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SUMMARY 

UNIC is the neutronics component of the massively parallel, multi-physics SHARP 

(Simulation for High-efficiency Advanced Reactor Prototyping) framework under 

development at Argonne National Laboratory. During this fiscal year, the SN2ND solver, 

MOCFE solver, and NODAL solver received significant development to meet the needs of 

the SHARP project. Additional follow-on analysis of the ZPR-6/6A from the previous year 

was performed in addition to new analysis of the ZPR-6/7 experiments where UNIC 

predictions of ZPR foil activation were made against experimentally measured values.  

The SN2ND solver was applied to a plate-by-plate model of ZPR-6/6A using 294,912 

cores of BlueGene/P and 222,912 cores of XT5, the two largest open-science high 

performance computing machines. The calculations proved that the SN2ND solver could be 

applied to heterogeneous reactor modeling problems, but more solver development (e.g., 

multigrid preconditioner) and computing power are required before such calculations are 

routine. As a consequence, the SN2ND solver was revised to incorporate a new multigrid 

preconditioner concept in addition to removing the remaining inappropriate spherical 

harmonics related quantities left over from its beginning (i.e. PN2ND). At the time of this 

report, the new version of SN2ND has not been completed, and the follow on work for 

SN2ND will continue to focus on updating the preconditioner as outlined in this report. 

The MOCFE solver was rebuilt into UNIC in the previous year such that it obeyed the 

basic concepts of parallelism (scalable memory and communication). The MOCFE parallel 

algorithm was fully debugged this year and initial scalability tests on over 2048 processors 

were carried out such that the parallel algorithm could be assessed. That work indicated that a 

significant load imbalance in the coefficient matrix-vector application exists. A possible 

solution was formulated, but it has not been fully tested at the time of this report. Various 

setbacks caused by numerous ray tracing problems and a mistake in the implementation were 

unanticipated thus delaying progress on the MOCFE solver and the targeted development 

tasks for MOCFE were not completed this year. 

In addition to the high fidelity solvers SN2ND and MOCFE, some time was spent 

implementing the NODAL solver. NODAL is similar to an existing legacy tool, but employs 

parallelism for enhanced performance and a capability to map a heterogeneous geometry into 

the homogenized geometry. This solver would provide a path to improve upon the existing 

homogenization approaches used for fuel cycle analysis, transient analysis, and perturbation 

theory calculations. An appropriate preconditioner was identified for NODAL this year and 

the solver algorithm was partially completed in UNIC. To facilitate the validation tests of 

UNIC using the ZPR-6 critical experiments, the BuildZPRmodel tool was also updated and a 

mesh merging algorithm was created. In addition to the newly implemented “solution along a 

line” analysis capability, these tools proved crucial to being able to perform the foil activation 

analysis detailed in this report.  

Combined tests of MC
2
-3 and UNIC were performed against ZPR-6/7 experiments. The 

as-built core models of four core loadings with high Pu-240 zone (Loading 104, 106, 120, and 

132) were analyzed by modeling more than 100 drawer types explicitly. Cell-averaged drawer 

cross sections were generated using the 1-D transport capability of MC
2
-3 based on the 

ENDF/B-VII.0 data. The results indicated that MC
2
-3/UNIC performed very well on the 
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range of fast reactor problems consistent with the cross section generation procedure 

implemented in MC
2
-3. For all the four core loadings analyzed, the core reactivity was 

predicted within 1-σ (standard deviation) of the estimated experimental uncertainty (~80 

pcm), including the geometry and composition uncertainties. This result is comparable to the 

accuracy of MCNP Monte Carlo solutions; the UNIC solutions deviated from the measured 

values by 75, 43, 28 and -24 pcm for the Loadings 104, 106, 120, and 132, respectively, while 

the corresponding deviations of MCNP solutions were -56, -42, -132, and 0 pcm.  

For the Loadings 104 and 120 of conventional fast reactor compositions, the calculated 

reaction rate distributions for enriched uranium fission, depleted uranium capture and fission, 

and plutonium fission agreed well with the foil activation measurements within 1- to 2-σ of 

the measurement uncertainties. However, for the Loadings 106 and 132, which have BeO 

plates around the central sodium drawer, more than 3-σ deviations were observed for the 

depleted uranium capture reaction rates near the BeO plates. Additional changes to the cross 

section generation algorithm utilizing the existing MC
2
-3 solver with some enhancements 

(two- or three-dimensional MOC) should resolve the remaining issues. 



FY2010 Status Report on Advanced Neutronics Modeling and Validation 
M. A. Smith, A. Mohamed, A. Marin-Lafleche, E. E. Lewis, K. Derstine, C. H. Lee, A. Wollaber, and W. S. Yang 

 iii ANL-GenIV-149 

 

 

 

 



 FY2010 Status Report on Advanced Neutronics Modeling and Validation 
  September 15, 2010 

ANL-GenIV-149 iv 

TABLE OF CONTENTS 

Summary ..................................................................................................................................... i 

Table of Contents ...................................................................................................................... iv 

List of Figures ........................................................................................................................... vi 

List of Tables ........................................................................................................................... vii 

1 Introduction ............................................................................................................................ 1 

2 SN2ND Development ............................................................................................................. 3 

2.1 Algorithmic Review ........................................................................................................ 4 

2.2 Development of a Multi-grid Preconditioner .................................................................. 7 

2.3 Implementation Issues with Parallelization in Energy .................................................. 10 

3 MOCFE Development .......................................................................................................... 12 

3.1 Review of MOCFE Solution Scheme ........................................................................... 12 

3.2 Problems Encountered in Ray Tracing ......................................................................... 14 

3.3 A Scalable Back Projection Algorithm ......................................................................... 21 

3.4 Automatic Optimization Adjustor Algorithm for MOCFE .......................................... 23 

3.5 Initial Scalability Results for MOCFE .......................................................................... 29 

4 NODAL Solver Development .............................................................................................. 32 

4.1 Construction of the NODAL Preconditioner ................................................................ 32 

4.2 Comparison of GMRES to Existing VARIANT Algorithm ......................................... 33 

4.3 Orthogonalized Matrix Aggregation ............................................................................. 35 

4.4 Summary Discussion .................................................................................................... 36 

5 Miscellaneous Components of the Neutronics Work ........................................................... 37 

5.1 IsoNXS Storage of Tabulated Cross Section Data ....................................................... 37 

5.2 Gauss-Lobatto-Tchebychev Finite Element Capability ................................................ 39 

5.3 Evaluating the Solution along a Traversing Line ......................................................... 40 

5.4 BuildZPRmodel and MergeMesh, Programs to Generate Input Geometry .................. 45 

5.5 New Repository and Component Verification of UNIC ............................................... 49 

6 Verification and Validation Tests ......................................................................................... 51 

6.1 Follow on Calculations of ZPR-6/6A ........................................................................... 52 

6.2 Space-angle Convergence Study of PN2ND and SN2ND ............................................ 54 

6.3 ZPR-6 Assembly 7 Experiment .................................................................................... 56 

6.3.1 Slab Geometry Scoping Studies ......................................................................... 56 

6.3.2 Eigenvalue Results for the Homogenized Drawer Calculations ........................ 57 

6.3.3 Foil Results for the Homogenized Drawer Calculations .................................... 61 

6.3.4 Follow on Work to Investigate the BeO Related Errors .................................... 63 

7 Conclusions .......................................................................................................................... 65 

8 References ............................................................................................................................ 67 

 



FY2010 Status Report on Advanced Neutronics Modeling and Validation 
M. A. Smith, A. Mohamed, A. Marin-Lafleche, E. E. Lewis, K. Derstine, C. H. Lee, A. Wollaber, and W. S. Yang 

 v ANL-GenIV-149 

 



 FY2010 Status Report on Advanced Neutronics Modeling and Validation 
  September 15, 2010 

ANL-GenIV-149 vi 

LIST OF FIGURES 

Figure 2.1 Serendipity (upper) and Lagrangian (lower) Quadrilaterals in UNIC ....................... 8 

Figure 2.2 Tesselated Serendipity (upper) and Lagrangian (lower) Quadrilaterals in UNIC ..... 9 

Figure 2.3 Tetrahedral Tessellated Serendipity Wedge in UNIC ............................................... 9 

Figure 3.1. Coordinate System for the Characteristic Lines ..................................................... 13 

Figure 3.2. Example Decomposition of the Mesh and Segmentation of Crossing 

Trajectories ............................................................................................................. 15 

Figure 3.3. Example MOCFE Ray Tracing Problem on the Domain Surface .......................... 16 

Figure 3.4. Example MOCFE Ray Casting Problem on the Domain Interior .......................... 17 

Figure 3.5 Example Segmented Ray Tracing Data ................................................................... 18 

Figure 3.6 Example Four-Processor Back Projection ............................................................... 22 

Figure 3.7 Example Error Measures for the 33 Group ABTR Test Problem ........................... 25 

Figure 3.8 Example Dominance Ratio (DR) Impact on Solution Convergence ....................... 26 

Figure 3.9 Within-group Results for the VHTR without Group Balancing ............................. 27 

Figure 3.10 Within-group Results for the VHTR with Group Balancing................................. 27 

Figure 3.11 Example Multi-Domain Decomposition Approach to the VHTR ......................... 31 

Figure 4.1 Quarter Core Configuration of Six LWR Fuel Assemblies and Reflector .............. 34 

Figure 4.2 Convergence Rates of Red-Black Gauss-Seidel and GMRES for NODAL ........... 34 

Figure 4.3 Impact of Combining p-multigrid and Orthogonalized Matrix Aggregation .......... 36 

Figure 5.1 One-Dimensional GLT and Lagrangian Finite Element Basis Functions ............... 40 

Figure 5.2 VISIT Sub-element Approximation of a Finite Element ........................................ 41 

Figure 5.3 Quadratic and Quadric Finite Elements and a Flux Traverse (x’s) ......................... 41 

Figure 5.4 Assumed Quadratic and Quadric Flux Solutions .................................................... 42 

Figure 5.5 Solutions and Calculated Error of the Sub-element Scheme ................................... 42 

Figure 5.6 ZPR-6/7 Matrix Edge Group 1 Flux Plot for Loading 106 (Mesh Convergence)... 44 

Figure 5.7 ZPR-6/7 Center Drawer Group 1 Flux Plot for Loading 106 (Mesh 

Convergence) .......................................................................................................... 44 

Figure 5.8 ZPR-6/7 Matrix Edge Group 1 Flux Plot for Loading 106 (Ray Effects) ............... 45 

Figure 5.9. Single ZPR-6 Core Drawer .................................................................................... 46 

Figure 5.10. Example Homogenization Models ....................................................................... 47 

Figure 5.11. Full Core ZPR-6/7 Model Built with BuildZPRmodel ........................................ 48 

Figure 5.12. Example VHTR Mesh Built Using the New Merge Mesh Routine ..................... 50 

Figure 5.13. Example Input Specification for Merge Mesh Routine in UNIC ......................... 51 

Figure 6.1. ZPR-6/6A Fast Flux (left) and Power (right) ......................................................... 53 

Figure 6.2. Space-angle Mesh Convergence Study Test Problem ............................................ 55 

Figure 6.3. Representative ZPR-6 Assembly 7 Core Drawer Layout ....................................... 56 

Figure 6.4. ZPR-6 Assembly 7 Loadings 104, 106, 120 & 132 ............................................... 58 



FY2010 Status Report on Advanced Neutronics Modeling and Validation 
M. A. Smith, A. Mohamed, A. Marin-Lafleche, E. E. Lewis, K. Derstine, C. H. Lee, A. Wollaber, and W. S. Yang 

 vii ANL-GenIV-149 

Figure 6.5. ZPR-6 Assembly 7 Selected Flux Plots for Loading 106 ....................................... 59 

Figure 6.6. Foil Locations in the ZPR-6 Assembly 7 High 
240

Pu Loadings ............................. 62 

LIST OF TABLES 

Table 3.1 Preliminary Strong Scaling in Space Numbers for MOCFE .................................... 29 

Table 3.2 Variation in the Number of Elements and Trajectory Data ...................................... 30 

Table 4.1 Calculated Performance Gain Using Orthogonalized Matrix Aggregation .............. 36 

Table 5.1. IsoNXS File Description: FileWide Group .............................................................. 38 

Table 5.2. IsoNXS File Description: Isotope Header Group (repeated for each Isotope) ........ 38 

Table 5.3. IsoNXS File Description: Isotope Reaction Groups (repeated for each Isotope) .... 38 

Table 6.1. SN2ND Eigenvalue Error for the Drawer Homogenized ZPR Model..................... 52 

Table 6.2. Weak Angle Scalability of SN2ND on BlueGene/P (combined ANL and JSC) ..... 52 

Table 6.3. SN2ND Eigenvalue Error (pcm) Energy Convergence for Two Different 

Meshes ...................................................................................................................... 53 

Table 6.4. SN2ND Eigenvalue Error (pcm) Angular Convergence .......................................... 54 

Table 6.5. PN2ND Results for the Small Test Model with Reflective Boundary 

Conditions ................................................................................................................ 55 

Table 6.6. PN2ND Results for the Large Test Model with Reflective Boundary 

Conditions ................................................................................................................ 55 

Table 6.7. PN2ND Results for the Large Test Model with Vacuum Boundary Conditions ..... 55 

Table 6.8. MC
2
-3 k results for a Single Fuel Drawer of the ZPR-6/7, Loading 104 .............. 57 

Table 6.9. Eigenvalue Solutions for ZPR-6 Assembly 7 Loading 104 ..................................... 60 

Table 6.10. UNIC and MCNP Eigenvalues for Loadings 104, 106, 120 and 132 .................... 61 

Table 6.11. Foil Reaction Rate Comparisons for Loading 104 and 106 (C/E-1 in %) ............. 62 

Table 6.12. Foil Reaction Rate Comparisons for Loading 106 with Explicit BeO Plates ........ 63 

Table 6.13. U-238 Capture Foil Reaction Rate Comparisons for Loading 106 with 

Modified Foil Cross Section Models ..................................................................... 64 

 

 

 

 





FY2010 Status Report on Advanced Neutronics Modeling and Validation 

M. A. Smith, A. Mohamed, A. Marin-Lafleche, E. E. Lewis, K. Derstine, C. H. Lee, A. Wollaber, and W. S. Yang  1 

  ANL-GenIV-149 

1 Introduction 
As part of the Advanced Fuel Cycle Initiative (AFCI), a fast reactor simulation program 

was launched in April 2007, termed SHARP [1], to develop a suite of modern simulation tools 

specifically for the analysis and design of sodium cooled fast reactors. The general goal is to 

reduce the uncertainties and biases in various areas of reactor design activities by providing 

enhanced prediction capabilities. Under this fast reactor simulation program, a high-fidelity 

deterministic neutron transport code named UNIC [2-3] was started. The application scope 

targeted for UNIC ranges from the homogenized assembly approaches prevalent in current 

reactor analysis methodologies to explicit geometry, time dependent transport calculations 

coupled to thermal-hydraulics and structural mechanics calculations for reactor accident 

simulations.  

The creation of a single solver that can perform all of these calculations and be 

competitive with the wide range of analysis tools already in use is somewhat formidable, 

especially when considering the limited amount of manpower dedicated to this project. Given 

the large assortment of transport solvers capable of treating the assembly homogenized, if not 

pin-cell homogenized geometry, the initial focus of UNIC was to create new solvers 

appropriate for the multi-physics (structural mechanics and thermal-hydraulics) coupling 

problems of immediate interest that are beyond the modeling capabilities of any available 

solver today. Consequently, from its inception UNIC focused heavily on trying to discretize 

the transport equation preserving as much geometrical information as possible (i.e. little or no 

homogenization). With these guidelines, the primary development solvers, SN2ND and 

MOCFE, within UNIC have been researched for approximately 2.5 years with moderate 

success, however, given the large problem size associated with such problems (>10
14

 degrees 

of freedom or unknowns), they can only be deployed on existing or future high performance 

computing machines. 

Early in fiscal year 2010 (FY2010), a similar project focused on high fidelity modeling of 

the VHTR and other thermal reactor concepts, called NNR [4], was merged in with the 

SHARP project. While these two projects are conceptually different, they both contain good 

ideas for reactor analysis modeling and we are motivated to merge the concepts together to 

produce a single deployable set of tools. While not a targeted goal for this year, the most 

important aspect to take from the NNR related work is the need to provide a practical solution 

capability usable for most areas of reactor physics on much smaller computing resources. This 

is something that UNIC has not demonstrated a capability for thus far. Given that the projects 

are still separate; this report only considers the changes made to UNIC during the current 

fiscal year where continuing development of the high fidelity solvers dominates the workload. 

However, we note that some of the FY2010 work, NODAL, was intended to mimic the 

mindset of the NNR approach, but its purpose of course is for fast reactor analysis. 

Most of the work done in FY2009 was spent improving the SN2ND solver performance 

and demonstrating its ability to treat a real heterogeneous geometry: ZPR-6/6A. In FY2010, 

we continued studying the ZPR-6/6A problem before spending any additional development 

time on SN2ND such that we could guarantee the underlying methodology (second order 

discrete ordinates) could provide an accurate solution capability to the heterogeneous 

problems of interest to SHARP. The conclusion from that work was that, given accurate cross 

section data and sufficient computing power, SN2ND can provide a viable solution capability 
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which does not currently exist with available tools. Thus additional development of SN2ND 

in FY2010 was justifiable.  

In FY2010 we choose to investigate better multigrid methodologies which considered not 

only the space-angle system, the primary path of parallelism in SN2ND to date, but also the 

energy-space-angle system. Combined with the desire to model time dependent problems, this 

necessitated a considerable revision to SN2ND which we discuss in this report. We also 

carried additional verification and validation testing of SN2ND by studying the ZPR-6/7 

experiments using homogenized drawer models. A partially dehomogenized methodology 

was also implemented in a scoping study along with a full blown heterogeneous plate-by-plate 

model although results of the latter are not included because of insufficient results. 

Comparisons using the homogenized models produced foil activation results consistent with 

the experimentally measured values and can generally be considered quite good. The 

calculations that were inaccurate were studied in more depth and identified to be limited by 

the cross section processing methodology which should be resolvable with further 

development of the cross section generation procedure. 

Significant time in FY2009 was also spent rebuilding the MOC solver such that it 

incorporated the essentials of a scalable algorithm (scalable memory and communication). In 

FY2010, additional MOCFE development was pursued to test the current parallel algorithm 

on the large scale parallel machines. Numerous problems were identified with the parallel ray 

tracing algorithm in addition to a mistake in the implemented formulation which delayed the 

progress on MOCFE deployment. As an example, part of the FY2010 goal was to incorporate 

the two- and three-dimensional modeling capabilities of MOCFE into the MC
2
-3 [5-6] code. 

While the specific details on that work are provided in a companion report, we only mention it 

here because the delays in MOCFE prevented that work from being completed this year. 

While we were able to create a reliable solver this year, one which should satisfy the needs of 

MC
2
-3, the parallel performance is quite poor and requires follow on development as outlined 

in this report. 

Given the prevalence of spatial homogenization in conventional reactor analysis combined 

with the resource requirements of the preceding MOCFE and SN2ND solvers, we desire a 

capability within UNIC to start at the current level of reactor analysis and transition smoothly 

(i.e., with familiar input/output) to the more explicit geometry modeling. We therefore chose 

to spend some time in FY2010 on the NODAL solver capability started in the previous year. 

This solver duplicates a legacy tool, VARIANT [7-8], but the added capability of parallelism 

in energy and ability to map a heterogeneous geometry into the homogenized geometry 

should provide a path to improve upon the existing homogenization approaches used for fuel 

cycle analysis, transient analysis, and perturbation theory calculations. We pursued this solver 

because we cannot expect an unstructured mesh-based solver such as PN2ND, SN2ND, or 

MOCFE to be computationally competitive with solvers that exploit structured geometry 

mesh descriptions as demonstrated in the last few years. 

