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SUMMARY 

A change in focus of NEAMS to a broader set of reactor types necessitated significant 
effort being diverted away from SN2ND development in FY2011. Nevertheless, significant 
gains were made with regard to building the new preconditioner and meeting the objectives of 
1) parallelism in energy, 2) a spatial multigrid concept, 3) using SN vector spaces to 
accommodate the adjoint and time dependent functionalities needed for NEAMS work, and 4) 
complete manuals and documentation. While the desired goal of an exportable SN2ND solver 
usable within the NEAMS community for neutronics analysis was not completed, we can be 
confident that this year’s work puts the SN2ND solver well on its way to meeting that 
objective. It is important to note that SN2ND is just as capable as any other methodology for 
doing thermal reactor analysis, but the motivation to execute on smaller scale machines has 
initiated focused development on simplified treatments such as those proposed in the 
MOCARV tool. 

All of the cited coding tasks were completed but not all are fully working (i.e. debugged). 
The spatial multigrid technique was by far the most time consuming part of the SN2ND 
development process. It required multiple new data structure concepts along with identifying 
the necessary changes in the vectors and their associated functions. Combining the spatial 
multigrid as part of a GMRES preconditioner operating on the full vector space, necessary for 
parallelization in energy, increased the complexity of that development. Research into spatial 
multigrid techniques for unstructured meshes, void treatments, and code optimization and 
acceleration are key development needs for SN2ND. 

Similar to previous years, a considerable amount of effort was spent on validation work. 
Again we focused on fast reactor problems such as ZPR experiments and the MONJU reactor 
in Japan. Conventional drawer homogenized models and partially heterogeneous models were 
used on the ZPR calculations. The drawer homogenized models produced excellent results for 
both eigenvalue and foil measurements on four loadings of ZPR-6/7. The partially 
heterogeneous models of ZPR-6/7 also produced good results, but additional work is 
necessary to generate consistent effective cross section data. Calculations for MONJU were 
homogeneous and also gave excellent results. 

Finally, mock-up heterogeneous calculations were setup and attempted to scope out the 
performance limitations of SN2ND on whole core heterogeneous calculations. Specifically, 
heterogeneous models of a PWR, a VHTR, and the MONJU reactor were created using 
anywhere from 2 group to 33 group cross section data. Meshes with greater than 100,000,000 
vertices are necessary for accuracy and a specific non-scaling memory issue in PETSc 
restricted the SN2ND modeling (VHTR and PWR could not be solved). All of the 
calculations performed this year indicate that significant computational resources beyond 
those available today are required to obtain a high fidelity solution possible with SN2ND. 

The future goals for SN2ND are to get the new version fully working, reliable in 
execution, and to have comparable performance to the old solver such that it can be released 
within the NEAMS community. After its export to RSICC, we will rely upon further 
preconditioner research to be done in collaboration with university partners and through the 
exascale hub activities. Some of that research will focus on making SN2ND applicable to 
thermal reactor problems, spatial multigrid, and void treatments. 
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1 Introduction 
As part of the NEAMS activity in DOE, a fast reactor simulation program was launched in 

April 2007, termed SHARP [1]. The goal of SHARP was to develop a suite of modern 
simulation tools specifically for the analysis and design of sodium cooled fast reactors and has 
been extended to consider all reactor types of interest. The basic goal is to reduce the 
uncertainties and biases in various areas of reactor design activities by providing enhanced 
prediction capabilities. For the fast reactor component, a high-fidelity deterministic neutron 
transport code named UNIC [2-3] was started providing a common framework for fast reactor 
neutronics tools.  

The application scope targeted for UNIC ranged from the homogenized assembly 
approaches prevalent in current reactor analysis methodologies to explicit geometry, time 
dependent transport calculations coupled to thermal-hydraulics and structural mechanics 
calculations for reactor accident simulations. The creation of a single solver that can perform 
all of these calculations and be competitive with the wide range of analysis tools already in 
use is somewhat formidable. Given the large assortment of transport solvers capable of 
treating the assembly homogenized, if not pin-cell homogenized geometry, the initial focus of 
UNIC was to create a single interface appropriate for the multi-physics (structural mechanics 
and thermal-hydraulics) coupling problems of immediate interest that are beyond the 
modeling capabilities of the existing tools.  

Given the widened scope of reactor types and the differences associated with cross section 
processing [4,5], a single neutronics code is not practical and thus development on UNIC as a 
single entity has ended. Instead, the individual solvers developed thus far: SN2ND, PN2ND, 
MOCFE, and NODAL have been separated such that they can be incorporated in the specific 
end use reactor projects they are being developed for. Given that the analysis objectives for 
fast and thermal reactor systems are similar, we term the analysis usage of the different 
components as PROTEUS. In this report we discuss the development made to the SN2ND and 
the PROTEUS (MC2-3 [5-6] + SN2ND) usage on modeling a ZPR experiment and the 
MONJU fast reactor. 

This report is organized into three sections. Section 2 discusses the work carried out on 
improving the SN2ND solver algorithm which incorporates parallelism in energy and spatial 
multigrid concepts. Section 3 summarizes the validation calculations with PROTEUS on 
several fast reactor problems in addition to some full core heterogeneous models of thermal 
reactors. Section 4 discusses the ongoing effort to publicize the work being done at ANL for 
NEAMS. 

2 Development Efforts on the SN2ND Solver 
The SN2ND solver was originally started in the middle of FY2007. It can be safely stated 

to be the only successful solver created within UNIC with respect to massive parallelism and 
performance. The achievements of SN2ND were made possible by partitioning the space-
angle system of equations over the available processors and utilizing established iterative 
solution techniques from the neutron transport community combined with the parallel 
algorithms in the PETSc toolbox [9]. Improvements were made in FY2009 and FY2010 with 
respect to performance and the stated goal in FY2010 was a complete rebuild of SN2ND 
including: 1) parallelism in energy, 2) a spatial multigrid concept 3) SN vector spaces to 
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accommodate the adjoint and time dependent functionalities needed for NEAMS work, and 4) 
complete manuals and documentation. The obvious goal is an exportable product usable 
within the NEAMS community for neutronics analysis through RSICC [19]. 

2.1 SN2ND Transport Discretization Review 
The desire to implement all of the stated features required significant changes in the setup 

of the SN2ND solver such that the FY2011 work was a “rewrite.” To begin, we revisit the 
even- and odd-parity within-group transport equations 

,
ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ) ( , )g t g g g gr r r W r S rψ ψ− + + +Ω ⋅∇ Ω + Σ Ω = Ω + Ω

       (2.1) 

,
ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ) ( , )g t g g g gr r r W r S rψ ψ+ − − −Ω ⋅∇ Ω + Σ Ω = Ω + Ω

      , (2.2) 

where ˆ( , )g rψ ± Ω
  is the even (+) and odd (-) parity flux, ˆ( , )gW r± Ω

  is the within-group 

scattering source, and ˆ( , )gS r± Ω
  is the out of group scattering and fission sources. The primary 

focus of the SN2ND derivation is to recast these two first-order equations into a second-order 
equation for the even-parity flux with the form [2]: 

, , , , , , ,,e g e g e g e g e g e g e g es A s s BCψ ψ+ ± + + − Τ = − − +     .  (2.3) 
Equation 2.3 is assembled over each finite element (e) in the domain and all angles in the 
cubature yielding a symmetric positive-definite coefficient matrix ,g eA  that is solvable using 
the efficient conjugate gradient (CG) algorithm as discussed previously [2]. 

Focusing on the impact of including parallelism in energy, we must expand the sources on 
the right hand side of equations 2.1 and 2.2 to show the group to group scattering sources 

, ' '
'

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ') ( , ') ( , )g t g g gg g g
g

r r r W r r Q rψ ψ ψ− + + + +Ω ⋅∇ Ω +Σ Ω = Ω⋅Ω Ω + Ω∑
        (2.4) 

, ' '
'

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , ') ( , ') ( , )g t g g gg g g
g

r r r W r r Q rψ ψ ψ+ − − − −Ω ⋅∇ Ω +Σ Ω = Ω⋅Ω Ω + Ω∑
       . (2.5) 

The second equation is solved for the odd-parity flux 

' '
', ,

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ') ( , ') ( , )
( ) ( )g g gg g g

gt g t g

r r W r r Q r
r r

ψ ψ ψ− + − − − 
Ω = − Ω⋅∇ Ω + Ω⋅Ω Ω + Ω Σ Σ  

∑
    

  . (2.6) 

Spatial weighting and integration yields 

, 1
, , , , ', ', ,

', , ,

ˆ 1 1ˆ( )K n
g e n K g e n n gg e g e g n

gt g t g t g

F U Y Qψ ψ σ− − + − − −
−

Ω
= − + Ω Φ +

Σ Σ Σ∑ . (2.7) 

Substitution into equation 2.4 followed by spatial weighting and integration gives 

, ,
, , , , , , , , ', ', , ,

, ', ,

, ,
, ', ', , , ,

', , , ,

ˆ ˆ
ˆ( )

ˆ ˆ
ˆ( ) 0

K n L n
e K L t g e e g e n g e n n gg e e g e e g e n

K L gt g e

K n K nT T
e K n gg e g e e K g e n

K g Kt g e t g e

P F BC Y F F Q

U Y U Q

ψ σ

σ

+ + + +
+

− − −
−

 Ω Ω
+Σ + − Ω Φ − 

Σ  

Ω Ω
− Ω Φ − =

Σ Σ

∑ ∑

∑ ∑ ∑
, (2.8) 
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, ,g e nBC  stands for the boundary condition modifications that are applied to each finite element 
in the domain. Equation 2.8 reduces to the form shown earlier in equation 2.3, but for energy 
parallelism we find 

