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1 Introduction

In this technical report we investigate efficient methods for numerical simulation of active suspensions.
The prototypical system is a suspension of swimming bacteria in a Newtonian fluid. Rheological and other
macroscopic properties of such suspensions can differ dramatically from the same properties of the suspending
fluid alone or of suspensions of similar but inactive particles [2,4,5,7,10–12,15–22,26,27,30,31,33–35,38–42].
Elongated bacteria, such as E. coli or B. subtilis, swim along their principal axis, propelling themselves with
the help of flagella, attached at the anterior of the organism and pushing it forward in the manner of a
propeller. They interact hydrodynamically with the surrounding fluid and, because of their asymmetrical
shape, have the propensity to align with the local flow. This, along with the dipolar nature of bacteria
(the two forces a bacterium exerts on a fluid—one due to self-propulsion and the other opposing drag—have
equal magnitude and point in opposite directions), causes nearby bacteria to tend to align, resulting in a
intermittent local ordering on the mesoscopic scale, which is between the microscopic scale of an individual
bacterium and the macroscopic scale of the suspension (e.g., its container).

The local ordering is sometimes called a collective mode or collective swimming. Thanks to self-propulsion,
collective modes inject momentum into the fluid in a coherent way. This enhances the local strain rate
without changing the macroscopic stress applied at the boundary of the container. The macroscopic effective
viscosity of the suspension is defined roughly as the ratio of the applied stress to the bulk strain rate. If
local alignment and therefore local strain-rate enhancement, are significant, the effective viscosity can be
appreciably lower than that of the corresponding passive suspension or even of the surrounding fluid alone
(see, e.g., [10–12,30,31]). Indeed, a sevenfold decrease in the effective viscosity was observed in experiments
with B. subtilis [33]. More generally, local collective swimming resulting from bacterial alignment can
significantly alter other macroscopic properties of the suspension, such as the oxygen diffusivity [38] and
mixing rates [19, 35].

In order to understand the unique macroscopic properties of active suspensions the connection between
microscopic swimming and alignment dynamics and the mesoscopic pattern formation must be clarified.
This is difficult to do analytically in the fully general setting of moderately dense suspensions, because of
the large number of bacteria involved (approx. 1010 cm−3 in experiments) and the complex, time-dependent
geometry of the system. Many reduced analytical models of bacterial have been proposed [13, 25, 28, 32],
but all of them require validation. While comparison with experiment is the ultimate test of a model’s
fidelity, it is difficult to conduct experiments matched to these models’ assumptions. Numerical simulation
of the microscopic dynamics is an acceptable substitute, but it runs into the problem of having to discretize
the fluid domain with a fine-grained boundary (the bacteria) and update the discretization as the domain
evolves (bacteria move). This leads to a prohibitively high number of degrees of freedom and prohibitively
high setup costs per timestep of simulation.

In this technical report we propose numerical methods designed to alleviate these two difficulties. We
indicate how to (1) construct an optimal discretization in terms of the number of degrees of freedom per digit
of accuracy and (2) optimally update the discretization as the simulation evolves. The technical tool here
is the derivation of rigorous error bounds on the error in the numerical solution when using our proposed
discretization at the initial time as well as after a given elapsed simulation time. These error bounds should
guide the construction of practical discretization schemes and update strategies. Our initial construction is
carried out by using a theoretically convenient, but practically prohibitive spectral basis, which is a Galerkin
basis of functions with global support. At the end of this report we propose localization techniques while
maintaining acceptable error bounds. No numerical experiments were conducted as part of this study, but we
envision that we may undertake such studies and further development of the method, jointly or individually.

2 Bacterial suspensions

We use a model of a bacterial suspension in the simplest way that permits our analysis and captures its two
important qualities: self-propulsion and a propensity of the bacteria to align with the local ambient flow.
Alignment is chiefly due to an elongated shape of the bacteria, such as that of B. subtilis (see, e.g., Fig. 1)

1



used in experiments [33]. For our analysis the shape is essentially immaterial, so we assume that the l-th
bacterium is represented by a smooth convex body Bl, which for concreteness can be taken to be a prolate
spheroid.

Propulsion can take many different forms, from multiple flagella distributed over a bacterium’s body,
which tend to bundle together when rotating and apply the thrust primarily behind one of the ends (the
“tail”) of an elongated body, to a pair of flagella executing a “breaststroke” at the “head” of the organism
(such as Chlamydomonas, which is an alga, not bacterium, but is similar from our point of view), to cilia
distributed over all or a portion of a bacterium’s body and beating more or less independently. Several models
of propulsion have been proposed in the literature [11,14,16,32]. They essentially prescribe a body force in
the fluid and away from Bl, representing the action of the flagella, or a boundary condition prescribing the
fluid velocity on a part of the organism’s boundary Γl1 ⊂ ∂Bl and tangential tractions on another Γl2 ⊂ ∂Bl.
The body force can be singular, such as a delta force applied at a fixed position and orientation relative
to the body coordinates of the bacterium. This could be viewed as an idealized model of flagellar action
concentrated on a very small portion of the fluid. Whenever a boundary condition model of self-propulsion is
used, prescribed tangential tractions have to be supplemented with a vanishing of the normal component of
the velocity on Γl2 (reflecting the fact that fluid cannot penetrate the bacteria’s bodies), and the complement
∂Bl \ (Γl1 ∪ Γl2) must be supplied with the no-slip boundary conditions.

Bl

Γl1

Γl2

Figure 1: A two-dimensional il-
lustration of a prolate spheroidal
model of a swimmer. Shown
are the velocity (Γl1, red) and
traction (Γl2, blue) portions of
the boundary and the orienta-
tion vector.

In our analysis the precise form of the propulsion model is not impor-
tant. We start with a general model that includes a body force and the
two types of boundary conditions, with the no-slip part absorbed into Γl1
so that Γl1∪Γl2 = ∂Bl. Since the precise biological nature of the swimming
organism (bacterium, alga, microswimmer) is immaterial for our study, we
will use these terms interchangeably, occasionally substituting “particle”
or “inclusion” for them, as well. With these remarks, we can state the
mathematical model of a bacterial suspension. After that we indicate how
to reduce this model to a simplified problem, which we then analyze. The
analysis starts with the description of an approximation (discretization),
based on the Stokes spectral basis. We show the optimality of the result-
ing initial H1 approximation error and how to evolve this basis as the
bacteria move while maintaining error control. Since the spectral basis is
global and therefore of little practical use in numerical applications, we
discuss approaches to the localization of the basis and the impact of basis
localization on the obtained error estimates.

2.1 Mathematical model

We model a suspension ofN neutrally buoyant (active or passive) particles
using the Stokes equation with mixed boundary conditions:





−η∆u+∇p = f , ∇ · u = 0 x ∈ VF := V \ ∪lBl
u = vl + ωl × (x− xl) x ∈ Γ1 ∩ ∂Bl
u · n =

[
vl + ωl × (x− xl)

]
· n x ∈ Γ2 ∩ ∂Bl

σ(u)n− n(σ(u) : nn) = g x ∈ Γ2 ∩ ∂Bl
u = h x ∈ ∂V
dx
dt = u x ∈ Γ1 ∪ Γ2∫
∂Bl σ(u)ndS + F l = 0,

∫
∂Bl σ(u)n× (x− xl) dS + T l = 0,

(2.1)

where V ⊂ Rd, d ≥ 2, is such that ∂V is smooth (e.g., C∞), Γ1 ∩ Γ2 = ∅, Γ1 ∪ Γ2 = ∪l∂Bl, xl is the center
of Bl, defined as

xl :=
1

|Bl|

∫

Bl

x dx,
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σ(u) := −pI + 2ηe(u) is the stress tensor, e(u) := 1
2 (∇u + ∇uT ) is the rate of strain, f ∈ H(2d−1)/2(VF ),

h ∈ Hd(∂V ), and F l, T l ∈ R3. We also require that
∫
∂V

h · ndS = 0 so that we may have ∇ · u = 0. All
quantities, including the domain, are time dependent via the balance of forces and torques. The existence
and uniqueness of solutions to equation (2.1) are proved in [9].