Besides the various solvers in UNIC, we also had to exert a considerable amount of effort 

building auxiliary components. Tools such as IsoNXS and “Solution along a line” have been 

discussed previously and the actual implementation details are either revisited or discussed in 

this report. One particular project task, ZPRtoNODAL, required a considerable amount of 

development time in FY2010 such that the ZPR related tasks could be completed. As 

discussed in previous reports, the mesh generation tools available are not necessarily reliable 
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or usable for complicated 3-D geometries. The ZPR geometries themselves pose a significant 

meshing problem because of the simple, yet tedious geometry combined with the definition of 

a large number of material regions.  

In FY2009 we spent a significant amount of time building the ZPRtoNODAL tool which 

creates a structured geometry model of a ZPR with the material mapping naturally embedded. 

After working on ZPR-6/6A, we determined that no ZPR can be modeled properly using a 

structured geometry definition and we invested further effort this year generalizing the tool to 

create an unstructured mesh, renaming it BuildZPRmodel. We also added the capability to 

produce the MC
2
-3 input decks associated with the user-specified homogenization model for 

every ZPR calculation. Thus, with relatively simple input, we can now generate anything 

from a drawer homogenized model of a ZPR (inherently a structured geometry problem) to a 

full plate-by-plate model where the geometry, cross section generation input, and material 

mapping are all handled cleanly by the tool. This tool was exclusively used to create all of the 

ZPR-6/7 related input carried out this year and will require additional verification on the same 

level as what we have dedicated to the solvers in UNIC. 

This report is organized into sections that discuss each of the above cited topics.  Section 2 

discusses the work carried out on improving SN2ND during FY2010 and discusses the 

remaining work yet to be completed. Section 3 discusses the MOCFE work, the numerous ray 

tracing problems and their solutions, and gives some detail on the initial scalability study. 

Section 4 discusses the work done on the NODAL solver and Section 5 details the auxiliary 

tools which were developed to support the various goals and tasks of UNIC in FY2010. 

Section 6 summarizes the benchmarking calculations tackled with UNIC in FY2010 which 

will form the basis of further verification and validation testing of the neutronics package we 

are building. 

2 SN2ND Development 
The SN2ND solver, originally started in mid-2007, can be safely stated to be the only 

successful solver created within UNIC with respect to parallelism and performance. The 

achievements of this solver are made possible by partitioning the space-angle system of 

equations over the available processors and utilizing established iterative solution techniques 

from the neutron transport community combined with the modern algorithms in the PETSc 

toolbox [9]. In FY2009, several areas were targeted in SN2ND for improvement such that its 

ability to tackle larger problems was improved and the time-to-solution was reduced. This 

effort was focused on proving the ability of the SN2ND method to treat heterogeneous 

problems which was partially demonstrated on the ZPR-6/6A in FY2009 although accuracy 

was a significant issue because of insufficient computing power.  

From its inception, SN2ND utilized many parts of the PN2ND solver, around which 

UNIC itself was built, which are not appropriate for SN2ND since it utilizes a discrete 

ordinates angular approximation and PN2ND utilizes a spherical harmonics one. As UNIC 

has been generalized, so has SN2ND, and while the initial version of SN2ND was partially 

rewritten in FY2008 to accommodate the preconditioner that allowed it to progress from a 

less than 3,000 processor capability to a greater than 100,000 capability, the FY2008 and 

FY2009 version still relied heavily upon the PN2ND components, specifically the vector 

storage algorithm, to minimize code development efforts. While this choice does not affect 

the steady state eigenvalue calculations that SN2ND has been used upon thus far, time 
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dependent and adjoint calculations fundamentally require the source vectors in SN2ND to 

exist in the SN space rather than the PN space and thus SN2ND cannot be used in either regime 

without substantial changes. Two other factors also motivate making improvements to 

SN2ND: multi-grid preconditioner development and parallelism in energy. Given that 

MOCFE has yet to prove a reasonable performance capability (in both accuracy and 

computational efficiency) like that of SN2ND, we are still motivated to continue development 

of SN2ND such that we can accommodate the short term needs of NEAMS. 

While any one of these issues could have been incorporated into the existing coding of 

SN2ND with moderate to considerable difficulty, incorporating all three necessitated a 

significant investment in reorganization of the SN2ND solver and the definition of new data 

structures and algorithms that are specifically tuned for SN2ND solver development. While 

the current version of SN2ND is still usable and in fact was the sole version used to obtain the 

results in this report, it has effectively reached its development end and the FY2010 work was 

entirely absorbed in rebuilding SN2ND which at the time of this report remains to be fully 

completed. The following sections detail the issues with changing the formulation to 

accommodate parallelization by energy, followed by the development of new algorithms for a 

spatial multi-grid preconditioner. 

2.1 Algorithmic Review 

The desire to implement parallelism in energy requires significant changes to the SN2ND 

solver. To begin, we revisit the even- and odd-parity within-group transport equations 

,
ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ) ( , )g t g g g gr r r W r S r             (2.1) 

,
ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ) ( , )g t g g g gr r r W r S r            , (2.2) 

where ˆ( , )g r    is the even (+) and odd (-) parity flux and ˆ( , )gW r   is the within group 

scattering source and ˆ( , )gS r   are the out of group scattering and fission sources. The 

primary focus of the SN2ND derivation is to recast these two first-order equations into a 

second-order equation for the even-parity flux written in the discretized functional form: 

, , , , , , ,,e g e g e g e g e g e g e g es A s s BC            .  (2.3) 

Equation 2.3 is assembled over each finite element (e) in the domain and all angles in the 

cubature yielding a symmetric positive-definite coefficient matrix ,g eA  that is solvable using 

the efficient conjugate gradient (CG) algorithm as discussed previously [2].  

Equation 2.3 is itself part of a larger iterative system which needs to be displayed to fully 

understand the implications of parallelism in energy and spatial multi-grid. We begin with the 

power method written as 

1 1 11 1 1 1i i

i
A F Q A Q Q FA Q

k k k k

            (2.4) 

where   represents the flux vector assembled over space-angle-energy, A  represents the 

assembled multi-group coefficient matrix which includes the within group matrices from 

equation 2.3 and group-to-group scattering terms, and i is the iteration index. The matrix F  

represents the fission source operator and k  and Q  are the fundamental eigenvalue and 

eigenvector which is all that is needed for most steady state calculations. As seen in equation 
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2.4, the power method is an iterative technique used to generate the fundamental eigenvalue 

and eigenvector, where the additional equation 
1

1 1

1

i

i i

i

Q
k k

Q



  ,  (2.5) 

is used to update the eigenvalue and complete the system. 

Given that A  is not directly invertible practically, an iterative inversion technique is used 

to approximate the inverse in equation 2.4. In the version of SN2ND without parallelism in 

energy, Gauss-Seidel (GS) is used in to solve equation 2.4 which can be written as 

   
11 1j j j jA b L D b U L D b U
                  . (2.6) 

As can be seen, the coefficient matrix is factored into strictly lower triangular L, strictly upper 

triangular U, and diagonal D components. The inversion of  
1

L D


  is merely the sequenced 

in group solution of each within group equation where latent upscattering components U are 

used to define the within group source. With regard to parallelism in energy, GS is easy to 

show as a non-scalable algorithm for most reactor calculations of interest because of the 

physical properties of the scattering (lower triangular dominate). To overcome this limitation 

in UNIC, GS is replaced with the GMRES algorithm operating on the entire space-angle-

energy system. In GMRES, the sequenced solution algorithm of GS is swapped with a series 

of scalable coefficient matrix-vector applications ( 1 2, , ,j j jA A A    ), a scalable vector 

orthogonalization, and ideally a scalable preconditioner. It is the last part that remains to be 

researched and can easily take upwards of 2-3 FTEs worth of development for the problems 

of interest to SHARP. 

Continuing, we will assume that any preconditioner for equation 2.6 will require the 

solution of a within group equation. Assembling equation 2.3 and extracting the within group 

scattering source from the generic sources we can write the following coupled system of 

equations for SN2ND 

' ' ' '

' '

' '

'

T T

g g g g g g g g g g g g

g g

g g g g g g g

g

A W B W q B q

B W q

  

  

      

 

    



   

  

 


. (2.7) 

'g gW 

  represents the group-to-group scattering source contribution, gB  represents the within 

group contribution, and gq
 is a fixed source (such as fission for each iteration of the power 

method). Adding the iterative indices “k” for the typical source iteration solution scheme 

(Richardson) we obtain the following system 

1 1

' ' ' '

' '

1

' '

'

k k T k T T

g g g g g g g g g g g g g g g g g g g

g g g g

k k k

g g g g g g g g g g

g g

A W B W W B W q B q

B W W q

    

   

            

   

 

       

 



 
      

 

   

 


. (2.8) 

We neglect the acceleration equation in this derivation for brevity. For calculations assuming 

isotropic scattering, the second equation is unimportant and further, for linear anisotropic 

scattering, the second equation amounts to a minor amount of computational effort. However, 
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at and beyond P1 scattering, we observed significant problems with strong scaling in angle 

because the odd-parity flux was stored in the PN space rather than SN, an artifact of the 

PN2ND solver. For time-dependent and adjoint calculations and to obtain good scaling when 

parallelization by angle is incorporated, the odd-parity flux must be stored in the SN space. 

As stated earlier, the bulk of work in SN2ND has focused on the inversion of the 

coefficient matrix gA  in equation 2.8. For this matrix, SN2ND uses a parallel CG algorithm 

over the entire space-angle system written compactly as 

g g gA b     (2.9) 

which we have shown to be scalable on more than 200,000 processors. In FY2009, this part of 

the SN2ND solution scheme was modified to incorporate optimized matrix-vector operations 

and a p-multigrid algorithm. While the p-multigrid algorithm yielded a net negative 

improvement in performance, the substantial savings in memory made many calculations 

previously thought to be intractable, specifically calculations with hundreds of groups, 

possible. Unfortunately the implementation is quite messy and relies upon hard wired iterative 

limits throughout the implementation. This was found to cause significant convergence issues 

when the types of problems solved went beyond the problems studied during the development 

phase. To understand how multi-grid is implemented, we define a preconditioner step for 

equation 2.9 as 

 1 1 1 1 0g g g g g g g g g g gM A M b Y M b A M X M Y X                . (2.10) 

In equation 2.10, we always define a preconditioner gM  that is representative of the 

coefficient matrix in equation 2.9, but typically much simpler. The matrix gM  is rarely 

directly invertible and thus some numerical inversion technique such as GS is used. In 

SN2ND, a CG algorithm is used over the entire space-angle system for equation 2.9 and its 

preconditioner gM , neglects the coupling in angle (assuming it exists [2]) such that each 

angular subsystem ,g nM  can be solved simultaneously. The matrix ,g nM  is also symmetric 

positive definite and we again utilize a CG algorithm to perform the necessary inversion 

appearing in equation 2.10. With such a scheme, we can write 

   
1

' ' ' '

, , , ,& 0g n n n g n n g n n g n n nM Y X M X M Y M Y X


     , (2.11) 

where 
'

,g nM  is a preconditioner for the CG iterative scheme involving ,g nM . One can easily 

see how this process can continue in a hierarchical fashion where each new CG level will 

generate a simpler and simpler preconditioner.  

This is fundamentally the concept behind developing a multi-grid preconditioner where 

the spatial “grid” becomes progressively coarser and thus cheaper from a numerical inversion 

point of view. The reason this approach is scalable and efficient is that the coefficient matrix 

application at each level is a known scalable process for the second-order diffusive like 

system that can be written at each preconditioner level of ,g nM . 
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As mentioned, the SN2ND solver utilizes the parallel CG algorithm in PETSc to invert 

,g nM  where parallel SOR is defined as the preconditioner '

,g nM . The p-multigrid work of 

FY2009 focused on introducing a single level to the existing scheme written as  

     

     

1 1
' ' ' '

, , , ,

1 1
' ' ' '' '' ' ' ' '' ''

, , , ,

&

&

g n n n n g n n g n n g n n

g n n n n g n n g n n g n n

M Y X Y M X M Y M X

M Y X Y M X M Y M X

 

 

   

   

. (2.12) 

where application of ,g nM  was switched from a non-zero stored matrix-vector operation 

performed in PETSc to a dense matrix-vector operation in SN2ND. Given a mesh with 

quadratic finite elements, the preconditioner '

,g nM  would have the same spatial definition but 

utilize linear finite element trial functions. While the old SN2ND solver focused on 

assembling ,g nM  for PETSc where it would apply parallel CG with a parallel SOR 

preconditioner '

,g nM ,  in the p-multigrid version the lower order system '

,g nM  is assembled 

and given to PETSc so that it can apply CG with a parallel SOR preconditioner at the ''

,g nM  

level. 

2.2 Development of a Multi-grid Preconditioner 

The primary reason for the poor performance of the p-multigrid preconditioner was due to 

the fact that the linear mesh does not span the vector space of the originating quadratic (or 

higher order) mesh. This fact necessitated the use of an inefficient Jacobi iteration scheme to 

ensure proper inversion of the targeted preconditioner system. Since this preconditioner was 

implemented as a quick fix to circumvent the memory related problems on BlueGene/P [22], 

and the Jacobi iteration was added as a quick fix to that, it was not entirely surprising that the 

new preconditioner performance was poor from both an implementation and theory point of 

view. Nevertheless, it was an instructive learning experience that proved reliance upon 

specific examples from the literature are not necessarily appropriate because the typical case 

study focuses on structured grids with fixed material properties that are not terribly 

heterogeneous such as that observed for a fuel assembly in a nuclear reactor or a explicitly 

represented ZPR drawer. 

Because the literature is not clear on what preconditioner will work best for the SHARP 

related problems, the two primary authors of the SN2ND solver decided it was best to consult 

resident experts on multigrid methodologies [10] rather than attempt another implementation 

in SN2ND that duplicated the experiences with the first multigrid implementation. The 

discussions with various authors from a wide range of application interests, all transport, but 

different problem foci, all suggested using algebraic multigrid [11] on the system of equations 

generated by SN2ND at the ,g nM  preconditioner level. A detailed understanding of algebraic 

multigrid is beyond the scope of this report, and one only needs to understand that given a 

matrix ,g nM , a typical algebraic multigrid implementation will consider the numerical and 

parallel setup of the problem and devise a way to create a hierarchical preconditioner similar 

to equation 2.12 but with more levels. This is accomplished by using progressive 

factorizations of the starting matrix and thus the only real trick to using an algebraic multigrid 

preconditioner is that the memory load is roughly double that already required by PETSc in 
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SN2ND to solve ,g nM . Given that SN2ND is already memory restricted on HPC systems, we 

must consider parallelization by energy and a one-level, possibly two-level preconditioning 

before algebraic multigrid can be considered. 

In FY2009, significant work was done studying the matrix-vector operations in SN2ND to 

see if there was a way to optimize the matrix-vector applications. During this work it was 

observed that linearly interpolated tetrahedral, triangle, and bar elements could all be applied 

using a single element coefficient matrix. Given that the Jacobian for linear elements is trivial 

to evaluate and requires little storage in itself, this translates to large factors of improvement 

in performance for matrix-vector operations compared with other elements such as 

hexahedrons. Combining this experience in the discussions, all parties agreed that, to alleviate 

the memory burden, the first level of the preconditioner for this system should be an element-

wise decomposition into these three-fundamental types which we term a linear tessellation or 

LT-multigrid since it does not match conventional p- or h- concepts for multigrid.  

To describe the LT-multigrid approach, we consider the two-dimensional elements in 

Figure 2.1 which shows linear through cubic order quadrilateral elements available in UNIC. 

 

Figure 2.1 Serendipity (upper) and Lagrangian (lower) Quadrilaterals in UNIC 

For the descretized equations on each element, the associated spatial matrices in Figure 

2.1 are found to be fully connected. As an example, the global vertex connecting to the fifth 

vertex in the quadratic Lagrangian (lower middle) will have exactly 9 connections on the row 

corresponding to each vertex of that element. With respect to the global system of equations, 

assuming a structured mesh where each element is adjacent to at most 8 other elements, we 

can further state for the quadratic Lagrangian quadrilateral that each corner associated vertex 

(1,3,7,9) will have 25 connections per row and each side associated vertex (2,4,6,8) will have 

15 connections. If we linearly tessellate this element as shown in Figure 2.2 and consider the 

same structured grid, we find that every vertex will have exactly 9 connections per row. 
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Figure 2.2 Tessellated Serendipity (upper) and Lagrangian (lower) Quadrilaterals in UNIC 

With respect to assembling and storing a preconditioner ,g nM , this translates to 

approximately a factor of two savings in memory storage requirements over the quadratic 

element where the vector space is not changed. Note that as the order is increased from 

quadratic to cubic, etc., the memory savings are progressively higher. A similar trend is 

observable in 3-D elements where we decompose the elements into linear tetrahedrons as 

shown for the quadratic serendipity wedge (or prism) element in Figure 2.3.  

 

Figure 2.3 Tetrahedral Tessellated Serendipity Wedge in UNIC 

For a quadratic Lagrangian hexahedral structured geometry mesh we anticipate factors of 

2-3 reduction in memory for the assembled preconditioner where the other element types will 

generally produce less than the hexahedral case. This obviously reduces the memory burden 

considerably, but to utilize algebraic multigrid we would have to provide the assembled 
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system to PETSc. Given the estimated increase in memory requirements for algebraic 

multigrid (factor of two), we would expect a rather minor change in the current memory usage 

requirements of SN2ND and thus it would again not be practical on larger than 100 group 

problems on HPC machines such as BlueGene/P. As a consequence, we envision developing 

one further level of multigrid within SN2ND below the LT-multigrid step where we drop the 

higher order vertices on each finite element and create the linear subsystem.  

This new level is structurally similar to the p-multigrid scheme of FY2009 where ,g nM  is 

composed of quadratic elements from Figure 2.2 and '

,g nM  is composed of the linear elements 

in Figure 2.2. Using the same structured grid model, we find that this reduces the vector space 

by a factor of two in addition to reducing the number of connections per row by a factor of 

two (a net reduction in memory of four). Unlike the old preconditioner, we propose using the 

linear tessellation of the fundamental elements shown in Figure 2.3 as an h-multigrid 

preconditioner ''

,g nM  of the LT-multigrid preconditioner system '

,g nM . Since the vector space 

is not preserved, we are required to use the Jacobi iteration scheme again or modify the 

preconditioner definition such that it does appropriately span the higher order system. While 

we have some ideas on how to implement this preconditioner without needing a Jacobi 

iteration scheme, this research will obviously have to be carried out in the future as the code 

develops, and is only necessary if the memory constraints of existing HPC machines persist. 

For clarity, equation 2.13 shows the proposed multigrid preconditioner scheme for the within 

group second-order even-parity transport equation currently being built within SN2ND where 

PETSc is assumed to provide the solution at the final step (via algebraic multigrid or parallel 

SOR). 

