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EXECUTIVE SUMMARY 
 
In this report, we have documented improved statistical methods for wind power forecasting 
(WPF). First, we present the results of the application of information theoretic learning (ITL) 
training criteria to wind power point forecasting. Second, we present novel time-adaptive kernel 
density forecast (KDF) methods for characterizing WPF uncertainty, along with the 
corresponding case study results. Finally, a new method to predict and visualize ramp events is 
illustrated. The main conclusions and contributions to the current state-of-the-art for each area of 
research are summarized below. 
 
Point forecasts of wind power are highly dependent on the training criteria used in the underlying 
statistical algorithms. Our work on wind power point forecasting focused on the training criteria 
used in the computational learning algorithms (we used a neural network), which convert 
weather forecasts and observational data into a point forecast for wind power. In particular, we 
used ITL training criteria, which are not built on the assumption of a Gaussian distribution of the 
forecasting errors. 
 
We applied the ITL training criteria to wind power point forecasts for two wind farms located in 
the U.S. Midwest. The main findings from our study include the following: 
 

• Demonstration of the advantages of using ITL criteria over the classic Minimum Square 
Error (MSE) criterion, in terms of reduced forecasting error. Fig. S1 presents an example. 

• The improvements of the ITL criteria are particularly significant for low and high wind 
power output levels. 

• A new ITL-based training criterion, centered correntropy, was introduced for the first 
time in this report. 

• Among several ITL-based criteria, the maximum correntropy criterion (MCC) showed 
good results and also has a low computational burden. 

• The importance of online training, as illustrated in Fig. S2, which assures better results in 
the presence of concept drift in the training data. 

 
 

          
Fig. S1 Improvements in forecast accuracy with different ITL training criteria (MCC, MEE, MEEF, 
cMCC) compared to traditional MSE for a wind farm in the Midwest. Left: Realized vs. forecasted 

wind power generation for different power output ranges. Right: Relative improvements in 
normalized mean average error (NMAE) compared to MSE for different forecast horizons.  
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Fig. S2 Comparison of performance of various ITL criteria (MCC, MEE, MEEF, cMCC) with MSE: 

frequency of occurrence of forecasted and measured values for a Midwest wind farm using online 
training.  

 
Although there have been advances in deterministic WPF, a single-valued point forecast cannot 
provide information on the dispersion of observations around the predicted value. Hence, it is 
essential to generate, together with (or as an alternative to) point forecasts, a representation of the 
wind power uncertainty. Within wind power uncertainty forecasting, we have developed two 
new probabilistic methods, both based on conditional kernel density estimation. The first method 
uses the Nadaraya-Watson (NW) estimator, whereas the second method uses the Quantile-
Copula (QC) estimator. We presented time-adaptive versions for both algorithms, which is an 
import contribution to the current state-of-the-art. We applied the new uncertainty forecasting 
algorithms in different case studies, comparing the results to linear and splines quantile 
regression (QR), which are two methods commonly used for statistical estimation of WPF 
uncertainty. 
 
The new KDF algorithms were tested on a dataset from the Eastern Wind Integration and 
Transmission Study (EWITS), as well as  on two large-scale wind farms located in the 
U.S. Midwest. 
 
The main achievements of our study include the following: 

• The selection of kernels (type, size) is very important for KDF methods. We identified 
adequate kernels specifically for the WPF problem. 

• The new KDF methods tend to yield a better performance than do QR methods in terms 
of calibration (Fig. S3). QR methods have a tendency to present a better performance in 
terms of sharpness and resolution (Figs. S4 and S5). KDF and QR methods exhibit 
similar levels of performance in terms of a skill score (Fig. S6). 
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• The time-adaptive KDF approach improves the skill score when compared to the offline 
approach (Fig. S7).  

• An important advantage of KDF is that it estimates the full probability distribution for 
wind power at any forecast horizon. 

 

 
Fig. S3 Calibration diagram for the offline 

test for EWITS data. 
Fig. S4 Sharpness diagram for the offline 

test for EWITS data. 
 

  
Fig. S5 Resolution diagram for the offline 

test for EWITS data. 

 
Fig. S6 Skill score diagram for the offline 

test for EWITS data. 
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Fig. S7 Skill score diagrams for a Midwest Wind Farm dataset, comparing offline and time-
adaptive models. Left: NW; right: QC. 

