3 gives the total
number of elements per
process.

Int 1,2, … (max value limited by
machine memory)
Recommended to use at least 8,
which gives 512 cells per process.

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

15

Arg. Name Description Type Possible Values
<6> ParallelInX Number of X-axis processors

to partition into.
The total number of
elements along the X-axis is
MeshScale*ParallelInX.

Int Min value 1 (no parallelism in X)
Max value limited by # processors
available

<7> ParallelInY Number of Y-axis processors
to partition into.
The total number of
elements along the Y-axis is
MeshScale*ParallelInY.

Int Min value 1 (no parallelism in X)
Max value limited by # processors
available

<8> ParallelInZ Number of Z-axis processors
to partition into.
The total number of
elements along the Z-axis is
MeshScale*ParallelInZ.

Int Min value 1 (no parallelism in X)
Max value limited by # processors
available

<9> TrajectorySpacing Maximum trajectory area
(cm2) during the trajectory
creation process

Real <1.0
Recommended to use at most
0.1. Decrease this number if the
output reports “missed”
elements.

<10> KrylovIteration Total number of Krylov
(GMRES) iterations to run

Int ≥ 60
Increase this number to simulate:
- a more difficult problem
- known iteration growth in
parallel spatial decomposition
One may also want to increase
this to get more timing
measurements.

<11> KrylovBackVectors Number of backvectors to
use in restarted GMRES
method

Int ≥ 30
Restarted GMRES is not
guaranteed to converge unless
the number of backvectors is
sufficient. We recommend at
least 30 to simulate a practical
calculation.

7. Example Inputs

 In this section we provide a few examples of MOCFE-Bone input and explain the use of each
input parameter.

Ex. 1: Example with no parallelization

emulate_MOC.x 2 2 8 8 32 1 1 1 0.01 60 30

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

16

This input specifies 2 energy groups and indicates that both groups are to be assigned to every
process (i.e., no parallelization in energy). It also says to use 8 angles and to assign all of them to every
process, (i.e., no parallelization in angle). The MeshScale variable is 32, which indicates that a 32x32x32
mesh will be placed on each spatial processor. There is 1 processor along each of the X, Y, and Z-
directions, for a total of 1x1x1 = 1 spatial processors (i.e., serial). The physical dimensions of this
problem are therefore (32x0.125) x (32x0.125) x (32x0.14) = 4 cm x 4 cm x 4.48 cm.

Trajectories will be assigned to the domain surfaces with a minimum density of 1 trajectory/0.01
cm2, or 100 trajectories/cm2. The Krylov method (restarted GMRES) will be executed for 60 iterations,
using 30 backvectors.

Because there is no parallelization in energy, angle, or space, this problem should be invoked
with 1 processor “mpiexec –n 1 emulate_moc.x 2 2 8 8 32 1 1 1 0.01 60 30” (or an equivalent script
notation).

Ex. 2: Example with parallelization in space

mpiexec –n 32 emulate_MOC.x 2 2 8 8 32 4 4 2 0.01 120 30

This problem is the same in energy and angle as example 1 and uses a MeshScale of 32. There
are 4 processors in the X direction, 4 processors in the Y direction, and 2 processors in the Z direction for
a total of 32 spatial processors. Therefore, the total number of elements is (32x4) x (32x4) x (32x2), that
is, 1,048,576 elements divided evenly over 32 processors. The physical problem size is, correspondingly,
(32x4x0.125) x (32x4x0.125) x (32x2x0.14), or 16 cm x 16 cm x 8.96 cm. Trajectories will be assigned to
the domain surfaces with a minimum density of 1/0.01 cm2, or 100/cm2. The Krylov method (restarted
GMRES) will be executed for 120 iterations, using 30 backvectors. The number of GMRES iterations
was chosen to be roughly double the number specified in serial to simulate the iteration growth under
spatial decomposition.

Ex. 3: Example input using parallelization in angle

mpiexec –n 2 emulate_MOC.x 2 2 8 4 32 1 1 1 0.01 60 30

This problem is identical to example 1 except that only 4 angles are assigned to each process
instead of the full 8. Therefore, 8/4=2 processors are needed to parallelize in angle. The problem is serial
in space and energy, so only 1x1x2 = 2 processors are required in total.

8. Example output

 The output is printed to the screen and contains an echo of the input options used; counts of the
global elements, trajectories, and intersections; and a report of any missed elements. If missed elements
are reported (should be rare), the user should request a smaller trajectory area as missing elements will
destroy the load balance.

 The number of trajectories broken in (X,Y,Z) indicates the additional degrees of freedom added
to the problem as a result of spatial decomposition. In the following example, parallelization was
specified only along the X direction, so broken trajectories appear only along X. The reported time at the
end of the simulation is the time spent in GMRES only.