 

 

 

 

1 1

1 ' ' 1 ' ' 1 '

' ' 1 ' '' '' 1 ' ' ' '' '' 1 ''

'' '' 1 '' ''' ''' 1 '' '' '' ''' ''' 1

block diagonal in angle

-multigrid

-multigrid

g g g g g g g g

g g g g

g g g g

g g g g

A b Y M b A Y M X

Y M X Y M X M Y Y M X LT

Y M X Y M X M Y Y M X h

Y M X Y M X M Y Y M X

      

  

  

  

    

    

    

     ''' algebriac multigrid

 (2.13) 

2.3 Implementation Issues with Parallelization in Energy 

It is very important to note that these changes are being implemented into SN2ND in the 

most generic fashion possible, but that it does create a significant amount of coding 

momentum that will be difficult to remove in the future if deemed unnecessary or 

rewrite/replace if found to be inefficient. This of course is the Achilles heel of multigrid 

schemes since generic methodologies always ignore the underlying memory constraints of 

typical production machines. To counter this, we invested considerable time in FY2010 

rebuilding the mesh data structures of UNIC which is more of an implementation issue and 

thus beyond the scope of this report (i.e. performance changes are insignificant). The general 

idea in the new version of SN2ND is to create management data structures usable by all levels 

of the preconditioner which are flexible enough to store most multigrid concepts (basically 

mapping arrays and interpolation methods) even though we will only be implementing a 

specific scheme in SN2ND at this point. The real advantage of course is that this scheme can 

be utilized directly in the work to develop and implement parallelization by energy. 
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Parallelization in energy begins by assembling equation 2.7 in terms of a single vector 

quantity in energy: 

' ' '

' ' '0

T T

g g g g g g g g g g g g

T
g gg g g g g g g g g

A B W W B W q

B I W W B q

 

 

     

  

    
 

         
          

                   
 . (2.14) 

Note that the left hand side of equation 2.14 was inverted using a source iteration scheme in 

equation 2.8. While this is efficient when using GS in energy, applying GMRES over the 

entire space-angle-energy system requires that we be able to define the operations: 

 1 1&A b Y M b A M X         (2.15) 

As a consequence, we have to re-factor the existing operations in SN2ND such that we can 

perform the A matrix-vector operation in equation 2.15. To do this we define the compact 

notation for equation 2.14 as 

' '

'

g g g g g g

g g

H W q 



  ,  (2.16) 

and assemble it over all energy groups to obtain a form similar to equation 2.15. 

While it would seem that these operations are already part of the GS iterative scheme and 

thus usable in a GMRES algorithm, they are not. The primary reason is because of the 

ownership rules dictated by the parallelization in space. The problems, and thus changes, arise 

from the fact that the even-parity vector in equation 2.14 is assembled over all elements in the 

mesh such that we get one spatial degree of freedom per mesh vertex, but the odd-parity 

equation is discontinuous over each element and thus we get a single degree of freedom per 

vertex of every element in the mesh. Close inspection shows that the B matrices in equation 

2.14 are the primary trouble spot since they transfer information from the discontinuous odd-

parity space to the continuous even-parity space (transpose works in the reverse direction) and 

thus ghosted information must be updated on the discontinuous space when applying T

gB  and 

on the continuous space when applying gB . This means that the 'g gW   operations must also 

be applied on the larger ghosted space. This requires additional communication which doesn’t 

appear in the GS scheme since the ownership of the odd-parity system is fully definable given 

the updated even-parity solution. Many mistakes were made during the rewrite of SN2ND 

associated with the ownership rules which are the fundamental reason for the delay in 

deploying the new version of SN2ND. The fact that we are trying to implement a new 

multigrid preconditioner scheme at the same time only complicated matters further. 

Unfortunately those mistakes will make it necessary to further modify the newly written 

coding to actually allow it to utilize parallelization in energy. 

Regardless, with the ability to apply the coefficient matrix vector operation we can discuss 

the preconditioner we must apply in equation 2.15. Unlike the GS in energy solution scheme, 

the preconditioner over the space-angle-energy system does not require all levels of the 

preconditioner described by equation 2.13. Conceptually we anticipate using a block Jacobi 

preconditioner in energy (i.e. GS on the assigned energy domain), possibly combined with a 

multigrid scheme in energy to properly capture the energy redistribution. In this situation we 

will not need to apply the exact coefficient matrix-vector when solving the locally owned 

within-group systems and should instead be able to jump directly to the LT-multigrid 

preconditioner level in equation 2.13. This has substantial consequences in computational 
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effort compared with the existing GS algorithm assuming the additional communication 

required by the coefficient matrix-vector operation can be managed. While it is speculation 

that this will be effective, it does pose a problem for development since some of the existing 

time spent building a working GS in energy algorithm might not be used in the alternative 

GMRES algorithm. 

3 MOCFE Development 
The method of characteristics (MOC) [12-13] has been widely used in the past for two-

dimensional reactor fuel assembly calculations due to its geometrical flexibility and its high 

degree of space-angle accuracy. The initial version created in FY2007 tested the MOC 

application on unstructured 3-D meshes while work in FY2008 focused on development of a 

version with some basic aspects of parallelism, addition of two-dimensional modeling, and 

acceleration of the within group source iteration algorithm with synthetic diffusion. The MOC 

methodology is typically termed a “matrix free” method because it does not require the 

storage of large matrices for each energy group. In reality, the formulation is not truly matrix 

free because it requires substantial memory resources to store the trajectory data used during 

the solve process. Thus, to solve larger than single assembly problems, it requires substantial 

memory resources to store the trajectory data along with significant computational resources 

to apply the numerical matrix inversions; hence parallelism can be quite useful.  

As a consequence, the FY2009 work was focused on rebuilding the MOCFE solver such 

that memory and communication scaling was imposed, which required that the conventional 

source iteration scheme used to solve the within group equation be replaced with a GMRES 

algorithm [9,14]. Because we chose to incorporate parallelization in energy in addition to a 

new parallelization algorithm in space and angle and treatment of all element types in UNIC, 

the MOCFE solver was not fully finished in FY2009. The bulk of FY2010 work was focused 

on continuing the development of the parallel MOCFE capability where substantial 

difficulties were encountered with the back projection methodology and ray tracing issues 

associated with numerical round off.  

3.1 Review of MOCFE Solution Scheme 

The derivation for the method of characteristics starts with the within group equation, 

reiterated here as equation 3.1. 

,

,

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ) ( , )

ˆ ˆ ˆ ˆ ˆ( , ) ( , ') ( , ') '

g t g g g g

g s g g g

r r r W r S r

W r r r d

 



       

     
. 1, ,g G  (3.1) 

The first step in the MOC derivation is to introduce a new coordinate system which allows the 

̂   operator in equation 3.1 to be rewritten as a first-order mono-dimensional derivative. 

To do this, we project the incident portion ( ˆ ˆ 0n   where n̂  is the outward normal from the 

domain surface) of the problem domain boundary A for a given direction ̂  to a plane A  

that is both exterior to the problem domain and perpendicular to the direction ̂  as shown in 

Figure 3.1. 
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Figure 3.1. Coordinate System for the Characteristic Lines 

We can define s  to be a two-dimensional coordinate on the surface A  which intersects 

the problem domain boundary at points I  and O . Between these points we can define the 

position  to be the distance measured from the incident point I  to some position r V  

within the volume. If the problem domain is convex, then the position  ˆ, ,I   defines an 

alternative coordinate system to that used in equation 3.1. In this new coordinate system, the 

̂   operator becomes a partial derivative with respect to  and we can rewrite equation 3.1 

as 

       ,
ˆ ˆ ˆ, , , , , , ,t g g g gI I W I S I   

 
      

 
, (3.2) 

where  ˆ, ,g I    is used to indicate that the flux vector is in the alternative coordinate 

system. As can be seen, this equation is dependent upon straight line paths (termed 

trajectories) that penetrate the problem domain in the direction ̂  which are referred to as the 

mathematical characteristics of the neutron transport equation.  

The true vector unknown for MOC is the flux solution at each trajectory intersection point 

or the trajectory intersection flux. The storage of this vector is impractical, and for steady-

state and adjoint calculations, unnecessary. Instead, the solution space is always recast to store 

a monomial expansion of the flux local to each element (1, x, y, z, …) which is easily an order 

of magnitude or more smaller than the trajectory intersection flux. In previous work [2], an in 

depth derivation of how this is done was given which produced the equation 
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 1 1I L L s    ,  (3.3) 

where   is the element-wise SN flux solution (expanded in the monomial basis) and the 

matrix definitions are beyond the scope of this work.  

The selected parallel algorithm incorporates a modified domain decomposition strategy to 

guarantee load balanced work and communication. With regard to equation 3.3, the outgoing 

trajectory flux solution is added to the vector space on each spatial subdomain thereby 

yielding the following governing equation 

    

      
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  



 

 
     
     
           

              
 

. (3.4) 

In this equation, in  is a boundary condition obtained from the adjacent processor and the 

GMRES vector space only includes the element averaged flux solution components  and the 

owned outgoing trajectory flux out  which we refer to as the trajectory segment flux. The 

definitions of the remaining matrices can be found elsewhere [2]. 

3.2 Problems Encountered in Ray Tracing 

Numerous problems arose in FY2010 with the parallel ray tracing algorithm. After 

discussions with other researches also studying parallel MOC with domain decomposition, 

there appear to be as many approaches to obviating the problems as there are researchers on 

parallel MOC. To understand the problem we show a spatially decomposed VHTR assembly 

in Figure 3.2 where the upper three pictures show the material composition (left), decomposed 

domain (center) with owned elements colored and ghosted elements uncolored, and the visible 

piece of the mesh for all regions (right). The lower picture shows how the trajectories are 

broken as they cross the domain where it is obvious that several trajectories are reentrant on 

each subdomain.  

The ray tracing methodology in MOCFE focuses on intersecting the elements in the 

domain by following the trajectories as they pass through each processor’s piece of the mesh. 

This allows the storage pattern to follow directly with the way it will be used during the 

sweeping process of solving the system of equations. The alternative ray tracing methodology 

is to check all elements in the mesh for intersections with all trajectories for all angles. While 

the number of trajectories can be somewhat restricted by defining a bounding box for the local 

piece of the mesh on the back projection plane or even a bounding box for each element in the 

mesh, it still requires a considerably larger number of check operations than the implemented 

ray tracing scheme and it also requires that the ray tracing data be post processed to sequence 

it on each process. One advantage of taking the alternative approach is that we do not suffer 

the round off error associated with the ray tracing approach implemented in MOCFE where 

the trajectory path is not perfectly straight.  
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Figure 3.2. Example Decomposition of the Mesh and Segmentation of Crossing Trajectories  
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One issue we have observed with the ray tracing approach in MOCFE is when two 

adjoining processors that own adjacent problem domain surfaces end up calculating ray 

tracing data, and both processors state that the outgoing trajectory point on the domain is un-

owned by either process or owned by both. To understand this, we show Figure 3.3 where a 

trajectory exactly intersects a vertex separating two adjoining processors.  

 

Figure 3.3. Example MOCFE Ray Tracing Problem on the Domain Surface 

Because of round off error, the ray tracing through each processors subdomain has 

occasionally yielded the stated problem which is obviously unacceptable in either 

circumstance. One way to resolve this is to ensure that the trajectory is never defined in the 

first place which is accomplished by ensuring that the incident and exiting problem domain 

surfaces are preserved during the back projection algorithm. In two-dimensions this is quite 

trivial, but in three-dimensions, it is very difficult to devise a memory and computationally 

efficient scheme. The actual solution devised for MOCFE is to detect when this occurs and 

completely remove the trajectory from the ray tracing data redistributing its area to a 

geometrically adjacent valid trajectory (i.e. preserve neutron balance). As can be inferred, the 

probability of this type of intersection occurring with a domain decomposed mesh is relatively 

small. 

Another very similar problem with the ray tracing algorithm has to do with ray casting and 

reentrant trajectories. To understand this issue we provide Figure 3.4 which shows part of a 

single trajectory as it crosses a parallel decomposed mesh. 

In Figure 3.4, two adjacent pieces of a mesh are separated in the left hand picture and 

overlapped in the right hand picture. A single trajectory path is plotted as it crosses part of the 

mesh where we use black to indicate the total trajectory path and red to show a problem part 

of the intersection along the path. Similar to the problem described by Figure 3.3, round off 

error in the ray casting process causes slight differences on where each trajectory intersects 

the mesh and we find that the entry and exit point with respect to element can easily change. 

In Figure 3.4, the problem occurs because the red colored segment exactly hits a vertex and 

the ray tracing data in the lower mesh partition intersects an element in the owned portion (i.e. 

below the intersected vertex) while the ray tracing data in the upper mesh indicates that the 

trajectory fully goes through its owned portion of the domain (above the vertex). This causes 
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a vector ordering problem because one process states that the trajectory is reentrant and the 

other does not and chaos ensues. While the intersection distance is trivial (10
-9

 cm) in this 

case, there can be more severe instances which lead to the general question: which part of the 

ray tracing data is valid and invalid? 

 

 

Separated Mesh for Adjacent Processors 

 

Contiguous Mesh for Adjacent Processors 

Figure 3.4. Example MOCFE Ray Casting Problem on the Domain Interior 

While this is easy to identify in the Figure 3.4 example, it is not necessarily clear when 

there are multiple valid paths through the domain. This can and has happened in meshes 

which contain sub-geometries such as assemblies with structured meshing where the parallel 

ownership is broken down one of the “structured grid lines” that create the structured mesh. 

Multiple processors can own pieces of the mesh along the grid line and a trajectory can (and 

typically does) travel in the same direction as the grid line and thus along a grid line. Because 

trajectory ownership across multiple processors is unknown at ray casting, the trajectory is 

allowed to start on all processors that are adjacent to the grid line thereby potentially creating 

multiple valid paths through the domain.  

Combining these ray tracing issues with the fact that nuclear engineers routinely treat non-

convex domains, makes all simple algorithms capable of resolving the ray tracing issues fail. 

To remedy the situation, a rather complex sequencing algorithm was implemented in MOCFE 

which requires detailed explanation. Figure 3.5 shows some potential ray tracing possibilities 
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represented in a one-dimensional space where the vertical lines represent mesh boundaries 

between adjacent parallel processors and the arrows represent trajectories crossing the domain.  

 

Figure 3.5 Example Segmented Ray Tracing Data 

The upper example in Figure 3.5 shows the ideal case where there are no problems; the 

trajectories start and end exactly at the processor domain boundaries and the selection process 

for finding a path through the domain is clear (0-12-1-12-32-1023). The example at the 

bottom of Figure 3.5 shows a hypothetical mess of trajectory segment data where the 

trajectory is also reentrant on the global domain (the empty gap). The trajectory segments 

highlighted in red produce a “valid” path through the domain when combined and one can 

easily see the difficulty involved in determining the “best” path through the domain.  

With the parallel algorithm chosen for MOCFE, we must ensure that all processors 

observe the exact same number and ordering of the segments along each global trajectory. 

This is independent of the fact that the global trajectory actually intersects the local 

subdomain since the trajectory segment flux is part of the global solution vector space in 

MOCFE. The algorithm created to solve this problem focuses on casting the above system 

into a coefficient matrix and rearranging rows and columns to form a lower triangular, non-

singular matrix. To demonstrate it, the ray tracing data at the top of Figure 3.5 is used which 

starts by numbering the segments 1 through 6 as shown at the top of Figure 3.5. This ordering 

corresponds to the rank ordering of the reported trajectory segments obtained using the mpi 

“scan” function.  

With this setup, we can define the forward adjacency for each trajectory segment (row) 

with the connecting trajectory segment (column) that immediately follows it. Placing a one at 

this row/column connection is sufficient to define the matrix system which we find for the 

simple example to be: 

Ideal case with trajectory crossing 5 processors 

Rank 

0 

1 

12 

32 

1023 

 Generic set of trajectory data 

 1     3 2  4    5        6 
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2 3 4 5 6

1 0 1 0 0 0

2 0 0 1 0 0

3 1 0 0 0 0

4 0 0 0 1 0

5 0 0 0 0 1

 
 
 
 
 
 
  

  (3.5) 

First we note that this matrix is not singular and that we have removed the row corresponding 

to segment 6 and the column for segment 1 since neither is definable in this context. If we 

apply the same approach to the example at the bottom of Figure 3.5, we would get a singular 

system because there is no possible connection about the reentrant point (gap).  

Continuing, the next step in the algorithm is to simultaneously reorder the rows and 

columns such that we have an identity system, the first step of which swaps the first and 

second columns to make the first row lower triangular. 

3 2 4 5 6

1 1 0 0 0 0

2 0 0 1 0 0

3 0 1 0 0 0

4 0 0 0 1 0

5 0 0 0 0 1

 
 
 
 
 
 
  

  (3.6) 

The next step requires us to swap the first and second rows to indicate that the 3
rd

 trajectory 

segment follows the first as specified by the first non-zero column in the first row 

3 2 4 5 6

1 1 0 0 0 0

3 0 1 0 0 0

2 0 0 1 0 0

4 0 0 0 1 0

5 0 0 0 0 1

 
 
 
 
 
 
  

  (3.7) 

Given that there are no non-zeros in the upper or lower triangular portion, we have 

successfully constructed a valid path through the domain with the set of segments: 1,3,2,4,5,6, 

which is the correct solution.  

If we assume there is a small trajectory (10
-9

 cm) segment appearing after segment 4 in the 

upper example in Figure 3.5 we get the following system and its final reduced form 
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2 3 4 5 6 7
2 3 4 6 7 3 2 4 6 7

1 0 1 0 0 0 0
1 0 1 0 0 0 1 1 0 0 0 0

2 0 0 1 0 0 0
2 0 0 1 0 0 3 0 1 0 0 0

3 1 0 0 0 0 0
3 1 0 0 0 0 2 0 0 1 0 0

4 0 0 0 1 1 0
4 0 0 0 1 0 4 0 0 0 1 0

5 0 0 0 0 0 0
6 0 0 0 0 1 6 0 0 0 0 1

6 0 0 0 0 0 1

 
    
    
      
    
    
    
        

 

. (3.8) 

This small trajectory appears as a connection to trajectory 4, but since it is not long enough to 

connect to trajectory 7 (or 6), it is registered in equation 3.8 as a completely zeroed row. In 

this case, the algorithm removes these rows (and the corresponding columns) which 

corresponds to the fact that we should remove the small trajectory lengths from the ray tracing 

data and get the valid set of segments: 1,3,2,4,6,7. Note that this algorithm inherently depends 

upon the fact that there is only a single identifiable outgoing trajectory point. 

In the more complicated example at the bottom of Figure 3, the reentrant position will 

yield a systemic truncation of the adjacency matrix where only the valid part of the path past 

the reentrant point is left. Fundamentally this system fails because it indicates that row 1 must 

be removed which is invalid. In this situation we return the first path location which is not 

invalid and a forced “trajectory jump” is setup to define an adjacency link across the gap. The 

trajectory segment selected for the jump is selected based upon its proximity to the known 

valid segment in addition to its length (longest is desired). If there are more than one reentrant 

crossing for a given trajectory, the code will continue to add jumps until a valid path is found 

from the exiting trajectory (the one identified to have the highest exiting point along the 

trajectory path) and the entering trajectory (the one with the lowest exiting point). This does 

not mean that the code will link the flux across the gaps, because it inherently understands 

that the domain is not convex because of the number of domain boundary surfaces crossed by 

each trajectory.  

Because of the complicated nature of this algorithm, a separate testing routine was built 

into MOCFE such that it was validated with numerous hypothetical trajectory segment 

adjacencies. While this algorithm can be implemented in a scalable way, it presently is 

implemented in serial. This means that all processors duplicate the effort of sorting the 

trajectory data although the amount of information being simultaneously processed is 

controlled to avoid memory related limitations and maximum efficiency. At present the time 

spent in this algorithm on calculations using 1000 processors is inconsequential. As a final 

note, round off error during the ray tracing procedure can cause the segment end points to be 

misaligned above the limits of any arbitrarily small tolerance. Consequently, MOCFE almost 

always reports trajectory “jumps” even though the lengths are rather small << 10
-7

 cm. As an 

example, a two-dimensional model of a full core VHTR with 36 ray tracing directions and 1.8 

million trajectories with a 32 processor spatial decomposition reported 2,344 trajectory jumps 

all having trajectory distances well within the expected tolerance settings. 

