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Abstract

Understanding the behavior of real complex networks is of great theoretical and practical

significance. It includes developing accurate artificial models whose topological properties

are similar to the real networks, generating the artificial networks at different scales under

special conditions, investigating a network dynamics, reconstructing missing data, predicting

network response, detecting anomalies and other tasks. Network generation, reconstruction,

and prediction of its future topology are central issues of this field. In this project, we address

the questions related to the understanding of the network modeling, investigating its structure

and properties, and generating artificial networks.

Most of the modern network generation methods are based either on various random graph

models (reinforced by a set of properties such as power law distribution of node degrees, graph

diameter, and number of triangles) or on the principle of replicating an existing model with el-

ements of randomization such as R-MAT generator and Kronecker product modeling. Hierar-

chical models operate at different levels of network hierarchy but with the same finest elements

of the network. However, in many cases the methods that include randomization and replica-

tion elements on the finest relationships between network nodes and modeling that addresses

the problem of preserving a set of simplified properties do not fit accurately enough the real

networks. Among the unsatisfactory features are numerically inadequate results, non-stability

of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incor-

rect behavior at different scales. One reason is that randomization and replication of existing

structures can create conflicts between fine and coarse scales of the real network geometry. More-

over, the randomization and satisfying of some attribute at the same time can abolish those

topological attributes that have been undefined or hidden from researchers.

We propose to develop multilevel methods to model complex networks. The key point of

the proposed strategy is that it will help to preserve part of the unknown structural attributes

by guaranteeing the similar behavior of the real and artificial model on different scales.

This report is based on the research proposals submitted to DOE [41, 37].

1 Introduction and Motivation

Discovering topological laws of networks has numerous applications in many theoretical and

practical studies [12]. For example, the topology of the Internet and many other evolutionary

processes can be described by power laws [34, 11, 6], some networks are structured as ”bow-tie”

or ”jellyfish” [11, 46], and small-world model covers a variety of social networks claiming that

the average distance between network objects is small [53]. Correct understanding of the network

topology and accurate modeling of it lead to the clarification of questions related to the investi-

gation of abnormal network behavior, unusual evolution of its parts, and anomalies detection and,

thus, to the prevention of them. These anomalies and their patterns can be interpreted as threats,

attacks, viruses, or other events that require a special attention.

Artificial network generation is one of the central tasks of network modeling. One immediate

application of an artificial network is in simulation studies and algorithm testing. Another im-

portant aspect of motivation is an ability to generate artificial networks that are similar to the real

classified (or limited-access) networks for open science research. For example, on one hand, many

DOE computer networks (such as in National Labs and OpenScience Grid) is of great interest for
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hackers and it is not secure to disclose it. On the other hand, it can be extremely important to

test various cybersecurity methods on it by providing a similar artificial networks to the scientific

community. An ability to generate an artificial network can provide insight into the real network

creation process and can emphasize the presence or absence of common patterns or properties.

Most of the known network generation models are based on the randomization or/and the repli-

cation of real or/and artificial parts of networks. For example, many random graph models are re-

inforced by some online- or post-processing that preserves a (usually extremely limited) number

of predefined properties such as degree distribution [2, 33], maximum number of small cliques, or

small diameter. The advantage of random graph models such as Erdös-Rényi graphs [21], Poisson

graphs and randomized power-law models consists of the ability to analyze and to generate them

relatively easily at different scales by preserving the same probabilistic laws. The preferential at-

tachment modeling extends the simplified random graph modeling by addressing the question of

network evolution. The key idea is to identify the probability of connecting a node to one of the

most preferred nodes (usually, according to the ”rich get richer” principle) [5, 29]. Incorporating

geographical information is the next step in improving the previous models. The small-world model

represents networks with high clustering coefficients and low diameter [53]. The analysis of dis-

tance between nodes is one of the key interests of this model. The BRITE generator [31] represents

this class of models; it combines the geographical Waxman model [54] and the preferential attach-

ment techniques from [5]. Optimization problem related models have been developed in order to

represent the dynamics and structure of the network that can naturally formulated using some

optimization problem. Most of these models focus on a very limited number (usually 1 or 2) of

graph properties, ignoring more complex combinations of them and those that are unknown. On

the other hand, the simplicity of these models has a significant advantage: only a small number

of parameters is needed to describe these models and generators. One of the most interesting

graph generators developed so far is R-MAT [13], which simultaneously considers multiple prop-

erties and addresses a problem at different scales. Another strong replication type of modeling is

based on the Kronecker product of graphs [30]; allows one to create networks of different size that

preserve the properties of the original network by introducing randomized and original factors.

