

FY2012 Report on Fast Reactor
Toolset Work (PROTEUS-Fast)

ANL/NE-12-44

Nuclear Engineering Division

Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available
on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:

		 U.S. Department of Energy

	 	 Office of Scientific and Technical Information

		 P.O. Box 62

		 Oak Ridge, TN 37831-0062

		 phone (865) 576-8401

		 fax (865) 576-5728

		 reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,

Argonne National Laboratory, or UChicago Argonne, LLC.

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne,
see www.anl.gov.

 FY2012 Report on Fast Reactor Toolset Work (PROTEUS-Fast)

ANL/NE-12-44

by
E. R. Wolters, M. A. Smith, K. Derstine, C. H. Lee, G. Yesilyurt, and A. Marin-Lafleche
Nuclear Engineering Division, Argonne National Laboratory

September 30, 2012

breag
Typewritten Text

SUMMARY

As	 part	 of	 the	 NEAMS	 activity	 in	 DOE,	 a	 fast	 reactor	 simulation	 program	 was	
launched	in	April	2007,	termed	SHARP.	The	initial	goal	of	SHARP	was	to	develop	a	suite	
of	modern	simulation	tools	specifically	for	the	analysis	and	design	of	sodium	cooled	fast	
reactors,	and	this	goal	has	since	been	extended	to	consider	all	reactor	types	of	interest.	
As	part	of	 that	work,	a	high‐fidelity	deterministic	neutron	transport	code	named	UNIC	
was	started,	providing	a	common	framework	for	fast	reactor	neutronics	tools.	

Focusing	 on	 UNIC,	 spatial	 de‐homogenization	 increased	 the	 typical	 neutronics	
problem	with	a	few	hundred	million	degrees	of	freedom	(DOF)	into	ones	with	hundreds	
of	 trillions	 of	 DOF.	 Such	 problems	 are	 beyond	 the	 capabilities	 of	 existing	
supercomputers.	 With	 the	 advent	 of	 future	 computer	 hardware,	 these	 high‐fidelity	
problems	can	be	solved	but	only	after	a	multiyear	development	program	to	adapt	codes	
such	as	UNIC	to	that	technology.	UNIC	can	presently	be	used	on	smaller	problems	(single	
assembly,	multiple	assemblies)	with	today’s	hardware,	but	it	is	also	necessary	to	provide	
tools	to	solve	the	larger	problems	of	interest,	albeit	without	the	aforementioned	level	of	
spatial	de‐homogenization.	

To	address	the	desire	to	demonstrate	the	coupling	capability	of	NEAMS,	part	of	the	
FY12	funding	was	focused	on	preparing	the	legacy	codes,	termed	PROTEUS‐Fast,	which	
are	fully	capable	of	solving	full‐scale	fast	reactor	problems.	A	bulk	of	the	work	this	year	
was	 focused	 on	 preparing	 and	 distributing	 the	 PROTEUS‐Fast	 codes	 for	 use	 by	 all	
NEAMS	users.		

The	demonstration	of	a	full	coupling	capability	will	require	more	follow	on	work,	but	
significant	progress	was	made	 this	year	preparing	 the	 interface	 coupling	 routines	and	
preparing	PROTEUS‐Fast	 for	use.	The	primary	 targets	of	 interest	 in	PROTEUS‐Fast	are	
DIF3D,	DIF3D‐K	(kinetics),	and	VARI3D	(reactivity	coefficients),	with	REBUS	(fuel	cycle)	
being	an	auxiliary	component	updated	for	convenience.	All	codes	in	PROTEUS‐Fast	were	
verified	and	added	to	the	BuildBot	regression	test.	Unfortunately,	all	of	the	older	codes	
suffered	 significant	 problems	 from	 the	 deprecated	 coding	 practices	 used	within	 them	
and	resulting	conflicts	with	modern	compilers.	After	some	work,	all	of	these	issues	were	
resolved	and	we	feel	confident	in	releasing	them	for	use	by	others	NEAMS	members.	

With	regard	to	specific	upgrades,	DIF3D‐VARIANT	was	upgraded	with	a	few	months	
of	 effort	 to	 allow	 the	 large	 scale	problems	of	 interest	 to	 be	 executed.	After	 significant	
study,	we	choose	not	to	modify	VARI3D	to	include	a	transport	option,	but	to	develop	a	
new	 code,	 PERSENT	 (partially	 funded	 by	 an	 external	 project)	 which	 uses	 the	 DIF3D‐
VARIANT	transport	solution	option.	The	outstanding	features	missing	from	MC2‐3	were	
added,	and	MC2‐3	has	been	released	to	RSICC.	All	of	the	remaining	PROTEUS‐Fast	codes	
are	 either	 finished	 with	 the	 copyright	 and	 licensing	 procedure	 or	 are	 actively	 going	
through	it.	While	that	process	will	delay	the	targeted	August	2012	release	to	RSICC	for	a	
few	more	months,	 the	codes	are	ready	for	 immediate	use	and	can	be	connected	to	the	
framework	either	by	us	or	by	others	as	the	interface	readers	and	documentation	will	be	
released	with	the	PROTEUS‐Fast	codes.	

FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)

E. R. Wolters, M. A. Smith, K. Derstine, C. H. Lee, G. Yesilyurt, A. Marin‐Lafleche 5

 ANL/NE‐12‐44

There	was	also	an	ongoing	effort	to	maintain	and	upgrade	the	benchmarks	used	to	
verify	the	PROTEUS‐Fast	codes.	Automated	testing	is	done	on	a	nightly	basis	using	the	
Buildbot	 framework.	 These	 frequent	 regression	 tests	 have	 proven	 to	 be	 very	 useful	
given	all	 the	upgrades	done	to	the	PROTEUS‐Fast	 toolset.	Additionally,	upgrades	made	
to	the	test	suite	will	ease	the	release	process	to	external	users.				

 FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)
6 September 30, 2012

ANL/NE‐12‐44

TABLE OF CONTENTS

Summary ... 4

Table of Contents .. 6

1 Introduction .. 7

2 Updates to the Codes and Connection to the NEAMS Framework 7

2.1 Dealing with multiple platforms ... 7
2.2 Upgrading to DIF3D 11.0 ... 8
2.3 REBUS Modifications .. 10
2.4 Connection to the NEAMS Framework .. 10

3 Status of the Sensitivity and Perturbation Codes ... 11

3.1 The Transport Equation .. 11
3.2 Perturbation theory.. 12
3.3 Perturbation Theory Results for MBIR... 12
3.4 Sensitivity Theory ... 14
3.5 Replacement of VARI3D .. 15

4 MC2-3 Finalization and Distribution .. 17

5 Updates to the Benchmark Test Suite .. 18

5.1 Changes to Benchmark Test Suite Problems .. 18
5.2 New Comparison Script .. 18

6 Conclusions .. 19

References ... 20

FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)

E. R. Wolters, M. A. Smith, K. Derstine, C. H. Lee, G. Yesilyurt, A. Marin‐Lafleche 7

 ANL/NE‐12‐44

1 Introduction

Argonne’s	 reactor	 analysis	 toolset,	 PROTEUS,	 contains	 several	 existing	 and	 new	
codes	that	can	be	used	as	part	of	the	SHARP	code	[1]	within	NEAMS.		As	part	of	SHARP,	
the	 existing	 tools	 for	 safety	 analysis	 of	 fast	 reactors,	 termed	 PROTEUS‐Fast,	 were	
updated	this	year	for	use	by	all	NEAMS	members.	The	relevant	codes	impacted	by	this	
project	are:		

1) DIF3D	[2‐4],	a	structured	grid,	neutron	diffusion	and	transport	theory	code		

2) REBUS	[5],	a	depletion	and	fuel	cycle	analysis	code	built	around	DIF3D	

3) DIF3D‐K	[6],	a	diffusion	theory	kinetics	code	built	around	DIF3D	

4) VARI3D	[7‐8],	a	perturbation	and	sensitivity	code	built	around	DIF3D	

5) MC2‐3	[9],	a	fast	reactor,	multi‐group	cross	section	generation	code	

The	targeted	work	on	the	PROTEUS‐Fast	tools	can	be	summarized	as:	

A) Recover	the	kinetics	capability	of	DIF3D‐K.	

B) “Modernize”	 and	 document	 the	 perturbation	 theory	 code	 VARI3D	 which	 is	
essential	 for	 generating	 reactivity	 feedback	 coefficients	 used	 in	 safety	 analysis	
codes	such	as	SAS4A	[10].	