Most of these ray tracing issues can be resolved if a full back projection of all elements in 

the domain is carried out. While this is possible on small geometries such as single assemblies, 

for full core problems this can be a considerable burden and thus unwise since it can increase 

the number of trajectories by over an order of magnitude and thus decrease the average 
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trajectory area well below the typical 0.01 cm
2
 used in most MOC calculations. While these 

problems are not unique to MOCFE, some developers [15] pursued an alternative 

methodology which obviates the issues entirely.  

One approach is to use a modified domain decomposition rule where a structured grid is 

overlaid on the unstructured grid. The unstructured mesh is geometrically split (not vector 

split though) along each surface of the overlaid grid and all elements within the structured 

grid boxes are assigned to individual processors. The trajectory paths through the domain are 

trivial to construct with this scheme since it eliminates reentrant trajectory lines and a simple 

ownership rule can be defined for any trajectories that intersect the edges or corners of the 

structured grid. The only question is how this approach achieves a good load balance since the 

number of elements per box will not be equal for most reactor problems and the number of 

trajectories intersecting each box will not be equal. The entire purpose of the mesh 

partitioning algorithm in MeTiS, which produces non-intuitive mesh boundaries as seen in 

Figure 3.2, is to algorithmically determine the mesh partitioning such that the local work is 

balanced and communication is minimized. 

3.3 A Scalable Back Projection Algorithm 

As will be discussed later in this section, the initial scaling studies of the VHTR 

benchmark demonstrated that the serial back projection algorithm in the two-dimensional 

MOCFE solver failed quite dramatically and prevented the scalability numbers from being 

meaningful. The fundamental reason for the failure was the unexpected amount of memory 

required to store the back projection data, over a million back projection (BP) surfaces and > 

1,000,000 trajectories per direction, which overwhelmed the 512 MB limit currently placed on 

each processor of BlueGene/P. This was of course a combination of the attempt to use a full 

back projection and an angular cubature which was not coherent with the geometry of the 

VHTR (i.e. a 60 degree rotational basis). This was not obviously expected (hence the serial 

algorithm) and time was invested in FY2010 to create a parallel algorithm for not only the 

two-dimensional option, but also the three-dimensional option of MOCFE.  

The purpose of the back projection (BP) algorithm is to define the set of starting points for 

all of the global trajectories traversing the problem domain. We can separate this into the 

following distinct operations:  

1) Project the local domain surfaces to the BP plane  

2) Identify the portion of the BP plane owned by each process 

3) Redistribute the locally generated surfaces to the process that they were assigned  

4) Mesh the locally owned portion of the BP plane 

5) Assign trajectory starting points within every element on the BP plane 

6) Redistribute the trajectories from the BP plane to the intersected processors 

The key to efficiency in the new algorithm is how to perform operation 2 such that operations 

3-5 are all scalable with respect to memory and communication. The Frameworks component 

of SHARP was initially tasked with devising a scalable method for the 3-D MOC back 

projection. After some time, it appears as though a practical implementation using the 

frameworks tools will require so much development time that the deployment of a 3-D MOC 
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capability would be delayed by several years. To avoid this delay, a simplified approach was 

implemented which is shown graphically in Figure 3.6. 

 
3-D Geometry 

 
Surfaces on 

BP Plane  

Figure 3.6 Example Four-Processor Back Projection 

From Figure 3.6, the surfaces from each element in the 3-D mesh of hexahedral elements 

(upper left) are projected to the BP plane generating a large number of overlapping triangles 

(bottom left). In 2-D, the BP plane is a line and the 2-D elements create a set of overlapping 

line segments on that line. In both 2-D and 3-D, the boundaries of the projected domain are 

easy to identify; smallest and largest position on the line for 2-D or a square surrounding all of 

the BP surfaces for 3-D as seen in Figure 3.6. 

Focusing on the 3-D algorithm, maintaining all of the lines of the BP surfaces is the 

difficult task being studied which is expected to take several years to develop. To circumvent 

the issue, the current algorithm assumes that a mesh constructed from the vertices generated 

by the BP surfaces is sufficient to generate the necessary trajectory points. Given the 

bounding box, we can partition it into smaller boxes, termed subboxes, which is a multiple of 

the number of processors in the domain. In Figure 3.6, we specified four-processor spatial 

domain decomposition and created 64 subboxes within the bounding box (8x8). Since the 

subbox that each BP point lies within can be trivially determined, we only need to determine 

how many subboxes to assign to each processor such that each processor has the desired 

average necessary to guarantee load balancing in meshing and communication of the BP 

vertices.  

The coloring of the triangles in Figure 3.6 shows the rank assignment of each subbox for 

this particular problem. The triangles are generated using the Triangle open source package 

[16] which has proven to be quite efficient meshing problems with upwards of 1,000,000 

vertices. Because Triangle assumes a convex domain we also include the four corner points of 

each subbox and use Triangle to individually mesh each subbox where any points that lie on 

the edges of the subboxes are duplicated on adjacent subboxes to create a conformal mesh. 



FY2010 Status Report on Advanced Neutronics Modeling and Validation 

M. A. Smith, A. Mohamed, A. Marin-Lafleche, E. E. Lewis, K. Derstine, C. H. Lee, A. Wollaber, and W. S. Yang  23 

  ANL-GenIV-149 

Note how the total domain projection seen in the bottom left picture of Figure 3.6 is preserved 

in the triangulation result on the right, but not all of the interior triangle surfaces are 

preserved. This ensures conservation on the whole domain but not on any given problem 

domain surface and we can expect some amount of inaccuracy when we apply reflected 

boundary conditions. Of course this error is reduced as the mesh is refined which happens to 

be the same requirement already imposed for a reflected boundary condition given that we 

utilize a flat flux approximation in MOCFE. 

The user input controls the number of trajectory points that will be generated from each 

triangle and, since the preceding algorithm is focused on load balancing the meshing and 

communication of BP vertices, we can safely say that it will not be perfectly scalable with 

regard to communicating the trajectory data itself. This should be acceptable since every 

processor still has to discriminate whether the received trajectory starting points intersect the 

local domain which is done most efficiently using a bounding box around the local mesh. 

From there each processor is responsible for further checking whether the locally “nearly 

intersecting” trajectory data actually intersect the incident surfaces of the local mesh. 

The 2-D algorithm is conceptually the same, but much simpler in many areas. First, it is 

easy to maintain all interfaces of the BP elements since they form a series of overlapping line 

segments. Second, rather than use a meshing package, we only need to sort the BP vertices 

produced by all sublines and eliminate points which are identical (we assume a minimum 

point spacing and thus trajectory area of 10
-6

). As a final note, from Figure 3.6 one can see 

that the overall problem domain boundary is not preserved in the meshed routine. This can 

lead to problems since the projected area is inconsistent with the actual domain projected area. 

The inclusion of the intersection points of the domain surfaces with the subboxes effectively 

resolves this issue although it is not shown here. Given the other work being performed in 

UNIC, we were not able to fully test the impact of these changes or the accuracy of the 3-D 

MOCFE back projection algorithm. 

3.4 Automatic Optimization Adjustor Algorithm for MOCFE 

Part of FY2010 was spent building an auto adjustor routine for the serial version of the 

MOCFE code. This is needed to not only guarantee convergence, but also to attempt to reduce 

the computational effort. To build an adjustor routine, the algorithm must monitor the current 

effort involved in each iterative system and estimate the impact of the targeted error settings 

on the spectral radius of the system in energy, the within group systems, and the within group 

preconditioner systems in addition to the dominance ratio of the power method. For the power 

method we measure the error criteria 

1 1 1

11 1

i i i i i i

fission flux eigenvalue ii i

Q Q k k

kQ
  

  

 

   
  


. (3.9) 

For the Gauss-Seidel algorithm in energy or the Krylov in energy we measure 

1 1

, ,1 2 1

j j j

Krylov GS

b A
or

b A
 

 

 

   
 

   
. (3.10) 

For each within group system where Krylov or source iteration is used we define 
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1 1

( ), ( ),1 2 1

k k k

g g g g g

g Krylov g SI

g g g g g

q A
or

q A
 

 

 

   
 

   
. (3.11) 

Finally, for each within group preconditioner system we define 

1

( ), 1

m

g g g

g Krylov

g g g

s C

s C











.  (3.12) 

At present, MOCFE only has an algorithm to control the GS case where a Krylov solver is 

used on the within group equation. The algorithm does not control the preconditioner level 

where we have set the error conservatively as ( ), 0.01g Krylov   for non-domain decomposed 

problems and ( ), 0.0075g Krylov   for spatial decomposed domains (parallel spatial 

applications). The set of error criteria defined by equation 3.9 are controlled by user input thus 

leaving the adaptation algorithm focused on controlling the error targets in equations 3.10 and 

3.11. To develop the control algorithm, several reactor problems of interest were used which 

include an ABTR assembly (9 and 33 groups), a PWR assembly (23 groups), a VHTR 

assembly (23 groups), the C5G7 benchmark problem (7 groups), a CANDU assembly 

problem (23 groups), and a large “drawer homogenized” fast reactor problem (9 groups). In 

all of the problems angular cubatures were used ranging from S4 to S8 which are acceptable 

for the purpose of developing the adjustor. 

The initial step of the algorithm is to determine what the expected “slope of convergence” 

is for each system on each calculation. The slope of convergence is defined by normalizing 

each error measurement with the initial measurement and using a log10 conversion. With 

multiple values, a least squares linear fit can be applied to get the slope which is an effective 

measure of the dominance ratio. In MOCFE the slope of the fission source error defined in 

equation 3.9 is used along with the slope of the “flux norm” which is the numerator from 

equation 3.10.  

To understand how this data is used, Figure 3.7 plots the cited error measures from 

equations 3.9 and 3.11 and the “flux norm” for the 33 group ABTR problem where no auto 

adjustment is applied. This calculation had input error targets of 5.0x10
-7

, 5.0x10
-6

, and 

5.0x10
-6

, for the eigenvalue, fission source, and flux error, respectively, and the GS error 

target was fixed at 0.25 and the source iteration (SI) error target for each group was fixed at 

0.02. Note that the ABTR has no upscattering and that the ability to achieve a 0.25 error on 

GS is strictly determined by the error achieved in the within group systems. Using the data 

from Figure 3.7, the slope of the fission source (and flux error and eigenvalue error) can quite 

easily be found to be -0.64 if the results in the first two fission source iterations are ignored. 

Each within group system (WGS) flux error curve only achieves a slope near this after the 

sixth fission source iteration. Before the sixth fission source iteration we can clearly identify 

some of the lower energy groups (32 as an example) to have nearly flat slopes of -0.1. These 

lower energy groups do not contribute significantly to either the fission source or the flux 

error because the number of neutrons reaching this level is rather small (they are absorbed 

before they reach these energies since this problem is an infinite lattice of fuel assemblies), 

thus the rate of convergence of the fission source and eigenvalue are unaffected. The other 

key piece of information is the slope of the flux norm which is found to be -0.57 from Figure 

3.7. 
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Figure 3.7 Example Error Measures for the 33 Group ABTR Test Problem 

From these calculations it is clear that the exact inversion of the coefficient matrix during 

each power (fission source) iteration is unnecessary as evident by the fact that the flux norm 

slope in Figure 3.7  is much more negative (converging faster) than the slope derived from the 

fission source error (say -0.85 compared with -0.64). It is easy to understand how this happens 

because of the “relative improvement” error target which forces the MOCFE iterative solution 

scheme to always perform some amount of work before quitting. Thus 0.01 would infer that 

the error in the flux is reduced by two orders of magnitude while 0.001 would infer that the 

error is reduced by three orders of magnitude. Observations on eigenvalue problems to date 

have rarely indicated these error targets for either SN2ND or MOCFE should be less than 

0.01.  

After analyzing the results of the other selected benchmark problems it was determined 

that the selected fast reactor problems exhibited dominance ratios of 0.3 to 0.6 while the 

selected thermal reactor problems had dominance ratios of 0.65 to 0.90. Without Tchebychev 

acceleration, the dominance ratio was typically much higher. Figure 3.8 shows the 

convergence ratio of some hypothetical norm given the dominance ratio (DR). Given that a 

measurement of the dominance ratio can be obtained using the slope of the fission source 

error (DR≈1+slope), the minimization of computational effort on each outer will yield a slope 

of the flux norm that is less than or equal to the slope of the fission source error. An initial 

slope target is set based upon the problem being executed (detect upscattering: -0.3 for fast 

systems and -0.65 for thermal systems). The relationship of the initial slope (computed at the 

fifth fission source iteration using the third, fourth, and fifth iteration results) to the ideal slope 

determines the first adjustment made in the targeted error criteria for GS or equation 3.10. 
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Figure 3.8 Example Dominance Ratio (DR) Impact on Solution Convergence 

If an increase in the slope is observed over a few iterations, this indicates that the convergence 

target was relaxed too much and an appropriate change is made. If a decrease in the slope is 

observed then a decision is made depending upon the magnitude of the change as to whether 

the targeted error is tightened or loosened. In general the algorithm tries to obtain the 

maximum negative slope possible using the weakest error control possible on the GS system. 

This part of the algorithm should be identical to one used for the Krylov (GMRES) alternative. 

The next part of the adjustor routine focused on redistributing the computational effort 

according to the importance of each within-group system (WGS) to the flux norm which can 

be considered “group balanced work.” To better understand what this means, the results from 

the VHTR benchmark problem shown in Figure 3.9 without group balancing can be 

contrasted with the same problem executed with group balancing in Figure 3.10 where neither 

figure displays the user targeted error criteria, but it was the same in both. In Figure 3.9, one 

can see that most of the within group systems report errors of between 10
-5

 and 10
-8

 at the end 

of the calculation. This is what happens when a flat target is applied to all within group 

system targets in equation 3.11 such as 0.02. In reality, some of the energy groups will not 

contribute a substantial amount of error to the fission source or the flux error, both of which 

are targets specified by the user as final exit criteria. As a consequence, those groups with 

error tracking at the bottom of Figure 3.9 can be considered “over converged” relative to 

those at the top. In Figure 3.10, the adjustor algorithm selectively weakens the error targets on 

some groups and strengthens it on others such that the error contribution is more evenly 

distributed which is observable when comparing the two figures as a reduction in the variance 

in the group wise reported errors. 
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Figure 3.9 Within-group Results for the VHTR without Group Balancing 

 

Figure 3.10 Within-group Results for the VHTR with Group Balancing 

This part of the algorithm amounts to a considerable amount of computational effort, 20-30%, 

but there does not appear to be much more room for reductions using this technique (i.e. 

decreasing the variance further) because the error in the higher energy groups feeds into the 

lower energy groups via scattering. What is most important to note is that the overall rate of 

convergence of the flux solution is not altered using the algorithm, but, the fact that it 
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performed five fewer fission source iterations indicates that the approach did improve the rate 

of convergence of the fission source likely by remove spurious error contributions from the 

slowly converging systems.  

The final part of the adjuster that was started but not implemented was adjustment of the 

preconditioner error target in equation 3.12. Of all of the error measures, this is the easiest to 

measure and adjust, but unfortunately it is the least important. Overall, the diffusion synthetic 

acceleration (DSA) operations with the fixed setting of 0.01 or 0.075 consume a maximum of 

2-3% of the computational burden in the MOCFE solver for any of the cited benchmark 

problems. Thus erroneously weakening the preconditioner can be quite detrimental if it causes 

significant increases in the spectral radius of the within group system. Given that an abject 

failure was observed in one test calculation when the tolerance was switched from 0.01 to 

0.05 (i.e. the preconditioner caused divergence), one would think any attempt to weaken the 

current DSA algorithm to be unwise. Regardless, given that the number of WGS iterations 

(either SI or Krylov) required to achieve the targeted error between two consecutive WGS 

solve operations is known and the number of preconditioner iterations during that process is 

known, the path to alter the preconditioner error target is relatively easy to find by comparing 

the ratios 
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.  (3.13) 

Given this information, the error target at the WGS level between the two consecutive is 

checked to ensure that it did not change and that the total number of Gauss-Seidel iterations in 

energy did not change (otherwise these numbers are partially dependent upon that change). If 

the DSA error target was relaxed previously and the number of WGS iterations (SI or Krylov) 

decreased then the change in the error was valid and further relaxation of the error is possible. 

If, however, the number of WGS iterations increased significantly than the algorithm reverts 

to the previous value immediately. Alternatively, if the DSA error target was tightened and 

the number of WGS iterations decreased, then the computational effort was reduced and 

further tightening of the tolerance can be considered. If the number of WGS iterations 

increased didn’t change significantly then there is no reason to change the current setting, but 

the algorithm optionally chooses a value between the previous failed and successful setting. 

All of this assumes the application of the sweep operator is more expensive than DSA which 

is true for both MOCFE and SN2ND.  

In summary, the preceding auto adjusting algorithm significantly reduces the 

computational effort consumed by conventional fixed target schemes. While the adjustor did 

perform excellently for the fast reactor problems and good for the high dominance ratio 

thermal reactor problems such as CANDU, some of the other problems, such as VHTR still 

came back with timing results near those obtained using various hardwired flat by group 

values indicating some degree of inefficiency still persists in the current search algorithm. 

Nevertheless, the current adjustor does provide the one key goal of this work: a reliable solver 



FY2010 Status Report on Advanced Neutronics Modeling and Validation 

M. A. Smith, A. Mohamed, A. Marin-Lafleche, E. E. Lewis, K. Derstine, C. H. Lee, A. Wollaber, and W. S. Yang  29 

  ANL-GenIV-149 

which doesn’t require substantial user involvement in defining or redefining convergence 

control parameters. 

3.5 Initial Scalability Results for MOCFE 

Part of the goal for FY2010 was to perform a detailed assessment of the parallel MOCFE 

capabilities. While this cannot be considered a final assay given the rather unclear path to a 

scalable algorithm, it should give some indication of what needs to be worked on to progress 

MOCFE to a scalable solver. To begin this work, the whole core VHTR problem using 2 

groups was selected for study since it was sufficiently large (2,572,984 elements) to partition 

into more than 1024 pieces in space. The calculations were also restricted to running on 

BlueGene/P (which has processors over an order of magnitude slower than conventional serial 

machines) because of the ample time and short queue time available to run the test 

calculations. As expected, the initial scalability numbers shown in Table 3.1 are not good. 

Table 3.1 Preliminary Strong Scaling in Space Numbers for MOCFE 

Spatial 

Partitioning 

Elements 

Per 

Process 

Trajectories 

Total 

DOFs 

(millions) 

Total 

Time 

(sec) 

Fission 

Source 

Iter. 

WGS 

Krylov 

Iter. 

Strong 

Scaling 

Space 

64 40202 164895 56 2422 4 185 1.0 

256 10050 234307 84 3153 8 329 0.69 

512 5025 306297 123 3511 30 155 0.55 

1024 2512 409079 197 4100 18 456 0.41 

2048 1256 564453 344 2609 16 496 0.31 

4096 628 784589 635 2186 18 515 0.22 

 

Of course these numbers are rather convoluted since the small processor cases were not able 

to finish given the machine run time limits of BlueGene/P (< 512 node jobs are only allowed 

to run 60 minutes) and there are numerous issues associated with not being able to use a full 

back projection at all levels.  

To begin, note that the number of elements assigned to each processor decreases 

consistently. This is in fact a terrible measure of scaling since, for MOCFE, the size of the 

element is a key to defining the local work, not the number of elements. This is primarily 

because the size of the element dictates the number of trajectories that will cross that element 

along with the number of intersections that will occur on the process which owns it. To 

display this viewpoint, Table 3.2 gives a breakdown of the vector size for the VHTR problem 

with no parallelization by angle. From Table 3.2 one can see that the per-processor number of 

elements is highly variable and, at the 4096 level, the RMS number indicates there are likely 

no processors with the average element count (strongly biased towards the minimum and 

maximum values). This distribution was obtained by weighting the MeTiS decomposition 

using the element volume in an attempt to balance the number of trajectories per process. A 

quick view of the space-angle degree of freedom (DOF) per process in Table 3.2 shows that 

the weighted partitioning did not have the desired effect since the DOFs are wildly varying. 