, , , , ', , ' ', , , ' , , ', , , ' ', , ' , , , , , ,
', ' ', '

g e n g e n gg e n e g e n n g e n gg e n n g e n e g e n g e n g e n
g n g n

A W F K W F Q K Qψ ψ ψ+ + + − − + −− + = +∑ ∑ , (2.9) 

to be more convenient. In equation 2.9, we have defined 

, ,
, , , , , , , ,

, , ,

ˆ ˆ
K n L n

g e n e K L t g e e g e n
K L t g e

A P F BC
Ω Ω

= +Σ +
Σ∑ , (2.10) 

', , , ' ', ' '
ˆ ˆ( ) ( )T

gg e n n n gg e n nW Y Y wσ± ±
± ±= Ω Ω ,  (2.11) 

,
, , ,

, ,

ˆ
K n T

g e n e K
K t g e

K U
Ω

=
Σ∑ ,  (2.12) 

The odd-parity transport equation, equation 2.6, can also be written in a discrete form 

, , , , , , ', , , ' ', , ' ,
', ', ,

1 1
g e n g e n g e n gg e n n g e n g n

g nt g t g

L W Qψ ψ ψ− + − − −= + +
Σ Σ∑ . (2.13) 

, 1
, , ,

, ,

ˆ
K n T

g e n e e K
t g e

L F U−Ω
=
Σ

,  (2.14) 

Assembling the even-parity equation by direction we obtain 

, ,1 , ,1,1 , ,1, , ,1 , ,1 , ,1,1 , ,1 , ,1, , ,1

, , ,1 , , , , , , , , , , , ,1 , , , , , , ,

', ,1,1

g e gg e e gg e N e g e g e gg e g e gg e N g e

gg e N e g e N gg e N N e g e N g e N gg e N g e N gg e N N g e N

gg e

A W F W F K W K W
W F A W F K W K W

W

ψ ψ
ψ ψ

+ + + − − −

+ + + − − −

       − −
−       − −              

− ', ,1, ', ,1 , ,1 ', ,1,1 , ,1 ', ,1, ', ,1

' '', , ,1 ', , , ', , , , ', , ,1 , , ', , , ', ,

0
0

e gg e N e g e g e gg e g e gg e N g e

g g g ggg e N e gg e N N e g e N g e N gg e N g e N gg e N N g e N

ge

e

F W F K W K W
W F W F K W K W

QF
F

ψ ψ
ψ ψ

+ + + − − −

+ + + − − −
≠ ≠

       
−       

              

 
=  
 

∑ ∑

, ,1, ,1 , ,1

, ,, , , ,

0
0
g ee g e

g e Ng e N g e N

K Q
KQ Q

+ −

+ −

    
−    

       

 

We write this compactly as  
, , , , ', ', ', ', , , ,

' '
gg e g e gg e g e gg e g e gg e g e e g e g e g e

g g g g
A A A A F Q K Qψ ψ ψ ψ++ + +− − ++ + +− − + −

≠ ≠

+ + + = +∑ ∑ , (2.15) 

, ,1 ', ,1,1 ', ,1,
', '

, , ', , ,1 ', , ,

0 0
0 0
g e gg e gg e N e

gg e gg
g e N gg e N gg e N N e

A W W F
A

A W W F
δ

+ +
++

+ +

    
= −     

     
, (2.16) 

, ,1 ', ,1,1 ', ,1,
',

, , ', , ,1 ', , ,

0
0
g e gg e gg e N

gg e
g e N gg e N gg e N N

K W W
A

K W W

− −
+−

− −

  
= −   

    
.  (2.17) 

 
Assembling the odd-parity equation by direction we have 
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1 1 1 1
, , ,1,1 , , ,1, , ,1 , ', ,1,1 , ', ,1, ', ,1

1 1 1 1
, , , ,1 , , , , , , , ', , ,1 , ', , , ', ,

t g gg e t g gg e N g e t g gg e t g gg e N g e

t g gg e N t g gg e N N g e N t g gg e N t g gg e N N g e N

I W W W W
W I W W I W

ψ ψ
ψ ψ

− − − − − − − − − −

− − − − − − − − − −

      −Σ −Σ −Σ −Σ
+     −Σ −Σ −Σ −Σ           '

, ,1 , ,1 ,11
,

, , , , ,

0
0

g g

g e g e g
t g

g e N g e N g N

L Q
L Q

ψ
ψ

≠

+ −
−

+ −


 
 

    
+ = Σ    

        

∑
  

which we can write compactly as 
1

, , ', ', , , ,
'

gg e g e gg e g e gg e g e t g g
g g

A A A Qψ ψ ψ−− − −− − −+ + − −

≠

+ + = Σ∑ ,  (2.18) 

, ,1,1 , ,1,
', , '

, , ,1 , , ,,

0 1
0

gg e gg e N
gg e g g

gg e N gg e N Nt g

W WI
A

W WI
δ

− −
−−

− −

  
= −    Σ     

,  (2.19) 

, ,1
',

, ,

0
0
g e

gg e
g e N

L
A

L
−+  

=  
 

.  (2.20) 

Partitioning equations 2.15 and 2.18 over a given group we can write 

,, , , ', ', ', ,
1

' ,, , , ', ', ,00
e g egg e gg e g e gg e gg e g e g e

g g t ggg e gg e g e gg e g e g e

F KA A A A Q
A A A Q

ψ ψ
ψ ψ

++ +− + ++ +− + +

−−+ −− − −− − −
≠

          
+ =          Σ                   
∑ , (2.21) 

or more simply 
, , ', ', , ,

'
gg e g e gg e g e g e g e

g g
A A B Qψ ψ

≠

+ =∑ .  (2.22) 

We can partition equation 2.22 over energy and define 

11, 1 , 1, 1, 1,

1, , , , ,

0
0

e G e e e e

G e GG e G e G e G e

A A B Q
A A B Q

ψ
ψ

       
=       

       
,  (2.23) 

which can be written compactly as 
e e e eA B Qψ = .  (2.24) 

Equation 2.24 is only valid for a single element and we must treat the even-parity flux in a 
continuous form and the odd-parity flux in a discontinuous form. To do that, we add mapping 
functions from an assembled vector to the element-wise quantities. For the discontinuous odd-
parity vectors the element wise contributions are mapped in a non-overlapping way. 

, , , , , , , ', , , ', , ',

', , , , , , , ', , ',

, , , ,

, ,

0

0

T T T T
e gg e e e gg e e g e gg e e e gg e e g e

T T T
g ge gg e e e gg e e g e gg e e g e

T
e e e g e e

e t

A A A A
A A A

F K

ψ ψ
ψ ψ

++ +− + ++ +− +
+ + + − + + + −

−+ −− − −− −
≠− + − − − −

+ + −

−

       Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ
+       Ξ Ξ Ξ Ξ Ξ Ξ              

Ξ Ξ Ξ
=

Ξ Σ

∑

1
,

g
T

g e g

Q
Q

+

− −
−

   
   Ξ      

, (2.25) 

Summing this equation over all elements in the domain will generate a complete system 
which we denote compactly as 

A QΨ = ,  (2.26) 
The purpose of the SN2ND solver is to obtain time dependent, adjoint, and steady state 

eigenvalue solutions. In this context, equation 2.26 specifies a fixed source formulation which 
we can use as a starting point for its wider application needs. As an example, the power 
method typically used for obtaining the steady state eigenvalue and eigenvector can be written 
as 
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1 1 11 1 1 1i i
iA X Q A Q Q XA Q

k k k k
− + −Ψ = Ψ = ↔ Ψ = → =  (2.27) 

where X  represents the fission source operator. In this case k  and Q  are the fundamental 
eigenvalue and eigenvector which is all that is desired for most steady state calculations. As 
seen in equation 2.27, the power method is an iterative technique used to generate the 
fundamental eigenvalue and eigenvector, where the additional equation 

1
1 1

1

i
i i

i

Q
k k

Q

+

+ = ,  (2.28) 

is used to update the eigenvalue and complete the system. 

2.2 SN2ND Transition to a GMRES Based Solution Algorithm 
Given that A  is large and it is not practical to construct its inverse; an iterative inversion 

technique is used to approximate the inverse in equation 2.27. In the previous version of 
SN2ND without parallelism in energy, a Gauss-Seidel (GS) iterative scheme was used to 
invert A in equation 2.27 which can be written as 

( ) ( ) 11 1j j j jA b L D b U L D b U−+ +  Ψ = → + Ψ = − Ψ → Ψ = + − Ψ  . (2.29) 
As can be seen, the coefficient matrix is factored into strictly lower triangular L, strictly upper 
triangular U, and diagonal D components. The inversion of ( ) 1L D −+  is the solution of each 
within-group equation, sequenced with respect to group number, where the up-scattering 
components, U in equation 2.29, are iteratively lagged. With regard to parallelism in energy, 
GS is not a scalable algorithm for most reactor calculations of interest because of the physical 
properties of the scattering (lower triangular dominate scattering). To overcome this limitation 
in SN2ND, GS is replaced with the Generalized Minimum RESidual (GMRES) algorithm 
[12, 13] operating on the entire space-angle-energy system. In GMRES, the sequenced 
solution algorithm of GS is swapped with a series of scalable coefficient matrix-vector 
applications ( 1 2, , ,j j jA A A+ +Ψ Ψ Ψ  ), a scalable vector orthogonalization, and ideally a 
scalable preconditioner. Note that a scalable preconditioner remains to be researched and will 
take significant development time. 