C) Verify	and	release	the	latest	version	of	each	code	through	RSICC	[11].	

D) Develop	 the	 interface	 routines	 to	 fully	 connect	 the	 PROTEUS‐Fast	 codes	 to	 the	
framework	of	NEAMS.	

The	DIF3D‐K	code	was	successfully	added	to	the	Buildbot	[12]	nightly	regression	test	
using	 the	 pre‐existing	 set	 of	 verification	 problems	 (last	 tested	 10	 years	 ago).	 The	
documentation	 created	 during	 its	 development	 gives	 confidence	 that	 the	 results	 it	
generates	are	accurate	and	validated,	however,	the	verification	tests	are	not	sufficient	to	
guarantee	all	options	are	tested.	The	work	on	this	area	was	cut	short	to	accommodate	a	
coupling	 demonstration	 (part	 of	 another	milestone	 report),	 and	 thus	 the	 bulk	 of	 this	
report	details	the	work	on	the	remaining	work	tasks.		

2 Updates to the Codes and Connection to the NEAMS Framework

We	start	with	the	updates	made	to	the	DIF3D	code	and	the	set	of	interface	modules	
built	to	allow	coupling	with	the	frameworks.	Note	that	since	DIF3D‐K	uses	the	same	base	
input	 and	 interface	 files,	 it	 can	 also	 be	 connected	 to	 the	 frameworks	 using	 the	 same	
modules.		

2.1 Dealing with multiple platforms

A	majority	of	the	problems	with	DIF3D	and	REBUS	were	due	to	years	of	incremental	
bug	fixes	and	a	lack	of	thorough	verification	tests.	As	an	example,	during	the	creation	of	
DIF3D	9.0,	over	40	benchmarks	 (most	because	of	known	 issues)	were	created	 for	 just	
the	 DIF3D‐VARIANT	 (transport)	 option	 which	 only	 supports	 four	 geometry	 models.	
DIF3D	8.0	failed	over	20+	of	these	benchmarks	(math	problems)	and	the	fixes/updates	
to	DIF3D	9.0	resolved	all	of	them.	For	DIF3D	10.0	and	11.0,	the	number	of	benchmarks	

 FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)
8 September 30, 2012

ANL/NE‐12‐44

was	 reduced	 to	 a	more	manageable	number	which	are	known	 to	 thoroughly	 touch	all	
parts	of	the	DIF3D‐VARIANT	coding.		

While	DIF3D	has	been	used	on	multiple	platforms	in	recent	years,	DIF3D‐K,	VARI3D,	
and	REBUS	have	not.	Skipping	a	bulk	of	the	history,	the	version	of	each	code	was	most	
recently	 only	 used	 on	 the	 Sun	 operating	 system.	 In	 the	 last	 5	 years,	 the	 codes	 were	
migrated	 to	 the	Linux	operating	system	which	required	numerous	changes.	Additional	
changes	to	accommodate	the	64	bit	Linux	operating	system	were	also	made.	All	of	this	
was	done	using	the	Intel	set	of	compilers.	Support	for	the	Sun	operating	system	has	been	
discontinued.	The	remaining	compilers	 to	 test	 include	Lahey,	Compaq,	and	Absoft,	but	
given	 that	 the	various	 codes	 (or	 compilers)	do	not	obey	 the	Fortran	77	or	Fortran	90	
standards,	we	expect	 there	 to	be	 considerable	difficulties	 in	making	 these	 codes	work	
with	those	compilers.	

During	 the	 development	 of	 DIF3D	 10.0,	 the	 Intel	 10.1	 compiler	 (released	 in	 Nov.	
2007)	was	exclusively	used	 in	order	 to	avoid	spending	any	additional	 (and	unfunded)	
effort	updating	the	set	of	codes.	Four	major	compiler	versions	have	been	released	since,	
and	to	accommodate	the	NEAMS	desired	usage	of	these	codes,	they	must	be	prepared	for	
use	 on	 the	 newest	 release	 of	 the	 compilers.	 We	 chose	 to	 use	 the	 Intel	 12.1	 Fortran	
compiler	 as	 it	 is	 the	most	 recent	 version	 and	 as	 expected,	we	 experienced	 numerous	
issues.	Most	of	these	problems	are	associated	with	F66	related	coding	which	is	prevalent	
in	 these	codes	as	most	were	built	 in	 the	1970s.	We	anticipate	 these	 types	of	bugs	will	
become	 increasingly	 common	 because	 new	 compilers	 do	 not	 provide	 support	 for	 the	
obsolete	coding	and	coding	practices	prevalent	in	much	of	the	codes.	Note	that	SCALE	at	
ORNL	 [13]	 and	MCNP	 at	 LANL	 [14]	 both	 recently	 updated	 their	 code	 packages	 to	 the	
Fortran	 90+	 standard	 to	 avoid	 expending	 any	 more	 efforts	 dealing	 with	 antiquated	
coding.	

2.2 Upgrading to DIF3D 11.0

DIF3D	11.0	was	built	the	previous	fiscal	year	to	allow	large	memory	DIF3D‐VARIANT	
calculations	to	be	performed	in	a	reasonable	amount	of	time.	During	the	course	of	2011,	
DIF3D	 11.0	 was	 more	 routinely	 used	 because	 of	 its	 vastly	 improved	 speed,	 but	 its	
reliability	was	not	very	good	as	it	was	not	yet	rigorously	tested.	Consequently,	the	first	
major	effort	in	this	project	was	to	do	a	rigorous	QA	on	DIF3D	11.0.		

The	 major	 change	 to	 DIF3D‐VARIANT	 from	 10.0	 to	 11.0	 was	 a	 change	 in	 the	
philosophy	 with	 regard	 to	 the	 memory	 management	 scheme.	 In	 DIF3D‐10	 (and	 all	
preceding	versions),	an	antiquated	memory	management	scheme	called	BPOINTER	[15]	
is	used	to	circumvent	the	lack	of	dynamic	storage	capability	in	Fortran	77.	BPOINTER	is	
effectively	 restricted	 to	 32‐bit	memory	 addressing	 and	 thus	 the	 total	 usable	memory	
size	 is	 just	2	GB	regardless	of	the	actual	computer	memory.	For	 large	DIF3D‐VARIANT	
calculations,	 the	 BPOINTER	 approach	 partitions	 the	 additional	memory	 to	 disk	which	
impacts	 performance.	 More	 importantly,	 the	 BPOINTER	 constrained	 approach	 also	
requires	 that	 whatever	 space‐angle	 approximation	 is	 used	 must	 fit	 within	 the	 2GB	
container	 space.	 This	 constraint	 limits	 the	 number	 of	 unique	 compositions	 in	 the	
problem	and	the	range	of	space‐angle	approximations.	In	DIF3D	11.0,	the	Large	Memory	
Array	 (LMA)	 module	 from	 PROTEUS‐UNIC	 [16]	 was	 added	 to	 DIF3D.	 This	 coding	

FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)

E. R. Wolters, M. A. Smith, K. Derstine, C. H. Lee, G. Yesilyurt, A. Marin‐Lafleche 9

 ANL/NE‐12‐44

approach	is	equivalent	to	what	would	be	done	in	a	modern	Fortran	90	rewrite	of	DIF3D.	
The	LMA	module	internalizes	the	64	bit	addressing	such	that	DIF3D	only	needs	to	work	
with	 32	 bit	 integers.	 With	 DIF3D	 11.0,	 230	 group,	 P9	 flux	 calculations	 can	 now	 be	
routinely	performed	on	modern	workstations	although	we	note	 that	nearly	132	GB	of	
memory	are	necessary	to	accomplish	the	task.		

Table	 1	 displays	 the	 poor	 computational	 performance	 of	 DIF3D	 10.0	 relative	 to	
DIF3D	11.0	and	shows	how	the	BPOINTER	limitations	restricted	which	options	could	be	
used.	 In	 most	 cases,	 the	 upgraded	 version	 is	 over	 an	 order	 of	 magnitude	 faster	 on	
comparable	calculations.	More	important,	given	the	same	computing	resource,	a	P9‐K5	
calculation	 using	 DIF3D	 11.0	 takes	 half	 the	 time	 that	 a	 P3‐K3	 calculation	with	 DIF3D	
10.0	which	allows	verification	of	space‐angle	convergence	that	can	be	essential	to	many	
physics	studies.	