Hierarchical modeling was introduced in [35]. In addition to the scale-free properties, the authors

preserve a hierarchical organization of the structure and address the issue of high degree of clus-

tering which is very important in many real-life networks. This approach is most closely related

to the proposed method. The main difference is that in [35] the elementary operations are done

with finest elements (and their subsets) of the network, while the original geometric relationships

between different scales are not modeled. A detailed survey of existing models and generators

can be found in [12].

Most of the existing models are formulated by using a simple weighted graph data structure

and cannot deal with more complex relationships between network objects. Another common, al-

most unaddressed issue is the behavior of the model at different scales of coarseness. The R-MAT

and Kronecker product models repeat the same property at different parts of the network recur-

sively, essentially dividing an original network into several similarly formulated small networks,

renormalizing them, randomizing the connectivity between them, and thus preserving the same
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predefined properties over all parts of the network at both micro- and macroscopic parts of the

graph. However, these approaches do not address the problem of relationship between different

macroscopic parts of the model at various resolutions (that may be not connected directly) and

the relationships between microscopic and macroscopic scales. Moreover, at different scales these

relationships may be more complicated and irregular, may completely change, or even disappear.

The main objective of a multilevel algorithm is to create a hierarchy of problems, each repre-

senting the original problem but with fewer degrees of freedom. Representation of an original

problem at the coarser scales allows to look at the problem at ”different resolutions” and then to

achieve a qualitative solution by combining the related information from all scales. This method

was originally developed for solving elliptic partial differential equations, and up to now, has rep-

resented the most effective class of numerical algorithms for them. During the past two decades

there were many attempts to employ multilevel strategies for solving combinatorial optimization

problems [9, 45, 25, 51, 52, 50, 27, 1]. The multilevel algorithms typically applied to VLSI design

[15, 18, 16, 19, 14], graph optimization problems (with a special attention on the partitioning prob-

lem [32, 20, 3, 45, 27, 38, 25, 7, 23, 28, 4, 1, 17]), and several others [50, 51, 24, 42, 43, 44, 39, 52].

Most of the multilevel schemes were developed for a simple graph model. Whereas the variety of

multilevel algorithms for continuous systems turned into a separate field of applied mathematics

[8, 10, 48], for combinatorial problems they still have not reached an advanced stage of develop-

ment, consisting in practice of a very limited number of multilevel techniques. To the best of our

knowledge, all existing hypergraph multilevel algorithms are based on the same strict coarsening

([47, 49, 26]), which can suffer from serious limitations [44, 9] when the instance of the problem is

not very regular. Thus, it inherits all disadvantages of the simple graph model.

The proposed multilevel framework for the large-scale network modeling will address several

mathematical and algorithmic challenges:

• How does one coarsen a network attribute?

• How can one design a coarse-to-fine interpolation of a constrained network?

• What are the spectral/algebraic/topological properties of the coarse system?

• How can interactions between network objects be modeled at different scales?

• Given more than one real network of the same nature, how can one design a common artifi-

cial model?

• How does one define a coarsening of an anomaly?

• How does one model a multilevel representation of a hypergraph?

• Given a multilevel model, how can one design an online remodeling with small portions of

new data?

• How to define a similarity between two objects (nodes, groups of nodes, hyperedges, etc.)

in a model?
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2 Methods

Most modern network models and their respective generators (if they exist) are based on the set

of predefined properties (or attributes) that describe the model. The goal of these generators can

be generalized as the following task.

Task 1. Given an original graph G0 = (V0, E0) and its explicit properties Π, where |V0| = n0 and

|E0| = m0, design a graph G̃0 = (Ṽ0, Ẽ0) of a size (ñ0, m̃0) (usually (ñ0, m̃0) 6= (n0,m0)) keeping the

same properties Π.