Continuing with the GMRES formulation changes, we present the matrix-vector application 
here because of its complexity. In GMRES, we must apply Y AX=  which we will do using 
an element-wise vector space consistent with equations 2.4 through 2.26. We begin with 

11, 1 ,

1, ,

e G e

G e GG e

A A
Y X

A A
 

=  
 

,  (2.30) 

and, mimicking the form of equation 2.25 

, , , , , , , ', , , ', ,
'

', , , , , , , ', ,0

T T T T
e gg e e e gg e e e gg e e e gg e e

g gT T T
g ge gg e e e gg e e e gg e e

A A A A
Y X X

A A A

++ +− ++ +−
+ + + − + + + −

−+ −− −−
≠− + − − − −

   Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ
= +   Ξ Ξ Ξ Ξ Ξ Ξ      

∑ . (2.31) 

The reflected boundary condition modifications are easy to apply given that the starting X 
vector is scatter-gathered to fill the ghosted part with respect to angle. From there we can 
obtain the X vector for all visible elements and focus on the within-group form: 
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, , , , ', ,, , ', ',

', , , , ', ,, , ',0
g e g e g egg e gg e gg e gg e

g gg e g e g egg e gg e gg e

Y X XA A A A
Y X XA A A

++ +− ++ +−
+ + +

−+ −− −−
≠− − −

        
= +        
           

∑ . (2.32) 

Looking at these terms we have to apply 
, ,1 ', ,1,1 ', ,1,

', '
, , ', , ,1 ', , ,

0 0
0 0
g e gg e gg e N e

gg e gg
g e N gg e N gg e N N e

A W W F
A

A W W F
δ

+ +
++

+ +

    
= −     

     
. (2.33) 

, ,1 ', ,1,1 ', ,1,
',

, , ', , ,1 ', , ,

0
0
g e gg e gg e N

gg e
g e N gg e N gg e N N

K W W
A

K W W

− −
+−

− −

  
= −   

    
.  (2.34) 

, ,1,1 , ,1,
', , '

, , ,1 , , ,,

0 1
0

gg e gg e N
gg e g g

gg e N gg e N Nt g

W WI
A

W WI
δ

− −
−−

− −

  
= −    Σ     

.  (2.35) 

, ,1
',

, ,

0
0
g e

gg e
g e N

L
A

L
−+  

=  
 

.  (2.36) 

We note that in all of these relationships, the ', , , 'gg e n nW ±  matrices are needed which require 
contribution from other groups to the current group, assumed to be owned by a given 
processor. Since these matrices are collective on the angle-energy communicator, but not on 
space, we are clear to work only with the element-wise notation shown. 

The first step in the process is to apply the collective operations in angle where we will 
assume that we need the source for all local angles. Starting with the assembled system by 
direction we have 

, , , , ', ,, , ', ',

', , , , ', ,, , ',0
g e g e g egg e gg e gg e gg e

g gg e g e g egg e gg e gg e

Y X XA A A A
Y X XA A A

++ +− ++ +−
+ + +

−+ −− −−
≠− − −

        
= +        
           

∑ . (2.37) 

If we define the matrices 

', ,1,1 ', ,1,
',

', , ,1 ', , ,

gg e gg e N
gg e

gg e N gg e N N

W W
W

W W

+ +
++

+ +

 
=  
  

.  (2.38) 

', ,1,1 ', ,1,
',

', , ,1 ', , ,

gg e gg e N
gg e

gg e N gg e N N

W W
W

W W

− −
−−

− −

 
=  
  

.  (2.39) 

Then we can redefine the matrices 
, ,1

', ' ', ', ',
, ,

0 0
0 0
g e e

gg e gg gg e gg e e gg e
g e N e

A F
A W J F W

A F
δ++ ++ ++ ++  

= − = −  
   

. (2.40) 

, ,1
', ', , ',

, ,

0
0
g e

gg e gg e g e gg e
g e N

K
A W K W

K
+− −− −− 

= − = − 
 

.  (2.41) 

1
', , ' ', ', , ',

,

0 1
0gg e g g gg e gg e t g gg e

t g

I
A W J W

I
δ−− −− −− − −− 

= − = −Σ  Σ 
. (2.42) 

, ,1
',

, ,

0
0
g e

gg e
g e N

L
A

L
−+  

= −  
 

.  (2.43) 

The matrix-vector system can now be written as 
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, , , ,', ', , ',
1

, , , ,, ', , ',

', ,', , ',
1

' ', ,, ',0

g e g egg e e gg e g e gg e

g e g egg e gg e t g gg e

g ee gg e g e gg e

g g g et g gg e

Y XJ F W K W
Y XA J W

XF W K W
XW

++ ++ −−
+ +

−+ −− − −−
− −

++ −−
+

− −−
≠ −

 − −   
=     −Σ     

 − −  
+    −Σ    
∑

. (2.44) 

We can rearrange this system by collecting on the ',gg eW ±  matrices to define 

, , , , ', ,', ', , ',
1

', , , , ', ,, ', , ',

0
0

g e g e g egg e e gg e g e gg e

gg e g e g egg e gg e t g gg e

Y X XJ F W K W
Y X XA J W

++ ++ −−
+ + +

−+ −− − −−
− − −

   − −     
= +        −Σ           

∑ . (2.45) 

We note that the first term in this system has no connection in angle while the second requires 
the collection on the angular system (conversion to/from spherical harmonics). We can further 
modify the second term to define 

, , , , , ', ,', ',
1

', , , , , ', ,, ', ',

0 0
0 0

g e g e e g e g egg e gg e

gg e g e t g g egg e gg e gg e

Y X F K XJ W
Y X XA J W

++ ++
+ + +

−−+ −− −−
− − −

          
= −          Σ             

∑ . (2.46) 

From here we can define the intermediate vector 
, , ', ,',

', , ', ,',

0
0

g e g egg e

gg e g egg e

Z XW
Z XW

++
+ +

−−
− −

    
=     

     
∑ ,  (2.47) 

which gives the system 
, , , , , , ,',

1
, , , , , , ,, ',

0
0

g e g e e g e g egg e

g e g e t g g egg e gg e

Y X F K ZJ
Y X ZA J

++
+ + +

−−+ −−
− − −

        
= −        Σ         

. (2.48) 

Now none of the remaining matrices in equation 2.48 requires communication in angle or 
energy and we have collected the entire communication requirements in defining the 
intermediate vector ,g eZ . In short, the matrices above are block diagonal with respect to angle 
and energy. With parallelism in energy there is no way to eliminate the need for the ,g eZ  
vector storage. So while a GS algorithm requires a single vector with duplicated storage on 
the within-group equation, a GMRES algorithm will require 3 vectors of the full energy-angle 
and discontinuous space size assigned to the local process. Of course the GMRES 
requirements itself will dwarf this (30 back vectors is 10 times this storage). Note that the 
remaining steps after obtaining the element ,g eY  vector are relatively straightforward although 
reflective boundary conditions do require additional communication on the angular 
communicator to merge and zero the appropriate solution moments. 

2.3 SN2ND Spatial Multigrid Preconditioning Scheme 
The most important development area identified for SN2ND was the need for a spatial 

multigrid preconditioning concept. Fundamentally, the desire to solve heterogeneous 
geometries translates to hundreds of millions of spatial degrees of freedom (mesh vertices). 
The existing SOR preconditioned CG algorithm provided by PETSc is very good for 0.2 to 
1.5 million vertex problems but its performance drops off rapidly beyond that. Further, since 
heterogeneous geometries are utilizing mesh sizes much smaller than those appearing in the 
homogenized calculations associated with the conventional experience (0.2 to 1.5 million), 
SOR is simply inadvisable. While we can switch the preconditioner to an algebraic multigrid 
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option, also available through PETSc, the memory requirements are increased by a factor of 2 
or more which hurts performance and problem size substantially (i.e. 70 group calculations 
will not be solvable on modern supercomputing machines with the old SN2ND solver). After 
doing the preliminary research on spatial multigrid we have chosen a very specific approach 
for use with the GMRES algorithm and parallelization in energy. 

Introducing a generic hierarchical spatial multigrid concept is very complicated and 
required new data structures and algorithms specific to SN2ND (i.e. not usable by MOCFE). 
To understand how multi-grid is implemented, we constrain our focus to the within-group 
even-parity system defined as 

A bψ + += .  (2.49) 
We can define a preconditioner for equation 2.49 as 

{ }1 1 1 1 0g g g g g g g g g g gM A M b Y M b A M X M Y Xψ ψ− + − + − + + −= → = − = = → =  . (2.50) 

In equation 2.50, we always define a preconditioner gM  that is representative of the 

coefficient matrix in equation 2.49, but typically much simpler. The matrix gM  is rarely 
directly invertible and thus some numerical inversion technique such as GS or SOR is used. In 
SN2ND, a CG algorithm is used over the entire space-angle system for equation 2.49 and the 
coupling in angle is neglected in the preconditioner gM  [2] such that each angular subsystem 

,g nM  can be solved simultaneously. The matrix ,g nM  is symmetric positive definite and we 
again utilize a CG algorithm to perform the necessary inversion appearing in equation 2.50. 
With such a scheme, we can write 

( ) { }1' ' ' '
, , , ,& 0g n n n g n n g n n g n n nM Y X M X M Y M Y X

−
= − = → = , (2.51) 

where '
,g nM  is a preconditioner for the CG iterative scheme involving ,g nM . One can easily 

see how this process can continue in a hierarchical fashion where each new CG level will 
generate a simpler preconditioner. 