Table 1. Eigenvalue and Performance for a 230-group Core Calculation Using VARIANT
PN=angular flux expansion

KN=scattering kernel expansion
4,6,1=Source,Flux,Leakage Spatial

approximations

DIF3D 10.0 DIF3D 11.0
Eigenvalue Time Eigenvalue Time

4,6,1 P1 K0 0.99577 3.6 min 0.99577 4.4 min
4,6,1 P1 K1 0.99387 1.7 hr 0.99387 40 min
4,6,1 P3 K3 1.00009 83 hr 1.00009 8.2 hr
4,6,1 P5 K0 1.00245 37 min
4,6,1 P5 K1 0.99966 3.1 hr
4,6,1 P5 K3 1.00043 16 h
4,6,1 P5 K5 1.00043 24 h
4,6,1 P7 K5 1.00053 36 h
4,6,1 P9 K5 1.00057 43 h

	

As	mentioned,	the	bulk	of	the	DIF3D	11.0	coding	was	carried	out	in	FY2011,	leaving	
the	verification	work	to	be	carried	out	this	year.	At	present,	DIF3D	11.0	is	fully	debugged	
and	comprehensively	validated,	noting	that	we	have	added	verification	benchmarks	for	
the	 adjoint	 flux	 options	 which	 were	 not	 tested	 previously.	 We	 note	 that	 DIF3D	 is	 a	
component	 part	 in	 REBUS	 and	 VARI3D,	 and	 the	 verification	 on	 those	 codes	 indicated	
further	 problems	with	 DIF3D	 11.0	 (not	 only	 DIF3D‐VARIANT)	which	were	 corrected.	
Fortunately,	because	of	the	strong	improvement	in	performance,	there	were	numerous	
users	which	made	the	bug‐detection	process	easier.	

In	addition	to	 the	change	 in	memory	management,	several	methodological	changes	
were	 made	 to	 DIF3D‐VARIANT.	 DIF3D‐VARIANT	 is	 fundamentally	 a	 fixed	 iteration	
scheme	and	previous	developers	attempted	to	correct	the	poor	eigenvalue	convergence	
by	introducing	source	extrapolation	(SE)	and	coarse	mesh	rebalance	(CMR)	acceleration	
techniques.	 In	 most	 cases	 CMR	makes	 no	 sense	 for	 transport	 theory	 and	 was	 highly	
unreliable	when	 it	 is	 used.	Moreover,	 CMR	 is	 intended	 for	 small	mesh	 problems	 (like	
ZPR)	for	which	it	was	observed	to	work	reasonably	well	(diffusion	theory),	but	most	fast	
reactor	problems	utilize	 large	mesh	sizes	and	thus	CMR	is	effectively	useless	(it	rarely	

 FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)
10 September 30, 2012

ANL/NE‐12‐44

turns	 on).	 The	 introduction	 of	 source	 extrapolation	 is	 almost	 always	 a	 common	 user	
complaint	when	 trying	 to	 solve	 high	 order	 angular	 approximations.	 The	 physics	 basis	
behind	the	SE	acceleration	in	DIF3D‐VARIANT	is	weak,	and	SE	rarely	saves	more	than	a	
few	outer	iterations	and	instead	has	routinely	been	observed	to	cause	a	general	failure	
of	convergence.		

Both	 CMR	 and	 SE	 acceleration	 options	 were	 removed	 in	 DIF3D	 11.0	 and	 are	 no	
longer	 available	 in	 DIF3D‐VARIANT.	 An	 attempt	 was	 made	 to	 introduce	 Tchebychev	
acceleration	(taken	directly	from	UNIC),	but	the	use	of	a	fixed	iteration	algorithm	does	
not	 produce	 a	 reliable	 estimate	 of	 the	 dominance	 ratio.	More	 research	 is	 required	 to	
modify	the	Tchebychev	acceleration	technique	before	it	can	be	used	in	DIF3D‐VARIANT.	
However,	 for	 most	 fast	 reactor	 problems,	 Tchebychev	 reduces	 the	 number	 of	 outer	
iterations	by	a	mere	10%,	and	thus	there	is	little	motivation	to	continue	that	work.	It	is	
important	 to	 note	 that	 the	 fixed	 iteration	 scheme	 as	 implemented	 in	DIF3D‐VARIANT	
does	not	guarantee	convergence	of	the	higher	order	moments	and	that	additional	user	
input	is	necessary	if	convergence	of	those	moments	is	desired.	

The	last	change	of	note	made	in	DIF3D	11.0	is	the	addition	of	a	transport	based	fixed	
source	file:	VARSRC.	This	is	exclusively	used	in	DIF3D‐VARIANT	and	is	necessary	for	the	
PERSENT	 code	 to	 perform	 sensitivity	 calculations.	 The	 format	 of	 the	 VARSRC	 file	 is	
nearly	 identical	 to	 that	 of	 NHFLUX	 file	 used	 to	 store	 the	 flux	 and	 current	 vectors	
(restart).	DIF3D	was	been	modified	to	check	for	the	presence	of	this	new	file	in	addition	
to	its	predecessor	FIXSRC.			

2.3 REBUS Modifications

Similar	to	DIF3D,	the	REBUS	code	was	pushed	to	the	latest	compiler	version.	While	
REBUS	 also	 experienced	 compiler	 vectorization	 issues	 due	 to	 the	 use	 of	 deprecated	
Fortran	 66/77	 coding,	 these	 issues	 were	 fully	 resolved	 by	 rewriting	 problematic	
sections	of	code	in	modern	Fortran	77+	coding.	As	a	note,	future	compiler	upgrades	are	
expected	 to	 cause	 similar	 issues	 until	 the	 codes	 have	 been	 rewritten	 to	 remove	 all	
deprecated	coding.	In	any	case,	the	port	to	the	latest	compiler	was	successful	and	REBUS	
11.0	using	DIF3D	11.0	 is	working	correctly	with	the	Intel	10.1	and	12.1	compilers	and	
has	been	verified	for	the	benchmark	test	suite	on	various	Linux	platforms.	

2.4 Connection to the NEAMS Framework

As	mentioned,	 a	 goal	 of	 the	NEAMS	work	was	 to	 connect	 the	PROTEUS‐Fast	 codes	
DIF3D	 (and	 DIF3D‐K)	 to	 the	 SHARP	 framework.	 This	 is	 particularly	 difficult	 to	 do	 as	
DIF3D	does	not	have	an	explicit	geometry	representation,	but	an	assembly	homogenized	
one.	While	this	has	been	dealt	with	in	the	past	by	additional	user	input	combined	with	
yet	 another	 code	 which	 reads	 the	 interface	 files,	 this	 is	 problematic	 to	 do	 with	 a	
framework	 where	 coupling	 is	 inferred	 to	 exist.	 Fundamentally	 we	 need	 to	 write	 an	
algorithm	which	maps	a	finite	element	mesh	onto	the	structured	grid	and	evaluates	the	
DIF3D	 solution	 on	 the	 finite	 element	 mesh.	 As	 it	 turns	 out,	 the	 latter	 part	 of	 this	
algorithm	is	already	present	within	UNIC	as	part	of	UNIC‐NODAL	and	can	be	extracted	
for	 use	 with	 DIF3D	 in	 the	 future.	 Unfortunately	 it	 is	 only	 valid	 for	 DIF3D‐VARIANT	
which	DIF3D‐K	does	not	currently	support.		

FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)

E. R. Wolters, M. A. Smith, K. Derstine, C. H. Lee, G. Yesilyurt, A. Marin‐Lafleche 11

 ANL/NE‐12‐44

In	 any	 case,	 to	 make	 the	 connection	 to	 the	 framework,	 it	 is	 more	 convenient	 to	
connect	DIF3D	through	interface	files	as	attacking	the	BPOINTER	data	structure	directly	
is	 not	 practical.	 Thus	 Fortran	 90	 file	 readers	were	 created	 for	 the	 following	 interface	
files:	 COMPXS,	 DIF3D,	 DLAYXS,	 FIXSRC,	 GEODST,	 ISOTXS,	 LABELS,	 NDXSRF,	 NHFLUX,	
PWDINT,	RTFLUX,	and	ZNATDN.	All	of	these	modules	are	already	used	within	PERSENT	
and	thus	are	verified	to	work.	Given	further	focus	on	making	DIF3D‐K	part	of	the	SHARP	
toolset,	we	can	complete	the	task	of	connecting	to	the	framework.	