In practice, in many model generators this task can be reformulated as process of designing

a random graph by using some random model (such as the Erdös-Rényi model) or by accepting

randomized steps in some iterative approach (that preserves the properties). In more advanced

modeling (such as R-MAT [13] or Kronecker product models [30]), the properties are replicated

from initial networks and preserved in different geographical parts of the graph. Our central goal

consists of introducing a modeling process that (in addition to Π) preserves a geometry and some

algebraic properties (explained late) of the original network(s). We expect to achieve this goal by

introducing a multilevel modeling process inspired by AMG.

In the multilevel framework a hierarchy of decreasing-size graphs G0, G1, ..., Gk is constructed.

Starting from the given graph, G0 = G, we coarsen it and represent by the sequence G1, ..., Gk,

then solve the coarsest level directly, and finally uncoarsen the solution back to G. This process

is called a V-cycle. In general, the AMG-based graph coarsening [44] is interpreted as a process

of weighted aggregation of the graph nodes to define the nodes of the next-coarser graph. In

weighted aggregation each node can be divided into fractions, and different fractions belong to

different aggregates. The construction of a coarse graph Gi+1 from a given Gi is divided into

three stages: (1) a subset C of Vi is chosen to serve as the seeds of the aggregates (the nodes of

the coarse graph); (2) the rules for aggregation are determined, thereby establishing the fraction

of each non-seed node belonging to each aggregate; and (3) finally the graph couplings (or edges)

between the coarse nodes are calculated. Stages (1) and (2) are finished when the projection fine-

to-coarse operator ↑cf (see Figure 2) for level i is created. In particular, if X = {xpq} is a matrix of
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ij

Figure 1: Structure of ↑cf .
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off-diagonal entries of the Galerkin fine-to-coarse approximation

↑cf ·Li · (↑
c
f )

T

and rp =
∑nk

q=1 xpq is the sum of its pth row elements, then the Laplacian of coarse graph Li+1 is

of the form

Li+1 = X − diag(r1, r2, ..., rni+1
) . (1)

We present, first, an intuitive formulation of the proposed strategy for a multilevel network

modeling that can be divided in two tasks.

Task 2. Given an original graph G0 = (V0, E0) with the corresponding AMG-based hierarchy of Galerkin

fine-to-coarse approximations H = {↑i+1
i ·Li · (↑

i+1
i )T } and its explicit properties Π, where |V0| = n0

and |E0| = m0, design a graph G̃0 = (Ṽ0, Ẽ0) of a size (ñ0, m̃0) satisfying the same properties Π and

preserving the hierarchical similarity between H and H̃ = {↑̃
i+1
i · L̃i · (↑̃

i+1
i )T }.

Task 3. Extend Task 2 for hypergraphs.

In the remainder of this Section we clarify these tasks by formulating open research directions,

mathematical and algorithmic challenges.

2.1 Structure of the V-cycle

Before formulating the questions related to the one- and two-level problems, we explain our view-

ing of the entire multilevel scheme. We plan to solve the problem of generation by using a bottom-

up framework.

In this framework we begin by constructing the multilevel hierarchy H from the finest to

the coarsest level. The coarsest-level network will serve as a a coarsest level for the artificial

network, namely, for H̃ . Next, by introducing a new interpolation operator ↑̃
f

c (for an artificial

network hierarchy), one can model the next-finest level and similarly the entire H̃ . Throughout

both the coarsening and uncoarsening (generation) parts of the V-cycle, set Π will be propagated

and modified correspondingly (see Section 2.3) such that at the finest level (at G̃0) the original Π

will be preserved. The scheme is presented in Figure 2.

Challenge 1. What should be the coarsest level for the multilevel construction? How can one identify it,

given the initial Π? How can one identify when some property disappears and the following coarsening is

meaningless?