2.2 Simplified problem

The problem can be simplified by considering the solution of





−η∆u+∇p = f,∇ · u = 0 x ∈ VF := V \ ∪lBl
u = 0 x ∈ Γ1 ∩ ∂Bl
u = 0 x ∈ ∂V
u · n = 0 x ∈ Γ2 ∩ ∂Bl
σ(u)n− n(σ(u) : nn) = 0 x ∈ Γ2 ∩ ∂Bl
dx
dt = v x ∈ ∂V,

(2.2)

where v(x, t) is sufficiently regular (as we will show below, (C3(VF ))
d is sufficient) for each t ∈ [0, T ] subject to

∇·v = 0. We can use equation (2.2) to solve equation (2.1) by first constructing divergence–free functions ζl

with disjoint support1 whose sum satisfies the boundary conditions in equation (2.1). One can then produce
a solution to equation (2.1) by adding a corrector, which is a solution to equation (2.2) with f =

∑
l ζ
l.

3 Spectral basis

For simplicity, we will henceforth consider purely Dirichlet boundary conditions (that is, Γ2 = ∅). Our
construction readily applies to the general case that includes Neumann boundary conditions by considering
the corresponding eigenfunctions. For a fixed time t ∈ [0,∞), let S(t) denote the closure of the set

{
v ∈ (C∞(VF (t)))

d | ∇ · v = 0, v = 0 forx ∈ ∂VF (t)
}

in the (L2(VF (t)))
d norm, and let Sm(t) := S(t) ∩ (Hm(VF (t)))

d. S(t) is equivalently defined [36] as

S(t) :=
{
v ∈ (L2(VF (t)))

d | ∇ · v = 0, v · n = 0 forx ∈ ∂VF (t)
}
,

where ∇ · v = 0 is to be understood in a weak sense and the equality on the boundary must be understood
in the sense of traces in (H−1/2(∂VF (t))). Furthermore, we can decompose (L2(VF (t)))

d = S(t) ⊕ S⊥(t),
where

S⊥(t) :=
{
∇p | p ∈ H1(VF (t))

}
.

The following theorem is proved in, for example, [36].

Theorem 3.1. Let t ∈ (0,∞) be fixed. For all f ∈ Sm(t) and m ∈ N, the equation

{
−η∆u+∇p = f, ∇ · u = 0 x ∈ VF (t)
u = 0 x ∈ VF (t)

has a unique solution u ∈ Sm+2(t) with p ∈ Hm+1(VF (t)). Furthermore, ∃Cm > 0 such that (u, p) satisfies

‖u‖(Hm+2(VF (t)))d + ‖p‖Hm+1(VF (t)) ≤ Cm ‖f‖Hm(VF (t)))d . (3.1)

It is a standard result that S(t) is compactly embedded in S2(t). Therefore, the solution operator
S−1(t) : S(t) → S(t) ⊃ S2(t) to the Stokes equation is compact. Hence, the Dirichlet eigenfunctions of the
Stokes equation form a complete basis for S(t). Furthermore, the set of eigenvalues {λk} is countable, and
λk > 0 for all k.

1Giving the functions disjoint support allows one to enforce the constraints (balance of forces and torques) in equation (2.1).
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Let V h denote the span of the first M Stokes eigenfunctions (ψkt , φ
k
t ) (ordered such that their eigenvalues

are increasing). In particular, (ψkt , φ
k
t ) satisfy

{
−η∆ψkt +∇φkt = λktψ

k
t , ∇ · ψkt = 0 x ∈ VF (t)

ψkt = 0 x ∈ ∂VF (t).
(3.2)

Without loss of generality, we will assume that the eigenvalues are ordered such that 0 < λ1 ≤ λ2 ≤ . . ..
Methods for solving Stokes eigenvalue problems numerically are outlined in, for example, [6, 23]. Let (f, g)t
denote the L2(VF (t)) inner product of f and g and

u(t) =

∞∑

k=1

ck(t)ψ
k
t ,

uh(t) =
M∑

k=1

ck(t)ψ
k
t ,

where ck(t) :=
(
u(t), ψkt

)
t
. We can estimate the finite-element method (FEM) error as

‖u(t)− uh(t)‖2L2(VF (t)) =

∞∑

k=M+1

c2k(t) =

∞∑

k=M+1

(f, ψlt)
2
t

(λlt)
2

≤ 1

(λM+1
t )2

‖f‖2L2(VF (t)). (3.3)

One can also estimate the H1–seminorm error as

‖∇u(t)−∇uh(t)‖2L2(VF (t)) =

∞∑

k=M+1

λkt c
2
k(t) =

∞∑

k=M+1

λkt
(f, ψkt )

2

(λkt )
2

≤ 1

λM+1
t

‖f‖2L2(VF (t)). (3.4)

For Dirichlet boundary conditions, the eigenvalues of the Stokes equation have the asymptotic behavior (see,
e.g., [1] (d = 3), [24] (d ≥ 2))

λkt ∼ η

(
(2π)d

ωd(d− 1)

) 2
d

|VF |−2/dk2/d, (3.5)

where ωd is the volume of the unit ball in Rd. Therefore, if we set M = h−d|VF |, that is, the number of
degrees of freedom in a piecewise linear basis on a triangulation of VF , we can rewrite equations (3.3) and
(3.4) as

lim
h→0

‖u− uh‖L2(V )

h2‖f‖L2(V )
=

1

η

(
ωd(d− 1)

(2π)d

) 2
d

(3.6)

and

lim
h→0

‖∇u−∇uh‖L2(V )

h‖f‖L2(V )
=

1√
η

(
ωd(d− 1)

(2π)d

) 1
d

, (3.7)

respectively.
To resolve the particle boundaries, one can represent the basis functions using a triangulation in a

Lagrangian coordinate system or using an arbitrary Lagrangian-Eulerian method.
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4 Advection of the basis

To produce an efficient method, we wish to avoid recomputing the basis of V h at every timestep ti := iτ ,
where τ > 0. Henceforth, we will allow the domain VF to evolve, and we will denote by VF (t) the domain at
time t. Instead of recomputing the basis at each discrete timestep, we will assume that at each timestep we
are given a vector field vti ∈ C∞(VF (ti)), which we will use to advect the domain and basis. For x ∈ VF (t),
let Fti+1

(x) := x + vti(x)τ . We will define VF (ti+1) = {F (x)|x ∈ VF (ti)}. The advected basis functions
will be referred to by Atiψ

k
0 , where ψ

k
0 is the Stokes eigenfunction in VF (0) corresponding to the eigenvalue

λk0 . In the context of solving equation (2.1), this will simply be the FEM solution of (2.1) at the previous
timestep—that is, vti = uh(ti−1). The basis functions will be advected by defining

Ati+1
ψk0 (x) := ∇Fti+1

(F−1
ti+1

(x))Atiψ
k
0 (F

−1
ti+1

(x)). (4.1)

Note that for τ → 0, Ati+1ψ
k
0 is the Taylor expansion of the solution to

{
∂Ati+1

ψk
0

∂t + [vti , Ati+1
ψk0 ] = 0 x ∈ VF (ti+1),

Ati+1
ψk0 = 0 x ∈ ∂VF (ti+1)

(4.2)

where [ξ, χ] is the Lie bracket defined by

[ξ, χ] := ξ
∂χ

∂x
− χ

∂ξ

∂x
. (4.3)

Furthermore, Atiψ
k
0 is divergence free for all i. Nevertheless, Aτψ

k
0 does not produce a good approximation

to ψkτ—in particular, the advection in equation (4.2) does not preserve the L2 norm of ψk0 . Therefore, we
construct a “corrector” in order to create a good approximation. We can do this by solving the system

Ati+1
ψk0 (x) :=AτAtiψ

k
0 (x) + τ

M∑

j=1

akjAti+1
ψj0(x), (4.4)

where, for j 6= k,

akj =
η

λjti − λkti

[
2

∫

VF (ti)

(
∇Atiψ

j
0e(vti)

)
: ∇Atiψ

k
0 dx

+

∫

VF (ti)

[
(∇2vti∇Atiψ

j
0) · Atiψ

k
0 − 2(∇Atiψ

k
0∇2vti) · Atiψ

j
0

]
dx

−
∫

VF (ti)

[
e(vti) :

(
∇Atiψ

j
0

(
∇Atiψ

k
0

)T)
+
(
Atiψ

j
0∇2vti

)
: ∇Atiψ

k
0

]
dx

+ 2λkti

∫

VF (ti)

Atiψ
k
0Atiψ

j
0 : e(vti) dx

]

and, for j = k,

akk =−
∫

VF (ti)

(Atiψ
k
0e(vti)) · Atiψ

k
0 dx.

The derivation of these formulae is left for the proof of Theorem 4.3.