3 Status of the Sensitivity and Perturbation Codes

VARI3D	(VARIational	3D)	is	a	perturbation	and	sensitivity	code	which	is	built	around	
the	finite	difference	diffusion	option	of	DIF3D.	To	date,	the	primary	use	of	the	VARI3D	
code	has	been	to	generate	reactivity	coefficients	and	kinetics	parameters,	which	can	be	
used	 as	 part	 of	 an	 asymptotic	 core	 analysis	 or	 as	 input	 to	 the	 point	 kinetics	 solver	 of	
SAS4A	(and	similar	tools).	With	the	recent	focus	on	non‐conventional	reactor	types	such	
as	burner	and	small	modular	reactors,	there	are	substantial	questions	with	regard	to	the	
reactivity	 coefficients	 produced	 by	 VARI3D	 when	 the	 eigenvalue	 and	 flux	 solutions	
produced	using	diffusion	theory	and	transport	in	DIF3D	are	considerably	different.		

The	modernization	and	documentation	of	the	VARI3D	solver	was	targeted	with	$60K	
of	NEAMS	funding	to	specifically	focus	on	perturbation	theory	options.	The	specific	goals	
are	 to	 write	 a	 user	 and	 theory	 manual	 and	 modify	 VARI3D	 to	 allow	 a	 3D	 transport	
capability.	 An	 additional	 $75K	 of	 funds	 external	 to	 NEAMS	 were	 also	 contributed	 to	
build	 a	 sensitivity	 capability	 which	 as	 will	 be	 shown	 is	 complementary	 to	 the	
perturbation	theory	option.	After	one	month	of	work	 learning	the	theory	and	studying	
the	VARI3D	coding,	it	was	determined	that	applying	major	updates	to	VARI3D	would	be	
significantly	more	difficult	 than	the	creation	of	a	new	code.	VARI3D	therefore	remains	
and	 can	 be	 used	 exclusively	 with	 the	 finite	 difference	 option	 of	 DIF3D.	 A	 new	
perturbation/sensitivity	 code	 was	 created	 to	 accommodate	 the	 transport	 option	 of	
DIF3D.		

The	 new	 perturbation	 and	 sensitivity	 code	 is	 called	 PERSENT	 (PERturbation	 and	
SENsitivity	for	Transport)	which	is	only	valid	for	the	transport	option	of	DIF3D	although	
it	 could	 technically	 be	 extended	 to	 the	 finite	 difference	 diffusion	 option	 that	 VARI3D	
treats.	

3.1 The Transport Equation

The	steady‐state	neutron	transport	equation	can	be	written	as	

ˆ ˆ ˆ ˆ(, ,) (,) (, ,) (, ,)tr E r E r E S r E       ,	 (3.1)	

where	 ˆ(, ,)r E  	is	the	neutron	flux,	 (,)t r E 	is	the	total	cross	section,	and	 ˆ(, ,)S r E  	is	
the	 source	 which	 includes	 all	 scattering,	 fission,	 and	 fixed	 sources.	 The	 multi‐group	
approximation	reduces	Eq.	3.1	into	a	series	of	equations	

,
ˆ ˆ ˆ ˆ(,) () (,) (,)g t g g gr r r S r       ,	 	 (3.2)	

which	are	coupled	together	via	the	source	which	is	expanded	as	

 FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)
12 September 30, 2012

ANL/NE‐12‐44

, ' '
'

, ' , ' '
'

ˆ ˆ ˆ ˆ(,) ' (, ') (, ')

ˆ ˆ() () ' (, ') (,)

g t g g g
g

g g f g g g
g

S r d r r

r r d r Q r



   

      

      



 
,	 (3.3)	

Note	 that	 for	 calculations	 without	 a	 fixed	 source,	 ˆ(,)gQ r  ,	 Eq.	 3.2	 becomes	 a	

eigenvalue	problem	().	When	a	fixed	source	is	present,	 1  	or	some	other	fixed	input	
quantity.	Using	conventional	matrix	notation,	we	can	write	Eqs.	3.2	and	3.3	as	the	series	
of	coupled	equations	

 , ' , ' '
'

g g g g g g g g g
g

A S W F Q       .	 	 (3.4)	

Assembling	with	respect	to	energy,	Eq.	3.4	can	be	written	as	

   A W F B Q        .	 	 (3.5)	

3.2 Perturbation theory

Perturbation	theory	methods	have	been	developed	for	a	wide	range	of	applications	
in	 reactor	 analysis	 [17‐20]	 many	 of	 which	 are	 still	 widely	 used	 for	 reactivity	 and	
sensitivity	 coefficient	 calculations.	 For	 reactivity	 coefficients,	 the	 parameter	 value	 of	
interest	is	the	eigenvalue	and	thus	the	fixed	source	appearing	in	Eq.	3.5	is	zero	leading	to	
the	eigenvalue	problem	

  0B    .	 	 (3.6)	

Eq.	3.6	has	an	associated	adjoint	equation		

 * * * 0B    ,	 	 (3.7)	

With	respect	to	the	reactivity	coefficient,	we	seek	the	response	to	the	reactivity	between	
a	reference	system	 	and	some	perturbed	state	


	

1 1
1 1 (1) (1)

kk
                  

   


 .	 	 (3.8)	

In	terms	of	the	operator	in	Eqs.	3.6	and	3.7,	this	can	be	evaluated	as	

   * *

*

, ,

,

B B

F

     


 




  

 .	 	 (3.9)	

3.3 Perturbation Theory Results for MBIR

The	MBIR	 reactor	 is	 just	 one	 of	 the	many	 reactor	 types	 being	 studied	 to	 date	 and	
PERSENT	was	used	 [21]	 to	 generate	 reactivity	 coefficients	 for	 a	 quasi‐static	 reactivity	
balance	approach.	Table	2	shows	the	perturbation	theory	results	for	MBIR	using	VARI3D	
and	PERSENT	(P5	flux	and	P5	scattering	kernel	expansion).	

	

	

FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)

E. R. Wolters, M. A. Smith, K. Derstine, C. H. Lee, G. Yesilyurt, A. Marin‐Lafleche 13

 ANL/NE‐12‐44

Table 2. MBIR Reactivity Coefficients by VARI3D and PERSENT

Parameter
VARI3D PERSENT (P5P5)

BOEC EOEC BOEC EOEC

eff, pcm 302 304 301 303

Radial expansion, ¢/K -0.647 -0.664 -0.608 -0.624
Axial free-fuel expansion, ¢/K -0.091 -0.094 -0.093 -0.096
Axial link-fuel expansion, ¢/K -0.122 -0.125 -0.123 -0.126
Fuel density, ¢/K -0.621 -0.667 -0.537 -0.576
Sodium density, ¢/K -0.232 -0.253 -0.178 -0.193
Structure density, ¢/K -0.021 -0.022 -0.014 -0.015
Doppler, ¢/K -0.060 -0.067 -0.056 -0.062
Sodium void worth, $ -10.64 -11.59 -7.50 -8.17
CRD expansion due to Δ(P/F), ¢/K -0.371 -0.145 -0.373 -0.146

CRD expansion due to ΔTin, ¢/K -0.013 -0.005 -0.013 -0.005

As	can	be	seen	in	Table	2,	there	are	relatively	minor	differences	in	the	total	reactivity	
values	 between	 VARI3D	 and	 PERSENT	 although	 some	 of	 them	 do	 have	 considerable	
differences	 (fuel	 density	 and	 radial	 expansion).	 One	 area	 of	 clear	 differences	 is	 in	 the	
void	 worth	 for	 which	 TWODANT	 and	 MCNP	 were	 used	 to	 calculate	 the	 comparative	
values	shown	in	Table	3.	As	can	be	seen,	the	PERSENT	and	TWODANT	result	are	closer	
to	the	MCNP	result	than	VARI3D.	

Table 3. MBIR Void Worth Comparison
code Void Worth ($)

MCNP -8.20
TWODANT -8.53

VARI3D -10.64

PERSENT -7.50

The	 change	 in	 distribution	 of	 the	 reactivity	 coefficient	 is	more	 relevant	 to	NEAMS	
which	we	display	in	Figure	1	for	the	fuel	density	coefficient	from	Table	2.	As	can	be	seen,	
the	diffusion	theory	result	is	primarily	more	negative	in	the	center	of	the	domain	which	
accounts	for	the	bulk	of	the	larger	negative	magnitude	seen	in	Table	2.	The	large	central	
measurement	 position	 is	 the	 primary	 reason	 for	 the	 enhanced	 importance	 of	 the	
reactivity	 worth.	 The	 change	 in	 distribution	 between	 diffusion	 and	 transport	 can	
adversely	affect	 the	associated	safety	analysis	as	 the	peak	pin	power	and	 temperature	
appear	 at	 relatively	 fixed	 spatial	 positions.	 Similar	 results	 are	 observed	 in	 the	 other	
reactivity	coefficients,	but	 it	 is	 important	 to	note	 that	 the	change	 in	distribution	 is	not	
necessarily	consistent	(i.e.	sodium	density	changes	affects	the	periphery	of	the	domain	
rather	 than	 interior).	Overall,	 the	perturbation	 theory	 code	 is	 fully	debugged	and	well	
tested	by	the	ANL	user	group.	

 FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)
14 September 30, 2012

ANL/NE‐12‐44

PERSENT P1-P0

PERSENT P5-K5

Figure	1.	Fuel	Density	Reactivity	Coefficient	(milli‐¢/K)	

3.4 Sensitivity Theory

As	mentioned,	 the	perturbation	 theory	 code	 is	of	 interest	 to	NEAMS	because	of	 its	
routine	use	in	point	kinetics	codes,	but	the	sensitivity	option	is	more	relevant	to	ongoing	
cross	 section	 data	 adjustment	 efforts.	 In	 particular,	 a	 targeted	 development	 of	 a	 3D	
transport	 based	 sensitivity	 option	 is	 desired	 due	 to	 the	 lack	 of	 one	 available	 in	 the	
literature.	At	present,	most	of	these	sensitivity	calculations	are	done	using	ERANOS	[21]	
using	two‐dimensional	RZ	transport	calculations.	Given	that	the	sub‐group	cross	section	
methodology	within	ERANOS	[22]	is	not	as	robust	as	MC2‐3,	a	three‐dimensional	DIF3D‐
VARIANT	 based	 perturbation	 and	 sensitivity	 capability	 combined	 with	 MC2‐3	 would	
provide	a	unique	tool	with	unmatched	accuracy.		

To	 do	 the	 sensitivity	 analysis,	 we	 first	 select	 a	 part	 of	 the	 input	 ()r ,	 which	 is	
inferred	to	be	a	given	component	of	the	cross	section	data	(type,	energy	group,	angular	
moment)	at	a	given	position	 in	 the	domain.	Focusing	on	some	response	parameter	R ,	
such	 as	 the	 fission	 rate	 in	 a	 particular	 position	 in	 the	 domain,	 we	 can	 define	 the	
sensitivity	 of	 that	 response	 parameter	 with	 respect	 to	 the	 variation	 in	 the	 input	
parameter	as	

()
()

()

x R
s x

R x








.	 	 (3.10)	

The	simplest	procedure	for	evaluating	the	derivative	in	Eq.	3.10	is	the	“brute	force”	
approach	 where	 direct	 recalculations	 with	 perturbed	 parameters	 are	 used	 to	 obtain	
finite‐difference	 approximations	 of	 the	 derivative.	 The	 perturbed	 system	 has	 to	 be	
solved	 for	 each	 change	 in	 ()r .	 As	 an	 example,	 to	 get	 the	 sensitivity	 to	 each	 energy	
group	of	the	capture	cross	section	of	U‐238	in	a	230	group	problem,	one	has	to	perform	
231	 flux	 calculations,	 230	 of	which	 are	 only	 useful	 for	 evaluating	 the	 targeted	 U‐238	

FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)

E. R. Wolters, M. A. Smith, K. Derstine, C. H. Lee, G. Yesilyurt, A. Marin‐Lafleche 15

 ANL/NE‐12‐44

sensitivity.	As	one	can	infer,	this	approach	is	not	very	useful	when	evaluating	the	effects	
of	several	 ()r 	on	a	given	response	parameter.	

There	a	variety	of	approaches	to	solving	Eq.	3.10	of	which	we	choose	to	implement	
the	 variational	 method	 [18,	 19,	 23]	 as	 it	 gives	 a	 single	 form	 usable	 for	 all	 desired	
responses	of	interest.	Mathematically	the	variational	functions	results	in	the	sensitivity	
form:	

   **
* *, ,() (, ,)

() , ,
B Bx R

s x
R

        
  

  
     

    
,	 (3.11)	

where	 	and	 * are	Lagrange	multipliers.	The	Lagrange	multipliers	require	the	solution	
of	the	singular	(when	fission	is	present)	equations:	

 
*

* * * (, ,)
,

R
B S

   



  


	 	 (3.12)	

 
*

*

(, ,)
,

R
B S

   



  


	 	 (3.13)	

While	a	solution	does	exist,	it	requires	the	removal	of	the	fundamental	mode	and	thus	a	
specialized	 fundamental	mode	 solver	must	be	 implemented	 into	DIF3D.	Unfortunately	
that	capability	does	not	exist	in	DIF3D	(nor	many	other	codes	for	that	matter),	but	it	can	
be	 added.	 Noting	 that	 VARI3D	 utilizes	 DIF3D,	 it	 relies	 upon	 the	 existence	 of	 a	 near	
critical	 fixed	 source	 extrapolation	 algorithm	 added	 to	 the	 finite	 difference	 option	 of	
DIF3D	 early	 in	 its	 development.	 It	 is	 not	 clear	 at	 this	 time	whether	 that	 approach	 is	
sufficient	 to	 give	 the	 proper	 solution	 to	 Eqs.	 3.12	 or	 3.13.	 We	 note	 that	 the	 same	
functions	implemented	in	the	perturbation	theory	options	are	required	to	evaluate	Eq.	
3.11	which	is	why	the	perturbation	and	sensitivity	coding	are	well	suited	to	each	other.	

3.5 Replacement of VARI3D

The	 primary	 motivation	 for	 replacing	 VARI3D	 is	 the	 fact	 that	 the	 coding	 has	 had	
numerous	problems	with	multiple	compilers.	These	issues	are	primarily	due	to	the	F66	
coding	practices	 and	poor	 approach	 to	memory	usage.	The	 additional	 problem	 is	 that	
none	of	the	three‐dimensional	geometry	options	are	supported	in	VARI3D	and	the	actual	
sensitivity	options	 ()r are	limited.	Combined	with	the	considerable	efforts	required	to	
overcome	 the	BPOINTER	memory	 usage	 in	DIF3D	 for	DIF3D‐VARIANT,	 there	was	 not	
much	enthusiasm	for	“upgrading”	VARI3D	to	incorporate	DIF3D‐VARIANT.	

The	supported	response	parameter	options	for	PERSENT	include:	

1) Reaction	rate	for	fixed	source,	non‐eigenvalue	problems	only,	

2) Reaction	rate	ratio	

3) Reactivity	coefficients	resulting	from	a	material	density	change	

4) Reactivity	coefficients	resulting	from	a	material	composition	change	

5) Reactivity	coefficients	resulting	from	a	Isotopic	cross	section	change	

6) Cumulative	delayed	neutron	fraction	

 FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)
16 September 30, 2012

ANL/NE‐12‐44

7) Prompt	neutron	lifetime	

The	supported	 ()r 	in	PERSENT	are	extensive	and	extensible	with	minor	changes	to	the	
source	 coding.	 One	 particular	 change	 of	 note	 is	 the	 ability	 to	 modify	 the	 anisotropic	
scattering	cross	sections	in	PERSENT	which	is	relevant	for	transport	calculations.	

Unlike	 the	 preceding	 perturbation	 theory	 results,	 the	 sensitivity	 results	 are	 not	
entirely	meaningful	 to	plot.	From	Eq.	3.11,	 there	 is	no	space‐energy	breakdown	 in	 the	
result	 that	makes	sense	because	the	response	typically	 includes	an	 integral	over	those	
variables.	 The	 derivative	 of	 the	 response	 is	 particularly	 problematic	 to	 define	 in	 that	
context.	Moreover,	as	the	earlier	example	indicated,	a	single	 ()r cross	section	selection	
in	a	230	group	problem	would	generate	230	individual	flux	plots	each	potentially	having	
an	extensive	plot	range	(all	energy	groups	and	all	meshes).	While	the	plot	space	can	be	
collapsed	with	 respect	 to	energy,	 that	still	 leaves	over	230	 individual	 spatial	plots	per	
targeted	reaction	which,	after	discussing	with	potential	users,	was	unnecessary.	