Such a load imbalance is not observed in SN2ND where a mere 1.05 to 1.10 difference in 

workload is generally assigned by MeTiS without using any weighting. The typical outcome 

of a load imbalance like this is to destroy the scalability as observed in Table 3.1. 



 FY2010 Status Report on Advanced Neutronics Modeling and Validation 
30  September 15, 2010 

ANL-GenIV-149 

Table 3.2 Variation in the Number of Elements and Trajectory Data 

Spatial 

Partitioning 

Elements Per Process Space-angle DOF Per Process 

Min Max Avg. RMS Min Max Avg. RMS 

64 11250 111415 40202 52977 63150 515632 435210 148444 

256 5365 30298 10050 27559 18468 179042 164998 49229 

512 2426 15239 5025 14437 13054 131254 119770 29280 

1024 1052 7737 2512 7336 7550 103324 95978 18867 

2048 433 3896 1256 3743 4926 76492 84057 13912 

4096 199 1995 628 1895 3108 74818 77513 11446 

 

The additional fact that the full back projection was not usable on BlueGene/P (memory) 

requires that the scalability numbers be adjusted to compensate for the changing number of 

trajectories also reported in Table 3.1. Part of the requirement of the parallel algorithm is to 

ensure that the incident elements of each subdomain are intersected properly by each 

trajectory which alters the back projection with each increase in the number of spatial sub-

domains. From Table 3.1, the increase in the number of trajectories is quite considerable and 

the computational time should go up quite dramatically as observed in Table 3.1. While the 

total time can easily be rebalanced using these numbers it doesn’t properly account for the 

computational effort involved since the number of DOFs are also increased because of the 

trajectory segment flux. While a linear increase in the computational effort is not correct, it 

was used to be conservative and one should consider the actual scalability of MOCFE to be 

better than reported in Table 3.1. 

The final issue that needs to be accounted for in Table 3.1 is the variable number of 

fission source iterations failure to reach convergence at the lowest level. This variation in 

fission source iteration is a consequence of the auto adjustor which is trying to minimize the 

amount of work. To factor this in, the scalability numbers are changed from total solution 

time (typical meaning) to time per Krylov iteration. This is a bad idea since the first three 

fission source iterations take a significantly different time (initial guess for Krylov solution is 

bad) than the last ten fission source iterations, but we are left with few choices. Combining all 

of these factors, it is not surprising to see the 22% scalability number and one should really 

consider it to be mostly unreliable.  

What is useful from this exercise is information about the load imbalance on any given 

calculation. The large variance in the assigned space-angle DOF in Table 3.1 was observed to 

cause a load imbalance of 6-10 for the within group system (WGS) solve which dominates the 

total computational time for MOCFE. After some study, this was primarily identified to be a 

result of the number of trajectories intersecting each domain rather than an inherent problem 

with MOCFE. To understand why this is occurring, Figure 3.11 shows an 8, 16, 32, and 64 

processor decomposition of the VHTR problem where the coloring only considers an 8 

processor distribution. As can be inferred from the ray tracing problems earlier, the ray 

tracing data itself is strongly dependent upon the element density with respect to the direction 

of travel and thus some of the sub-domains will see strong variations in the number of 

crossing trajectories depending upon the direction of travel. Decomposing the problem with 

respect to angle will therefore cause a severe load imbalance which is why it was eliminated 

from Table 3.1. 



FY2010 Status Report on Advanced Neutronics Modeling and Validation 

M. A. Smith, A. Mohamed, A. Marin-Lafleche, E. E. Lewis, K. Derstine, C. H. Lee, A. Wollaber, and W. S. Yang  31 

  ANL-GenIV-149 

 

 
8 Processor or 

1 Sub-domain per Process 

 
16 Processor or 

2 Sub-domains per Process 

 
32 Processors or  

4 Sub-domains per Process 

 
64 Processors or  

8 Sub-domains per Process 

Figure 3.11 Example Multi-Domain Decomposition Approach to the VHTR 

Even with this, however, a severe load imbalance can be observed because of the location 

of the assigned mesh. From Figure 3.11, the 8 processor decomposition is rather difficult to 

conceive having a bad load imbalance because each assigned domain effectively looks the 

same. In reality, if the direction of travel crosses from processor 8 to 4, these two processors 

can have substantially more trajectory data to process than processor 6 for the same direction. 

This situation only worsens as more sub-domains are defined such that at the 64 processor 

level, the same direction will cause all those sub-domains near the left and right hand side of 

the mesh to have very little work because of the small number of elements generated by the 

back projection. This is a consequence of the fact that a 0.01 cm
2
 input criteria will be far 

greater than the actual area derived from intersecting all of the element surfaces.  

To overcome this, we are studying whether assigning multiple sub-domains to a given 

process will yield a better load balance as depicted in Figure 3.11. Visually, using the 2 or 3 

sub-domains per process level appears to show some level of improvement since it is difficult 

to find the clear example of work imbalance that would be expected at the 32 or 64 processor 

decomposition level (i.e. vastly different number of trajectories by direction by process). 
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Additional calculations are being prepared to assess the performance of this scheme along 

with the full back projection with the hope being improved scalability performance. 

4 NODAL Solver Development 
In response to the move to provide solution capabilities within UNIC that can solve 

problems on smaller sized parallel machines, minor amount of efforts were spent in FY2010 

rebuilding the VARIANT capability [7] into UNIC. While the initial efforts are strictly 

focused on just the diffusion theory capability, it is not difficult to extend that work to a 

transport capability with time. The implementation is relatively easy if the old algorithm 

already present in DIF3D [8] is just reproduced. However, recent calculations using 

VARIANT on problems such as ZPR have indicated that the iterative schemes employed can 

break down quite severely which is observed as a rapid increase in computational effort. With 

the success of Krylov methods on SN2ND and MOCFE, along with their application in an 

even wider variety of engineering disciplines [17-18], the development effort on NODAL has 

focused a significant amount of effort on the impact of using Krylov (GMRES) on the 

response matrix equations 

During the last fiscal year, we have examined the use of preconditioned Krylov methods 

as an alternative to the partitioned matrix accelerated red-black Gauss Seidel (RBGS) scheme 

that is presently used in VARIANT. The present work has shown that partitioned matrix 

acceleration is equivalent to preconditioning the RBGS solution and thus it is employed as the 

preconditioner to the GMRES algorithm. Since the partitioned matrix scheme can be 

considered a two-level p-multigrid preconditioner applied to a hierarchal set of trial functions, 

we refer to it as p-multigrid preconditioning. 

4.1 Construction of the NODAL Preconditioner 

To formulate the preconditioner, we start with the global set of response matrix equations 

having the form 

[ ] I R j q ,  (4.1) 

where j is the vector of partial currents at the nodal interfaces. A left preconditioner is defined 

by left multiplying the governing equation by the inverse of the preconditioner, thus if we 

take K as the preconditioner, we have 

1 1[ ]  K I R j K q .  (4.2) 

As mentioned in the previous sections, an effective preconditioner approximates the inverse 

of the coefficient matrix, or  K I R , but requires many fewer floating-point operations to 

apply than the actual coefficient matrix. 

Given the governing equation, we define a permutation matrix that reorders the unknowns 

in equations 4.1 and 4.2 such that the zero-order (i.e. spatially flat) term from each interface is 

gathered in j  while the higher order terms are contained in j .  Equation 4.1 can then be 

written as 

   

   

      
    

          

I R R j q

R I R j q
.  (4.3) 
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In response matrices derived from the variational nodal method, the unknowns at each nodal 

interface form an orthogonal series where only the zero-order term transports a net number of 

neutrons across the interface. Including the zero-order terms in the preconditioning matrix 

yields  

 
  
 

I R 0
K

0 I
,  (4.4) 

which has a strong physics based meaning. The inverse of equation 4.4 is found to be 

1

1 [ ]



  
  
 

I R 0
K

0 I
.  (4.5) 

Left multiplying equation 4.3 by equation 4.5 yields 

1 1[ ] [ ]    

   

        
     

           

I I R R j I R q

R I R j q
.  (4.6) 

     As stated, employing equation 4.4 as a preconditioner in GMRES for equation 4.1 and 

using it as an acceleration scheme in VARIANT can be equivalence. To show this we assume 

red-black ordering (standard Cartesian solution scheme) and define [ , ]T T T

r b  j j j , [ , ]T T T

r b  j q q  

with ,    and thus 

, ,

rb

br







   
 

  
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0 R
R

R 0
.                           (4.7) 

With this, we can rewrite equation 4.6 in the expanded form 

1
1

1

rb ii rb
rr r

br ii br
bb b

   

   






         
                        

0 R jj I R q

R 0 jj R I q
  (4.8) 
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    

 

 
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            

                   

j 0 R 0 R j qj

j R 0 R 0 j qj
. (4.9) 

The superscript i is added to indicate the accelerated RBGS iterative procedure employed in 

VARIANT. Used in conjunction with either RBGS or GMRES, the inverse of I R  need 

not be evaluated exactly. Experience has shown that it is adequately approximated with a few 

iterations and increasing the number of iterations has only yielded marginal improvements in 

the convergence rate of RBGS or GMRES. This is of course expected and given that the 

minimal computational effort is very desirable, artificially increasing the number of iterations 

is generally unwise. 

4.2 Comparison of GMRES to Existing VARIANT Algorithm 

Figure 4.1 depicts the geometry used to compare the performance of the RBGS and 

GMRES solutions with and without  p-multigrid preconditioning.  
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Homogenized Assemblies 

 
Homogenized Pin-cells 

Figure 4.1 Quarter Core Configuration of Six LWR Fuel Assemblies and Reflector 

In Figure 4.1, we show a geometrical configuration with homogenized fuel assemblies on the 

left and homogenized fuel pin cells on the right. A fixed-source, one-group cross section set 

was defined for each problem such that it emulates the fast group of a two-group LWR 

calculation. For the homogenized fuel assembly problem, Figure 4.2 shows the convergence 

of the L2 norm of the residual vs. work units for RBGS (left) and GMRES (right).  

 

  

Figure 4.2 Convergence Rates of Red-Black Gauss-Seidel and GMRES for NODAL 

 

One work unit is taken to be equal to the number of floating-point multiplications per 

unaccelerated iteration which is a reasonable measure of computational effort. Three 
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iterations were used on both RBGS and GMRES for inverting the preconditioner with every 

iteration of the two solution schemes. The successively coarser grid representations of the left 

hand geometry in Figure 4.1 were made assuming: 64x64, 32x32 and 16x16 where the 

response matrices use 1, 2, and 4 degrees of freedom (DOF) per nodal interface, respectively. 

The change in geometrical size tests the performance as the optical size of the node decreases 

and the change in surface degrees of freedom is done to maintain comparable levels of 

accuracy and overall work. From Figure 4.2, we can safely say that the GMRES performance 

is superior to RBGS at all three levels. More importantly, we can see that the p-multigrid is 

more effective as a preconditioner of GMRES than as an acceleration of RBGS. These results 

are consistent with several other problems we have executed and we anticipate all future work 

of NODAL will incorporate a GMRES solution capability. 

4.3 Orthogonalized Matrix Aggregation 

p-multigrid preconditioning is effective only for response matrices with orthogonal 

interface conditions which have more than one DOF per interface. In RBGS the acceleration 

cannot be applied when only one DOF is used per interface (i.e. fine mesh calculations) and in 

GMRES it makes the preconditioning much less effective (i.e. simple RBGS 

preconditioning). For fine mesh calculations, we find that the nodes become optically thin 

which causes RBGS solution methodologies to converge very slowly as evident from Figure 

4.2. To circumvent this difficulty, we have developed a method of matrix aggregation and 

orthogonalization that converts NxN elemental matrices in to one response matrix with N 

orthogonal DOF per interface [19]. After applying this procedure, the forgoing p-multigrid 

method can be applied to the resulting response matrix equations.  

To test the matrix aggregation and orthogonalization scheme in conjunction with p- 

multigrid preconditioning, we focus exclusively on the right hand geometry of Figure 4.1.  

The cross sections and dimensions are again representative of the fast group of a LWR 

calculation and we only consider convergence of the 64x64 grid. Applying response matrix 

aggregation and orthogonalization to obtain coarser grids of 32x32, 16x16, and 8x8, creates 

response matrices with 2, 4 and 8 DOF per nodal interface, respectively.  The residual L2 

norm is plotted vs. work units in Figure 4.3. Note that the unpreconditioned GMRES results 

from Figure 4.3 are nearly identical to the unpreconditioned GMRES results of Figure 4.2 

while the further p-preconditioned results are changed significantly. These results indicate 

that the p-multigrid preconditioning combined with the orthogonalized matrix aggregation can 

be effective; the 32x32 and 16x16 grid preconditioned solutions are significantly improved. 

However, at the coarsest grid (8x8), where the effect of matrix aggregation is the greatest, 

convergence without preconditioning is so rapid that applying the p-multigrid preconditioner 

has a negligible impact on the performance. 

Using matrix aggregation requires back-substitution after convergence of each grid to 

update the partial currents internal to the aggregated domain. To account for this expense we 

calculate the “gain” in performance derived from using aggregation to a coarser grid in 

addition to using p-multigrid on that lower dimensional system by taking the following steps:  

1) The work units required to obtain six orders of magnitude reduction in the L2 norm 

are added to those required for the back-substitution. 
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2) The result from 1) is divided into the number of work units required for the same 

reduction in the L2 norm for the unpreconditioned GMRES calculation on the fine 

grid. 

 

Figure 4.3 Impact of Combining p-multigrid and Orthogonalized Matrix Aggregation 

This measure roughly shows the speed up achieved by preconditioning the fine mesh system 

with the combined scheme which is tabulated in Table 4.1. As can be seen, progressively 

larger gains occur as the mesh is coarsened, but as the aggregated domain becomes 

sufficiently large enough to negate the optical thinness of the resulting coarse meshes, the 

performance boost is constricted. 

Table 4.1 Calculated Performance Gain Using Orthogonalized Matrix Aggregation 

Aggregated 

Nodes 

Gain without  

p-multigrid 

Gain with  

p-multigrid 

1 1.0 1.2 

4 1.8 3.4 

16 3.0 4.6 

64 3.8 4.1 

4.4 Summary Discussion 

The implementation of NODAL into UNIC has been done at a much slower pace than 

either PN2ND, SN2ND, or MOCFE. In FY2009, the geometry models for all domains of 

interest were incorporated into UNIC and mapping capabilities to link the structured grid in 

NODAL with an unstructured grid in SN2ND/PN2ND/MOCFE were accomplished. Most of 

FY2010 focused on the research into the preceding preconditioners although we have 

completed the algorithmic implementation and are currently debugging the solver algorithm 

in UNIC. Based upon the previous analysis, we chose to implement the p-multigrid 

preconditioner for GMRES in PETSc in anticipation that NODAL will primarily be used as it 
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currently is in DIF3D. Only energy parallelism was incorporated into the NODAL solver 

development in anticipation that more energy groups would be routinely used by analysts 

which is a significant weak point of the DIF3D coding. With time, NODAL might be 

transitioned from a diffusion theory solver to a transport solver based upon the performance 

of SN2ND on small parallel machines and the focus of future work. At that time we will make 

a decision whether a discrete ordinates or spherical harmonics based transport methodology is 

developed at which time the preceding matrix aggregation preconditioning will become 

important. 

5 Miscellaneous Components of the Neutronics Work 
As was the case in previous years, a significant amount of time was spent developing 

components which are external to the UNIC solvers or algorithms usable by the solvers. Some 

of this work is a result of failures of the mesh generation tools while some is due to an 

inability of the Frameworks group of SHARP to provide a reasonably quick solution to 

difficult problems as was the case with the back projection algorithm in MOCFE. The 

remaining work involved creating necessary add-ons to UNIC to facilitate modeling and 

analysis of problems of interest to NEAMS while some was spent setting up and analyzing 

benchmark calculations. Overall, this work consumed almost a fourth of the total funding 

dedicated to neutronics which does not appear as a deliverable. The primary work non-solver 

related work for FY2010 can includes IsoNXS, additional regression testing for the 

component libraries of UNIC, inclusion of Gauss-Lobatto-Tchebychev trial functions into 

element library, inclusion of an ability to evaluate the solution along a line traversing the 

domain, development of the BuildZPRmodel program, and creation of a new repository for 

containing MC
2
-3, UNIC, and the legacy ANL neutronics tools DIF3D and REBUS-3. 

5.1 IsoNXS Storage of Tabulated Cross Section Data 

The purpose of the IsoNXS work is to enable the coupled dynamics calculations in 

SHARP. The concept is derived from the legacy methodologies for coupling calculations 

where the cross section data is stored at a set of pre-evaluated criteria such as temperature, 

density, burnup, etc., which span the expected evaluation regime of the calculation. During 

the dynamics calculation, the cross section data is interpolated from the file to provide an 

accurate representation of the neutronics problem. The predecessor for IsoNXS was built for 

doing thermal-hydraulic feedback in REBUS-3, and was not appropriate for the parallel 

calculations to be carried out with UNIC. Given that the online cross section generation 

procedure will take several years to develop and implement in a parallel efficient manner, an 

algorithm similar to the legacy methodologies was felt necessary for use in UNIC in the short 

term. As a consequence, the storage procedure was redone in UNIC using the parallel HDF5 

storage software. HDF5 is already part of UNIC where it is used to store the flux and power 

solution and is also part of the coupling methodology where it is used to read and store the 

mesh. While we do not envision doing parallel writing of cross section data with UNIC, the 

ability to do parallel reading is important and the primary purpose behind the new algorithm.  

Tables 5.1 through 5.3 show the layout of the HDF5 storage format which is conceptually 

similar to the ISOTXS data structure, although noticeably different. In IsoNXS, we included 

additional variables to store the kinetics data for time dependent applications along with table 

evaluation information necessary to describe where each tabulated data point is stored.  