4.1 Perturbation of Stokes eigenvalues

To study the error in advecting the basis, we will need to understand how the eigenvalues of the Stokes
equation change upon perturbing the domain. We will first consider the case of Dirichlet boundary conditions.
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Let (ψkt , φ
k
t ) be the solution of

{
−η∆ψkt +∇φkt = λktψ

k
t , ∇ · ψkt = 0 x ∈ VF (t)

ψ = 0 x ∈ ∂VF (t),
(4.5)

where VF is a bounded domain with a smooth (C∞) time-dependent boundary. The velocity of the boundary
ν is defined by the limit [8]

ν := lim
t→0

(x(t)− x(0)) · n(0)
t

, (4.6)

where x(0) ∈ ∂VF (0), x(t) ∈ ∂VF (t), the line between x(0) and x(t) is perpendicular to ∂VF (0) at x(0), and
n(0) is the normal to ∂VF (0). Note that in equation (2.2), we have ν = v · n.

The rate of change of an eigenvalue is defined by

λk,′t :=
dλkt
dt

. (4.7)

We will use the moving equivalent of the fundamental theorem of calculus, given by (see, e.g., [8])

d

dt

∫

VF (t)

F dx =

∫

VF (t)

∂F

∂t
dx+

∫

∂VF (t)

νF dS (4.8)

and the corresponding formula for surfaces

d

dt

∫

∂VF (t)

F dS =

∫

∂VF (t)

δF

δt
dS −

∫

∂VF (t)

νκF dS, (4.9)

where κ is the mean curvature of ∂VF and δF
δt is a derivative defined for scalar fields on moving surfaces,

given by
δF

δt
:=

∂F

∂t
+ νn · ∇F. (4.10)

Theorem 4.1. The rate of change λk,′ of a simple eigenvalue λkt of equation (4.5) is given by

λk,′ = −η
∫

∂VF (t)

ν∇ψkt : ∇ψkt dS, (4.11)

where ν is given in equation (4.6).

Remark 4.1. This proof is similar to the proof of Hadamard’s formula given in [8].

Proof. First, differentiating equation (4.5) and applying equation (4.10) to the boundary conditions, note
that ∂ψ

∂t solves {
−η∆∂ψk

t

∂t +∇∂φk
t

∂t = λk,′t ψkt + λkt
∂ψk

t

∂t , ∇ · ∂ψ
k
t

∂t = 0 x ∈ VF (t)
∂ψk

t

∂t = −ν ∂ψ
k
t

∂n x ∈ ∂VF (t).
(4.12)

Multiplying equation (4.5) by ψkt and integrating by parts, we can write lambda as

λkt = η

∫

VF (t)

∇ψkt : ∇ψkt dx. (4.13)

Therefore, using equation (4.8), we have

λk,′t =η
d

dt

∫

VF (t)

∇ψkt : ∇ψkt dx

=2η

∫

VF (t)

∇ψkt : ∇∂ψkt
∂t

dx+ η

∫

∂VF (t)

ν∇ψkt : ∇ψkt dS.
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Integrating by parts, we get

=− 2η

∫

VF (t)

ψkt ·∆
∂ψkt
∂t

dx+ η

∫

∂VF (t)

ν∇ψkt : ∇ψkt dS.

From equation (4.12), this is equal to

=2

∫

VF (t)

ψkt ·
(
λk,′ψkt + λkt

∂ψkt
∂t

−∇∂φkt
∂t

)
dx+ η

∫

∂VF (t)

ν∇ψkt : ∇ψkt dS. (4.14)

Note that ∫

VF (t)

ψkt · ψkt dx = 1 (4.15)

and hence
d

dt

∫

VF (t)

ψkt · ψkt dx = 2

∫

VF (t)

ψkt ·
∂ψkt
∂t

dx = 0, (4.16)

since ψkt = 0 on ∂VF (t). Furthermore, integrating by parts, we obtain

∫

VF (t)

ψkt · ∇
∂φkt
∂t

dx =

∫

VF (t)

∇ · ψkt
∂φkt
∂t

dx+

∫

∂VF (t)

ψkt
∂φkt
∂t

· ndS = 0, (4.17)

from equation (4.5). Combining equations (4.14)–(4.17) yields equation (4.11).

The following lemma will be needed to determine λ′ for eigenvalues that are not simple.

Lemma 4.1. For all i, k ∈ N, ∫

∂VF (t)

(v∇ψkt ) · nφit dS = 0.

Proof. Using the divergence theorem and the boundary conditions on ψkt , we have

0 =

∫

∂VF (t)

ψkt · nφit dS =

∫

VF (t)

ψkt · ∇φit dx.

Therefore, using equation (4.8) and the boundary conditions on ψkt , we get

0 =
d

dt

∫

VF (t)

ψkt · ∇φit dx

=

∫

VF (t)

[
∂ψkt
∂t

∇φit + ψkt∇
∂φit
∂t

]
dx.

Integrating by parts and using equation (4.12), we get

0 =

∫

∂VF (t)

∂ψkt
∂t

· nφit dS = −
∫

∂VF (t)

ν
∂ψkt
∂n

φit dS = −
∫

∂VF (t)

(
v∇ψkt

)
· nφit dS.

Theorem 4.2. Let {ψkt }Mk=1 be the orthonormal eigenfunctions corresponding to a repeated eigenvalue of
equation (4.5). Then all values of λ′t are obtained by solving the eigenvalue problem

M∑

i=1

Dikdi = −λ′tdk, (4.18)
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where

Dik := η

∫

∂VF (t)

ν
∂ψit
∂n

∂ψkt
∂n

dS, (4.19)

simultaneously for λ′t and dk.

Remark 4.2. This theorem tells us how repeated eigenvalues evolve. For every eigenvector d of equation
(4.18) with corresponding eigenvalue λ′, the function

∑
k dkψ

k
t , which is itself a normalized eigenfunction of

equation (4.5) at t = 0, evolves into an eigenfunction of equation (4.5) at t = τ , where τ is an infinitesimal
quantity, with eigenvalue λ + τλ′. Without loss of generality, we could choose an orthonormal basis from
eigenfunctions of (4.5) such that D is diagonal. With this basis, equation (4.11) holds for all eigenvalues.
We will use this fact when proving the error estimate.

Proof. Let

ψ̃t :=
M∑

k=1

dkψ
k
t ,

and define φ̃t similarly. Note that ψ̃t obeys equation (4.5) and ∂ψ̃t

∂t obeys equation (4.12). Taking the latter,
multiplying it by ψmt , and integrating, we get

0 =

∫

VF (t)

[
η∆

∂ψ̃t
∂t

· ψmt −∇∂φ̃t
∂t

· ψmt + λ′tψ̃t · ψmt + λ
∂ψ̃t
∂t

· ψmt

]
dx.

The term involving φ̃t vanishes by equation (4.17). Since dm =
∫
VF (t)

ψ̃t · ψmt dx, this equals

=

∫

VF (t)

[
η∆

∂ψ̃t
∂t

· ψmt + λ
∂ψ̃t
∂t

· ψmt

]
dx− λ′tdm.

Integrating by parts twice, we get

=

∫

VF (t)

[
−η∇∂ψ̃t

∂t
: ∇ψmt + λ

∂ψ̃t
∂t

· ψmt

]
dx− λ′tdm.

= −η
∫

∂VF (t)

∂ψ̃t
∂t

· ∂ψ
m
t

∂n
dS +

∫

VF (t)

[
η
∂ψ̃t
∂t

·∆ψmt + λ
∂ψ̃t
∂t

· ψmt

]
dx− λ′tdm,

in which the second integral vanishes by using equation (4.12) and noting that

∫

VF (t)

∂ψ̃t
∂t

· ∇φmt dx = 0

by Lemma 4.1. Recalling the boundary conditions for ∂ψ̃t

∂t , we get the desired result.

We will now prove a necessary lemma.

Lemma 4.2. For i 6= k,

(
∂ψkt
∂t

, ψit

)

t

=
−η

λkt − λit

∫

∂VF

ν
∂ψkt
∂n

· ∂ψ
i
t

∂n
dS.
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Proof. Applying equation (4.8), note that

0 =
d

dt

∫

VF (t)

∇ψkt : ∇ψitdx

=

∫

VF (t)

∂

∂t

(
∇ψkt : ∇ψit

)
dx+

∫

∂VF (t)

ν∇ψkt : ∇ψitdS (4.20)

Furthermore, integrating by parts and using equation (4.12), note that

∫

VF (t)

∇∂ψkt
∂t

: ∇ψit dx =−
∫

VF (t)

∆
∂ψkt
∂t

· ψit dx

=
1

η

∫

VF (t)

[
−∇∂φkt

∂t
+ λ′,kt ψkt + λkt

∂ψkt
∂t

]
· ψit dx.