Because	the	sensitivity	options	of	PERSENT	are	not	fully	debugged	and	validated	at	
this	time,	we	chose	to	show	an	example	result	from	VARI3D.	Table	4	gives	the	sensitivity	
evaluation	of	the	sodium	void	worth	(in	some	reactor)	to	a	1%	change	in	the	group‐wise	
 ,	 the	neutron	per	 fission	cross	section.	The	right	most	column	 s 	is	 the	evaluation	of	
the	sensitivity	 functional	 in	Eq.	3.11.	 	Noting	 that	 the	 remainder	of	 the	 table	gives	 the	
common	balance	edit	components,	 it	 is	not	clear	from	the	stated	functional	 in	Eq.	3.11	
what	 exactly	 this	 breakdown	 means.	 One	 could	 think	 the	 column	 wise	 values	 are	
different	 responses	 such	 as	 fission	 reaction	 rate,	 production	 reaction	 rate,	 etc.,	 but	
several	of	these	are	not	valid	for	the	variational	functional	 in	Eq.	3.11	and	even	if	they	
were,	 they	 would	 require	 separate	 s 	evaluations.	 In	 reality,	 they	 are	 simply	 the	
perturbation	 theory	 balance	 edit	 result	 for	 the	 sodium	 void	 reactivity	 coefficient	
multiplied	 by	 the	 s 	value	 in	 the	 rightmost	 column.	 Note	 that	 in	 perturbation	 theory,	
each	row	of	the	balance	edit	sums	to	the	partial	contribution	to	the	reactivity	coefficient	
and	clearly	 the	 intent	 in	 this	case	 is	 for	 the	same	behavior	 to	be	observed,	but	 for	 the	
sensitivity.	

Similarly,	the	last	row	in	Table	4	gives	the	cumulative	result	for	each	column	which	
for	 s 	is	 just	 the	overall	 sensitivity	 as	 if	 	was	 systematically	1%	high	over	 the	 entire	
energy	range.	This	is	quite	meaningful	and	relevant	for	isotopes	such	as	Pu‐242	and	Am‐
241.	To	understand	the	values	in	the	table,	we	return	to	the	original	sensitivity	equation		

()
()

()

x R
s x

R x








.	 	 (3.14)	

From	 Eq.	 3.14,	 each	 row	 of	 s 	in	 Table	 4	 gives	 the	 fractional	 change	 in	 the	 response	
(sodium	 void	 worth)	 that	 results	 from	 changing	 the	 specified	 ()r .	 Taking	 the	 first	
energy	group	as	an	example,	one	should	expect	a	0.0136%	change	 in	 the	sodium	void	
worth	(given	as	0.00308	 k

k
)	for	a	1%	change	in	the	group	1	Pu‐239	 	cross	section.		

	

	

FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)

E. R. Wolters, M. A. Smith, K. Derstine, C. H. Lee, G. Yesilyurt, A. Marin‐Lafleche 17

 ANL/NE‐12‐44

Table 4. VARI3D Sensitivity of the Sodium Void Worth to the Pu-239  Cross Section
Group f f  Scatter Out Scatter In Leakage s

1 -6.80E-18 -6.37E-18 1.36E-04 1.18E-16 1.33E-17 1.36E-04
2 0.00E+00 0.00E+00 1.48E-03 0.00E+00 -1.38E-18 1.48E-03
3 -1.71E-16 1.44E-16 4.10E-03 0.00E+00 8.26E-15 4.10E-03
4 0.00E+00 -7.10E-18 1.01E-02 2.49E-15 1.81E-15 1.01E-02
5 0.00E+00 1.63E-15 4.74E-03 4.32E-14 -3.57E-15 4.74E-03
6 4.60E-16 -4.92E-16 1.27E-02 3.01E-14 -3.43E-17 1.27E-02
7 5.34E-16 -4.97E-16 5.53E-02 2.34E-14 -1.81E-14 5.53E-02
8 -7.01E-16 -7.31E-16 1.66E-02 3.19E-14 -8.09E-15 1.66E-02
9 8.08E-16 6.94E-16 2.31E-02 -2.45E-16 -1.69E-16 2.31E-02
10 3.17E-16 2.01E-15 1.27E-02 0.00E+00 -2.07E-16 1.27E-02
11 3.76E-18 1.41E-15 5.74E-03 0.00E+00 -7.33E-17 5.74E-03
12 -2.20E-15 -1.13E-15 1.14E-02 -3.86E-15 -2.49E-18 1.14E-02
13 -4.82E-16 1.31E-17 -5.59E-03 0.00E+00 0.00E+00 -5.59E-03
14 1.87E-16 2.55E-17 -7.48E-03 0.00E+00 -3.59E-15 -7.48E-03
15 0.00E+00 -3.10E-16 -1.25E-02 9.29E-15 -1.04E-15 -1.25E-02
16 9.81E-19 -6.78E-16 -1.25E-02 0.00E+00 -9.38E-15 -1.25E-02
17 -3.27E-17 -4.93E-16 5.54E-03 9.41E-17 0.00E+00 5.54E-03
18 -6.52E-16 -1.88E-16 3.54E-02 1.72E-15 0.00E+00 3.54E-02
19 -8.94E-16 8.75E-17 -5.50E-02 1.07E-14 1.81E-15 -5.50E-02
20 0.00E+00 1.65E-16 -5.76E-02 1.77E-15 0.00E+00 -5.76E-02
21 5.52E-16 -1.67E-16 -4.92E-02 1.85E-15 2.07E-17 -4.92E-02
22 6.26E-17 -1.14E-16 -1.68E-02 -2.35E-16 1.42E-16 -1.68E-02
23 2.20E-16 -1.26E-16 -2.94E-02 -1.61E-15 3.02E-18 -2.94E-02
24 -7.67E-17 6.61E-17 -6.50E-03 2.88E-17 -3.57E-17 -6.50E-03
25 2.18E-17 -2.02E-17 -2.72E-03 -5.56E-17 0.00E+00 -2.72E-03
26 -1.06E-17 -6.24E-18 -1.16E-03 1.34E-17 4.39E-19 -1.16E-03
27 0.00E+00 -7.03E-20 -2.68E-05 -9.13E-20 6.29E-20 -2.68E-05
28 1.55E-19 -1.22E-19 -2.53E-05 7.83E-20 0.00E+00 -2.53E-05
29 1.63E-20 -7.96E-21 -2.32E-06 -7.10E-21 -1.62E-22 -2.32E-06
30 1.84E-21 6.06E-21 -2.19E-07 -1.28E-20 1.37E-23 -2.19E-07
31 1.94E-18 -1.09E-20 9.57E-06 -8.20E-19 -1.10E-19 9.57E-06
32 4.49E-19 8.36E-19 3.98E-06 -4.83E-19 -8.35E-23 3.98E-06
33 6.74E-20 3.45E-20 -6.04E-07 -8.76E-20 -1.38E-23 -6.04E-07

Total -2.06E-15 1.28E-15 -5.75E-02 1.51E-13 -3.22E-14 -5.75E-02

	

As	a	final	note,	the	creation	of	PERSENT	was	only	possible	due	to	the	updates	made	
to	DIF3D‐VARIANT	since	2002,	along	with	the	most	recent	changes	to	include	the	LMA	
module.	While	additional	modifications	were	required	such	as	including	an	anisotropic	
fixed	source	and	the	creation	of	various	interface	modules,	the	development	of	this	tool	
was	complementary	to	the	task	of	connecting	DIF3D	to	the	frameworks	tool	as	all	of	the	
interface	modules	are	now	fully	tested.	

4 MC2‐3 Finalization and Distribution

The	MC2‐3	code	was	not	successfully	released	in	FY2011	since	sufficient	verification	
tests	 were	 not	 completed	 and	 it	 was	 missing	 a	 few	 features	 such	 as	 the	 ability	 to	
generate	kinetics	data.	While	the	intent	was	to	release	it	early	in	FY2012,	the	copyright	
and	 licensing	 process	 was	 an	 extensive	 six	 month	 process	 which	 only	 recently	 was	

 FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)
18 September 30, 2012

ANL/NE‐12‐44

completed.	 At	 present,	 the	 MC2‐3	 code	 is	 packaged	 with	 base	 cross	 section	 libraries,	
several	 verification	 problems	 and	 detailed	 user	 documentation,	 and	 sent	 to	 RSICC	 for	
further	distribution	to	DOE	related	projects.		