 FY2010 Status Report on Advanced Neutronics Modeling and Validation 
38  September 15, 2010 

ANL-GenIV-149 

Table 5.1. IsoNXS File Description: FileWide Group 
HDF5 “test1a.h5” 

Group “/” 
 Group “/FileWide” 

 EnergyBounds (NumGroups+1) 

 GramAtomMasses(NumIsotopes) 
 IsotopeNames(NumIsotopes) 

 

LibraryProperties(10): NumGroups, NumIsotopes, MaxScatteringOrder, MaxScatteringBlockLW, NumTableProperties, 

StandardizedScattering, N2nProductionBased, MaxNumFamilies, IsoNXS_Version, 
IsoNXS_yyyymmdd 

 PropertyNames(NumTableProperties): (e.g. PackingFraction, Burnup, Temperature) 

 ReactionRateNames(IsoNXS_NUM_KNOWN_REACTION_RATES) 
 ScatterReactNames(0:3) = (“Scat_Total”, “Scat_Elastic”, “Scat_Inelastic”, “Scat_N2n”) 

 Velocities(NumGroups) 

Table 5.2. IsoNXS File Description: Isotope Header Group (repeated for each Isotope) 
 Group “/u235b” 

 Group ”/Header” 

 DecayConstants(NumFamilies) 

 DelayChi(DelayFissionCutoff, DelayChiWidth, NumFamilies) 

 HeaderInt(7): NumTablePoints, MaxScatteringBlock, ChiWidth, FissionCutoff, NumFamilies, DelayChiWidth, DelayFissionCutoff 
 HeaderReal(2): EnergyCapture,EnergyFission 

 NumAuxiliary(IsoNXS_NUM_KNOWN_REACTION_RATES) 

 NumScatterAux(0:3)=MaxScatteringOrder 
 OffsetToBand(NumGroups+1,MaxScatteringOrder,0:3) 

 PropertyValue(NumTableProperties,NumTablePoints) 

 StartingGroup(NumGroups,MaxScatteringOrder,0:3) 
 TotalChi (FissionCutoff, ChiWidth ) 

Table 5.3. IsoNXS File Description: Isotope Reaction Groups (repeated for each Isotope) 
 Group “/u235b” 

  Group “/Reactions” 

 Alpha_XSData(NumGroups,NumAuxiliary(IsoNXS_IDNum_ALPHA),NumTablePoints) 
 DelayNu_XSData(NumGroups,NumAuxiliary(IsoNXS_IDNum_DELAYNU),NumTablePoints) 

 Deuterium_XSData(NumGroups,NumAuxiliary(IsoNXS_IDNum_DEUTERIUM),NumTablePoints)  

 DirectDiff_XSData(NumGroups,NumAuxiliary(IsoNXS_IDNum_DIRECTDIFF),NumTablePoints) 
 Fission_XSData(NumGroups,NumAuxiliary(IsoNXS_IDNum_FISSION),NumTablePoints) 

 Ngamma_XSData(NumGroups,NumAuxiliary(IsoNXS_IDNum_NGAMMA),NumTablePoints) 

 Nu_XSData(NumGroups,NumAuxiliary(IsoNXS_IDNum_Nu),NumTablePoints) 
 Proton_XSData(NumGroups,NumAuxiliary(IsoNXS_IDNum_PROTON),NumTablePoints) 

 Scat_Elastic_XSDataBlock(MaxScatteringBlock(1),NumTablePoints) 

 Scat_Inelastic_XSDataBlock(MaxScatteringBlock(2),NumTablePoints) 
 Scat_N2n_XSDataBlock(MaxScatteringBlock(3),NumTablePoints) 

 Scat_Total_XSDataBlock(MaxScatteringBlk(0),NumTablePoints) 

 Total_XSData(NumGroups,NumAuxiliary(IsoNXS_IDNum_TOTAL),NumTablePoints) 
 Transport_XSData(NumGroups,NumAuxiliary(IsoNXS_IDNum_TRANSPORT),NumTablePoints) 

 Tritium_XSData(NumGroups,NumAuxiliary(IsoNXS_IDNum_TRITIUM),NumTablePoints) 

  Group “/ReactionsIndex” 
 Alpha_TablePointIndex(NumTablePoints) 

 DelayNu_TablePointIndex(NumTablePoints) 

 Deuterium_TablePointIndex(NumTablePoints) 
 DirectDiff_TablePointIndex(NumTablePoints) 

 Fission_TablePointIndex(NumTablePoints) 
 Ngamma_TablePointIndex(NumTablePoints) 

 Nu_TablePointIndex(NumTablePoints) 

 Proton_TablePointIndex(NumTablePoints) 
 Scat_Elastic_TablePointIndex(NumTablePoints) 

 Scat_Inelastic_TablePointIndex(NumTablePoints) 

 Scat_N2n_TablePointIndex(NumTablePoints) 
 Scat_Total_TablePointIndex(NumTablePoints) 

 Total_TablePointIndex(NumTablePoints) 

 Transport_TablePointIndex(NumTablePoints) 
 Tritium_TablePointIndex(NumTablePoints) 

 
MaxScatteringBlock(Type)= 

OffsetToBand(NumGroups+1,MaxScatteringOrder,Type) –OffsetToBand(1,1,Type) 
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As can be seen, the data is stored in an isotopic basis which is consistent with the way the data 

is retrieved during the material homogenization process. All functions have been written to 

minimize the involvement of user coding with the underlying structures that access the data 

on the file (file groups, hyperslabs, etc.). Regression tests have been implemented for most 

parts of the IsoNXS library. 

In addition to creating the IsoNXS file format, we also had to update the ISOTXS reader 

built into the UNIC code. The old version of the ISOTXS file reader/writer was not capable of 

importing data files larger than 70 groups on BlueGene/P due to memory constraints and poor 

choices made in creating the reader. To facilitate the ZPR calculations carried out in this 

report, the ISOTXS file reader/writer was updated to be more memory efficient. While the 

ISOTXS reader is already included in UNIC, the IsoNXS reader has not been fully 

implemented since it was awaiting the completion of the revised SN2ND solver which is the 

primary development purpose for IsoNXS. 

5.2 Gauss-Lobatto-Tchebychev Finite Element Capability 

The element library of UNIC was extended with the Gauss-Lobato-Tchebyshev (GLT) 

finite elements. Trial functions for the bar, quadrilateral, triangle, brick, tetrahedron, and 

prism were added and verification tests were created. For higher than cubic order finite 

elements, these functions produce coefficient matrices in SN2ND which have lower condition 

numbers. A brief study of the one-dimensional set of functions is sufficient to understand 

why.  

To begin, the coordinate vertices of a Lagrangian finite element are specified to be equally 

spaced on the one-dimensional space while the coordinate vertices of the GLT elements are 

given by the roots of the n-th order Tchebychev polynomial 

1( ) cos[ cos ( )]nT x n x .  (5.1) 

Figure 5.1 compares the GLT and Lagrangian shape functions for 5
th

 and 10
th

 order trial 

functions which are noticeably different. As the trial function order increases, the GLT trial 

functions are observed to obtain their maximum at the coordinate vertex while the Lagrangian 

functions progressively display maximum values near the end points of the domain. While the 

fundamental span of the basis functions is the same, the linear dependence between the 

functions (they are not orthogonal) is such that GLT shows substantial improvements in the 

spectral radius of the coefficient matrix at fourth order (tests performed in MathCAD). 

For bar, quadrilateral, and brick elements, these trial functions can be formed using a 

product of the one-dimensional functions. For triangle, prism, and tetrahedral functions, we 

used a more complicated procedure to generate them and thus only implemented sixth order 

trial functions in UNIC. Since CUBIT does not generate meshes with these trial functions and 

MOAB doesn’t support them we have yet to test them out. We have also not implemented 

them into the NODAL code which is likely the best way to quickly utilize them since it 

utilizes the data structures contained within UNIC and can build the appropriate meshes. 

Ideally these trial functions will allow better modeling of the homogenized assembly level 

calculations which SN2ND has not performed well on up to this point. While higher order 

Lagrange trial functions were attempted, the degradation in performance was so severe that 

any improved accuracy could not be justified. 
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Figure 5.1 One-Dimensional GLT and Lagrangian Finite Element Basis Functions 

5.3 Evaluating the Solution along a Traversing Line 

The long awaited ability to evaluate the flux solution along a line traversing the domain 

was added to UNIC. The primary reason for the delay was the difficulty involved in 

implementing an efficient algorithm into UNIC. Also, given that SN2ND has relied primarily 

upon quadratic elements, the existing line evaluation capability within VISIT is sufficient to 

provide an accurate solution along a traversing line. While initially thought to be a 

frameworks related issue, the storage of the flux solution can easily be an overwhelming 

amount of data to duplicate (in frameworks) and then process for a significant number of 

groups. Given that the detailed flux solution is rarely important – normally we are only 

interested in power and capture rates – we desire a capability to evaluate the flux solution 

along the traverses during execution to minimize the outputted storage.  

Given that we can identify which elements in the domain are intersected by the traversing 

line, we must devise an efficient method to evaluate the flux solution. Since the interpolation 

functions for every finite element are in the reference system (i.e. r-s-t, not x-y-z), we must 

use a root finding technique to identify the location of the intersected coordinate along the line 

(x-y-z) in the reference system of each finite element (r-s-t). From there we can evaluate the 

interpolation functions The most accurate way to do this is to use a root finding technique, 

such as Newton, which requires multiple evaluations of the shape functions and can become 

computationally expensive. We also studied the capability used by VISIT since previously 
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experience using it provided a good solution along the line capability. Figure 5.2 graphically 

depicts the sub-element methodology incorporated by VISIT [29].  

 

Figure 5.2 VISIT Sub-element Approximation of a Finite Element 

As can be seen, VISIT uses a series of linear interpolating finite elements to interpolate 

between the solution points. Starting with the two finite elements shown in Figure 5.2, we 

show a typical crossing line as a series of x’s in Figure 5.3 that would result from a line 

traversing the domain. Note that both elements are geometrically the same and that a linear 

mapping is utilized to minimize the error associated with the mapping itself. This limits the 

error produced by the subelement approximation, since it would use an easily solved linear 

interpolation algorithm to identify the coordinate point in the reference system. Rather than 

just testing the x points, we sampled the entire finite element with a large set of equally 

spaced points. 

 

Figure 5.3 Quadratic and Quadric Finite Elements and a Flux Traverse (x’s) 
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A plausible flux solution was assumed in both finite elements. Figure 5.4 shows the flux 

solution evaluated at the series of test points which are generally smooth and consistent with 

the order of the finite element in question.  

 

Figure 5.4 Assumed Quadratic and Quadric Flux Solutions 

Reproducing the sub-element technique in MathCAD, we obtained the solution data and 

calculated its error with respect to the assumed flux solution as shown in Figure 5.5.  

 

 

Figure 5.5 Solutions and Calculated Error of the Sub-element Scheme 

We note that there is an observable reduction in the smoothness of the flux, but the 

approximation does not qualitatively look bad. If course, inspection of the error generated by 
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the sub-element representation demonstrates that there is a considerable amount error, in some 

cases above 100%. While a majority of the domain is less than 20% error in both cases, the 

irregularity of the error is cause for great concern with regard to a flux traverse. It is also 

important to note that as the interpolation of the element is increased beyond linear, the sub-

element derived error increases significantly (not shown for brevity). Given our desire to 

provide the most accurate solution possible, we utilized the Newton root finding technique to 

identify the location of the evaluation point within each element. 

To determine which elements are crossed, we make use of many parts of the MOCFE 

solver since each traversing line is similar to a MOC trajectory. The difference of course is 

that in MOCFE we used a complicated procedure to define the starting location of the 

trajectory on the domain. Given that point, the entire MOCFE coding is built around the 

concept of following the trajectory as it progresses through the domain from the incident 

intersection point through all elements that are crossed along the trajectory to an exiting point 

on the domain. For the evaluation technique, given there are relatively few trajectories, it was 

simpler from a programming perspective to just check all surfaces of all elements to 

determine the list of intersected elements. The same triangle intersection algorithm in the 3-D 

MOCFE ray tracer and the line intersection algorithm in the 2-D MOCFE ray tracer were used 

for this work.  

Also, rather than specify a fixed number of points along the line, a variable number of 

points within each element is generated depending upon the user-defined point density desired 

along the line between the intersecting points on each element. The Newton algorithm is used 

to identify the position of that point within the reference element and thus the point to pick for 

evaluating the trial functions of each element. These points are collected on a mesh block 

basis such that only a single call per block to ElementLibrary is needed to evaluate the shape 

functions. The computational effort of determining the flux solution is then reduced to a 

simple vector dot product for each evaluation point within the block. The data is reduced to 

the root process for export to an ASCII file format importable directly into EXCEL or gnuplot 

for easy visualization. 

This capability was the primary means by which the ZPR foil activation results were 

obtained as described later in this report. In addition to that purpose, it can also be used to 

study ray effects and mesh convergence. Figure 5.6 shows the highest energy group flux mesh 

convergence behavior of the SN2ND solver for a traverse running just inside of the outer 

surface of the ZPR matrix half where the matrix halves meet while Figure 5.7 shows the mesh 

convergence for a traverse running through the two drawers at the center of the assembly. 

Insets are included to show the slight variation in the solution between a 299,276 vertex mesh 

and a 408,112 vertex mesh where the 103,684 vertex mesh is a linear mesh.  

The primary difference between the two most refined meshes in these figures is the 

number of elements used in the axial direction. In problems that display more error with 

respect to mesh refinement, we have observed significant differences in the solution. A more 

reliable means to study the impact of mesh refinement with SN2ND is to look at the element-

wise odd-parity P1 fluxes. Because SN2ND uses a continuous even-parity flux approximation, 

the discontinuities appear in the odd-parity flux. Experience has shown large discontinuities in 

the odd-parity flux indicate locations where mesh refinement is necessary. With time we 

intend to add the odd-parity flux components to the evaluation output files such that they can 

be viewed like the scalar flux plots above. 
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Figure 5.6 ZPR-6/7 Matrix Edge Group 1 Flux Plot for Loading 106 (Mesh Convergence) 

 

Figure 5.7 ZPR-6/7 Center Drawer Group 1 Flux Plot for Loading 106 (Mesh Convergence) 

Figure 5.8 shows the often named ray effect phenomena accompanying all discrete 

ordinate methods for the 408,112 vertex mesh. In this case we purposely choose the traverse 

used in Figure 5.6 since we know it will yield substantial ray effects. While the eigenvalue is 

nearly identical between these two calculations, the flux solution exhibits wild, non-physical 

oscillations which change dramatically as the angular cubature is refined. The only reliable 
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way to remove the ray effects in Figure 5.8 is to increase the angular cubature which would 

likely require well past P11T11 to obtain a reasonably smooth flux shape.  

 

Figure 5.8 ZPR-6/7 Matrix Edge Group 1 Flux Plot for Loading 106 (Ray Effects) 

5.4 BuildZPRmodel and MergeMesh, Programs to Generate Input Geometry 

As part of the verification and validation requirements of UNIC, we have chosen to study 

the ZPR series of experiments. Unlike many of the numerical benchmarks on which we have 

used UNIC, the ZPR experiments provide a very clean geometry (well known material 

definitions) and include numerous reactor physics measurements that we can use to validate 

the steady state solver solutions, such as activation foil measurements, and various 

measurements that we can use to validate the kinetics solver capability. 

As one would expect, trying to build a geometry model by hand that consists of numerous 

non-repeating structures such as that seen in Figure 5.9 is very prone to human errors. To 

combat this issue, the BLDVIM tool [20] was created previous to the SHARP project. 

Attached to BLDVIM is a library of materials defining the compositions (batch average) and 

dimensions of each known plate and drawer that was loaded into the ZPR experiments. Given 

simple user ASCII input to define the drawer-wise geometry loading of a ZPR experiment 

(ZPR-3, ZPR-6, ZPR-9, and ZPPR), BLDVIM will build the plate-by-plate geometry for use 

in the VIM continuous energy Monte Carlo code.  
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Figure 5.9. Single ZPR-6 Core Drawer 

Monte Carlo modeling of a ZPR can provide very accurate solutions because there is 

virtually no thermal gradient and there are relatively few compositions. With a deterministic 

methodology such as SN2ND, the problem setup is much more complicated because the cross 

section data has to be generated on a representative cell. If we consider that unique cross 

section data is needed for every plate in every unique drawer, then we can easily end up with 

an order of magnitude more compositions than that used in the Monte Carlo model. As a 

consequence, the deterministic approach requires geometry and mesh generation techniques 

that allow easy mapping of these materials to the geometric zones and minimize potential user 

errors. The existing mesh generation and frameworks tools are quite clumsy when it comes to 

mapping the materials (a by-hand procedure) and thus using CUBIT on ZPR is quite an 

endeavor. Without an available capability, the BuildZPRmodel code was created to fulfill the 

need.  

The original version of BuildZPRmodel (ZPRtoNODAL) was created in FY2009. In 

FY2010, we modified it so that it would create slab geometry input for generating cross 

sections with MC
2
-3. In that process we had BuildZPRmodel define material compositions 

with the appropriate mapping to the MC
2
-3 generated isotopes and material mapping to the 

user-defined ZPR model. The final change was to add an unstructured mesh generation 

algorithm usable in UNIC (previous version only built a structured NODAL geometry). 

Because of the complexity of the tool and the likelihood that an equivalent capability will not 

be available soon, we have also invested a significant amount of time setting up nightly 

verification tests for BuildZPRmodel. 

With respect to deterministic modeling, the primary purpose of BuildZPRmodel is to 

allow the reactor analyst to define the homogenization scheme and simultaneously build the 

appropriate MC
2
-3 input decks. This homogenization scheme requires that the user define a 

homogenization model on a drawer by drawer basis where the isotopes from one drawer can 
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be linked to another drawer in the model. Figure 5.10 shows an example of the 

homogenization approaches we have applied to date in BuildZPRmodel. 

 

Figure 5.10. Example Homogenization Models 

In Figure 5.10, the “as built model” shows the geometry where the plates are separated 

from the front drawer (center) and both are separated from the matrix tube (right). In the 

“drawer homogenized” model, the plate structure is completely homogenized maintaining 

only the primary axial heterogeneity distinguished by the active core plates, axial depleted 

uranium blankets, and the empty matrix tube. In the plate by plate homogeneous model, each 

plate is preserved while the drawer and matrix tube are smeared together to form a 

surrounding box. 

The drawer homogenized model is consistent with the cross section generation schemes 

applied in reactor physics for the last 30 years. As a consequence, we have typically observed 

very good results when comparing the eigenvalues and reaction rates with Monte Carlo and 

the experimentally measured values so long as the problem is well within a valid regime of 

the typical cross section generation procedure. The weakness of course is that the global flux 

solution derived from the drawer homogenized approach does not exactly reproduce the plate-

by-plate flux solution (flux reconstruction does not help because the slab or 2-D slice is not 

accurate) and thus resolving the foil measurements is somewhat erroneous.  

Because SHARP has been focused on a neutronics capability for heterogeneous modeling, 

i.e. plate by plate, we have been studying how to accomplish this on the ZPR problems since 

we have such good experimental data. However, without the new multigrid preconditioner, 

SN2ND cannot accurately treat the ZPR with enough space-angle-energy resolution and the 

solutions are generally less accurate than the drawer homogenized solutions. The additional 

fact that we have to learn how to properly generate cross sections only complicates the matter 
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further. With a tool like BuildZPRmodel, we can at least test the various homogenization 

methodologies out on smaller problems (i.e. single drawers) without requiring an inordinate 

amount of effort being expended in setting up the input information. 

As mentioned, the ZPR geometry is fundamentally not a structured geometry. While the 

drawers are arranged in a lattice, slight variations in the plate thicknesses combined with the 

inclusion of control rod positions, fission chambers, thermal couples, and movable drawer 

positions (another type of control rod), prevents a structured geometry tool such as PARTISN 

from being able to model a ZPR problem without generating hundreds of millions, if not 

billions of mesh cells. Figure 5.11 shows an example of the unstructured mesh capability we 

added to BuildZPRmodel which uses 1.2 million unstructured brick elements to describe the 

semi-homogenized geometry. 

  

 

Figure 5.11. Full Core ZPR-6/7 Model Built with BuildZPRmodel 

In order to create this mesh, we had to add a new mesh merging algorithm to UNIC. Some 

time had already been spent in SHARP making a similar tool, but it was not capable of 

handling a Cartesian geometry or tracking the boundary conditions and material assignments. 



FY2010 Status Report on Advanced Neutronics Modeling and Validation 

M. A. Smith, A. Mohamed, A. Marin-Lafleche, E. E. Lewis, K. Derstine, C. H. Lee, A. Wollaber, and W. S. Yang  49 

  ANL-GenIV-149 

The algorithm in UNIC is not terribly dissimilar from the concept of that tool, but it does not 

have to assume a regular grid and allows the user to easily define the placement of the 

submeshes. Many of reactor problems are now created using the UNIC mesh merging 

function because CUBIT is incapable of generating the full geometry mesh such as that seen 

in Figure 5.12. This mesh of the full core VHTR geometry was used for the MOCFE scaling 

studies discussed in the previous section.  