Noting the L2-orthogonality of the eigenfunctions as well as equation (4.17), this is

=
λkt
η

∫

VF

∂ψkt
∂t

· ψit dx. (4.21)

Next, note that applying equation (4.8) and the boundary conditions ψkt = ψit = 0 on ∂VF (t), we have

0 =
d

dt

∫

VF (t)

ψkt · ψit dx =

∫

VF (t)

∂

∂t

(
ψkt · ψit

)
dx. (4.22)

Combining equations (4.20)–(4.22), we get the desired result.

4.2 Error estimate for advected basis

In the following theorems, we will need to take limits where ψk0 is evaluated outside VF (0). To make such
evaluations well defined, we will assume that ψk0 is extended such that ψk0 is C2 throughout VF (t) and satisfies
−η∆ψk0 +∇φk0 = λk0ψ

k
0 in VF (t). Note that we do not enforce any boundary conditions on ψk0 on ∂VF (t).

We are now ready to analyze the error in the advected basis.

Theorem 4.3. Let {λkt } be the eigenvalues of equation (4.5) corresponding to the eigenfunctions {ψkt } at
time t. Assume the eigenvalues are ordered such that 0 < λ10 ≤ λ20 ≤ . . .. If λi0 is a multiple eigenvalue,
assume that the corresponding eigenfunctions satisfy

∫

∂VF (0)

ν
∂ψi0
∂n

· ∂ψ
j
0

∂n
dS = 0

for all i, j such that λi0 = λj0. The error in approximating the eigenfunction ψkT by the advected eigenfunction
ATψ

k
0 is given by

lim
τ→0

lim
h→0

∥∥ψkT −ATψ
k
0

∥∥
(L2(VF (T )))d

h2

≤1

η

(
ωd(d− 1)

(2π)d

) 2
d
∫ T

0

[
4βλkt ‖e(v)‖(L∞(VF (t)))d×d + 2

√
λkt ‖∆v‖(L∞(VF (t)))d

+ η‖∇∆v‖(L∞(VF (t)))d×d

]
dt, (4.23)

where

β := sup
k

‖∆ψk0‖(L2(VF (0)))d

λk0
≤ C0
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and C0 is the constant in equation (3.1),

lim
τ→0

lim
h→0

∥∥∇
(
ψkT −ATψ

k
0

)∥∥
(L2(VF (T )))d×d

h

≤ 1√
η

(
ωd(d− 1)

(2π)d

) 1
d
∫ T

0

[
4βλkt ‖e(v)‖(L∞(VF (t)))d×d + 2

√
λkt ‖∆v‖(L∞(VF (t)))d

+ η‖∇∆v‖(L∞(VF (t)))d×d

]
dt. (4.24)

Proof. First, note that doing a Taylor expansion in τ , we can write

Aτψ
k
0 =

[
I + τ∇v0

(
(x+ v0(x)τ)

−1
)]
ψk0
(
(x+ v0(x)τ)

−1
)

=
[
I + τ∇v0(x) +O(τ2)

] [
ψk0 (x)− τ∇ψk0 (x)v0(x) +O(τ2)

]

= ψk0 (x) + τ
[
v0, ψ

k
0

]
+O(τ2). (4.25)

Also, note that

ψkτ = ψk0 + τ
∂ψk0
∂t

+O(τ2). (4.26)

Therefore, there exists C > 0 such that
∥∥ψkτ −Aτψ

k
0 − τE0,k

∥∥
(L2(VF (0)))d

≤ Cτ2

and

∥∥∇(ψkτ −Aτψ
k
0 − τE0,k)

∥∥
(L2(VF (0)))d×d ≤ Cτ2, (4.27)

where

E0,k :=
∂ψk0
∂t

+
[
v0, ψ

k
0

]
. (4.28)

Since ∇ · E0,k = 0 in VF (0) and E
0,k = 0 on ∂VF (0) (from the boundary conditions in equation (4.12)), we

can write

E0,k =
∞∑

i=1

aki ψ
i
0, (4.29)

where

aki =
(
E0,k, ψi0

)
.

Note that for i 6= k, from Lemma 4.2,

(
∂ψkt
∂t

, ψit

)

t

=
−η

λkt − λit

∫

∂VF

ν
∂ψkt
∂n

· ∂ψ
i
t

∂n
dS. (4.30)

When i = k, we have

(
∂ψkt
∂t

, ψkt

)

t

=0 (4.31)

from equation (4.16). Now, using equation (4.5) and integrating by parts twice, we have

(
v∇ψkt , ψit

)
t
=− η

λit

∫

VF

v∇ψkt ·∆ψit dx+
1

λit

∫

VF

v∇ψkt · ∇φit dx

10



=
η

λit

∫

VF

[
(∇ψkt∇v) : ∇ψit + (v∇2ψkt ) : ∇ψit

]
dx

− 1

λit

∫

VF

∇ψkt : (∇v)Tφit dx+
1

λit

∫

∂VF

(v∇ψkt ) · nφit dS

− η

λit

∫

∂VF

v∇ψkt
∂ψit
∂n

dS.

Integrating by parts yet again and using equation (4.5), we get

=
η

λit

∫

VF

[
(∇ψkt∇v) : ∇ψit − (∇v∇2ψkt ) · ψit +

λkt
η
(v∇ψkt ) · ψit

−1

η

(
v∇2φkt

)
· ψit
]
dx− 1

λit

∫

VF

∇ψkt : (∇v)Tφit dx

+
1

λit

∫

∂VF

(v∇ψkt ) · nφit dS − η

λit

∫

∂VF

ν
∂ψkt
∂n

· ∂ψ
i
t

∂n
dS

=
η

λit

∫

VF

[
(∇ψkt∇v) : ∇ψit + (∇ψit∇v) : ∇ψkt +

λkt
η
(v∇ψkt ) · ψit

]
dx

+
1

λit

∫

VF

ψit∇vT ∇φkt dx− 1

λit

∫

VF

∇ψkt : (∇v)Tφit dx

+
1

λit

∫

∂VF

(v∇ψkt ) · nφit dS − η

λit

∫

∂VF

ν
∂ψkt
∂n

· ∂ψ
i
t

∂n
dS.

From Lemma 4.1, we know that ∫

∂VF

(v∇ψkt ) · nφit dS = 0.

Therefore,

(
v∇ψkt , ψit

)
t
=

1

λit − λkt

[
−η
∫

∂VF

ν
∂ψkt
∂n

· ∂ψ
i
t

∂n
dS + η

∫

VF

[
∇ψkt

(
∇v + (∇v)T

)]
: ∇ψit dx

+

∫

VF

ψit∇vT ∇φkt dx−
∫

VF

∇ψkt : (∇v)Tφit dx
]
. (4.32)

In a similar fashion, using equation (4.5) and integrating by parts several times, we have

(
ψkt∇v, ψit

)
t
=− η

λit

∫

VF

(∆ψit∇v) · ψkt dx+
1

λit

∫

VF

ψkt∇vT∇φit dx

=
η

λit

∫

VF

[
(∇v∇ψit) : ∇ψkt + (∇2v ψkt ) : ∇ψit

]
dx− 1

λit

∫

VF

∇ψkt : ∇vTφit dx

=− η

λit

∫

VF

[
(∆ψkt∇v) · ψit + (∇2v ψit) : ∇ψkt − (∇2v ψkt ) : ∇ψit

]
dx

− 1

λit

∫

VF

∇ψkt : ∇vTφit dx

=
λkt
λit

(
ψkt∇v, ψit

)
t
− 1

λit

∫

VF

ψit∇vT∇φkt dx− 1

λit

∫

VF

∇ψkt : ∇vTφit dx

+
η

λit

∫

VF

[
(∇2v∇ψit) · ψkt − (∇ψkt∇2v) · ψit

]
dx. (4.33)
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Combining equations (4.30)–(4.33), we get that, for i 6= k,

aki =
1

λi0 − λk0

[
− 2η

∫

VF (0)

∇ψk0 (∇ψi0)T : e(v) dx+ 2

∫

VF (0)

ψi0∇φk0 : e(v) dx

− η

∫

VF (0)

[
(∇2v∇ψi0) · ψk0 + (∇ψk0∇2v) · ψi0

]
dx

]
(4.34)

and, for i = k,

akk =−
∫

VF (0)

(ψk0e(v)) · ψk0 dx. (4.35)

Using equation (4.5) and integrating by parts, we rewrite equation (4.34) slightly:

aki =
1

λi0 − λk0

[
2η

∫

VF (0)

(ψi0∇2ψk0 ) : e(v) dx+ 2η

∫

VF (0)

(∇ψk0∆v) · ψi0 dx+ 2

∫

VF (0)

ψi0∇φk0 : e(v) dx

+ η

∫

VF (0)

ψk0ψ
i
0 : ∇∆v dx

]
. (4.36)

In light of equations (4.4), (4.1), and (4.25), Aτ = 1 +O(τ). Therefore, ∃C > 0 such that

∥∥ψktn −Atnψ
k
0

∥∥
(H1(VF (tn)))d

≤
n∑

i=1

∥∥∥A(n−i)τ
(
ψkti −Aτψ

k
ti−1

)∥∥∥
(H1(VF (tn)))d

≤
n∑

i=1

∥∥∥ψkti −Aτψ
k
ti−1

∥∥∥
(H1(VF (ti)))d

+ Cτ2.