5 Updates to the Benchmark Test Suite

Each	 PROTEUS‐Fast	 code	 (DIF3D,	 REBUS,	 VARI3D,	 etc.)	 has	 an	 associated	
benchmark	test	suite	which	provides	several	sample	inputs	and	reference	solutions.	The	
supplied	 inputs	generate	 the	output	provided	 in	 the	reference	solution	 if	 the	code	has	
been	 installed	 and	 compiled	 correctly.	 The	 test	 suite	 serves	 two	 important	 purposes.	
First,	automated	BuildBot	[12]	regression	tests	are	performed	internally	on	nightly	basis	
to	notify	 the	 code	developers	whether	 recent	 changes	 to	 the	 source	 code	have	 caused	
any	 problems.	 Second,	 users	 who	 receive	 any	 part	 of	 PROTEUS‐Fast	 through	 RSICC	
distribution	can	use	the	test	suite	to	check	whether	they	have	installed	and	compiled	the	
codes	successfully.	In	both	cases,	each	code	is	compiled	locally	and	this	local	compilation	
is	used	to	solve	the	test	suite	problems.		Each	user‐generated	output	is	then	compared	to	
the	 reference	 solution	 supplied	 in	 the	 test	 suite.	 Changes	 were	 made	 to	 several	
benchmark	problems	in	the	test	suite,	as	well	as	to	the	actual	comparison	script	used	to	
compare	user‐generated	outputs	to	the	reference	solutions.		

5.1 Changes to Benchmark Test Suite Problems

After	reviewing	the	DIF3D	benchmarks,	three	problems	(benchmarks	24,	25,	and	26)	
were	modified	by	changing	the	spatial	approximation	in	DIF3D‐VARIANT.		This	resolved	
an	issue	where	the	eigenvalue	iteration	was	not	converging	in	a	reasonable	number	of	
iterations.	 The	 REBUS	 benchmark	 problems	 were	 reviewed,	 cleaned	 up,	 and	 one	
(benchmark	 24)	was	 significantly	 changed	 to	 properly	 test	 the	 “polyfit”	 feature.	 In	 all	
cases,	 the	 new	 benchmark	 problems	 were	 confirmed	 to	 yield	 agreeable	 output	 with	
older	versions	of	DIF3D	and	new	reference	solutions	using	DIF3D	11.0	were	updated	to	
the	repository.	

5.2 New Comparison Script

As	previously	noted,	 the	benchmark	 test	 suite	works	by	comparing	user‐generated	
output	files	with	supplied	reference	solutions	and	reporting	the	differences	to	the	user.	
This	 comparison	 was	 previously	 performed	 using	 the	 Unix	 “diff”	 command	 which	
reports	 every	difference	 between	 two	 files.	However,	 because	different	 compilers	 and	
computer	 architectures	 can	 result	 in	 slightly	 different	 results,	 small	 differences	 occur	
between	 the	reference	output	and	 the	 test	output	which	should	be	 ignored.	Further,	a	
significant	 portion	 of	 the	 output	 files	 require	 special	 treatment	 because	 they	 contain	
quantities	 that	 vary	 substantially	 from	machine	 to	 machine	 (e.g.	 the	 balance	 table	 in	
DIF3D	 which	 routinely	 prints	 “zeros”).	 To	 go	 beyond	 a	 simple	 “diff,”	 an	 intelligent	
comparison	script	 is	required	 to	avoid	 the	need	 for	an	experienced	user	or	neutronics	
expert	to	do	a	detailed	comparison	of	the	output	files.		As	expected,	the	creation	of	such	
a	script	is	non‐trivial	but	has	now	been	completed	for	DIF3D	and	REBUS.	This	script	will	
save	significant	effort	in	the	future	by	expediting	code	evaluation	on	new	platforms	and	
compilers.	

FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)

E. R. Wolters, M. A. Smith, K. Derstine, C. H. Lee, G. Yesilyurt, A. Marin‐Lafleche 19

 ANL/NE‐12‐44

New	 comparison	 scripts	 for	 DIF3D	 and	 REBUS	were	 written	 in	 Python	 due	 to	 its	
convenient	text‐processing	capabilities.	The	primary	requirement/limitation	of	the	new	
comparison	script	 is	 that	 the	two	compared	files	must	have	the	same	number	of	 lines.		
This	 is	a	 reasonable	expectation	since	very	seldom	should	 the	number	of	 lines	change	
(such	 as	 due	 to	 an	 extra	 outer	 iteration	 for	 the	 eigenvalue	 convergence	 routine).	 The	
script	marches	sequentially	through	each	line	of	the	two	files	to	compare,	and	compares	
real	numbers	to	within	a	user‐specified	tolerance	(default	is	1E‐5).	Character	strings	are	
not	compared,	since	they	do	not	vary	based	on	platform	or	compiler.	Specific	tables	are	
recognized	as	they	are	encountered	and	treated	specially	in	the	script.	The	experienced	
user	can	also	change	how	particular	tables	are	treated	by	specifying	which	columns	to	
compare	and	at	what	tolerance.	

The	 new	 comparison	 script	 compares	 the	 entire	 contents	 of	 the	 output	 files	 for	
DIF3D	calculations.	For	REBUS	non‐equilibrium	calculations,	the	file	comparison	starts	
after	 the	 statement	 of	 the	 non‐equilibrium	 problem	 type.	 For	 REBUS	 equilibrium	
calculations,	the	file	comparison	occurs	after	convergence	has	been	reached	noting	that	
the	data	printed	before	convergence	is	reached	often	contains	convergence	information	
(i.e.	“zeros”)	that	are	unimportant.	

Due	to	the	complexity	of	the	new	comparison	script,	new	benchmark	problems	were	
added	to	the	repository	to	verify	that	the	comparison	script	 itself	 is	working	correctly.		
In	these	benchmarks,	the	individual	codes	are	not	invoked,	rather	the	comparison	script	
is	 called	 directly	 to	 compare	 two	 fixed	 output	 files	 which	 contain	 known	 differences	
recorded	in	another	file.	The	differences	identified	by	the	script	must	match	the	known	
differences	to	yield	a	“SUCCESS”	state,	indicating	that	the	comparison	script	detected	all	
differences	as	intended.	

Follow‐on	work	will	 involve	using	 the	 comparison	 script	 for	VARI3D	and	DIF3D‐K	
calculations.	An	initial	version	of	this	comparison	script	has	also	been	created	for	MC2‐3.	

6 Conclusions

The	 following	 list	 of	 tasks	 summarizes	 the	 work	 on	 PROTEUS‐Fast	 that	 was	
completed	this	year.	

1) Outstanding	execution	problems	with	DIF3D	11.0	were	resolved,	and	DIF3D	11.0	
was	 fully	 verified	 in	 both	 standalone	 and	modular	 modes.	 The	 biggest	 change	
from	DIF3D	10.0	to	DIF3D	11.0	is	the	incorporation	of	the	Large	Memory	Array	
memory	management	scheme	which	allows	users	to	perform	very	 large	DIF3D‐
VARIANT	calculations	efficiently.	Additionally,	minor	methodology	changes	were	
made	 to	 DIF3D	 11.0.	 A	 new	 anisotropic	 fixed	 source	 was	 added	 to	 DIF3D‐
VARIANT	for	use	in	the	sensitivity	option	of	PERSENT.	

2) The	PROTEUS‐Fast	codes	were	made	compatible	with	a	more	recent	and	relevant	
Fortran	 compiler,	 Intel	 12.1.	 	 The	migration	 of	 this	 compiler	 caused	 numerous	
problems	in	several	of	the	codes	due	to	the	prevalence	of	deprecated	Fortran	66	
coding	and	the	reduced	support	for	Fortran	66	in	new	compilers.	Significant	time	
had	 to	 be	 devoted	 to	 debugging	 issues	 with	 the	 Intel	 12.1	 compiler	 which	
required	several	sections	of	the	coding	to	be	rewritten	with	modern	Fortran.	

 FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)
20 September 30, 2012

ANL/NE‐12‐44

3) Most	 of	 the	 interface	 modules	 needed	 to	 connect	 DIF3D	 and	 DIF3D‐K	 to	 the	
frameworks	tool	were	created	and	fully	verified	via	the	PERSENT	work.	While	a	
formal	interface	model	has	not	been	constructed,	pieces	within	the	UNIC	code	can	
be	extracted	in	the	future	as	deemed	necessary	to	complete	this	work.	

4) The	DIF3D‐K	code	was	resurrected,	added	to	the	nightly	verification	tests	of	the	
legacy	toolset,	and	prepared	for	export	with	full	documentation.	

5) The	 verification	 tests	 of	MC2‐3	 problems	were	 completed	 and	missing	 features	
were	 added.	 It	 went	 through	 the	 copyright	 and	 licensing	 process	 and	 was	
packaged	for	release	to	RSICC.	