Combining this feature with the extrusion tool developed for UNIC in FY2007 allows us 

to build explicit full core geometry reactor problems which we were not capable of doing in 

previous years with existing SHARP tools. Figure 5.13 shows some example input for the 

merge mesh routine. Note that in BuildZPRmodel, the merge mesh routine is a simple 

function call since it was built using existing structures of UNIC. The input in Figure 5.13 is 

relatively straightforward indicating the geometry type (hexagonal) and the pitch. The second 

line is the most important as it specifies the number of user created mesh files and the size of 

the grid to form in the X and Y directions. The grid of XY positions follows the list of mesh 

file names where the numbers give the index number of each user mesh file. Note that this 

approach imposes the entire X-Y grid be given and that 0s be used to eliminate those 

positions where mesh placement is not desired. All of the user meshes except for the barrel 

(mesh files 1 and 2) are assumed to be centered about the origin. The barrel should be offset 

such that its selected position yields the desired result. 

Combined, these new tools required several months of development which could have 

alternatively been used on solver development. Regardless, we can now properly generate 

geometry and compositions for the ZPR calculations in addition to being able to generate 

geometries for heterogeneous geometries in both two- and three-dimensions. 

5.5 New Repository and Component Verification of UNIC 

The ongoing process of adding code verification also consumed some effort this year. In 

the FY2009 we setup the BuildBot tool [30] to carry out nightly regression tests for some 

basic parts and top-down tests for the PN2ND and SN2ND solvers. In FY2010, we extended 

the regression tests to include GaussLibrary, ElementLibrary, MeshSphere, NonZeroLibrary, 

along with BuildZPRmodel components and IsoNXS. We also added top down tests for the 

two-dimensional MOCFE solver and have started to develop tests for the three-dimensional 

MOCFE solver. These tests pointed out several minor mistakes throughout the various 

subroutines and functions which were updated as part of this work thereby making UNIC a 

more reliable tool. 

To carry out the development of the inline cross section generation, we must be able to 

merge and distribute the MC
2
-3 and UNIC tools. The rules for distributing MC

2
-3 have been 

well established such that it cannot be considered an open source or widely distributable 

software. With respect to the SHARP repository currently hosted by MCS to contain the 

UNIC and NEK codes, including a copy of MC
2
-3 would violate the outstanding prescribed 

export control rules assigned to MC
2
-3. To allow the inline cross section generation code to 

be developed, it was felt best to separate the developmental version of UNIC from the 

SHARP repository and create a new one hosted in a more secure and controlled location 

where MC
2
-3 can actually be stored. Because of the change in focus, we have also taken the 

initiative to include the legacy neutronics tools DIF3D and REBUS-3 into this repository to 

allow for a single development point of all SHARP related activity.  
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Figure 5.12. Example VHTR Mesh Built Using the New Merge Mesh Routine 
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degree symmetry 

Full core hexagonal VHTR 

Figure 5.13. Example Input Specification for Merge Mesh Routine in UNIC 

We have setup and currently have a Buildbot process performing tests not only on the 

UNIC code and its components, but also the legacy tools such as MC
2
-3. Although we do not 

have sufficient test problems for MC
2
-3 at this point, nor the inline cross section generation 

work, these will be incorporated as the development proceeds. To handle the export issues, 

MC
2
-3 will continue to be distributed through RSICC [21] and each working version of UNIC 

will be exported to the SHARP repository for use by the SHARP collaborators. Eventually we 

conceive of releasing UNIC through RSICC, but we do not currently have enough funding to 

support exporting a production quality tool. 

6 Verification and Validation Tests 

Consistent with the preceding years, a significant amount of time was spent in FY2010 

benchmarking the neutronics package of UNIC. This work still focuses primarily on fast 
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reactor technology given that the thermal reactor cross section processing involves a 

procedure much more complicated than the fast reactor procedure. Thus, we still expect a few 

years of development will be needed before a generic reactor modeling capability is ready 

within UNIC. 

6.1 Follow on Calculations of ZPR-6/6A 

The ZPR-6 Assembly 6A problem was pursued in FY2009 to prove that the second order 

methodology could be used on large heterogeneous benchmark problems. While we ideally 

would obtain more accurate solutions using the heterogeneous modeling than the 

homogeneous modeling, the inability to fully resolve the problem in space, angle, and energy 

prevents this from occurring. As a consequence, the focus on ZPR-6/6A was to understand the 

source of errors in the preceding year and try to do a better job on defining the input geometry 

and cross section data.  

One problem observed in the FY2009 work was an inaccurate eigenvalue result on the 

drawer homogenized model which we identified as an error in the anisotropic scattering data 

inputted into UNIC.  Table 6.1 gives the revised eigenvalue solutions which demonstrate the 

expected eigenvalue comparison to the reference VIM solution for the as built experimental 

configuration. In addition to resolving this issue, the simplified ZPR-6/6A problem was used 

to further investigate the scalability of the SN2ND solver. In the past couple of years the 

SN2ND solver methodology has been tested on several high performance computing 

machines. The previous weak angle scaling study carried out on BlueGene/P at Argonne 

National Laboratory was extended to 294,912 cores by using the Jugene super computer [24], 

which is essentially a larger version of Argonne’s BlueGene/P. Table 6.2 shows the updated 

weak scaling in angle and shows that SN2ND can achieve 76% scaling performance on a 

machine with the largest processor count in the world. 

Table 6.1. SN2ND Eigenvalue Error for the Drawer Homogenized ZPR Model 

Energy  

Groups 

Eigenvalue  

Error (pcm) 

9 26 

33 -15 

116 -16 

230 -15 

VIM 
0.99981 

±0.00025 

Table 6.2. Weak Angle Scalability of SN2ND on BlueGene/P (combined ANL and JSC) 

Total 

Cores 

4π 

Angles 

Total Time  

(sec) 

Weak 

Scaling 

32,768 32 579 100% 

73,728 72 572 101% 

131,072 128 581 100% 

163,840 160 691 84% 

294,912 288 763 76% 
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The simplified model was created because of the complicated geometry and meshing 

associated with being able to construct the input for the “as built” configuration. As stated, the 

consequence of this was further modification of the BuildZPRmodel code in FY2010 to better 

accommodate the needs of modeling a ZPR experiment. Before that work was finished, an 

attempt was made to model the as built configuration by manually setting up input for each 

individual drawer; a one month process. Figure 6.1 shows the flux and power solution such 

that the difficulties modeling the axial plate geometry, interleaved plates, are well displayed. 

  

Figure 6.1. ZPR-6/6A Fast Flux (left) and Power (right) 

Using this input geometry, a new study was carried out on the XT5 machine [23] where 

we used a maximum of 222,912 cores and over 0.6 trillion degrees of freedom. The intent was 

to assess the accuracy of the ZPR-6/6A model using the best possible space-angle-energy 

resolution in SN2ND. The additional fact that the geometry and cross section mapping were 

done by hand necessitated using a minimal (potentially erroneous) cross section generation 

procedure. With respect to the resolution, a maximum of 116 groups, a mesh with 50 million 

vertices, and a cubature with 432 angles were tested although not all are combined in one 

calculation. Table 6.3 shows the convergence behavior of the eigenvalue of SN2ND for two 

different meshes where 32 angles was used at the coarser mesh and 100 angles was used on 

the finer mesh, and Table 6.4 shows the eigenvalue convergence behavior with respect to 

angle using the 33 group cross section set. 

Table 6.3. SN2ND Eigenvalue Error (pcm) Energy Convergence for Two Different Meshes 

Mesh Vertices 

Millions 
9 group 33 group 116 group 

9.6  -761 -918 -973 

19.6  -709 -855  
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Table 6.4. SN2ND Eigenvalue Error (pcm) Angular Convergence 

Angles 
9.6 

million 

19.6 

million 

32  -937 -715 

72 -969 -752 

128 -951 -738 

200 -919 -709 

288 -888  

392 -860  

432 -814  

 

From Table 6.3, the change in energy yields significantly larger errors than that of the 

drawer homogenized model results in Table 6.1. Neither table shows a clear path to 

convergence with the angular variable clearly not converged in Table 6.4. A good mesh 

refinement study was not possible (we executed a single calculation with the 50,000,000 

vertex mesh) because of insufficient computing power (or lack of a good multigrid 

preconditioner). However, from the results displayed it is highly likely that mesh convergence 

has not been achieved. 

Although it is clear how much remaining error is present in the eigenvalue, we cannot get 

a sense of how much is derived from space, angle, and energy refinement. We must also 

concede that there can be errors resulting from the manual geometry creation, the simplified 

cross section generation methodology, and the fact that plate-by-plate cross section data may 

be completely unreliable at this point. From any viewpoint, this calculation gives a sobering 

assessment of the space-angle-energy requirements of an explicit geometry representation of a 

real reactor. Even if the above turns out to be an erroneous input specification, it is not clear 

whether detailed heterogeneous modeling of nuclear reactor calculations can be considered 

practical on the best HPC machines. While this was not unexpected, it is a motivation for 

building simplified neutronics modeling tools such as those studied in the NNR and NODAL 

as part of the SHARP effort. As a final note, similar to the BlueGene/P results, SN2ND 

displayed 75% weak scaling on 222,912 cores of XT5 and nearly identical strong scaling 

performance to that observed on BlueGene/P (+90%). 

6.2 Space-angle Convergence Study of PN2ND and SN2ND 

In the previous years we have observed several test problems with residual eigenvalue 

errors when compared with a comparable multi-group Monte Carlo reference solution (not 

obtained directly by ANL). One specific case was the Takeda benchmark series upon which 

rigorous mesh and angle refinement were required to resolve the eigenvalue error. To ensure 

that these errors are not systematic, additional work was carried out this year where 

composition and 9 group cross section data derived from the MONJU reactor was combined 

with the test geometries shown in Figure 6.2 in an attempt to simulate the problem 

experienced with the Takeda benchmarks. 
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Figure 6.2. Space-angle Mesh Convergence Study Test Problem 

In both test calculations, the inner hexagon is the same dimension of 11.594 cm and thus 

the large test has a larger fuel region around it. Table 6.5 gives the PN2ND eigenvalue results 

for several space-angle approximations on the small test problem while Table 6.6 and Table 

6.7 give the eigenvalue results for the large test problem with reflected and vacuum boundary 

conditions, respectively, where the reference solution is taken as the highest space-angle 

solution obtained for each problem. 

Table 6.5. PN2ND Results for the Small Test Model with Reflective Boundary Conditions 

PN Order 6 Tri/Assembly 24 Tri/Assembly 54 Tri/Assembly 96 Tri/Assembly 

3   - 0.00060 - 0.00058 

5  -0.00021 - 0.00015 - 0.00013 

7 - 0.00062 - 0.00014 - 0.00006 - 0.00004 

9 - 0.00061 - 0.00012 - 0.00003 - 0.00001 

11 - 0.00061 - 0.00011 - 0.00002 1.04134 

Table 6.6. PN2ND Results for the Large Test Model with Reflective Boundary Conditions 

PN Order 6 Tri/Assembly 24 Tri/Assembly 54 Tri/Assembly 96 Tri/Assembly 

1   - 0.00065 - 0.00065 

3  -0.00022 - 0.00020 - 0.00019 

5 - 0.00025 - 0.00008 - 0.00005 - 0.00005 

7 - 0.00023 - 0.00005 - 0.00002 - 0.00001 

9 - 0.00023 - 0.00005 - 0.00001 1.21363 

Table 6.7. PN2ND Results for the Large Test Model with Vacuum Boundary Conditions 

PN Order 6 Tri/Assembly 24 Tri/Assembly 54 Tri/Assembly 96 Tri/Assembly 

3    - 0.00093 

5   - 0.00076 - 0.00025 

7  - 0.00016 - 0.00011 - 0.00010 

9  - 0.00011 - 0.00005 - 0.00003 

11 - 0.00046 - 0.00009 - 0.00002 0.53573 
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For PN2ND, nearly full convergence is observed on three problems using a P11 angular 

approximation and 96 quadratic prismatic elements per assembly. The Monte Carlo 

multigroup eigenvalue for the small problem is 1.04129±0.00011 and is 1.21362±0.00012 for 

the large problem with reflected boundary conditions and 0.53587± 0.00011 with vacuum 

boundary conditions. In all three cases the PN2ND solver solutions are within the statistical 

error on the Monte Carlo solution and further space-angle mesh refinement is unnecessary. 

The comparable SN2ND solutions exhibit nearly identical results. From these results we see 

the typical convergence behavior observed on all of the homogenized fast reactor problems 

UNIC has been applied to thus far (ABTR, MONJU, ZPR, etc.) not only accounting for these 

9 group calculations, but also 33, 70, 116, and 230 group models. As a result, we can only 

conclude that the cross sections generated for the Takeda 4 benchmark are not likely to appear 

again for the fast reactor problems in the near future. 

6.3 ZPR-6 Assembly 7 Experiment 

The ZPR-6 Assembly 7 benchmark [25] was carried out immediately after the ZPR-6 

Assembly 6A experiment with the intention of studying plutonium core rather than uranium. 

Unlike the ZPR-6/6A work of last year, we were unable to use SN2ND on a full core 

heterogeneous model. While we were able to build the geometry with BuildZPRmodel, 

thereby greatly improving the modeling accuracy over the ZPR-6/6A model, we did not get 

enough large scale runs through the queue on BlueGene/P to provide any usable information 

at the time of this report. Because of the lower computing resource requirements, we were 

able to get the homogenized drawer models of the experiment executed and evaluated for four 

loadings of the ZPR-6/7 such that we compared UNIC results to foil measurements from the 

experiments.  

6.3.1 Slab Geometry Scoping Studies 

Rather than directly start solving the full core ZPR calculations we choose to do some 

studies on the slab geometry model to see how the cross section generation procedure impacts 

the accuracy of the result. The typical core drawer model for ZPR-6/7 is shown in Figure 6.3. 

 

Figure 6.3. Representative ZPR-6 Assembly 7 Core Drawer Layout  
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Given the BuildZPRmodel code in hand, the concept behind this work was to determine 

the best possible scheme to use inside of BuildZPRmodel for generating the slab geometry 

MC
2
-3 input data. The overriding goal of course is to do the best possible job of using UNIC 

and MC
2
-3 in calculating the foil reaction rates measured during the experiment. 

The first test considered the impact of smearing the plate masses guided by previous 

experience [26-27]. In the first approach, termed Model A, the plate dimensions and heavy 

metal compositions in the X direction are preserved with the extra (Y & Z directional) 

structural material added to the non-heavy metal plates according to their respective 

thicknesses. This model was used in the energy self-shielding part of MC
2
-3 while the 

geometry was modified in the spectrum calculation such that the heavy metal plate 

compositions are diluted to preserve the overall material balance in the three-dimensional to 

one-dimensional representative transformation. In the second approach, termed Model B, the 

modified geometry case was used in both calculation steps of MC
2
-3.  

The second test considered the same schemes but, during the generation of the one-

dimensional model, the impact of smearing steel in with the sodium (option 2) as opposed to 

the other steel materials (option 1) was studied. Table 6.8 shows the eigenvalue results for the 

combined set of tests for the primary core drawers of ZPR-6 Assembly 7. As can be seen in 

Table 6.8, the various alterations to the one-dimensional model have a relatively minor impact 

on the MC
2
-3 solution and there is a consistent deviation of ~200 pcm in the multiplication 

factor between 3-D and 1-D models. However, as discussed below, the 1D MC
2
-3 models 

appear to be adequate for generating mutigroup cross sections for full core calculations as far 

as the final group structure is sufficiently fine. 

Table 6.8. MC
2
-3 k results for a Single Fuel Drawer of the ZPR-6/7, Loading 104 

Drawer Master 577 (Representative High Pu240 Core Drawer) 

3-D MCNP Monte Carlo keff = 1.28313±0.00028 

1-D Monte Carlo 1-D MC
2
-3 

Option 1 Option 2 Option 1 Option 2 

1.28115±0.00017 1.28167±0.00020 
Model A Model B Model A Model B 

1.28445 1.28396 1.28451 1.28405 

Drawer Master 719 (Representative Normal Core Drawer) 

3-D MCNP Monte Carlo keff = 1.25742±0.00027 

1-D Monte Carlo 1-D MC
2
-3 

Option 1 Option 2 Option 1 Option 2 

1.25512±0.00019 1.25527±0.00018 
Model A Model B Model A Model B 

1.25877 1.25824 1.25859 1.25807 

6.3.2 Eigenvalue Results for the Homogenized Drawer Calculations 

The high Pu-240 cores of ZPR-6 Assembly 7 were set up and executed for the Loadings 

104, 106, 120, and 132. The intent was to see how well MC
2
-3 combined with SN2ND could 

perform for predicting the core reactivity and reaction rate distributions. Figure 6.4 shows the 

material configuration for all four loadings while Figure 6.5 shows some selected flux plots 

from the 70 group calculation of Loading 106. The specific details of each loading are 

detailed elsewhere [25,28] and are not reproduced here. It is noted that in the Loadings 106 

and 132 shown in Figure 6.4, four BeO drawers are loaded into the center of the core. These 
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BeO drawers were introduced to enhance the reactivity worth of the B4C simulated control 

rod that appears in the Loading 132. These drawers cause significant localized flux changes 

compared with drawers that do not contain the beryllium as evident in Figure 6.5. 

 

 

Loading 104 

 

 

Loading 106 

 

 

Loading 120 

 

 

Loading 132 

 

Figure 6.4. ZPR-6 Assembly 7 Loadings 104, 106, 120 & 132 
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Group 1 of 70 (10 MeV-14.19MeV) 

 
Group 15 of 70 (302 keV – 387 keV) 

 
Group 30 of 70 (7102 eV-9119 eV) 

 
Group 44 of 70 (214 eV – 275 eV) 

Figure 6.5. ZPR-6 Assembly 7 Selected Flux Plots for Loading 106 

For each plot in Figure 6.5, the right hand picture displays the face of the movable matrix 

half as viewed in Figure 6.4 while the left hand picture shows the flux solution for the active 

core portion of the stationary side (everything inside of the blankets). For the stationary side, 

we separated the high Pu-240 zone to display the axial flux solution along with the central 

BeO modified drawers such the axial flux variation can be observed. As can be seen, there is 

only a modest impact of having the BeO drawers at the higher energy levels and a modest 

impact on the unresolved resonance region. In the epithermal ranges we can observe a 

substantial peak in the flux solution due to the improved scattering source derived from the 

BeO drawers. Combined, these strong lower energy peaks are not properly handled by the 

one-dimensional single drawer model and are thus believed to cause various errors in the local 

reaction rates near the BeO plates. 

Table 6.9 summarizes the eigenvalue results for loading 104 which displays convergence 

with respect to energy, mesh, and angular cubature, along with the importance of anisotropic 

scattering. We also included the results obtained using PN2ND in diffusion theory (uses the 

transport cross sections provided by MC
2
-3). 
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Table 6.9. Eigenvalue Solutions for ZPR-6 Assembly 7 Loading 104 

Mesh 

Vertices 

Angular 

Cubature 

Scat. 

Order 

Number of Energy Groups 

9 33 70 116 230 

57,132 L3T3 P1 0.99676 0.99828 0.99905 0.99880 0.99905 

223,928 L3T3 P1 0.99845 1.00001 1.00080 1.00055 1.00081 

805,185 L3T3 P1 0.99854 1.00010 1.00089 1.00064 1.00090 

805,185 L3T3 P3 0.99888 1.00044 1.00123   

805,185 L5T5 P1 0.99853 1.00009 1.00088 1.00063 1.00089 

805,185 L5T5 P3 0.99887 1.00044 1.00122   

1,467,429 L3T3 P1 0.99855 1.00011 1.00090 1.00065 1.00092 

1,467,429 Diffusion P0 0.99911 1.00065 1.00145 1.00105 1.00130 

 

Hexahedral meshes were used for all of these calculations where the 57,132 vertex mesh 

is considered a test case since it uses linear hexahedral trial functions. The 223,928 vertex 

mesh assumes ~8 cm axial element sizes and one hexahedron per homogenized drawer. The 

805,185 vertex mesh also uses ~8 cm axial element sizes but it defines 4 hexahedrons per 

homogenized drawer which yields about a 9 pcm change in the eigenvalue compared with the 

223,928 vertex mesh. The 1,467,429 vertex mesh also uses 4 hexahedrons per homogenized 

drawer but it has a 5 cm axial mesh size which yields no significant improvement over the 

805,185 vertex mesh. In general, we can consider the 805,185 vertex mesh to be sufficiently 

mesh refined for our needs.  