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

17

$ mpiexec -n 2 emulate_MOC.x 1 1 8 8 32 2 1 1 0.1 100 30

[MOC emulator] Welcome to the emulated world of MOC
[MOC emulator] Processed input variables
[MOC emulator] ReactorType 0 (0,1,2)=(Fast,thermal,a mess)..............................
[MOC emulator] SolutionMethod 0 Specifies the solution method used.........................
[MOC emulator] Group_Visible 1 The number of energy groups to simulate....................
[MOC emulator] GroupsPerProcess 1 The number of energy groups to assign per process..........
[MOC emulator] Angle_Visible 8 The number of angular directions to simulate...............
[MOC emulator] AnglesPerProcess 8 The number of angular directions to assign per process.....
[MOC emulator] MeshScale 32 Specifies the number of X,Y,Z cells per process............
[MOC emulator] ParallelInX 2 Specifies the number of X-axis processors to partition into
[MOC emulator] ParallelInY 1 Specifies the number of Y-axis processors to partition into
[MOC emulator] ParallelInZ 1 Specifies the number of Z-axis processors to partition into
[MOC emulator] TrajectorySpacing 0.100000000 Specifies the maximum trajectory area to
assign............
[MOC emulator] KrylovIterations 100 Specifies the number of Krylov iterations to run...........
[MOC emulator] KrylovBackVectors 30 Specifies the number of back vectors to use................
[MOC emulator] Global number of elements............. 65536
[MOC emulator] Global number of trajectories......... 40960
[MOC emulator] Global number of intersections........ 1.589384000E+06
[MOC emulator] Max by angle number of trajectories... 3142
[MOC emulator] Min by angle number of trajectories... 3072
[MOC emulator] Total elements missed in all angles... 0
[MOC emulator] Number of trajectories broken in X.... 8752
[MOC emulator] Number of trajectories broken in Y.... 0
[MOC emulator] Number of trajectories broken in Z.... 0
[MOC emulator] Global space-angle dofs............... 574000
[MOC emulator] Global space-angle dofs............... 574000.
[MOC emulator] Global space-angle-energy dofs........ 574000.
[MOC emulator] Global trajectory memory storage (MB). 20.
[MOC emulator] Global Krylov vector storage.....(MB). 276.
[MOC emulator]...Solving Ax=b with FGMRES
[MOC emulator]...Convergence checks have been disabled on purpose
[MOC emulator]...Exactly performing the number of user-specified iterations!
[MOC emulator]...Iteration 1
[MOC emulator]...Iteration 2
...
[MOC emulator]...Iteration 100
[MOC emulator] Krylov solver appears to have exited normally
[MOC emulator] Reason for convergence 1 and norm 3.251141104E-03 FGMRES took 1.459878E+01 seconds
and 100 iterations

 In addition, a file called “ParallelSetupDetails.out” is created that indicates how the degrees of
freedom are divided up by processor (rank). This example has two ranks, and as expected, each rank
owns half of the total 574,000 space-angle-energy dofs. Additionally, each rank owns half of the element-
wise SN fluxes (elements x angles = 65536 x 8 = 524,288). The “BC DOMAIN OUT” is the number of
surfaces that define the boundary of the domain multiplied by the number of exiting directions where “BC
DOMAIN IN” is the incident directions. The “TRAJ OUT” is the number of broken trajectory moments
leaving process 1 in all directions while “TRAJ IN” is the number of broken trajectory moments entering
the domain. These numbers can be highly variable as processors with sub-domains that lie on the domain
boundary can have zero exiting or entering broken trajectories. These numbers give a sense of the
GMRES load imbalance associated with a given spatial decomposition.

MOCFE-Bone: The 3D-MOC Mini-Application for Exascale Research ANL/NE-12/59

18

$ more ParallelSetupDetails.out

TOTAL	GROUP	ANGLE	SPACE	SPACE-ANGLE	SPACE-ANGLE	ELEMENT	BC DOMAIN	BC DOMAIN	TRAJ	TRAJ	TOTAL	TOTAL
RANK	RANK	RANK	RANK	OWNED	GHOSTED	OWNED	OUT	IN	OUT	IN	TRAJ	INTERS
0	0	0	0	287000	24856	262144	20480	20480	4376	4376	24856	794692
1	0	0	1	287000	24856	262144	20480	20480	4376	4376	24856	794692

9. Summary

The MOCFE-Bone mini-application is a standalone program for exascale research. The purpose
of MOCFE-Bone is to model the defining behaviors of a parallel 3D method of characteristics code for
neutron transport applications, without the overhead of multiple input files. The MOCFE research code at
Argonne National Laboratory was used as a model to determine what behaviors the mini-application
should exhibit. Similarities and differences between MOCFE-Bone and MOCFE are discussed in this
report. Additionally, a brief discussion was included of the known iteration growth behavior in MOCFE
under strong spatial scaling. Instructions on how to access, compile, and use MOCFE-Bone were given
and examples were provided to show proper usage of the code.

10. References

[1] M.A. Smith, A. Marin-Lafleche, W.S. Yang, D. Kaushik, and A. Siegel, “Method of Characteristics
Development Targeting the High Performance Blue Gene/P Computer at Argonne National
Laboratory”, International Conference on Mathematics and Computational Methods Applied to
Nuclear Science and Engineering, Rio de Janiero, Brazil, May 8-12, 2011.

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Nuclear Engineering Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 208
Argonne, IL 60439

www.anl.gov