 
One of the major issues that concern system operators balancing supply and demand in the 
power grid are sudden and large changes of power output over a short period of time. These are 
referred to as ramp events, and they can take the form of either an increase or a decrease of wind 
power generation. For wind power ramp forecasting, we have proposed a new method to predict 
and visualize ramp events based on high-pass filter concepts. The method starts with a large 
sample of wind power scenarios, which are sampled with a Monte-Carlo approach, from a 
probabilistic forecast. Scenarios are filtered by using any definition of ramp events. Then, the 
probability of a ramp event is estimated by using the percentage of scenarios detecting the event, 
according to its definition. This process is repeated for several ramp magnitudes. The ramp 
forecasting process is illustrated in Fig. S8, along with a potential application to the stochastic 
unit commitment problem. 
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Fig. S8 Conceptual modules relating scenario generation, ramp event analysis, and stochastic 
unit commitment. 

 
We assessed and validated the behavior and performance of the proposed methodology using 
experimental data, with different ramping definitions. Ramp uncertainty was represented by the 
cumulative distribution of ramp probability, within a predefined window, and the visualization of 
ramp events included histograms of cumulative ramp probability functions and ROC curves, 
respectively, as illustrated in Figs. S9 and S10.  

Implicit pdf model 

Large discrete scenario set 

Condensed discrete scenario 
set 
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Ramp analyzer 
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Hedging 
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Fig. S9 Histograms of ramp events for one day using a 3h aggregation.  
Up: wind power point forecast and actual wind farm production. Down: modeling results  

of Ramp-Up and Ramp-Down events using the new proposed method. 

 

 
Fig. S10 ROC curves for the new proposed method. Left: ramp-up event.  

Right: ramp-down event. The blue line is the tangent at the optimum point,  
according to the configuration used: a false negative alarm cost equal to 200  

and a false positive alarm cost of 10. 
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The main contributions of our ramp forecasting study include the following: 

• The new method is independent of a particular ramp event definition and can be 
implemented using any definition. 

• By using a technique to correct phase errors, the proposed method obtained important 
gains in the forecasting performance when compared to a reference model (i.e., a point 
forecast). 

In summary, this report documents our contributions toward improved statistical methods for 
WPF. The main results for wind power point, uncertainty, and ramp event forecasting have been 
illustrated above. Most of the WPF prototypes and algorithms we developed that generated the 
results presented in this project have been integrated into a research software platform named 
“ARGUS-PRIMA.” More information about the platform can be obtained from Argonne 
National Laboratory. 
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1 INTRODUCTION 
 
Wind power forecasting (WPF) provides important inputs to power system operators and 
electricity market participants. It is therefore not surprising that WPF has attracted increasing 
interest within the electric power industry. In this report, we document our research on 
improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we 
provide a brief introduction to the research presented in the following chapters. For a detailed 
overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on 
the application of WPF in operational decisions is documented in [2]. 
 
Point forecasts of wind power are highly dependent on the training criteria used in the statistical 
algorithms that are used to convert weather forecasts and observational data to a power forecast. 
In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to 
the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE 
criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We 
investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive 
training algorithms and how they enable WPF algorithms to cope with non-stationary data and, 
thus, to adapt to new situations without requiring additional offline training of the model. We test 
the new point forecasting algorithms on two wind farms located in the U.S. Midwest.  
 
Although there have been advancements in deterministic WPF, a single-valued forecast cannot 
provide information on the dispersion of observations around the predicted value. We argue that 
it is essential to generate, together with (or as an alternative to) point forecasts, a representation 
of the wind power uncertainty. Wind power uncertainty representation can take the form of 
probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction 
risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to 
uncertainty forecasting basically consist of estimating the uncertainty based on observed 
forecasting errors. Quantile regression (QR) is currently a commonly used approach in 
uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty 
estimation problem by employing kernel density forecast (KDF) methods. We use two estimators 
in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantile-
copula (QC) estimators. We conduct detailed tests of the new approaches using QR as a 
benchmark.  
 
One of the major issues in wind power generation are sudden and large changes of wind power 
output over a short period of time, namely ramping events. In Chapter 4, we perform a 
comparative study of existing definitions and methodologies for ramp forecasting. We also 
introduce a new probabilistic method for ramp event detection. The method starts with a 
stochastic algorithm that generates wind power scenarios, which are passed through a high-pass 
filter for ramp detection and estimation of the likelihood of ramp events to happen.  
 