This is fundamentally the concept behind developing a multi-grid preconditioner where 
the spatial “grid” becomes progressively coarser and thus cheaper from a numerical inversion 
point of view. The reason this approach is scalable and efficient is that the coefficient matrix 
application at each level is scalable at each preconditioner level of ,g nM . In our particular 

case, because the ,g nM  were made independent in angle, the approach also shows 
improvements in communication costs. 

2.4 Development of a Multi-grid Preconditioner 

The existing SN2ND solver utilizes a parallel CG algorithm in PETSc to invert ,g nM  with 

a parallel SOR preconditioner '
,g nM . In FY2009 a p-multigrid preconditioner was attempted 

as a quick fix to circumvent a memory related problem on BlueGene/P [20]. This introduces a 
single level to the scheme outlined by equations 2.50 and 2.51 written as 



FY2011 Status Report on SN2ND Neutronics Solver Development 
M. A. Smith, A. Mohamed, A. Marin-Lafleche, C. H. Lee, and W. S. Yang  13 

  ANL/NE-11-40 

( ) { } ( )
( ) { } ( )

1 1' ' ' '
, , , ,

1 1' ' ' " " ' ' ' " "
, , , ,

&

&

g n n n n g n n g n n g n n

g n n n n g n n g n n g n n

M Y X Y M X M Y M X

M Y X Y M X M Y M X

− −

− −

= = − =

= = − =
. (2.52) 

The application of ,g nM  was switched from an assembled and stored matrix operation 
performed by PETSc to a matrix-free operation carried out in a subroutine of SN2ND. Given 
a mesh with quadratic finite elements, the preconditioner '

,g nM  would have the same mesh but 
utilize linear finite element trial functions. In the p-multigrid version the lower order system 

'
,g nM  is assembled and given to PETSc so that it can apply CG with a parallel SOR 

preconditioner at the "
,g nM  level. 

The p-multigrid preconditioning scheme outlined above failed miserably. The primary 
issue was that the linear mesh did not span the vector space of the originating quadratic (or 
higher order) mesh and thus the spatial multigrid concept required a smoothing step. Because 
of the incompatible data structures of SN2ND, all that could be implemented in a reasonable 
amount of time was an inefficient Jacobi smoothing step. While this may seem a poor choice 
from both an implementation and theory point of view, it was done as a quick fix to 
circumvent the memory related issues on BlueGene/P. Overall, this turned out to be an 
instructive learning experience that proved reliance upon specific examples from the literature 
are not necessarily appropriate because the typical case study focuses on structured grids with 
fixed material properties that are not terribly heterogeneous such as that observed for a fuel 
assembly in a nuclear reactor or a explicitly represented ZPR drawer. 

Because the literature is not clear on what preconditioner will work best, the two primary 
authors of the SN2ND solver decided it was best to consult experts on multigrid 
methodologies [10] rather than attempt another implementation in SN2ND that duplicated the 
experiences with the first multigrid implementation. Those discussions also considered the 
impact that parallelization in energy would have and the ongoing issues associated with 
memory usage. While algebraic multigrid [11] is the optimal strategy for symmetric positive 
definite systems, the increased memory load negates it on current supercomputers and those 
expected to come for neutronics calculations. The outcome of those discussions was to 
incorporate the spatial multigrid preconditioner simultaneously with the GMRES solver on 
the multigroup system. Starting with the multigroup system as 

0 0 0 0A Q Au b A y r xΨ = → = → + = ,  (2.53) 
where u is the exact solution, x is the source on the originating grid, y is an approximate 
answer on the originating grid and r is the associated residual. Using this notation we can 
define a single step spatial multigrid approach as 
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( )

( )

( )

1
0 0 0

0 0 0 0

1 0 1 0

1
1 1 1

0 0 1 0 1

1
0 0 0

,

y smooth A x

r x A y
x R r

y solve A x tolerance

y y P y

y smooth A x

−

→

−

→

−

=

= −
=

=

= +

=

,  (2.54) 

and a two step multigrid approach as 

( )

( )

( )

( )

( )

1
0 0 0

0 0 0 0

1 0 1 0

1
1 1 1

1 1 1 1

2 1 2 1

1
2 2 2

1 1 2 1 2

1
1 1 1

0 0 1 0 1

1
0 0 0

,

y smooth A x

r x A y
x R r

y smooth A x

r x A y
x R r

y solve A x tolerance

y y P y

y smooth A x

y y P y

y smooth A x

−

→

−

→

−

→

−

→

−

=

= −
=

=

= −
=

=

= +

=

= +

=

.  (2.55) 

In both equations 2.54 and 2.55, the smooth operations are in fact a high error solve 
operations involving just a few iterations (3-5) and the matrices 0 1R →  and 1 0P→  are restriction 
and prolongation matrices respectively. For SN2ND, we have implemented the two step 
spatial multigrid scheme in equation 2.55 as part of the multigroup preconditioning step and 
thus define the preconditioner algorithm 

( )

1 0 1 1

1, 1, ' 1, '
'

1
1, 1, 1,

0 1 0 1

,

g g g g
g

g gg g

x R x

b A x
Block GS

y solve A b tolerance

y P y

→

→

−

→

=

 =


 =

=

∑
.  (2.56) 

The preconditioner for the solve step in equation 2.56 is then defined identically to equations 
2.54 or 2.55 depending upon the number of multigrid steps involved. 

It is important to note that there is no smoothing operation in equation 2.56 although they 
are quite prevalent in equations 2.54 and 2.55. This is primarily because of the particular 
spatial multigrid step used and graphically depicted in Figure 2.1. 



FY2011 Status Report on SN2ND Neutronics Solver Development 
M. A. Smith, A. Mohamed, A. Marin-Lafleche, C. H. Lee, and W. S. Yang  15 

  ANL/NE-11-40 

       
Figure 2.1 Serendipity (upper six) and Lagrangian (lower six) Quadrilaterals (left six) and 

their Tessellated Counterparts (right six) 

From Figure 2.1, it should be clear that the number of spatial degrees of freedom for the 
assembled system is identical. For the odd-parity discontinuous system, we have an 
interpolative scheme. In short, this spatial multigrid step, which we term a linear tessellation 
or LT-multigrid since it does not match conventional p- or h- concepts, spans the originating 
higher order space in both the continuous and discontinuous form and thus does not require a 
smoothing step. For the additional multigrid steps we have only considered a single step 
depicted in Figure 2.2.  

 
Figure 2.2 Current Multigrid Steps Available in the new SN2ND Solver 

In Figure 2.2, the left most picture is the original mesh consisting of four Lagrangian 
Quadrilaterals, the center picture is a tessellated triangular mesh of the left hand mesh (note 
that the tessellation is different than that of Figure 2.1), and the right hand picture is the 
tessellation of the originating mesh truncated to a linear order. For curvilinear geometries, the 
volume of each originating element in Figure 2.2 is preserved when applying the tessellation 
and the truncation to a linearly tessellated system. Beyond this point, it is not clear whether 
algebraic multigrid or additional spatial multigrid is wise and thus additional research is 
needed. Fundamentally, SN2ND is hardwired to assume that the linear tessellation step occurs 
as part of the multigroup preconditioning step. Beyond that, it is a rather easy process to 
modify the existing algorithm to define additional steps. 

2.5 Implementation Concerns about Spatial Multigrid 
It is important to note that even though the originating even-parity system outlined by 

equation 2.49 is symmetric positive definite, the Flexible GMRES (FGMRES) algorithm [13] 
is used on the smoothing operations and each level of the multigrid preconditioning in 
equation 2.55 except the last. This is necessary because the prolongation and restriction 
operators make the preconditioner different from the coefficient matrix (i.e. not symmetric 
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positive definite) and the fact that on each level we are not exactly solving the lower steps. In 
such a case, the lack of convergence in the preconditioner leads to noise which can cause 
GMRES and CG to fail to converge. 

The preceding multigrid scheme was cooked up only considering the continuous even-
parity system. After doing considerable research on how h-coarsening was applied for first 
order discrete ordinates methods, concern arose with respect to how using the linear 
tessellation would impact the odd-parity system which is similarly treated discontinuously. Of 
course, a first order discrete ordinates methods must concern itself with transmission of the 
current (i.e. the current representation must also be included in the projection/restriction) 
which is not the case with the SN2ND solver. A simple example to display the concern is 
shown in Figure 2.3 where the tessellation is observed to introduce a new line of 
discontinuity. 

 
Figure 2.3 Quadrilateral (left) and Triangularly Tessellated Quadrilateral (right) 

The idea behind the tessellation is that the even-parity continuous vector space is identical 
between these two elements (i.e. four degrees of freedom per direction per group), but the 
odd-parity vector space is not. In Figure 2.3, the discontinuous odd-parity flux will have four 
degrees of freedom for a linear quadrilateral (left) and six degrees of freedom for two linear 
triangles, respectively. When there is no anisotropic scattering, the odd-parity flux within each 
node can be written as: 

, , ,

1 1 1ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )
( ) ( ) ( )g g g g

t g t g t g

r r W r S r
r r r

ψ ψ− + − −Ω = − Ω⋅∇ Ω + Ω + Ω
Σ Σ Σ

   
   . (2.57) 

This can be rewritten in a discrete form for the finite element system above as 

1 1 1
, , , ,

, , ,

1 1 1ˆ k
g n n k g n g n g n

kt g t g t g

F U F W F Sψ ψ− − + − − − −= − Ω + +
Σ Σ Σ∑   . (2.58) 

For the two-dimensional geometries in Figure 2.3, we only need to study the 1
1F U−  matrix 

component to understand the fundamental problem with introducing a discontinuity in the 
solution. Equation 2.59 gives the evaluated matrices for an elongated quadrilateral. 