2.2 Similarity between H and H̃

The problem of similarity between H and H̃ is one of the central challenges of this project. One

can think about many essentially different ways to express it. The goal of such similarity is to be

able to compare two-level projections ↑̃
i+1
i · L̃i · (↑̃

i+1
i )T and ↑i+1

i ·Li · (↑
i+1
i )T (with possible scaling

when H̃ is much bigger than H ).

We propose to introduce of a scale-dependent function ε and parameter δ such that

||ε(↑fc )− ↑fc ||F < δ (2)
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original network

COARSENING UNCOARSENING

artificial network

Figure 2: General scheme of the V-cycle.

and then to substitute ↑̃
f

c for ε(↑fc ). Since the interpolation operator represents the relationships

between fine and coarse points, there are only two ways to change it.

The first way consists of changing the weights of the connections between fine node and its

coarse neighborhood. For example, if rij are the entries of ↑fc , then new entries will be of the form

αijrij such that αij ∈ (1− ǫ, 1+ ǫ) and for every row i,
∑

j αijrij = 1. It is easy to see that changing

the interpolation weights at level i+ 1 affects the weights at the next-finest levels.

Challenge 2. How can one find the coefficients αij at level l, given initial distribution µ of edge weights

at level l − 1? How can this approach be generalized for all levels?

The second way is to change the structure of the network; in other words, the original and

the artificial network matrices will not be pattern isomorphic anymore. One can achieve this by

adding more nonzero entries to ↑fc (or by removing them). This option is more promising and

complicated, however, and immediately poses many questions.

Challenge 3. What are the algebraic properties of ↑fc and Lc that ↑̃
f

c and L̃c must satisfy up to some

tolerance?

In addition to spectral analysis of the Laplacians, we propose to change the structural proper-

ties of ↑fc by bounding the following quantity at level l,

K∑

k=1

|λ̃k − λk| < βl , (3)

where λ̃k and λk are the lowest eigenvalues of (↑̃
f

c )
T ↑̃

f

c and (↑fc )T ↑fc , respectively, and K is suffi-

ciently small. This approach opens a problem of finding scale-dependent bounds βl. We propose
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to introduce an algebraic distance-based restriction model for introducing new nonzero entries (or for

removing the existing ones) for the interpolation operators.

Consider a Jacobi stationary iterative method for solving a linear system AX = (D+L+U)X =

B, where D, L, and U correspond to the diagonal, lower triangular part, and upper triangular part

of A, respectively. Its (k + 1)th iteration is defined by the following scheme,

X
(k+1)
JAC = D−1(B − (L+ U)X

(k)
JAC) , (4)

and the corresponding successive overrelaxation (SOR) by

X
(k+1)
NEW JAC = (1− ω)X(k) + ωX

(k+1)
JAC , (5)

where ω is a convergence acceleration parameter. We will use the first t iterations of Jacobi ω-SOR

in order to determine the weakly connected edges of the graph. Let A be the graph Laplacian,

B = 0n×r, and random matrix X(0) ∈ (−1
2 ,

1
2)

n×r.

Definition 1. Given a graph G and assuming X is an outcome of t iterations of (5), then the algebraic

distance between nodes i and j is a function ρ : V × V → (0, 1) defined by

ρij =
r

max
l=1

{|xli − xlj |} .

One can prove that if for every i, j, and l, |xli − xlj | 6= 0, then ρ is a metric on the graph.

The introduced notion of algebraic distance is a generalization based on the principle of obtaining

low-residual error components used in the Bootstrap AMG [8]. When a priori knowledge of the

nature of this error is not available, slightly relaxed random vectors are used to approximate it.

Similarly, we can introduce an algebraic distance based on Gauss-Seidel relaxation and nonsym-

metric relaxations. This approach was successfully introduced in [40] to express the connectivity

between different (not necessarily connected by one edge) pairs of nodes in multilevel approaches

for combinatorial optimization problems.

We model a new interpolation operator by adding new nonzero entries or changing the exist-

ing ones in such way that the algebraic distances will not be strongly affected.

Challenge 4. How can one minimize the changes of affected ρij when having as many changes of rij as

possible?