The square Legendre-Tchebychev angular cubature was chosen for all of these 

calculations where L3T3 is roughly equivalent to a standard level symmetric S4 cubature (32 

versus 24 directions) and L5T5 is roughly equivalent to a S6 cubature (72 versus 48 

directions). From Table 6.9, there is virtually no impact of the angular cubature on the 

eigenvalue solution of this homogenized drawer problem, but there is ~40 pcm error 

associated with anisotropic scattering which is quite significant. We did not attempt using P5 

anisotropic scattering, but experience typically indicates that there is not much difference 

between P3 and P5 on these homogenized benchmark problems. The convergence with respect 

to energy is quite curious because the 70 group and 230 group solutions appear identical while 

the 116 group result would indicate that the 70 group solution should be less accurate. This 

might have something to do with the fact that the 70 group structure was optimized for fast 

reactor problems such as Loading 104 while the 116 and 230 group are simple equal lethargy 

approaches. 

Table 6.10 compares the 70-group eigenvalue results for all four loadings 104, 106, 120 

and 132 obtained with the most refined mesh and angle settings and P3 scattering with the 

MCNP solutions for the as-built core models. The measured reactivity values are also shown 

with the measurement uncertainty; the combined uncertainty due to geometry and 

composition uncertainties estimated for the Loading 99 was ~80 pcm. Note that we have been 

unable to execute the P3 116-group or 230-group calculations using the SN2ND solver due to 

memory limitations on BlueGene/P. 
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Table 6.10. UNIC and MCNP Eigenvalues for Loadings 104, 106, 120 and 132 

 Loading 104 Loading 106 Loading 120 Loading 132 

UNIC 1.00147 1.00134 1.00127 1.00016 

MCNP 
1.00016 

±0.00007 

1.00049 

±0.00007 

0.99967 

±0.00007 

1.00040 

±0.00007 

Measurement 
1.00072 

±0.00002 

1.00091 

±0.00003 

1.00099 

±0.00003 

1.00040 

±0.00002 
 * Measurement uncertainty only, excluding composition and geometry uncertainties 

 

As can be seen, the deterministic SN2ND results are generally higher than the MCNP 

calculations for all but the loading 132 calculation. However, it is noted that the MCNP 

solutions generally underestimate the core reactivity compared to the measurements while the 

UNIC solutions overestimate them. For all the four core loadings analyzed, the UNIC 

predicted the core reactivity within 1-σ (standard deviation) of the estimated experimental 

uncertainty (~80 pcm). This result is comparable to the accuracy of MCNP solutions; the 

UNIC solutions deviated from the measured values by 75, 43, 28 and -24 pcm for the 

Loadings 104, 106, 120, and 132, respectively, while the corresponding deviations of MCNP 

solutions were -56, -42, -132, and 0 pcm. 

6.3.3 Foil Results for the Homogenized Drawer Calculations 

As mentioned, the goal for this year was to compare the UNIC+MC
2
-3 calculations 

directly with the experimental foil measurements. The foil measurements were analyzed for 

the four loadings, but we discuss in this report only the results for the Loadings 104 and 106, 

since the results for the Loadings 120 and 132 were very similar to those of the Loadings 104 

and 106, respectively.  

Four types of foils were used to measure relative reaction rates: enriched uranium (EU) 

foils to measure 
235

U fission rates; depleted uranium foils to measure 
238

U capture and fission 

rates; and two types of plutonium (Pu) foils to measure 
239

Pu fission. These foils were placed 

in 2-in. square packets in the fronts of the drawers of the stationary half between the Fe2O3 

plate and the fuel plate on the left side of the drawer (see Figure 6.3) as one faces the front of 

the drawer from a position between the halves. Figure 6.6 shows the positions of the foils 

within the packets and the positions of the packets in the core for the foil irradiations. Each 

packet consisted of the four foil types sandwiched between 1-mil aluminum and 1-mil 

stainless steel squares on both sides of the packet. 

For the foil reaction rate calculations, the flux values of each foil were determined by 

superimposing the plate-wise flux shapes from MC
2
-3 onto the global flux solution from 

UNIC. The reaction rates were calculated by combining these flux values with the 230-group 

homogenized drawer cross sections of MC
2
-3. The calculated results are compared with the 

experimental measurements in Table 6.11. As can be seen, the results for the Loading 104 are 

in good agreement with the measurements, considering the experimental uncertainties: 1.6% 

for EU fission, 2% for DU capture, 2.8% for DU fission, and 1.5% for Pu fission. However, it 

is noted that the EU fission and DU capture rates of the Loading 106 show significant errors 

near the BeO drawer locations (i.e. small Y values).  
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Figure 6.6. Foil Locations in the ZPR-6 Assembly 7 High 
240

Pu Loadings 

Table 6.11. Foil Reaction Rate Comparisons for Loading 104 and 106 (C/E-1 in %) 

 

Y (cm) 

Loading 104 Loading 106 

EU (f) DU (c) DU (f) Pu (f) EU (f) DU (c) DU (f) Pu (f) 

3.61 2.34 -1.21 2.42 2.85 -4.58 -16.61 1.93 -1.96 

4.25 2.61 0.40 0.50 3.43 -1.31 -9.95 -1.23 0.95 

5.52 2.67 1.45 0.40 3.03 -0.55 -6.03 -0.79 1.38 

6.79 2.67 1.47 1.36 2.93 -0.34 -4.69 -0.10 1.30 

7.42 2.58 0.32 2.28 2.43 -0.17 -4.05 0.96 0.69 

9.13 2.16 0.28 3.08  0.22 -2.44 2.29  

9.77 2.40 1.35 1.89 2.49 0.81 -2.38 1.24 1.78 

11.04 2.27 1.69 1.31 2.07 0.92 -0.77 1.07 0.97 

12.31 1.86 1.17 1.83  0.30 -1.22 1.16  

12.94  0.45 3.28   -1.07 2.64  

14.65  -1.43 3.48   -1.62 2.98  

15.29 1.48 0.85 2.29  0.53 -0.32 1.69  

16.56 1.59 1.21 1.63 1.62 0.57 0.17 1.05 0.41 

22.08 1.93 1.72 1.75 2.31 0.60 0.83 1.70 0.66 

27.6 1.98 0.63 3.19 2.21 1.31 0.31 2.81 1.32 

33.12 1.99 0.27 2.70 2.15 1.73 1.16 2.52 1.02 

44.16 1.56 -1.07 2.39 1.69 0.81 -0.52 1.63 1.01 

55.19 1.79 0.56 1.51 0.99 1.19 0.91 0.89 1.08 

66.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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The presence of the BeO drawers introduces a strong tail in the epithermal neutron flux as 

displayed in Figure 6.5. The calculated foil reaction rates in Table 6.11 are not satisfactory, 

and we investigated whether space-angle-energy refinement in UNIC was the source of error. 

Comparison of predicted foil measurements for several different mesh, angle, and energy 

structures revealed only a minor dependence (second significant digit) on the predicted foil 

measurements. As a consequence, we are left with the cross section generation procedure 

which uses drawer-wise slab lattice calculations in MC
2
-3. Basically, the single drawer MC

2
-3 

model with reflective boundary conditions is not able to account for the spectral interactions 

between the fuel drawer and the BeO drawer, and thus introduces significant errors in the 

cross sections for the resolved resonance range. The ideal way to handle this in MC
2
-3 is to 

utilize a two-dimensional (or three-dimensional) model which we were unable to complete 

this year because of unanticipated delays in the MOCFE solver development.  

6.3.4 Follow on Work to Investigate the BeO Related Errors 

Because UNIC has a general unstructured mesh capability, the drawer homogenized 

model of the Loading 106 was modified to include the BeO plates heterogeneously in the 

domain. The purpose was to see how much of the error was caused by smearing the BeO 

plates with the fuel and other plates in the drawer. The updated reaction rate predictions are 

shown in Table 6.12. 

Table 6.12. Foil Reaction Rate Comparisons for Loading 106 with Explicit BeO Plates 

Y (cm) 
Heterogeneous BeO Ring 

EU (f) DU (c) DU (f) Pu (f) 

3.61 3.46  -11.12 -0.79 -0.32 

4.25 5.46  -5.29 -3.19 2.32  

5.52 4.26  -2.73 -2.17 2.37  

6.79 3.24  -2.30 -1.65 2.10  

7.42 2.88  -2.04 -0.59 1.42  

9.13 2.18  -1.22 1.09   

9.77 2.47  -1.39 0.24  2.44  

11.04 2.12  -0.11 0.46  1.68  

12.31 1.14  -0.81 0.86   

12.94  -0.75 2.45   

14.65  -1.49 2.93   

15.29 0.87  -0.24 1.66   

16.56 0.79  0.17  1.02  1.29  

22.08 0.50  0.65  1.45  1.49  

27.60 1.13  0.08  2.46  1.92  

33.12 1.54  0.94  2.19  1.56  

44.16 0.67  -0.66 1.35  1.43  

55.19 1.13  0.85  0.70  1.28  

66.23 0.00  0.00  0.00  0.00  
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Comparison of Table 6.11 to Table 6.12 shows a marginal improvement in the Loading 

106 foil measurement predictions. Here we note that in addition to the higher U-238 capture 

rates, there is an obvious increase in U-235 fission rates, both of which confirm the suspected 

spectral shift to a softer spectrum near the core central region. 

Continuing, we also considered errors derived from the foil cross sections themselves. For 

example, instead of using drawer homogenized cross sections for U-235, U-238 and Pu-239 to 

calculate the foil reaction rates, MC
2
-3 was used to generate infinite dilute cross sections for 

all relevant isotopes and flux peaking factors at foil locations inside the slab geometry models. 

These were used with UNIC solutions for homogenized drawer models to calculate foil 

reaction rates through a flux reconstruction procedure. In addition, another model in which all 

foil types were homogenized inside the 2x2 inch foil packet was used to generate the 

necessary cross sections and flux peaking factors in an explicit slab model of the foils. Again, 

foil reaction rates were reconstructed using UNIC fluxes. The results for U-238 capture for 

these two cases are summarized in Table 6.13. 

Table 6.13. U-238 Capture Foil Reaction Rate Comparisons for Loading 106 with Modified 

Foil Cross Section Models 

 

Y (cm) 

Foil Cross Sections Model 

Homogenized 

Drawer Cross  

Sections 

Infinite Dilute 

Cross Sections 

All Foils 

Homogenized 1-D  

Drawer Model 

3.61 -11.12 33.25 5.97  

4.25 -5.29 35.50 10.01  

5.52 -2.73 30.00 3.46  

6.79 -2.30 24.08 2.49  

7.42 -2.04 21.56 2.08  

9.13 -1.22 16.26 1.78  

9.77 -1.39 14.15 1.11  

11.04 -0.11 12.43 1.89  

12.31 -0.81 9.14 0.33  

12.94 -0.75 8.17 0.29  

14.65 -1.49 5.21 -0.38 

15.29 -0.24 5.87 1.08  

16.56 0.17  5.21 0.92  

22.08 0.65  3.15 1.56  

27.6 0.08  2.75 1.44  

33.12 0.94  3.35 1.85  

44.16 -0.66 1.62 0.65  

55.19 0.85  3.04 2.07  

66.23 0.00  0.00 0.00  
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Because infinite dilute cross sections do not account for any resonance self-shielding 

effects, U-238 capture is obviously over predicted and we obtain much worse results. On the 

other hand, when the foils were homogenized together inside the foil packet we see an 

improved comparison with the experimental results except for the first two positions closest to 

the modified BeO drawers. However, it should be noted that the foil homogenization strategy 

is somewhat arbitrary. 

As mentioned, all of this work was done to determine the sensitivity of the foil reaction 

rates with regard to the cross section process algorithm. In most cases we observed relatively 

minor dependence on the space-angle-energy approximation incorporated in UNIC and a 

minor but important dependence on the method used to obtain the foil cross sections. In the 

coming year we hope to implement the MOCFE solver capability within MC
2
-3 such that we 

can further research the source of these errors and thereby at least improve the existing 

homogenization methodologies. 

7 Conclusions 
A considerable amount of work was done on UNIC and the supporting tools surrounding 

it. Specifically, we investigated large scale heterogeneous calculations using the SN2ND 

solver and started the work required to build a multigrid preconditioner. Additional 

development time was spent on the MOCFE solver to resolve outstanding issues with the 

parallel algorithm along with improving the reliability of the solver. Finally, we spent a 

considerable amount of time creating a new tool, BuildZPRmodel, to assist in the analysis 

work being carried out on the ZPR experiments. With these tools, we performed detailed 

calculations on the ZPR-6/6A and ZPR-6/7 experiments, providing comparisons of predicted 

versus experimental foil activation on the latter. 

Additional studies using SN2ND on ZPR-6/6A indicated 76% weak scaling in angle on 

294,912 cores of the BlueGene/P machine and 75% weak scaling in angle on 222,912 cores of 

XT5. In the previous year we demonstrated strong scaling in space (without multigrid) at 80% 

or higher and strong scaling in angle at ~70%. While we could not fully resolve the ZPR-6/6A 

problem, the general conclusion is that the methodology of SN2ND can legitimately be used 

to solve heterogeneous problems such as ZPR and other comparable fast reactor problems.  

As a consequence, a new revision of the SN2ND was started this year to accommodate a 

multigrid preconditioner which is the only way to achieve good performance on the large 

spatial meshes needed for the heterogeneous problems. While the space-angle-energy 

requirements of such calculations do not appear to be practical on the best HPC machines 

today, the next generation machine might prove to have the necessary computing capability to 

facilitate such heterogeneous calculations. While this was not unexpected, it is a motivation 

for building simplified neutronics modeling tools as part of the SHARP effort such as 

NODAL and those studied in the NNR. With these tools we can not only support the routine 

research needs of existing reactor analysis, but we can also explore the high end modeling 

capabilities that HPC machines offer. 

From the preceding discussion on SN2ND, it should be clear that not all goals set out for 

FY2010 were accomplished. Most important of these of course is the multigrid preconditioner 

capability of the SN2ND such that UNIC can facilitate solving large heterogeneous problems 

such as ZPR-6/6A and ZPR-6/7. While we believe that we have identified a viable multigrid 

strategy using linear tessellation followed by algebraic multigrid and have setup the 



 FY2010 Status Report on Advanced Neutronics Modeling and Validation 
66  September 15, 2010 

ANL-GenIV-149 

appropriate mapping functions within UNIC, we were unable to fully implement the scheme 

in a usable version of SN2ND this year. Thus we can expect to dedicate some time to that 

work in the next year. 

The MOCFE solver does not have as clear of a path to scalability as the SN2ND solver. 

As an example, a multigrid preconditioner in SN2ND is straightforward because the system of 

equations can be progressively broken down into energy, angle, and space. With respect to 

space, SN2ND requires a preconditioner which is diffusive-like and very amenable to 

conventional multigrid techniques, although we note that very few specific multigrid 

applications have been applied to date on the SN2ND related system. With MOCFE, we do 

not have a clear multigrid strategy and, to be honest, we do not even have a good starting 

point for a preconditioner. Combining this with the fact that the coefficient matrix application 

(A·x) is not easily scalable, as discussed and demonstrated in this report, the MOCFE 

development path is much more difficult than SN2ND.  

Nevertheless, in FY2009 we focused a considerable amount of effort rebuilding the initial 

MOCFE solver into a form which obeys the basic requirements of a scalable algorithm: 

memory and communication per process must scale. In FY2010 we identified and resolved 

several issues with parallel ray tracing and developed a scalable back projection methodology. 

As discussed, the three-dimensional back projection algorithm is an approximation to the true 

system and we were unable to test out the approach with respect to accuracy or scalability. 

Overall, the FY2010 research on MOCFE indicates that there is a considerable amount of 

work left to ensure a load balanced coefficient matrix-vector operation in addition to a 

memory tolerable ray tracing algorithm which will continue into the next year. Assuming that 

these tasks are fixable, we then have the arduous task of identifying and implementing an 

appropriate preconditioner for the MOCFE solver. 

The NNR project was merged in with the SHARP project this year thus necessitating 

some rethinking of the project goals of both. Both approaches have good ideas with regard to 

performing reactor analysis on the respective targeted reactor types. To partially fulfill the 

need to carry out fast reactor analysis using existing methodologies, we spent some time this 

year developing NODAL. The primary focus was to identify an acceptable preconditioner for 

the resulting discretized equations which we believe we accomplished. In the coming years 

we can expect to incorporate the best parts of both SHARP and NNR and create a set of 

higher accuracy tools which can meet both thermal and fast reactor analysis needs. 

The BuildZPRmodel tool started in the previous year required a considerable amount of 

follow-on work because of the ZPR-6/7 related studies. The primary enhancements are the 

ability to create input files for cross section generation and connecting the cross section data 

with the materials used in the homogenous model (whether it is drawer-wise or plate-by-

plate). This tool was exclusively used to create the input for the drawer-wise homogenized 

SN2ND calculations of ZPR-6/7 and the associated foil activation comparisons. The addition 

of a “solution along a line” analysis capability greatly simplified that effort as discussed in the 

report. BuildZPRmodel was also used to create a plate-by-plate model of ZPR-6/7 and some 

test calculations were performed, but there are insufficient results to warrant inclusion in this 

report. We fully expect to revisit both ZPR-6/7 and ZPR-6/6A in the coming years with any 

new improvements to SN2ND and MC
2
-3 to try and resolve the outstanding issues with both 

accuracy and performance discussed in this report. 
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The most important work done this year was the ZPR-6/7 benchmarking work. Unlike the 

previous years, we focused a considerable amount of effort this year to not only verify the 

eigenvalue answer, but also the flux solution using the foil measurements taken during the 

experiment. We carried these calculations out using drawer-wise homogenized models of 

ZPR-6/7 and, as part of a scoping study, a partially dehomogenized model (explicit BeO 

plates). For the ZPR experiments that have conventional fast reactor materials (i.e. Loadings 

104 and 120), we observed rather accurate solutions using UNIC. For all the four core 

loadings analyzed, the core reactivity was predicted within 1-σ (standard deviation) of the 

estimated experimental uncertainty (~80 pcm), including the geometry and composition 

uncertainties. This result is comparable to the accuracy of MCNP Monte Carlo solutions. For 

the Loadings 104 and 120 of conventional fast reactor compositions, the calculated reaction 

rate distributions agreed well with the foil activation measurements within 1- to 2-σ of the 

measurement uncertainties. However, for the Loadings 106 and 132 containing BeO plates, 

the cross section generation methodology proved to be insufficient and thus more than 3-σ 

deviations were observed for the depleted uranium capture reaction rates near the BeO plates. 

With time these issues should be addressed by adding the two- or three-dimensional modeling 

capabilities of MOCFE to MC
2
-3. 

As a final note, an additional mesh merging function was added to UNIC to facilitate the 

unstructured mesh capability added to BuildZPRmodel and address the outstanding mesh 

generation issues with CUBIT. The MOCFE scaling studies made heavy use of this tool and 

we can expect that to continue unless the mesh related problems are addressed. 
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