1                   2 1                   2 

3                   4 3                   4 

1 

2 
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From equation 2.59 one can see that the values of the coefficient matrices are similar and 
multiplication by a random even-parity continuous vector is found to yield 
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. (2.60) 

Similar to equation 2.59, the values generated in equation 2.60 by both approaches are also 
very similar. Application of the injection based prolongation matrix required to project from 
the tessellated odd-parity to the original system yields 
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       

. (2.61) 

From equation 2.61, the injection based prolongation does not yield a solution which would 
be consistent with the originating quadrilateral and thus there is some obvious concern with 
regard to whether this will cause divergence or slow convergence of the Krylov solver. In the 
problems tested thus far, which do have steep gradients, divergence did not occur which is 
likely because the result is still conservative over each element (i.e. the volume integral yields 
the same total), but it is not clear as to its impact on performance at this time. 

3 SN2ND Validation Work 
In this section we focus on the work that was completed using the SN2ND solver in 

FY2011. A majority of that work was focused on validation work related to ZPR experiments, 
but additional time was spent doing comparisons on MONJU and attempting several 
heterogeneous reactor calculations. While the sub-group methodology was researched in 
FY2011, SN2ND is not presently capable of using it and thus it cannot performing thermal 
reactor calculations at this time. All of this work was completed with the solver built in 2008 
and optimized for routine use in 2009. 

3.1 Homogenized Drawer Modeling of ZPR-6 Assembly 7 Experiment 
In FY2010, significant time was spent setting up the ZPR-6 Assembly 7 benchmark [15-

18] using the BuildZPRmodel [2] to reduce input errors. The intent of that work was to define 
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a clear procedure for validating the heterogeneous modeling capability available with 
SN2ND+MC2-3 using ZPR benchmarks. The goal was to select benchmarks and loadings 
from several ZPR experiments and compare the eigenvalue and flux solution the latter of 
which would be done using foil measurements taken during the experiments. In FY2011, the 
drawer homogenized models were created for loadings 104, 106, 120, and 132 of ZPR-6/7 
along with heterogeneous models of ZPR-6/7 loading 104. Figure 3.1 shows the typical 
drawer homogenized model for loading 106 along with flux solutions obtained using SN2ND, 
all created using the VISIT visualization tool [21]. 

  

 
Group 1 of 70 (10 MeV-14.19MeV) 

 
Group 15 of 70 (302 keV – 387 keV) 

 
Group 30 of 70 (7102 eV-9119 eV) 

 
Group 44 of 70 (214 eV – 275 eV) 

Figure 3.1. ZPR-6/7 Geometry and Selected Flux Plots for Loading 106 

For each picture in Figure 3.1, the right hand side of the picture displays the face of the 
movable matrix while the left hand picture shows the flux solution for the active core portion 
of the stationary side (everything inside of the blankets). For the stationary side, we separated 
the high Pu-240 zone to display the axial flux solution along with the central BeO modified 
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drawers so the axial flux variation can be observed. As can be seen, there is a noticeable 
thermalization of the flux near the BeO loaded drawers. 

Table 3.1 summarizes the calculated SN2ND eigenvalue results for loadings 104, 106, 
120, and 132 as compared to MCNP as-built calculations (i.e., every plate, drawer, matrix 
tube, etc. were modeled explicitly) and the experimentally measured values. As can be seen, 
the deterministic SN2ND results are generally higher than the MCNP calculations for all but 
loading 132. However, it is noted that the MCNP solutions generally underestimate the core 
reactivity compared to the measurements while the SN2ND solutions overestimate them. For 
all the four core loadings analyzed, the SN2ND solver predicted the core reactivity within 1σ 
of the estimated experimental uncertainty (~80 pcm) [17, 18]. These results are comparable to 
the accuracy of MCNP solutions; the SN2ND solutions deviated from the measured values by 
75, 43, 28 and -24 pcm for the Loadings 104, 106, 120, and 132, respectively, while the 
corresponding deviations of MCNP solutions were -56, -42, -132, and 0 pcm. 

Table 3.1. ZPR6-7 Loadings 104, 106, 120, and 132 Measured and Calculated Eigenvalues 
Loading UNIC MCNP Experimental† 

104 1.00147 1.00016 ± 0.00007 1.00072 ± 0.00002 
106 1.00134 1.00049 ± 0.00007 1.00091 ± 0.00003 
120 1.00127 0.99967 ± 0.00007 1.00099 ± 0.00003 
132 1.00016 1.00040 ± 0.00007 1.00040 ± 0.00002 

† Measurement uncertainty only, excluding composition and geometry uncertainties 
 

The layout of the foils is given in Figure 3.2. As can be seen, the foils were placed in 
column 23 below the central position, (i.e., in rows 24–45), and were irradiated in order to 
measure radial traverses of specific reaction rates. Four types of foils (designated as E, D, p, 
P) were used to measure relative reaction rates of Enriched Uranium fission (EU f) using E-
type foils; Depleted Uranium capture (DU c) and fission (DU f) using D-type foils, and 239Pu 
fission (Pu49 f) using p- and P-type foils. These foils were placed in 2-inch (5.08 cm) square 
packets. Each packet consisted of the four foil types sandwiched between a 1-mil (0.00254 
cm) aluminum square and a 1-mil stainless steel square on both sides. The packets were 
placed in the fronts of the drawers of the stationary half between the Fe2O3 plate and the fuel 
plate on the left side of the drawer as one faces the front of the drawer from a position 
between the halves [17, 18]. Figure 3.2 shows the positions of the foils within the packets and 
the positions of the packets in the core for the foil irradiations. 

Foil percent reaction rate errors ((C/E-1)%) are summarized in Table 3.2. In this table, the 
Y position corresponds to the center of each foil measured from the center of the first matrix 
location loaded with foils. In addition, as reported in references 6 and 7, the measured 
experimental values were arbitrarily normalized to the foil measurements at 66.33 cm so that 
percent reaction rate errors at this location are identically zero. It can be seen that the results 
for loadings 104 and 120 are generally acceptable. Most of the errors are within 1σ of the 
experimental uncertainties with few exceptions: EU(f) at the first few foil positions for 
loading 104; Pu49(f) in the first few foil positions in both loadings 104 and 120, and Pu49(f) 
at position Y=10.07 cm in loading 120. More importantly, the results for the homogeneous 
loadings 106 and 132 exhibit large errors in the calculated DU(c) (certainly more than 3σ of 
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the experimental uncertainty) for foils inside the first 10 cm, i.e., near foil positions closest to 
the core central position. (Recall that in these two loadings a BeO ring was inserted to 
surround the core central location, and in these homogeneous models, the BeO ring was 
homogenized with the central position’s material, i.e., sodium in loading 106 and B4C in 
loading 132.)  It is also seen that in both of these loadings, large errors are observed for both 
EU(f) and Pu49(f) in the first and, to a lesser extent, the second foil positions. 

 

 
Figure 3.2. ZPR-6/7 Description of Foil Types and Locations 

After setting up several calculations using different MC2-3 models combined with mixed 
homogeneous-heterogeneous models in SN2ND, we concluded that the primary reason for the 
errors in the solutions of loadings 106 and 132 was a flaw in the cross section generation 
approach taken. To properly account for the localized effect of BeO, a two-dimensional MC2-
3 model of the extended central region geometry is necessary which cannot be captured with a 
one-dimensional model since the BeO plate arrangement is perpendicular to the fuel-drawer 
plate loading. Since that capability was not available during this work, an MCNP [22] model 
of the central drawers containing BeO plates was built with the first fuel drawer represented 
explicitly by its one-dimensional MC2-3 model equivalent.  
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Table 3.2. C/E Values in % Error for Normalized Foil Reaction Rates 
Foil location 

(cm) 
Loading 104 Loading 106 

EU f DU c DU f Pu49 f EU f DU c DU f Pu49 f 
3.53 2.60 -0.82 1.25 2.92 -4.83 -16.77 1.69 -5.50 
4.55 2.62 0.58 -0.18 3.39 -2.70 -11.05 -1.09 -2.71 
5.56 2.73 1.65 -0.34 3.03 -1.29 -6.53 -0.98 -1.01 
6.58 2.84 1.79 0.42 3.01 -0.42 -4.64 -0.68 -0.01 
7.60 2.61 0.48 1.33 2.40 -0.94 -4.61 0.23 -0.77 
9.06 2.29 0.53 2.01  -0.02 -2.55 1.31  

10.07 2.37 1.45 0.80 2.41 0.08 -2.92 0.12 1.07 
11.09 2.36 1.89 0.29 2.09 0.59 -0.96 0.01 0.84 
12.10 2.05 1.47 0.89  0.30 -1.11 0.19  
13.12  0.59 2.20   -1.30 1.46  
14.58  -1.19 2.54   -1.59 1.93  
15.60 1.43 0.91 1.16  0.11 -0.59 0.42  
16.61 1.67 1.39 0.65 1.64 0.41 0.14 -0.05 1.09 
22.14 2.01 1.90 0.79 2.32 0.52 0.87 0.60 1.56 
27.66 2.06 0.75 2.28 2.17 1.29 0.33 1.79 2.07 
33.19 2.09 0.40 1.88 2.14 1.75 1.22 1.62 1.74 
44.24 1.66 -0.94 1.72 1.70 0.87 -0.42 0.92 1.60 
55.28 1.88 0.67 1.03 1.01 1.26 1.01 0.40 1.39 
66.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Foil location 
(cm) 