6) The	 upgrade	 to	 VARI3D	 was	 abandoned	 in	 favor	 of	 a	 complete	 rewrite	 called	
PERSENT.	Both	perturbation	and	 sensitivity	options	of	VARI3D	were	 redone	 in	
PERSENT,	but	it	based	entirely	on	the	VARIANT	solver	of	DIF3D	11.0	which	does	
allow	both	diffusion	and	transport	theory	solution	options.		

7) Several	 verification	 test	 problems	 used	 for	 the	 PROTEUS‐Fast	 codes	 were	
updated	 to	 ensure	 they	 were	 appropriately	 testing	 the	 desired	 features	 of	 the	
codes.	 Additionally,	 a	 new	 comparison	 script	 was	 created	 which	 intelligently	
compares	user‐generated	output	with	reference	output.	 	The	comparison	script	
ignores	small	differences	likely	to	result	from	a	compiler	or	platform	differences.	
The	 new	 comparison	 script	 should	 save	 significant	 time	 for	 both	 users	 and	
developers,	who	will	no	longer	have	to	rely	upon	experienced	users	or	neutronics	
experts	to	identify	if	there	is	a	problem	with	the	code.	

REFERENCES

1. A.	Siegel,	T.	Tautges,	A.	Caceres,	D.	Kaushik,	and	P.	Fischer,	 “Software	Design	of	
SHARP”,	Proceedings	of	the	Joint	International	Topical	Meeting	on	Mathematics	&	
Computation	 and	 Supercomputing	 in	Nuclear	 Applications,	Monterey,	 CA,	 April	
15‐19,	American	Nuclear	Society,	Lagrange	Park,	IL	(2007).	

2. K.	L.	Derstine,	DIF3D:	A	Code	to	Solve	One‐,	Two‐,	and	Three‐Dimensional	Finite‐
Difference	Diffusion	Theory	Problems,	ANL‐82‐64,	Argonne	National	Laboratory,	
Argonne,	IL	(1984).	

3. R.	 D.	 Lawrence,	 The	 DIF3D	 Nodal	 Neutronics	 Option	 for	 Two‐	 and	 Three‐
Dimensional	 Diffusion	 Theory	 Calculations	 in	 Hexagonal	 Geometry,	 ANL‐83‐1,	
Argonne	National	Laboratory,	Argonne,	IL	(1983).	

4. G.	 Palmiotti,	 E.	 E.	 Lewis,	 and	 C.	 B.	 Carrico,	 VARIANT:	 VARIational	 Anisotropic	
Nodal	 Transport	 for	 Multidimensional	 Cartesian	 and	 Hexagonal	 Geometry	
Calculation,	ANL‐95/40,	Argonne	National	Laboratory,	Argonne,	IL	(1995).	

5. B.	J.	Toppel,	“A	User’s	Guide	to	the	REBUS‐3	Fuel	Cycle	Analysis	Capability,”	ANL‐
83‐2,	Argonne	National	Laboratory	(1983).	

6. T.A.	 Taiwo,	 DIF3D‐K:	 A	 Nodal	 Kinetics	 Code	 for	 Solving	 the	 Time‐Dependent	
Diffusion	Equation	in	Hexagonal‐Z	Geometry,	ANL/NPR‐92/17,	Argonne	National	
Laboratory,	Argonne,	IL	(1992).	

FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)

E. R. Wolters, M. A. Smith, K. Derstine, C. H. Lee, G. Yesilyurt, A. Marin‐Lafleche 21

 ANL/NE‐12‐44

7. C.	H.	Adams,	Argonne	National	Laboratory,	Private	Communication,	(2008).	

8. C.	 H.	 Adams,	 “Specifications	 for	 VARI3D	 –	 A	 Multidimensional	 Reactor	 Design	
Sensitivity	Code,”	FRA‐TM‐74,	Argonne	National	Laboratory	(1975).	

9. C.	H.	Lee	and	W.	S.	Yang,	 “MC2‐3:	Multigroup	Cross	Section	Generation	Code	for	
Fast	Reactor	Analysis,”	ANL/NE‐11‐41,	Argonne	National	Laboratory,	Argonne,	IL	
(2012).	

10. J.	E.	Cahalan	et	al.,	 "Advanced	LMR	Safety	Analysis	Capabilities	 in	 the	SASSYS‐1	
and	 SAS4A	Computer	 Codes,"	 Proceedings	 of	 the	 International	 Topical	Meeting	
on	 Advanced	 Reactors	 Safety,	 Pittsburgh,	 PA,	 April	 17‐21,	 American	 Nuclear	
Society,	Lagrange	Park,	IL	(1994).	

11. Radiation	Safety	Information	Computational	Center	(RSICC),	www‐rsicc.ornl.gov.		

12. Buildbot	Homepage,	www.buildbot.net.	

13. SCALE:	 A	 Comprehensive	 Modeling	 and	 Simulation	 Suite	 for	 Nuclear	 Safety	
Analysis	 and	 Design,	 ORNL/TM‐2005/39,	 Version	 6.1,	 Oak	 Ridge	 National	
Laboratory,	 Oak	 Ridge,	 Tennessee,	 June	 2011.	 Available	 from	 Radiation	 Safety	
Information	Computational	Center	at	Oak	Ridge	National	Laboratory	as	CCC‐785.	

14. J.	 F.	 Briesmeister,	 et	 al.,	 “MCNP	 –	 A	 General	 Monte	 Carlo	 N‐Particle	 Transport	
Code,	Version	5,	User’s	Guide,	Volume	 II”,	 Los	Alamos	National	Laboratory,	 LA‐
UR‐03‐0245,	October	2005.	

15. C.	 H.	 Adams,	 et.al.,	 The	 Utility	 Subroutine	 Package	 Used	 by	 Applied	 Physics	
Division	 Export	 Codes,	 ANL‐83‐3,	 Argonne	 National	 Laboratory,	 Argonne,	 IL	
(1992).	

16. D. Kaushik, M. Smith, A. Wollaber, B. Smith, A. Siegel, and W. S. Yang, "Enabling
High Fidelity Neutron Transport Simulations on Petascale Architectures," Proceedings
of the Conference on High Performance Computing Networking, Storage and
Analysis, vol. 67, Portland, Oregon, ACM (2009).

17. K.	 F.	 Laurin‐Kovitz	 and	 E.	 E.	 Lewis,	 “Variational	 Nodal	 Transport	 Perturbation	
Theory,”	Nucl.	Sci.	Eng.,	123,	369	(1996).		

18. W.	 S.	 Yang	 and	 T.	 J.	 Downar,	 “Generalized	 Perturbation	 Theory	 for	 Constant	
Power	Core	Depletion,”	Nucl.	Sci.	Eng.,	99,	353	(1988).	

19. M.	 L.	 Williams,	 “Perturbation	 Theory	 for	 Nuclear	 Reactor	 Analysis,”	 CRC	
Handbook	of	Nuclear	Reactors	Calculations,	 Vol.	 III,	 CRC	 Press,	 Inc.,	 Boca	 Raton,	
Florida	(1986).	

20. W.	M.	Stacy,	Variational	Methods	in	Nuclear	Reactor	Physics,	Academic	Press,	New	
York,	N.Y.	(1974).	

21. Bo	Feng	and	M.	A.	Smith,	Personal	communication,	Argonne	National	Laboratory	
(September	2012).	

22. G.	 Rimpault,	 et	 al.,	 “The	 ERANOS	 Code	 and	 Data	 System	 for	 Fast	 Reactor	
Neutronic	 Analyses,”		 Proc.	 of	 PHYSOR	 2002	 Conference,	 Seoul,	 South	 Korea	
(October	2002).	

 FY2012 Report on Fast Reactor Toolset Work (PROTEUS‐Fast)
22 September 30, 2012

ANL/NE‐12‐44

23. W.	M.	Stacy,	Variational	Methods	in	Nuclear	Reactor	Physics,	Academic	Press,	New	
York,	N.Y.	(1974).	

	

A U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC

Nuclear Engineering Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 208
Argonne, IL 60439

www.anl.gov

	Abstract
	I. Introduction
	II. Calculational Methodology
	II.1 Computer Codes
	II.2 Fixed source burnup calculational method
	II.3 Validation of the fixed source burnup calculational method

	III. ADS burnup calculations
	III.1 Burnup calculational model
	III.2 Burnup results from fixed source and fission source calculations

	IV. Burnup history with the addition of fresh fuel assemblies
	IV.1 First Burnup Stage
	IV.2 Second burnup stage
	IV.3 Depletion and fueling stage 3
	IV.4 Subcritical assembly performance parameters during the different burnup stages

	V. Summary and Conclusions
	Reference