Therefore, noting equations (4.4), (4.27), (4.29), (4.36), and (4.35), we have that ∃C > 0 such that

∥∥ψktn −Atnψ
k
0

∥∥
(L2(VF (0)))d

≤ τ
N∑

i=1

√√√√
∞∑

j=M+1

(akj (ti))
2 + Cτ2

≤τ
N∑

i=1

1

λM+1
ti − λkti

[
4βλkti‖e(vti)‖L∞ + 2

√
λkti‖∆vti‖L∞ + η‖∇∆vti‖L∞

]
+ Cτ2. (4.37)

where

β := sup
k

‖∆ψk0‖(L2(VF (0)))d

λk0
≤ C0

and C0 is the constant in equation (3.1). Similarly,

∥∥∇ψktn −∇Atnψ
k
0

∥∥
(L2(VF (0)))d

≤ τ

N∑

i=1

√√√√
∞∑

j=M+1

λjti(a
k
j (ti))

2 + Cτ2

≤τ
N∑

i=1

√
λM+1
ti

λM+1
ti − λkti

[
4βλkti‖e(vti)‖L∞ + 2

√
λkti‖∆vti‖L∞ + η‖∇∆vti‖L∞

]
+ Cτ2. (4.38)

Noting equation (3.5) and taking the limits h → 0 and τ → 0 in equations (4.37) and (4.38), we get the
desired result.
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4.3 Full error estimate

Theorem 4.4. Let u solve equation (2.2), and let uh(T ) =
∑M
k=1 akψ

k
T be the Galerkin solution of equation

(2.2) in V h(VF (T )). Let ũh :=
∑M
k=1 akATψ

k
0 . Then

‖u(T )− ûh(T )‖(H1(VF (T )))d

≤ ‖u(T )− ũh(T )‖(H1(VF (T )))d

≤ ‖u(T )− uh(T )‖(H1(VF (T )))d + ‖uh(T )− ũh(T )‖(H1(VF (T )))d , (4.39)

where

lim
h→0

‖u(T )− uh(T )‖(H1(VF (T )))d

h‖f‖(L2(VF (T )))d
=

1√
η

(
ωd(d− 1)

(2π)d

) 1
d

(4.40)

and

lim
τ→0

lim
h→0

‖uh(T )− ũh(T )‖(H1(VF (T )))d

h‖f‖(H(2d−1)/2(VF (T )))d

≤ 2βd|VF |1/d

(2π)1/2+dη1/4+d ((d− 1)|VF |ωd)1+1/2d

∫ T

0

‖e(v(t))‖(L∞(VF (t)))d×d dt.

(4.41)

Proof. Equation (4.39) follows from the triangle inequality and the definition of ûh. Equation (4.40) follows
from equation (3.4). Note that

‖uh(tn)− ũh(tn)‖(H1(VF (tn)))d =

∥∥∥∥∥
M∑

k=1

ak
(
ψktn −Atnψ

k
0

)
∥∥∥∥∥
(H1(VF (tn)))d

=

∥∥∥∥∥
M∑

k=1

(λktn)
1+α/2ak

ψktn −Atnψ
k
0

(λktn)
1+α/2

∥∥∥∥∥
(H1(VF (tn)))d

≤
(

M∑

k=1

(λktn)
2+αa2k

) 1
2




M∑

k=1

∥∥∥∥∥
ψktn −Atnψ

k
0

(λktn)
1+α/2

∥∥∥∥∥

2

(H1(VF (tn)))d




1
2

≤‖f‖(Hα(VF (tn)))d




M∑

k=1

∥∥ψktn −Atnψ
k
0

∥∥2
(H1(VF (tn)))d

(λktn)
2+α




1
2

. (4.42)

Using equation (4.38), we have

M∑

k=1

∥∥ψktn −Atnψ
k
0

∥∥2
(H1(VF (tn)))d

(λktn)
2+α

≤τ2
N∑

i=1

M∑

k=1

λM+1
ti

(λM+1
ti − λkti)

2(λktn)
2+α

[
16β2(λkti)

2‖e(vti)‖2L∞ + 4λkti‖∆vti‖2L∞ + η2λkti‖∇∆vti‖2L∞
]
+ Cτ4

≤τ2
N∑

i=1

∫ M

1

λM+1
ti

(λM+1
ti − λkti)

2(λktn)
2+α

[
16β2(λkti)

2‖e(vti)‖2L∞ + 4λkti‖∆vti‖2L∞ + η2λkti‖∇∆vti‖2L∞
]
dk + Cτ4

Setting α = 2d−1
2 , applying Theorem 4.3, equation (3.5), and taking the limit τ → 0, we get equation

(4.41).
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5 Basis localization

Solutions to equation (3.2) are expensive to compute, so we will simplify the problem by using solutions to
localized problems.

5.1 Stokes Neumann eigenfunctions

For D(t) ⊂ VF (t), let SD(t) denote the closure of the set
{
v ∈ (C∞(D(t)))d|∇ · v = 0, v · n = 0 forx ∈ ∂D(t) ∩ ∂VF (t)

}

in the (L2(VF (t)))
d norm and define SmD (t) := SD(t) ∩ (Hm(D(t)))d for m ∈ N.

The following theorem is established in [9].

Theorem 5.1. Let t ∈ (0,∞) be fixed. For all f ∈ SmD (t) and m ∈ N, the equation




−η∆u+∇p = f, ∇ · u = 0 x ∈ D(t)
u = 0 x ∈ ∂D(t) ∩ ∂VF (t)
σ(u)n = 0 x ∈ ∂D(t) \ ∂VF (t)

(5.1)

has a unique solution u ∈ Sm+2
D (t) with p ∈ Hm+1(VF (t)). Furthermore, ∃Cm > 0 such that (u, p) satisfies

‖u‖(Hm+2(VF (t)))d + ‖p‖Hm+1(VF (t)) ≤ Cm ‖f‖Hm(VF (t)))d . (5.2)

Once again, the solution operator S−1
D (t) : SD(t) → SD(t) ⊃ S2

D(t) to equation (5.1) is compact. There-
fore, the eigenfunctions (ψkD,t, φ

k
D,t) satisfying





−η∆ψkD,t +∇φkD,t = λkD,tψ
k
D,t, ∇ · ψkD,t = 0 x ∈ D

ψkD,t = 0 x ∈ ∂D ∩ ∂VF
σ(ψkD,t)n = 0 x ∈ ∂D \ ∂VF

(5.3)

form a complete basis for SD(t). Furthermore, the set of eigenvalues {λkD,t} is countable, and λkD,t ≥ 0 for
all k.

We will need the following

Lemma 5.1. Let u ∈ (H1
0 (VF ))

d ∩ (H2(VF ))
d. Then

lim
M→∞

∥∥∥∥∥u−
M∑

k=1

ckψ
k
D,t

∥∥∥∥∥
(H1(D))d

= 0, (5.4)

where ck := (u, ψkD,t)(L2(D))d .

Proof. That

lim
M→∞

∥∥∥∥∥u−
M∑

k=1

ckψ
k
D,t

∥∥∥∥∥
(L2(D))d

= 0 (5.5)

is a standard result [3]. Let uǫ ∈ (C∞(D))d be such that ∇·uǫ = 0, uǫ(x) = 0 for all x ∈ ∂D∩∂VF , ∂u
ǫ

∂n = 0
for all x ∈ ∂D \ ∂VF , and ‖uǫ− u‖(H1(D))d < ǫ; let cǫk := (um, ψ

k
D,t)(L2(D))d , and let uǫm :=

∑m
k=1 c

ǫ
kψ

k
D,t. By

the variational form of the eigenvalue problem (5.3) and the triangle inequality, we have

∥∥∥∥∇
m∑

k=1

ckψ
k
D,t −∇u

∥∥∥∥
(L2(D))d×d

≤
∥∥∥∥∥∇

m∑

k=1

cǫkψ
k
D,t −∇u

∥∥∥∥∥
(L2(D))d×d

≤‖∇u−∇uǫ‖(L2(D))d×d +

∥∥∥∥∥∇u
ǫ −∇

m∑

k=1

cǫkψ
k
D,t

∥∥∥∥∥
(L2(D))d×d

.