Loading 120 Loading 132 
EU f DU c DU f Pu49 f EU f DU c DU f Pu49 f 

3.53 0.25 0.39 1.18 2.64 -6.35 -13.16 1.84 -4.83 
4.55 1.53 2.19 0.20 3.05 -3.81 -8.44 -0.53 -2.13 
5.56 1.54 2.29 -0.05 2.91 -1.69 -4.50 -1.09 -1.01 
6.58 1.85 1.85 0.11 2.23 -1.10 -3.37 -0.16 -0.79 
7.60 1.81 1.27 1.86 2.79 -0.82 -3.68 0.86 -0.46 
9.06 1.54 1.20 1.95  -0.53 -2.23 1.12  

10.07 2.13 1.34 0.80 4.96 -0.07 -1.53 -0.07 0.87 
11.09 2.00 2.43 0.69 2.69 0.40 -0.91 0.53 0.15 
12.10 1.90 1.37 0.77  0.65 0.03 0.73  
13.12  1.34 2.49   -1.22 1.30  
14.58  1.21 2.87   -1.27 2.58  
15.60 1.57 0.85 1.43  0.33 -0.82 1.57  
16.61 1.42 1.57 1.28 2.63 0.37 -0.41 0.73 2.29 
22.14 1.82 1.02 0.97 3.04 0.53 0.49 0.74 1.43 
27.66 2.01 1.89 2.75 3.10 1.30 0.16 2.24 2.05 
33.19 1.80 0.24 2.27 2.28 0.99 0.25 2.12 1.82 
44.24 1.58 -0.49 1.47 2.14 0.86 0.55 1.86 1.75 
55.28 0.98 0.66 1.39 1.84 1.32 0.98 1.36 1.73 
66.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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The Monte Carlo geometry was surrounded by a layer of approximately two-drawers-length 
homogenized fuel composition in the X and Y directions and a reflective boundary condition 
was imposed on its outer boundaries. The length in the Z direction was manually set to 
achieve a critical MCNP eigenvalue; thereby simulating a critical spectrum over the 
heterogeneous fuel drawer. Seventy-group homogenized cross sections for 238U capture and 
235U fission were tallied over five different Y-direction sections of the heterogeneous fuel 
drawer corresponding to the first five foil locations and combined with the SN2ND flux 
solutions using a MC2-3 model to produce the results in Table 3.3. 

Table 3.3. Comparison of C/E Values (% Error) for Normalized Foil Reaction Rates 
Determined with Cross Sections from One-Dimensional MC2-3 and Two-Dimensional MCNP 

Calculations 

Foil location 
(cm) 

Loading 106 Loading 132 
EU f DU c EU f DU c 

MC2-3 MCNP MC2-3 MCNP MC2-3 MCNP MC2-3 MCNP 
3.53 -4.83 3.90 -16.77 -2.11 -6.35 3.38 -13.16 1.42 
4.55 -2.70 3.67 -11.05 -2.79 -3.81 2.86 -8.44 -0.06 
5.56 -1.29 3.81 -6.53 0.02 -1.69 3.21 -4.50 1.84 
6.58 -0.42 3.62 -4.64 0.68 -1.10 2.76 -3.37 1.76 
7.60 -0.94 2.21 -4.61 -0.24 -0.82 2.21 -3.68 0.54 

 
Table 3.3 compares the C/E values of the EU fission and DU capture reaction rates 

determined with the cross sections obtained from one-dimensional MC2-3 and two-
dimensional MCNP calculations for the first five foils from the core center.  It should be 
noted that the MCNP cross sections generated for the loading 106 configuration were used for 
both the loadings 106 and 132. It can be seen that using the foil cross sections obtained from 
the MCNP calculation, the C/E values for DU capture reactions are improved noticeably for 
both loadings 106 and 132 even though the central drawer is very different for the two 
loadings. 

3.2 Partially Heterogeneous Modeling of ZPR-6 Assembly 7 Experiment 
In addition to the homogeneous modeling cases above, the NEAMS program also needs 

validation work on the heterogeneous modeling capability. Full core heterogeneous SN2ND 
calculations like that attempted in FY2009 for ZPR-6/6A are beyond the existing 
supercomputer capabilities. However, part of the FY2011 work is focused on comparing the 
change in the solution accuracy as the drawer-homogenization model is replaced with a 
heterogeneous plate-by-plate model. To study this impact, four partially heterogeneous 
models of ZPR6-7 loading 104 were created as shown in Figure 3.3, in addition to the base 
homogeneous model. The intent is to compare the criticality and foil reaction rates with the 
experimentally measured quantities for each of these models. Plate-by-plate cross sections 
were generated using MC2-3. Figure 3.4 shows a close up view of the mesh used in model 1. 
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Model 1 Model 2 

  
Model 3 Model 4 

Figure 3.3. Depiction of the Spatial Heterogeneity in the Stationary Matrix Half (Front Picture 
in Each Model) and Movable Matrix Half (Back Picture in Each Model). 

 
Figure 3.4. Spatial Heterogeneity for each drawer 

As is the case with all deterministic transport calculations, a detailed space-angle-energy 
study is required for each model. There was insufficient time to complete the study for energy 
although we note that previous results indicate that the 70 group structure used here is 
reasonably accurate. In the case of this study, one has to be very careful about the increased 
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heterogeneity which should not require additional spatial modeling, but will require additional 
angular modeling. For each model, four meshes were built and several different cubature 
orders of the Legendre (L) – Tchebychev (T) product cubature were used along with changes 
to the anisotropic scattering approximation. Table 3.4 shows the details of the space-angle 
convergence for the keff results. With the exception of the calculations using the finest mesh, 
all of the other calculations utilized the coarsest mesh. 

Table 3.4. keff Space-Angle Convergence for the Four Heterogeneous Models of Loading 104 
 Model 1 Model 2 Model 3 Model 4 

L7T7 P3 1.00131 1.00112 1.00090 1.00033 
L7T7 P1 1.00096 1.00078 1.00056 0.99998 
L3T7 P1 1.00096 1.00077 1.00054 0.99993 
L15T7 P1 1.00097 1.00079 1.00057 1.00000 
L3T3 P1 1.00094 1.00072 1.00043 0.99970 
L3T15 P1 1.00098 1.00081 1.00061 1.00008 
L3T31 P1 1.00098 1.00082 1.00063 1.00013 

L3T3 P1 finest mesh 1.00098 1.00076 1.00049 0.99978 
 

Starting with the spatial mesh refinement, one can see that there is only a slight improvement 
in keff even though this accounts for more than a factor of six improvement in the number of 
spatial vertices which is more or less expected with the SN2ND solver. The most dominate 
change in keff is observed when the anisotropic scattering order is increased from P1 to P3 and 
when the Tchebychev expansion is increased from T3 to T31 in the most heterogeneous 
model. Experience indicates that there is not much to be gained when using more than P3 
anisotropic scattering, but the angular approximation must be sufficiently converged to 
prevent substantial inaccuracies. In the case of model 4, it is likely that a T31 expansion in the 
Tchebychev cubature yields a converged keff because it uses twice the number of angles at 
T15. However, it is safe to assume that introducing heterogeneity will require cubature orders 
far higher than T31 if the observed trend in Table 3.4 continues.  

Assuming the preceding results with respect to angle are near the linear point of 
asymptotic convergence, we can extrapolate the full space-angle convergence on the coarsest 
mesh and relatively low order angular approximation to the finest mesh and highest order 
angular approximation to obtain the results in Table 3.5. This extrapolation is necessary at this 
point because the old SN2ND solver is incapable of solving these problems combined with 
the memory constraints of BlueGene/P. It should not be unreasonable to assume that the 
extrapolated values in Table 3.5 are accurate to 10 pcm, but ideally these calculations will be 
redone with the new version of SN2ND when it becomes available. From Table 3.5, it is easy 
to see that the keff results are notably dropping as more heterogeneity is introduced into the 
model which is consistent with the observed errors in the heterogeneous model of ZPR-6/6A. 
Further study indicated that this was a fundamental bias in the heterogeneous cross section 
observable on a one-dimensional lattice cell. A two step cross section procedure does not 
appear wise in this scenario since the bias from each individual MC2-3 cell calculation will be 
different. 
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Table 3.5. Extrapolated keff results for ZPR6/7 Loading 104 
Experiment 1.00072 ± 0.00080 
Monte Carlo 1.00016 ± 0.00007 

Homogeneous 1.00149 
Het. Model 1 1.00135 
Het. Model 2 1.00124 
Het. Model 3 1.00099 
Het. Model 4 1.00067 

 

Continuing with the foil reaction rate comparisons, the new results need to be compared 
with the results from the homogeneous model to determine if the heterogeneity causes 
degradation in the flux solution. Table 3.6 shows the foil results which indicate that the C/E  
results for a heterogeneous model are similar to those obtained using the homogeneous 
models. However, there appears to be a small increase in the error for EU fission and Pu49 
fission in foil locations close to the central sodium channel. This was even more apparent in 
calculations for loading 120 which are not shown for brevity. This increased error is believed 
to be due to the foil cross section data rather than space-angle-energy inaccuracies from 
SN2ND and is left for the focus of future work. 