The next important property that we propose to preserve when generating new interpolation

operator is the Kullback-Leibler (K-L) divergence. The coarse levels are constructed by prolon-

gation of a network information from fine nodes to coarse nodes and thus, this measure can be

suitable to establish the limited difference between the original and artificial operators. Given

probability distribution of the connections between fine and coarse nodes P and P̃ (in ↑fc and ↑̃
f

c ,

respectively), the discrete K-L divergence of P from P̃ is defined to be

DKL(P ||P̃ ) =
∑

i

P (i) log
P (i)

P̃ (i)
. (6)
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Challenge 5. What is the best way to bound Kullback-Leibler divergence in order to preserve the similarity

between interpolation operators?

Another possible way to generate ↑̃
f

c is to project (↑fc )T ↑fc into a lower dimensional space

and then to recover from it the corresponding new (↑̃
f

c )
T ↑̃

f

c . However, this method poses more

complicated questions of satisfying the previously mentioned properties.

2.3 Coarsening of Properties and Anomalies

The next central question is related to the fulfillment of the properties Π for G̃0. We propose

to begin with two strategies to address this issue. One is to generate an artificial network (that

will certainly violate some of the properties at the beginning) and then to apply some (possibly

minimalistic) changes to it in order to satisfy Π. Another strategy is to create a multilevel hierarchy

Hπ for each π ∈ Π. Clearly, both cases depend on the particular properties that are of interest for

concrete applications. The list of known properties for the network modeling is well studied, and

we will omit it in this paper (for the details see [12]). In this proposal we generalize our ideas by

using a general term ”property π”.

The first strategy consists of purely combinatorial challenges since when the artificial network

G̃0 is already created, the main problem can be formulated as follows.

Challenge 6. Given a graph G̃0 and set of properties Π, find a minimum number of legal changes for it,

namely either defining (removing) an edge/vertex or changing an edge weight, so that a new graph will

satisfy Π.

In fact, this approach is similar to the existing randomized models-based approaches with

the only difference that an initial graph is not empty but is already given and thus some hidden

geometrical properties are preserved.

A more complicated and more promising strategy is to create a multilevel hierarchy for Π. In

this case, the first problem that can arise is as follows.

Challenge 7. How can one coarsen the property π ∈ Π and coarsen the entire set of properties?

Coarsening of an anomaly expected to be very similar if not exactly the same as the coarsening

of properties. In many cases, the anomalies can be described by special topological structures

such as a very dense small subgraph or unusual degrees of nodes. The coarsening of anomalies is

expected to allow to detect them at the intermediate coarse levels when their size will be smaller

and, thus, the complexity of finding them will be lower.

2.4 Modeling an Artificial Network from Several Original Networks

In many situations the modeling process can be based on several similar instances. For example,

different biochemical pathways can form (hyper)graphs of different structure, or different parts

of one network can be represented as separate networks. In all these cases, there is a need for

analysis and the ability to generate the network with properties that are similar to more than one

network.
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After coarsening of ν networks, we will get ν different AMG hierarchies H1,H2, ...,Hν . At

the first stage, in order to simplify the overall process, this coarsening should be reinforced by

introducing a common principle of keeping always the same number of coarse network nodes at

the same levels.

Challenge 8. How can one unify the algebraic/topological properties of several interpolation operators

{↑fc,q}νq=1 in one ↑̃
f

c ?

We propose to begin with the strategy that extends inequality (3) by accumulating the differ-

ences for all available ν interpolation operators at scale l,

ν∑

q=1

K∑

k=1

|λ̃k,q − λk| < βl , (7)

where λ̃k,q and λk are the lowest eigenvalues of (↑̃
f

c,q)
T ↑̃

f

c,q and (↑fc )T ↑fc , respectively, and K is

sufficiently small. This approach also opens a problem of finding scale-dependent constants βl.

2.5 Similarity and Connectivity between Two Objects in a Network

The notion of similarity and connectivity between two objects (nodes) in a network (graph or hy-

pergraph) is one of the most important tools in the analysis of network properties. For example, it

can be used to address questions of relevancy between objects in recommendation systems (simi-

larity) and to estimate the probabilities of attacking network nodes in a neighborhood of already

attacked network node (connectivity).