(5.6)
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The first term is bounded by ǫ. To control the second term, note that

‖∇uǫ‖(L2(D))d×d = ‖∇uǫ −∇uǫm +∇uǫm‖(L2(D))d×d .

Furthermore, since (∇uǫ −∇uǫm,∇uǫm)(L2(D))d×d = 0, we have

‖∇uǫ‖(L2(D))d×d = ‖∇uǫ −∇uǫm‖(L2(D))d×d + ‖∇uǫm‖(L2(D))d×d .

Therefore, we need only show that ‖∇uǫm‖(L2(D))d×d → ‖∇uǫ‖(L2(D))d×d as m→ ∞. Since

‖∇uǫm‖2(L2(D))d×d =
M∑

k=1

λkD,t(c
ǫ
k)

2,

this is equivalent to showing

‖∇uǫ‖2(L2(D))d×d =
∞∑

k=1

λkD,t(c
ǫ
k)

2.

Let gǫ := −η∆uǫ for x ∈ D. Then, since either uǫ or ∂uǫ

∂n = 0 everywhere on ∂D, we have

‖∇uǫ‖2(L2(D))d×d = − (∆uǫ, uǫ)(L2(D))d +

∫

∂D

uǫ · ∂u
ǫ

∂n
dS

=
1

η
(gǫ, uǫ)(L2(D))d .

Furthermore, integrating by parts several times and using the boundary conditions on u and ψkD,t, we have

(
gǫ, ψkD,t

)
(L2(D))d

=− η
(
∆uǫ, ψkD,t

)
(L2(D))d

=η
(
∇uǫ,∇ψkD,t

)
(L2(D))d×d − η

∫

∂D

∂uǫ

∂n
· ψkD,t dS

=
(
uǫ,−η∆ψkD,t +∇φkD,t

)
(L2(D))d

+
(
∇ · uǫ, φkD,t

)
(L2(D))

+

∫

∂D

[
σ(ψkD,t)n · uǫ − ∂uǫ

∂n
· ψkD,t

]
dS

=λkD,tc
ǫ
k.

Noting that [3]

(gǫ, uǫ)(L2(D))d =
∞∑

k=1

(
gǫ, ψkD,t

)
(L2(D))d

(
uǫ, ψkD,t

)
(L2(D))d

,

we then get that

‖∇uǫ‖2(L2(D))d×d =
1

η

∞∑

k=1

λkD,t(c
ǫ
k)

2,

as desired.

5.2 Localized basis

Let {Di}ND
i=1 be a nonoverlapping decomposition of VF . Fix δ > 0, and let D′

i := {x ∈ VF |dist(x,Di) < δ}.
Let ξi be a partition of unity subordinate to {D′

i}. From Lemma 5.1, we can define a localized basis by using
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the functions {ξiψkD′
i
} for i = 1, . . . , ND and k = 1, . . . , h−d|D′

i|. Let Ati be defined as in equation (4.1). We

can advect the eigenfunctions as before, by defining the evolution operator Ati via

Ati+1ψ
k
D,0(x) :=AτAtiψ

k
D,0(x) + τ

M∑

j=1

akjAti+1ψ
j
D,0, (5.7)

where, for j 6= k,

akj =
η

λjti − λkti

[
2

∫

VF (ti)

(
∇Atiψ

j
D,0e(vti)

)
: ∇Atiψ

k
D,0 dx

+

∫

VF (ti)

[
(∇2vti∇Atiψ

j
D,0) · Atiψ

k
D,0 − (∇Atiψ

k
D,0∇2vti) · Atiψ

j
D,0

]
dx

]

and, for j = k,

akk =−
∫

VF (ti)

(Atiψ
k
D,0e(vti)) · Atiψ

k
D,0 dx.

The error due to advection is quantified in the following theorem.

Theorem 5.2. Let {λkD,t} be the eigenvalues of equation (5.3) corresponding to the eigenfunctions {ψkD,t}
at time t. Assume the eigenvalues are simple and ordered such that 0 < λ1D,0 ≤ λ2D,0 ≤ . . .. The error in

approximating the eigenfunction ψkD,T by the advected eigenfunction ATψ
k
D,0 is given by

lim
τ→0

lim
h→0

∥∥ψkD,T −ATψ
k
D,0

∥∥
(L2(D(T )))d

h2

≤
(
ωd(d− 1)

(2π)d

) 2
d
∫ T

0

[
2βλkD,t‖e(v)‖(L∞(D(t)))d×d + 4

√
λkD,t‖∇2v‖(L∞(D(t)))d×d×d

]
dt, (5.8)

where

β := sup
k

‖∆ψk0‖(L2(VF (0)))d

λk0
≤ C0 (5.9)

and C0 is the constant in equation (5.2), and

lim
τ→0

lim
h→0

∥∥∇
(
ψkD,T −ATψ

k
D,0

)∥∥
(L2(D(T )))d×d

h

≤
(
ωd(d− 1)

(2π)d

) 1
d
∫ T

0

[
2βλkD,t‖e(v)‖(L∞(D(t)))d×d + 4

√
λkD,t‖∇2v‖(L∞(D(t)))d×d×d

]
dt. (5.10)

Proof. First, note that doing a Taylor expansion in τ , we can write

Aτψ
D,k
0 =

[
I + τ∇v0

(
(x+ v0(x)τ)

−1
)]
ψkD,0

(
(x+ v0(x)τ)

−1
)

=
[
I + τ∇v0(x) +O(τ2)

] [
ψkD,0(x)− τ∇ψkD,0(x)v(x) +O(τ2)

]

= ψkD,0(x) + τ
[
v0, ψ

k
D,0

]
+O(τ2). (5.11)

Also, note that

ψkD,τ = ψkD,0 + τ
∂ψkD,0
∂t

+O(τ2). (5.12)
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Therefore, there exists C > 0 such that
∥∥ψkD,τ −Aτψ

k
D,0 − τED,0,k

∥∥
(L2(D(0)))d

≤ Cτ2

and

∥∥∇(ψkD,τ −Aτψ
k
D,0 − τED,0,k)

∥∥
(L2(D(0)))d×d ≤ Cτ2, (5.13)

where

ED,0,k :=
∂ψkD,0
∂t

+
[
v0, ψ

k
D,0

]
. (5.14)

From Lemma 5.1 and the fact that ∇ · ED,0,k = 0 in D(0), we can write

ED,0,k =
∞∑

i=1

aki ψ
i
D,0, (5.15)

where

aki =
(
ED,0,k, ψiD,0

)
.

Using the boundary conditions in (5.3), we get that for x ∈ ∂D \ ∂VF ,

0 =
δσn

δt
=
δσ

δt
n+ σ

δn

δt

It is shown in [37] that
δn

δt
= −∇∂Dν,

where ∇∂D is the gradient operator on ∂D. Therefore, for x ∈ ∂D \ ∂VF , we have

∂σ(ψkD,t)

∂t
n = −νn∇σ(ψkD,t)n+ σ(ψkD,t)∇∂Dν.

Using this observation and differentiating equation (5.3), we get





−η∆∂ψk
D,t

∂t +∇∂φk
D,t

∂t = λ′,kD,tψ
k
D,t + λkD,t

∂ψk
D,t

∂t , ∇ · ∂ψ
k
D,t

∂t = 0 x ∈ D
∂ψk

D,t

∂t = −ν ∂ψ
k
D,t

∂n x ∈ ∂DD := ∂D ∩ ∂VF
∂σ(ψk

D,t)

∂t n = −νn∇σ(ψkD,t)n+ σ(ψkD,t)∇∂Dν x ∈ ∂DN := ∂D \ ∂VF .
(5.16)

Therefore, for i 6= k, we have

(
∂ψkt
∂t

, ψit

)

D,t

=
1

λkD,t

∫

D

[
−∇ · σ

(
∂ψkD,t
∂t

)
· ψiD,t − λ′,kD,tψ

k
D,t · ψiD,t

]
dx,

in which the second term vanishes. Integrating by parts twice and noting that ψiD,t = 0 on ∂DD, we get

=
1

λkD,t



∫

D

η


∇

∂ψkD,t
∂t

+

(
∇
∂ψkD,t
∂t

)T
 : ∇ψiD,t dx−

∫

∂DN

σ

(
∂ψkD,t
∂t

)
n · ψiD,t dS




=
1

λkD,t

[
− η

∫

D

∂ψkD,t
∂t

·∆ψiD,t dx+ η

∫

∂D

∂ψkD,t
∂t

(
∇ψiD,t +

(
∇ψiD,t

)T)
ndS
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−
∫

∂DN

σ

(
∂ψkD,t
∂t

)
n · ψiD,t dS

]
.