Table 3.6. Loading 104 C/E Values in % Error for Normalized Foil Reaction Rates 
Y 

(cm) 
EU fission DU capture DU fission Pu49 fission 

Hom. Het. Hom. Het. Hom. Het. Hom. Het. 
3.53 2.60 3.22 -0.82 -0.37 1.25 0.05 2.92 3.15 
4.55 2.62 2.67 0.58 0.58 -0.18 0.67 3.39 3.58 
5.56 2.73 2.71 1.65 1.58 -0.34 0.93 3.03 3.27 
6.58 2.84 2.97 1.79 1.86 0.42 0.71 3.01 3.22 
7.60 2.61 3.12 0.48 0.87 1.33 0.00 2.40 2.62 
9.06 2.29 2.82 0.53 0.94 2.01 0.44   
10.07 2.37 2.48 1.45 1.52 0.80 0.44 2.41 2.53 
11.09 2.36 2.33 1.89 1.83 0.29 0.45 2.09 2.18 
12.10 2.05 2.11 1.47 1.52 0.89 0.21   
13.12   0.59 0.93 2.20 0.04   
14.58   -1.19 -0.81 2.54 0.24   
15.60 1.43 1.53 0.91 0.99 1.16 0.18   
16.61 1.67 1.64 1.39 1.34 0.65 0.34 1.64 1.66 
22.14 2.01 1.91 1.90 1.80 0.79 0.60 2.32 2.31 
27.66 2.06 2.05 0.75 0.76 2.28 1.68 2.17 2.12 
33.19 2.09 2.01 0.40 0.36 1.88 1.34 2.14 2.03 
44.24 1.66 1.57 -0.94 -0.98 1.72 1.59 1.70 1.67 
55.28 1.88 1.75 0.67 0.62 1.03 0.62 1.01 0.89 
66.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

As mentioned, the preceding ZPR work is being done to validate the fast reactor 
homogeneous and heterogeneous modeling capability. The targeted capability is the 
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conventional two step procedure involving 1) MC2-3 slab geometry models of important 
drawers to generate homogenized coarse group cross sections, and 2) SN2ND solutions 
incorporating the necessary space-angle + scattering order refinements of the homogenized 
problem. In most cases we observed relatively minor dependence on the space-angle-energy 
approximation incorporated in the SN2ND solver with most of the issues derived from the 
cross section generation methodology (i.e. step 1). This is not unexpected given the 
considerable experience with doing the two step procedure and simply points out that the 
transport solver in step 2 is not as important as the work done in step 1. The much less studied 
approach is to generate heterogeneous cross sections using a similar two step procedure. In 
this case, consistent error was traceable to the heterogeneous cross section data that requires 
more research to resolve. 

3.3 Homogenized Assembly Modeling of the MONJU Fast Reactor 
MONJU is a Japanese sodium-cooled fast reactor located in Tsuruga, Fukui Prefecture. 

MONJU is a demonstration plant for recycling and burning spent nuclear fuel from the fleet 
of light water reactors operating in Japan. The reactor first achieved criticality in April 1994 
and it operated for a little over a year until a sodium leak, and a cover-up scandal, caused its 
shutdown until 2010. The reactor was restarted in May 2010 and during the following months 
numerous reactor physics measurements were made. While the core composition of MONJU 
is not precisely specified, with approximate compositions we can still produce good estimates 
of several key reactor physics parameters and thus extend the validation case for MC2-3 + 
SN2ND. Combined with comparisons against experiments, these types of calculations help 
ensure confidence in the PROTEUS reactor physics tool being developed under NEAMS.  

We used CUBIT [23] for generating the various meshes where the same hexagon meshing 
scheme was used for all hexagons in the core. Four spatial meshes of each assembly were 
created in these studies which are shown in Figure 3.5. Using these schemes, the total number 
of spatial vertices in the full core models were 322,530, 952,403, 2,658,351, and 4,210,574 
which we denote as Model 1, 2, 3, and 4, respectively. Both 70 group and 230 group 
calculations were executed and the angular approximation was progressively increased from 
S2 to S8. 

 
Model 1                 Model 2                  Model 3                  Model 4 

Figure 3.5. Finite Element Mesh per Hexagon for the SN2ND Models. 

Tables 3.7 and 3.8 summarize eigenvalue results for various combinations of the spatial 
mesh and angular approximations in SN2ND on the fully inserted C1 configuration. Table 3.7 
summarizes these results using 70-group cross sections while Table 3.8 does the same for a 
230 group structure. Note that the memory limitations of BG/P combined with the old 
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SN2ND solver limits the number of 230-group calculations that can be performed. In these 
tables, empty positions correspond to runs that were not attempted while spaces with (**) 
indicate those cases that failed to run on BG/P because of the aforementioned memory 
limitations. 

Table 3.7. UNIC Space-Angle Mesh Refinement using 70 Group Cross Sections 
Angular 
Cubature 

Scattering 
Order 

Spatial Mesh 
Model 1 Model 2 Model 3 Model 4 

L1T1/S2 P1 0.98981 0.99010  0.99021 

L3T3 

P0 1.02762 1.02793  1.02804 
P1 0.99083 0.99115  0.99127 
P3 0.99166 0.99199 0.99209 0.99211 
P5 0.99165 0.99198  0.99211 

S6 P3 0.99171 0.99205  0.99217 

L5T5 
P0 1.02765 1.02796  1.02808 
P1 0.99087 0.99120  0.99132 
P3 0.99173 0.99206  0.99219 

S8 P3 0.99173 0.99207 0.99217 0.99220 
P5   0.99219 ** 

Table 3.8. UNIC Space-Angle Mesh Refinement using 230 Group Cross Sections 
Angular 
Cubature 

Scattering 
Order 

Spatial Mesh 
Model 1 Model 2 Model 3 Model 4 

L1T1 P1 0.99008 0.99038  0.99049 
L3T3 P1 0.99111 0.99143 0.99153 0.99155 
L5T5 P1 0.99115 0.99147 ** ** 

 

From these tables, if we arbitrarily choose to judge a given space-angle approximation to 
be converged by requiring the change in eigenvalue to be less than 10 pcm when either the 
spatial mesh or the angular approximation is refined to the next available approximation, it 
can be seen that this convergence is achieved at the L3T3 angular approximation level for the 
Model 3 spatial mesh and with a P3 scattering approximation. For this problem, the 230-group 
eigenvalue is expected to be ~0.99236 assuming it can be extrapolated from data in the above 
tables.  

A more thorough analysis of convergence must include a comparison of group fluxes 
resulting from the use of different space-angle-energy approximations. To achieve this, 9-
group fluxes were generated from 70 and 230 group calculations along the line ED shown in 
Figure 3.6 starting radially at point E in which the line intersects the domain and ending at 
point D where it exits the domain. The axial location of the line is such that, when C1 is fully 
inserted, it passes through the active parts of C-type control rods, C1, and approximately 10 
cm below the B-type control rod. 

Figure 3.7 shows the 9-group total fluxes across the edit line ED in the upper left picture 
which were integrated from a 230-group L3T3, Model 4 calculation using a P1 scattering 
order. The upper right picture in Figure 3.7 is the percent deviation of the 9 group fluxes of 
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the Model 3 mesh from the Model 4 mesh using a common S8, 70 group data with a P3 
scattering order. It can be seen that all group flux errors are less than 1% except for the lowest 
energy group which from the upper left picture is 4-6 orders of magnitude less than the other 
group fluxes. The lower left picture in Figure 3.7 shows the percent deviation of the 9-group 
fluxes of L3T3 cubature from the L5T5 cubature using a common Model 4 mesh, 70 group 
data with P1 scattering.  

 
Figure 3.6. Schematic of the MONJU Reactor Showing the Edit Line ED. 
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Figure 3.7. Nine Group Flux Edits on the Selected Line ED in Figure 3.6. 
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Again, most deviations are less than ~2% except at the domain boundaries where it is 
observed to increase to nearly 4%. After further inspection, a detailed comparison of the 70 
group fluxes is much larger (up to 15%) which implies the need for higher angular 
approximation to eliminate the ray effects which dominate the errors observed in Figure 3.7. 
The lower right picture in Figure 3.7 shows the deviation of the 70 group from a 230 group 
calculation using a common Model 4, L3T3 cubature and P1 scattering order. In this case we 
observe much larger errors which appear in the radial blanket and shielding. In this case we 
know that it is a cross section issue, and a detailed flux comparison should be replaced with a 
reaction rate estimate such as iron capture. Nevertheless, the results are sufficient to indicate 
that 70 groups does not result in a fully converged solution (i.e. on the asymptotic plane of 
convergence for the numerical discretization), especially for cases where the magnitude of the 
fast flux is important (irradiation damage), and thus one should use a 230 group 
approximation when possible. 

In addition to SN2ND, we can use the legacy tool VARIANT to obtain solutions to the 
MONJU problem. Table 3.9 summarizes 70-group, P3 scattering SN2ND and VARIANT 
eigenvalues for three configurations of the central control rod C1. In these calculations, the 
L3T3 cubature and a Model 3 mesh are used in SN2ND while two VARIANT calculations are 
provided corresponding to source-flux-leakage expansion orders of 661 and 461 and a P5 
angular spherical harmonics order. From Table 3.9 one can see there is a considerable 
difference of 90 pcm between SN2ND and VARIANT which has been traced to the difference 
in the way the fission spectrum ( )χ  is used in VARIANT and SN2ND. Also note that a full 
spatial convergence study of VARIANT (461 versus 661, etc.) is not done but that 661 is 
typically sufficient. 

Table 3.10 gives the SN2ND and VARIANT estimates of the isothermal temperature 
coefficient of reactivity. It can be seen that the results show perfect agreement with the 
measured data, but the individual eigenvalues between VARIANT and UNIC are notably 
different which is consistent with the χ issue mentioned above. It is important to note that the 
VARIANT code cannot currently be used to solve ZPR drawer homogenized calculations and 
thus we cannot use as much validation data as we can with SN2ND. 