We propose to focus on the problem of modeling similarity and connectivity using an already

defined algebraic distance ρ at different levels. The demonstrated relaxation-based method pro-

vides an approach for measuring the connectivity of the neighborhoods between two nodes.

Challenge 9. What is the explicit quantity that the algebraic distance estimates?

We propose to begin with two ways of estimating the number of (not) simple paths between

two nodes in a graph. One way is to check the relationship between ρij and number of not simple

paths up to length T that can be calculated by

T∑

l=1

1

lp
Ll , (8)

where L is a graph Laplacian and p is a penalty factor for the path length. A more complicated

and probably more correct way is to compare ρ with the the number of simple paths between

two nodes [36] with similar penalty coefficients. Another way is to compare the algebraic distance

with the estimation the average commute time of a random walk [22]. We introduced the algebraic

distance-based coarsening in [40] and applied for several combinatorial optimization problems. To

provide an insight into this method, we will demonstrate a simple example.

Consider a mesh graph with one additional diagonal ij as depicted in Figure 3. All the edges

except the diagonal have weight 1; the diagonal has 2. Let the black small circles represent the

9



nodes of connectivity interest; in other words, we need to model the connectivity between them

and i. In spite of the heavier weight of ij in many networks, this connection is not stronger than the

connection between i and its closer neighbors. The presence of such global connection can create

a local conflict in many optimization problems and models. The concept of algebraic distance is

created to prevent similar conflicts. We present the algebraic distances for this graph in Table 1.

j

i

Figure 3: A mesh graph with an additional edge between nodes i and j. The black dots mark some

of the nodes selected to serve as the seeds of the coarse aggregates.

The number of Jacobi relaxation sweeps (r) in the experiments varies from 10 to 100 as shown in

the leftmost column. Each of the three columns to the right present the ratio between ρij and the

average of all ρuv 6=ij , for initial graph couplings wij = 1, 2, 3. Clearly the graph coupling between

i and j is decreased when measured by the algebraic distance. For instance, if the graph coupling

between i and j is 1 (as are all other couplings in the graph), then after 10 relaxation sweeps ρij is

twice as big as the average of ρuv 6=ij , which means that the algebraic coupling between i and j is

basically half the average coupling over the mesh.

With the algebraic distance we expect to provide a method for modeling the similarity and

connectivity for network objects.

Challenge 10. How one can define a notion of similarity between two graphs by comparing all pair alge-

braic distances for them?

Challenge 11. How can the algebraic distance be extended for hypergraphs?

r 1 2 3

10 1.98 1.45 1.18

20 2.92 1.81 1.29

50 6.08 3.44 2.38

100 9.87 5.3 3.58

Table 1: Numerical results for the example in Figure 3. The leftmost column shows the number of

relaxation sweeps r performed for calculating the algebraic distance ρ. Columns 1-3 correspond

to the respective graph weights of the edge ij. All other edges are of equal weight 1. The number

of random vectors is 1. All the values are ratios between ρij and the average over ρuv 6=ij .

10



2.6 Online Remodeling of a Network

Often, large-scale networks demand a significant amount of computational resources for the anal-

ysis even for the linear time algorithms. If such a network grows dynamically and the newly

arrived information can influence the properties of interest and, in general, the network structure,

there is a need to be able to remodel the network online and to recompute its properties.

The issue of online network remodeling can be solved naturally within the multilevel frame-

work. If all levels of the multilevel model have been saved and can be accessed, then it is relatively

easy to follow the way that a new vertex must pass in order to be added to the existing hierarchy.

The amount of the affected coarse aggregates at each level is very limited, and their number can

be fairly bounded by O(number of levels in H ). Moreover, when there is an indication that the

reinforcement of the existing aggregate with a new vertex is negligible, the adding process can be

stopped at the next-coarser level.

While having a recalculated multilevel hierarchy for the original network, both the generation

and optimization problems can be finalized with the uncoarsening part only.

3 Conclusions

We proposed to develop multilevel methods to model and generate complex networks. The key

point of the proposed strategy is that it will help to preserve part of the unknown structural at-

tributes by guaranteeing the similar behavior of the real and artificial models at different scales.
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