(5.17)

Noting that ∫

D

∂ψkD,t
∂t

· ∇φiD,t dx =

∫

∂D

φiD,t
∂ψkD,t
∂t

· ndS

and using equation (5.16) once more, we get

(
∂ψkt
∂t

, ψit

)

D,t

=
1

λkD,t

[ ∫

D

λiD,t
∂ψkD,t
∂t

· ψiD,t dx−
∫

∂DD

ν
∂ψkD,t
∂n

· σ
(
ψiD,t

)
ndS

−
∫

∂DN

(
−νn∇σ(ψkD,t)n− σ(ψkD,t)∇∂Dν

)
· ψiD,t dS

]
.

Integrating by parts and doing some further simplification, we get (recall that i 6= k),
(
∂ψkD,t
∂t

, ψiD,t

)

D,t

=
−1

λkD,t − λiD,t

[ ∫

∂DD

νσ
(
ψiD,t

)
n ·

∂ψkD,t
∂n

dS

+

∫

∂DN

(
−νn∇σ(ψkD,t)n+ σ(ψkD,t)∇∂Dν

)
· ψiD,t dS

]

=
−1

λkD,t − λiD,t

[ ∫

∂DD

νσ
(
ψiD,t

)
n ·

∂ψkD,t
∂n

dS

+

∫

∂DN

(
−νn∇σ(ψkD,t)n+ ν∇∂D · σ(ψkD,t)

)
· ψiD,t dS

+

∫

∂DN

νσ(ψkD,t) : ∇∂Dψ
i
D,t dS

]
.

Noting that ∇ = ∇∂D + n ∂
∂n , we have

=
−1

λkD,t − λiD,t

[ ∫

∂DD

νσ
(
ψiD,t

)
n ·

∂ψkD,t
∂n

dS

+

∫

∂DN

νλkD,tψ
k
D,t · ψiD,t dS

−
∫

∂DN

νσ(ψkD,t) : ∇∂Dψ
i
D,t dS

]
. (5.18)

When i = k, we have
(
∂ψkD,t
∂t

, ψkD,t

)

t

= 0 (5.19)

from the normalization condition ‖ψkD,t‖(L2(D))d = 1. Integrating by parts twice and using equation (5.3),
we have

(
v∇ψkD,t, ψiD,t

)
D,t

= − 1

λkD,t

∫

D

v∇
(
∇ · σ

(
ψkD,t

))
ψiD,t dx

=
1

λkD,t

∫

D

[(
ψiD,t∇σ

(
ψkD,t

))
: ∇v + v

(
∇σ

(
ψkD,t

))
: ∇ψiD,t

]
dx− 1

λkD,t

∫

∂D

(
∇σ

(
ψkD,t

)
v
)
: ψiD,tndS.

(5.20)
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Now, integrating by parts and using the fact that ∇ · v = 0, we have

∫

D

(
ψiD,t∇σ

(
ψkD,t

))
: ∇v dx = −

∫

D

(
∇vσ

(
ψkD,t

))
:
(
∇ψiD,t

)T
dx+

∫

∂D

(
∇vσ

(
ψkD,t

))
: ψiD,tndS. (5.21)

Furthermore, by the definition of σ
(
ψkD,t

)
and the fact that ∇ · ψiD,t = 0,

∫

D

v
(
∇σ

(
ψkD,t

))
: ∇ψiD,t dx =

∫

D

[
−v · ∇φkD,t∇ · ψiD,t + η

(
v∇2ψkD,t

)
: ∇ψiD,t + η

(
v∇2ψkD,t

)
:
(
∇ψiD,t

)T ]
dx

=η

∫

D

[(
v∇2ψkD,t

)
: ∇ψiD,t +

(
v∇2ψkD,t

)
:
(
∇ψiD,t

)T ]
dx.

Integrating both terms by parts, we have

=− η

∫

D

[(
∇ψkD,t∇v

)
: ∇ψiD,t +

(
∇ψkD,tv

)
·∆ψiD,t

]
dx+ η

∫

∂D

(
∇ψkD,tv

)
·
(
∇ψiD,tn

)
dS

− η

∫

D

(
∇ψkD,t∇v

)
: ∇ψiD,t dx+ η

∫

∂D

(
∇ψkD,tv

)
·
(
n∇ψiD,t

)
dS. (5.22)

Using equation (5.3) and integrating by parts, we have

∫

D

(
∇ψkD,tv

)
·∆ψiD,t dx =

∫

D

[
λiD,t

(
∇ψkD,tv

)
· ψiD,t −

(
∇ψkD,tv

)
· ∇φiD,t

]
dx

=

∫

D

[
λiD,t

(
∇ψkD,tv

)
· ψiD,t +∇v :

(
∇ψkD,t

)T
φiD,t

]
dx−

∫

∂D

n∇ψkD,tvφiD,t dS. (5.23)

Therefore, combining equations (5.20)–(5.23), we get

(
v∇ψkD,t, ψiD,t

)
D,t

=
1

λkD,t − λiD,t

[ ∫

D

[
−
(
∇v σ

(
ψkD,t

))
:
(
∇ψiD,t

)T −
(
∇ψkD,t∇v

)
: σ
(
ψiD,t

) ]
dx

+

∫

∂D

[
−
(
∇σ

(
ψkD,t

)
v
)
: ψiD,tn+

(
∇vσ

(
ψkD,t

))
: ψiD,tn

+
(
∇ψkD,tv

)
·
(
σ
(
ψiD,t

)
n
) ]
dS

]
. (5.24)

Using the fact that ∇ = ∇∂D + n ∂
∂n , we can rewrite the boundary terms as

1

λkD,t − λiD,t

[ ∫

∂D

[
−
(
∇σ

(
ψkD,t

)
v
)
: ψiD,tn+

(
∇vσ

(
ψkD,t

))
: ψiD,tn+

(
∇ψkD,tv

)
·
(
σ
(
ψiD,t

)
n
) ]
dS

]

=
1

λkD,t − λiD,t

[ ∫

∂DD

νσ
(
ψiD,t

)
n ·

∂ψkD,t
∂n

dS

+

∫

∂DN

νλkD,tψ
k
D,t · ψiD,t dS −

∫

∂DN

νσ(ψkD,t) : ∇∂Dψ
i
D,t dS

]

=

(
∂ψkD,t
∂t

, ψiD,t

)
. (5.25)

In a similar fashion, using equation (5.3) and integrating by parts several times, we have

(
∇vψkD,t, ψiD,t

)
D,t

=− 1

λkD,t

∫

D

(
ψiD,t∇v

)
· ∇ · σ

(
ψkD,t

)
dx
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=
1

λkD,t

∫

D

[(
ψiD,t∇2v

)
: σ
(
ψkD,t

)
+∇vσ

(
ψkD,t

)
: ∇ψiD,t

]
dx. (5.26)

From the definition of σD,t,

∫

D

∇vσ
(
ψkD,t

)
: ∇ψiD,t dx =

∫

D

[
−∇v : ∇ψiD,tφkD,t + η∇v∇ψkD,t : ∇ψiD,t + η∇v

(
∇ψkD,t

)T
: ∇ψiD,t

]
dx.