Table 3.9. MONJU keff Results for Different Central Control Rod Configurations 
Solution 
Method 

Multiplication Factor 
Critical Position Fully Inserted C1 Fully Withdrawn C1 

SN2ND 0.99927 0.99209 1.00201 
VARIANT 661  1.00017 0.99302 1.00290 
VARIANT 461  1.00032 0.99317 1.00306 

Table 3.10. SN2ND and VARIANT Isothermal Temperature Coefficient for MONJU 

 C1 withdrawal 
length (mm) 

Multiplication Factor Temperature 
Coefficient 
(%∆k/k/oC) 

C/E 195.7 oC 302.5 oC 

SN2ND 442 1.00021 0.99699 – 0.00302 1.003 
VARIANT 1.00128 0.99808 – 0.00300 0.999 

SN2ND 703 1.00347 1.00023 – 0.00303 1.004 
VARIANT 1.00454 1.00132 – 0.00300 0.999 
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3.4 Fully Heterogeneous Modeling of Nuclear Reactors 
In addition to the preceding validation work, we added a scoping study to determine the 

existing capability on fully heterogeneous reactor geometries. While DeCART is a much 
more practical tool than SN2ND for thermal reactor analysis at this time, determining the 
impact of trying to use a true three-dimensional geometry modeling capability versus a 2D-1D 
model is useful. A significant amount of time was spent building whole core heterogeneous 
models of several reactor geometries incorporating “representative” cross section data. The 
basic idea of course was to identify weaknesses in the existing SN2ND solver and provide 
guidance for the development of the new version of SN2ND (spatial multigrid). 

The specific reactor types we considered are the Westinghouse pressurized water reactor 
(PWR), a proposed very high temperature reactor (VHTR), and the sodium cooled fast reactor 
MONJU. To begin we start with the PWR reactor which is graphically depicted in Figure 3.8. 

 

  
Figure 3.8. PWR Finite Element Meshed Geometry. 

Figure 3.8 shows that there are a substantial number of finite elements in the model. The 
typical PWR modeling geometry is ~3.6 meters tall and ~3 meters in diameter and the simple 
two-dimensional representation shown in Figure 3.8 has over 2,000,000 finite elements. For a 
two-dimensional geometry with curvilinear finite elements, this will easily translate to tens of 
millions of vertices. During the attempts to obtain a solution for a three-dimensional 
calculation, PETSc was found to have a non-scaling memory operation (on BG/P) which 
restricts the overall mesh to have less than 35,000,000 total vertices. Given the stated radial 
mesh it should be rather obvious that any axial mesh would contain extremely bad aspect ratio 
elements; so much so that it rendered the system unsolvable. It is important to also note that 
two-dimensional solutions were also not obtainable in the old SN2ND solver because of the 
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high dominance ratio (proximity of the first two eigenvalues) in the eigenvalue/eigenvector 
system. The old version of SN2ND has a Tchebychev acceleration technique which proved 
insufficient hence the development of a Weilandt and/or restarted Arnoldi [14] process in the 
new version. 

The next reactor problem is the VHTR which is shown in Figure 3.9. The VHTR is 
actually larger than the PWR, but the complexity is much lower because of the reduced 
number of fuel assemblies. Nevertheless, the PETSc issue also prevented us from solving the 
VHTR which was verified by making a non-physical small core height problem which could 
be solved. The mesh shown in Figure 3.9 has 2,500,079 elements in the two-dimensional 
plane and we easily need more than 100,000,000 elements because of the large axial 
dimensions (~8 meters). 

 

 
 

Figure 3.9. VHTR Finite Element Meshed Geometry. 

The final whole core reactor model we attempted was the MONJU fast spectrum reactor 
shown in Figure 3.10. Compared with the preceding two reactor types, one can easily see that 
the MONJU reactor has comparable geometric detail with ~2.5 million elements to define a 
two-dimensional slice. However, the advantage of the fast spectrum system is that the core is 
less than a meter tall and removal of any upper and lower structural materials will not greatly 
change the solution (leakage is affected). While the change in geometry does negate the 
accuracy, we were able to obtain results with a mesh containing 45,477,696 elements and 
30,069,349 vertices (used linear finite elements) combined with a 33 group cross section set 
and S6 angular cubature. While the dominance ratio was high (0.6), the existing SN2ND 
solver algorithm is able to sufficiently accelerate the calculation. In effect, because a bulk of 
the effort in developing SN2ND has been focused on fast reactor problems, it should come as 
no surprise that it works well on fast reactor problems. 
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Figure 3.10. MONJU Finite Element Meshed Geometry 

Figure 3.11 shows some more detail on the three dimensional geometry along with 
example flux and power solutions where we have split the geometry into lower shield 
(truncated size), lower blanket, lower core, upper core, upper blanket, upper plenum 
(truncated size). Note that a control rod was inserted into the core as seen in Figure 3.10 to 
cause a radial offset in the solution. This makes the problem more difficult and allows us to 
study spatial mesh convergence near the control rod since the flux solution typically goes 
negative near regions with insufficient mesh refinement. 

 

 



FY2011 Status Report on SN2ND Neutronics Solver Development 
M. A. Smith, A. Mohamed, A. Marin-Lafleche, C. H. Lee, and W. S. Yang  33 

  ANL/NE-11-40 

 
Geometry 
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Figure 3.11. MONJU 3D Geometry and Flux and Power Solutions 

Overall, one fourth of the allocated time on BG/P time was spent running or attempting to 
run these large calculations. Numerous changes were made to the code to fix scalability issues 
that were external to PETSc such as the mesh import and cross section data loading. The non-
scaling issue in PETSc which limited the preceding calculations is scheduled to be fixed in the 
next release. 

4 Conclusions 
Significant gains were made with regard to building the new SN2ND preconditioner and 

meeting the objectives of 1) parallelism in energy, 2) a spatial multigrid concept 3) using SN 
vector spaces to accommodate the adjoint and time dependent functionalities needed for 
NEAMS work, and 4) complete manuals and documentation. While we failed to achieve the 
desired goal of an exportable SN2ND usable within the NEAMS community for neutronics 
analysis, we can be confident that this year’s work puts the SN2ND solver well on its way to 
meeting that objective. 

The old SN2ND solver used a Gauss-Siedel iterative algorithm in energy which is optimal 
for fast reactors. However, this iterative algorithm is not scalable and thus large calculations 
involving large numbers of energy groups but small numbers of space-angle vertices cannot 
fully utilize the available resources and typically over-run the system with regard to memory 
usage. A new solver algorithm using a GMRES solver over the entire space-angle-energy 
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system, both even- and odd-parity, was created and a preconditioner was built utilize spatial 
multigrid. The spatial multigrid technique was by far the most time consuming part of the 
development process because it required multiple new data structure concepts along with 
identifying the necessary changes in the vectors and their associated functions. As shown in 
this report, the tessellation introduces a known change in the odd-parity system of equations, 
the outcome of which is not known at this time, but must be assessed soon. Overall, the new 
coding is working in serial but clearly there is considerable work to be done to optimize the 
performance of the new preconditioner when parallelization in space, angle, and energy are 
applied. 

In addition to code modifications, more work setting up validation problems for fast 
reactor analysis was done. A considerable amount of time was again spent setting up and 
performing ZPR calculations. This required additional auxiliary tool development much like 
that seen in previous years but not discussed in this report. Unlike previous work, FY2011 
work included comparison of the solution against foil reaction rates taken during the 
experiments. Not only was a conventional homogenized drawer model attempted, but partially 
dehomogenized models were also constructed and tested. From this work it was clear that the 
homogenized drawer model produced excellent results for both the eigenvalue and foil 
measurements on four loadings of ZPR-6/7 although there was some notable room for 
improvement for the cross section generation scheme. The heterogeneous models of ZPR-6/7 
also produced good results; however, a fundamental issue with the consistency of the cross 
section data indicates that the conventional two step procedure needs additional research 
when used for whole core heterogeneous calculations. The overall goal of these ZPR 
validation cases is to build a library of problems for PROTEUS that can be executed quickly 
when any changes are made to the individual components of PROTEUS. 

In addition to the ZPR validation work, additional calculations were performed for more 
recent experimental data taken during the start-up tests of MONJU. Once again, MC2-3 + 
SN2ND performed excellently for conventional homogeneous modeling and provided 
solutions that existing legacy codes could not. A detailed space-angle-energy analysis on both 
the eigenvalue and flux solution was carried out and discussed in this report. While the 
MONJU fuel compositions are not given, using reasonable estimates proved to yield accurate 
estimates of measured reactivity coefficients. 

Mock-up heterogeneous calculations also took a considerable amount of time in FY2011. 
The purpose of these calculations is to scope out the performance limitations of SN2ND on 
whole core heterogeneous calculations. Specifically, heterogeneous PWR, VHTR, and 
MONJU reactor models were created using anywhere from 2 group to 33 group cross section 
data. As expected, meshes with greater than 100,000,000 vertices are necessary but cannot be 
achieved on existing super-computing machines with the current SN2ND solver. A specific 
non-scaling memory issue in PETSc actually prevented the SN2ND from being able to use an 
appropriate model of the PWR and VHTR (i.e. accurate dimensions). The PETSc related issue 
also affected the MONJU reactor, but since the active core height is so much shorter than the 
PWR and VHTR, we were still able to obtain a meaningful solution. 

The current goals for SN2ND are to get the new version fully debugged with respect to 
space-angle-energy parallelism, reliable in execution, and to have comparable performance to 
the existing solver such that it can be released within the NEAMS community. After its export 
to RSICC, we will rely upon further preconditioner research to be done in collaboration with 
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university partners. One future area of research that appears most promising is to incorporate 
a multigrid step involving a structured grid overlay involving geometric homogenization of 
the detailed geometry. Additional work will be focused on making SN2ND applicable on 
thermal reactor problems and addressing the concerns with handling void regions. 
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