(5.27)

Furthermore, integrating by parts and using equation (5.3), we have

η

∫

D

∇v∇ψkD,t : ∇ψiD,t =η
∫

D

[
−ψkD,t∇2v : ∇ψiD,t +∇vψkD,t ·∆ψiD,t

]
dx+ η

∫

∂D

(
∇vψkD,t

)
·
(
∇ψiD,t · n

)
dS

=

∫

D

[
−ηψkD,t∇2v : ∇ψiD,t +∇vψkD,t ·

(
λiD,tψ

i
D,t −∇φiD,t

)]
dx

+ η

∫

∂D

(
∇vψkD,t

)
·
(
∇ψiD,t · n

)
dS. (5.28)

Integrating by parts once more and using equation (5.3), we have
∫

D

∇vψkD,t · ∇φiD,t dx =−
∫

D

∇v :
(
∇ψkD,t

)T
φiD,t dx+

∫

∂D

∇vψkD,tφiD,t · ndS. (5.29)

Therefore, combining equations (5.26)–(5.29), we get

(
∇vψkD,t, ψiD,t

)
D,t

=
1

λkD,t − λiD,t

[ ∫

D

[ (
ψiD,t∇2v

)
: σ
(
ψkD,t

)
−∇v : ∇ψiD,tφkD,t + η∇v

(
∇ψkD,t

)T
: ∇ψiD,t

− ηψkD,t∇2v : ∇ψiD,t −∇v :
(
ψkD,t

)T
φiD,t

]
dx+ η

∫

∂D

(
∇vψkD,t

)
·
(
∇ψiD,t · n

)
dS

−
∫

∂D

∇vψkD,tφiD,t · ndS
]
.

Adding ∫

∂D

∇ψiD,t∇v ψkD,t · ndS =

∫

D

[
∇2vψkD,t :

(
∇ψiD,t

)T
+∇v∇ψkD,t :

(
∇ψiD,t

)T ]
dx,

we get

(
∇vψkD,t, ψiD,t

)
D,t

=
1

λkD,t − λiD,t

[ ∫

D

[ (
ψiD,t∇2v

)
: σ
(
ψkD,t

)
−∇v : ∇ψiD,tφkD,t +∇v

(
∇ψkD,t

)T
: σ
(
ψiD,t

)

− 2ηψkD,t∇2v : e
(
ψiD,t

) ]
dx

]
. (5.30)

Combining equations (5.18), (5.19), (5.24), (5.25), and (5.30)), we get that, for i 6= k,

aki =
1

λkD,t − λiD,t

[ ∫

D

[
− 2η

(
∇ve(ψkD,t)

)
:
(
∇ψiD,t

)T − 2
(
∇ψkD,te(v)

)
: σ
(
ψiD,t

)
−
(
ψiD,t∇2v

)
: σ
(
ψkD,t

)

+ 2e(v) : ∇ψiD,tφkD,t + 2ηψkD,t∇2v : e
(
ψiD,t

) ]
dx

]
,

which, integrating by parts and simplifying, we can write

=
1

λkD,t − λiD,t

[
− 2

∫

D

∇φkD,te(v) · ψiD,t dx+ 2η

∫

D

(ψiD,t∇2ψkD,t) : e(v) dx+

∫

D

(∇ψkD,t∆v) · ψiD,t dx
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+ η

∫

D

(∇2vψiD,t) : ∇ψkD,t dx− 2η

∫

D

ψiD,t∇2v : ∇ψkD,t dx− η

∫

D

ψiD,t∇∆v · ψkD,t dx

− η

∫

D

(∇2vψiD,t) : ∇ψkD,t dx
]
. (5.31)

For i = k,

akk =−
∫

D(0)

(ψkD,0e(v)) · ψkD,0 dx. (5.32)

From equations (5.7), (4.1), and (5.11), Aτ = 1 +O(τ). Therefore, ∃C > 0 such that

∥∥ψkD,tn −AD,tnψ
k
D,0

∥∥
(H1(D(tn)))d

≤
n∑

i=1

∥∥∥A(n−i)τ
(
ψkD,ti −Aτψ

k
D,ti−1

)∥∥∥
(H1(D(tn)))d

≤
n∑

i=1

∥∥∥ψkD,ti −Aτψ
k
D,ti−1

∥∥∥
(H1(D(ti)))d

+ Cτ2.

Therefore, noting equations (5.7), (5.13), (5.15), (5.31), and (5.32), we have that ∃C > 0 such that

∥∥ψkD,tn −Atnψ
k
D,0

∥∥
(L2(D(0)))d

≤ τ

N∑

i=1

√√√√
∞∑

j=M+1

(akj (ti))
2 + Cτ2

≤τ
N∑

i=1

1

|λkD,ti − λM+1
D,ti

|
[
2βλkD,ti‖e(vti)‖L∞ + 4

√
λkD,ti‖∇

2vti‖L∞

]
+ Cτ2, (5.33)

where β is defined in equation (5.9). Similarly,

∥∥∇ψkD,tn −∇Atnψ
k
D,0

∥∥
(L2(D(0)))d

≤ τ

√√√√
∞∑

i=M+1

λiD,tn(a
k
i )

2 + Cτ2

≤τ
N∑

i=1

√
λM+1
D,ti

|λkD,ti − λM+1
D,ti

|
[
2βλkD,ti‖e(vti)‖L∞ + 4

√
λkD,ti‖∇

2vti‖L∞

]
+ Cτ2. (5.34)

Now, from the max-min property of eigenvalues (see, e.g., [3], the eigenvalues λkD,t are bounded above by the
Dirichlet eigenvalues and below by Neumann eigenvalues. From the results in [29], these eigenvalues, and
hence λkD,t, have the same asymptotic behavior. Therefore, as l → ∞,

λlD,t ∼ η

(
(2π)d

ωd(d− 1)

) 2
d

|D|−2/dl2/d. (5.35)

Now, taking the limits h→ 0 and τ → 0 in equations (5.33) and (5.34), we get the desired result.

Let V h(D) := span
(
{ψkD,t}

)
. The full error estimate in D is given by the following theorem.

Theorem 5.3. Let u solve equation (2.2), and let uD,h(T ) =
∑M
k=1 akψ

k
T , where M := h−d|D|, be the

Galerkin solution of equation (2.2) in V h(D(T )). Let ũD,h :=
∑M
k=1 akATψ

k
D,0. Then

‖u(T )− ûD,h(T )‖(H1(D(T )))d

≤ ‖u(T )− ũD,h(T )‖(H1(D(T )))d
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≤ ‖u(T )− uD,h(T )‖(H1(D(T )))d + ‖uD,h(T )− ũD,h(T )‖(H1(D(T )))d , (5.36)

where

lim
h→0

‖u(T )− uD,h(T )‖(H1(D(T )))d

h‖f‖(L2(D(T )))d
=

(
ωd(d− 1)

(2π)d

) 1
d

(5.37)

and

lim
τ→0

lim
h→0

‖uD,h(T )− ũD,h(T )‖(H1(D(T )))d

h‖f‖(H(d+1)/2(D(T )))d

≤ 2βd|VF |1/d

(2π)1/2+dη1/4+d ((d− 1)|VF |ωd)1+1/2d

∫ T

0

‖e(v(t))‖(L∞(VF (t)))d×d dt

(5.38)

Proof. Equation (5.36) follows from the triangle inequality and the definition of ûD,h. Equation (5.37) follows
from an argument identical to that used to derive equation (3.4). Note that

‖uD,h(tn)− ũD,h(tn)‖(H1(D(tn)))d =

∥∥∥∥∥
M∑

k=1

ak
(
ψkD,tn −Atnψ

k
D,0

)
∥∥∥∥∥
(H1(D(tn)))d

=

∥∥∥∥∥
M∑

k=1

(λkD,tn)
1+α/2ak

ψkD,tn −Atnψ
k
D,0

(λkD,tn)
1+α/2

∥∥∥∥∥
(H1(D(tn)))d

≤
(

M∑

k=1

(λkD,tn)
2+αa2k

) 1
2




M∑

k=1

∥∥∥∥∥
ψkD,tn −Atnψ

k
D,0

(λkD,tn)
1+α/2

∥∥∥∥∥

2

(H1(D(tn)))d




1
2

≤‖f‖(Hα(D(tn)))d




M∑

k=1

∥∥ψkD,tn −Atnψ
k
D,0

∥∥2
(H1(D(tn)))d

(λkD,tn)
2+α




1
2

. (5.39)

Setting α = 2d−1
2 , applying Theorem 5.2, equation (5.35), and taking the limit τ → 0, we get equation

(5.38).

6 Conclusion

In this report we have considered the problem of efficient numerical upscaling of a Stokesian particle system
with a fine-grained evolving geometry. The main result follows by constructing a provably optimal (albeit
impractical) spectral discretization basis, capturing the system down to a given scale. Because of its spectral
nature, an exact evolution law for the basis follows from the analog of Hadamard’s formula for the change in
the eigenfunctions due to an infinitesimal perturbation in the domain. The basis evolution law allows us to
design an upscaled basis update procedure in response to the movement of the domain, while maintaining full
error control. We propose a particular update procedure, but its numerical assessment as well as the search
for, possibly, better update methods is outside the scope of this report. Further, we propose a variation of
the basis localization technique to convert the spectral basis into a practical discretization scheme.
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