The report is organized as follows: Chapter 2 presents the results of the application of ITL 
training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, 
including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new 
method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; 
Chapter 5 briefly summarizes the main findings and contributions of this report.  
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2 TESTING OF ITL CRITERIA FOR WIND POWER POINT FORECASTS 
 
This chapter covers the following content. After an introductory section, where the point 
forecasting architecture is presented, in Section 2.2 we describe the data treatment and its 
preparation — it is detailed general data treatment, which is the same for all of the forecasting 
metrics used. Section 2.3 describes the process of mapper training, as well as the implementation 
details of the custom C++ neural network (NN) library, specifically developed for the purpose of 
this project. This chapter focuses on the developed point forecasting methodology and results; 
thus, most of this chapter is directly related to the algorithms implemented in this library.  
 
In Section 2.4, the metrics we used are detailed. Section 2.5 defines the performance evaluation 
metrics (e.g., normalized mean absolute error [NMAE], normalized bias [NBIAS]). The 
remainder of the chapter presents the results we obtained. 
 

2.1 Introduction 
The platform of the algorithms used in this project to analyze wind power point forecast is 
depicted in Fig. 2-1. 
 
The forecasting process can be functionally separated into three main blocks: 

‐ Retrieval and preparation of input data; 
‐ Training and production of forecasts; and 
‐ Storage and evaluation of results. 

 
Beause the forecasting processes are heavily data dependent, proper treatment of the data is 
crucial. For this reason, the software in this project is supported by a relational database where 
input data is firstly stored and manipulated. The same database is used to preprocess and prepare 
the data for the training process. The database also figures as a storage medium for prediction 
results, allowing comparisons and parameter sensitivity analyses. 
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Fig. 2-1 Forecasting process functional architecture. 

 

2.2 General Information – Data Treatment 
In order to handle large amounts of input/output data efficently, a relational database is used for 
their storage and manipulation. For this project, the PostgreSQL [3] relational database system 
was chosen. Input data from SCADA and NWP are imported from the input files into the 
corresponding tables. The integrity of the data is ensured by enforcing relational constraints. 
After having the data imported, initial preprocessing and aggregation are also performed in the 
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database, using stored procedures written in the PostgreSQL native PL/pgSQL programming 
language. The outputs of preprocessing are tables and views that serve as actual inputs to the 
prediction training system, as shown below (Fig. 2-2). 
 

 
Fig. 2-2 Functional architecture of in-database preprocessing of raw data. 

In this project, a W2P — wind-to-power — prediction model is analyzed. The input data 
required to train such W2P models are: 

‐ Realized wind power, or the prediction targets originated from the wind park’s 
supervisory control and data acquisition (SCADA) system and provided by the wind park 
operator; 

‐ Numerical weather predictions (NWP) results obtained from Argonne National 
Laboratory (Argonne). Argonne used the weather research forecast (WRF) model [4] to 
generate the NWP results with a spatial resolution of 5 km by 5 km over the wind farm 
area. 

 
The data above have a 10-minute resolution. In order to be used in training, these data are 
aggregated on a temporal basis so that finer temporal resolution (10-minute) is converted to one 
that is coarser (hourly). The same aggregation scheme was applied to both SCADA and NWP 
values, as follows: 
 

∑     (2-1) 

A simple averaging scheme of N measurements during the observed hour is used. Note also that 
if only complete SCADA measurements are available for a given hour, the number of 
measurements is N=6 (i.e., in case of missing values, N will be lower). 

Besides the temporal aggregation, data aggregation can be performed on a spatial level where a 
“virtual” wind park is created, corresponding to a geographically related subset of wind turbines. 
For the purposes of this report, two spatial aggregations have been performed, splitting the data 
from the large-scale wind park into two wind farms (Wind Park A [WPA] and Wind Park B 
[WPB]). 
 
Furthermore, in order to train and evaluate wind power forecasts, the complete available data 
need to be split into two datasets:  
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‐ A training dataset with targets (desired values) known in advance — this dataset will be 
used exclusively for training; and 

‐ A testing dataset where the realizations are predicted by the trained W2P — this way, the 
testing mimics the actual application of the forecasting process. 

 
Note that if online learning is used, the W2P model continues to learn during the testing phase 
and is constantly correcting its internal weights. Online learning is one way of dealing with the 
non-stationary characteristics of the wind.  
 
The complete dataset (SCADA and NWPs) available for this project corresponds to the period 
between January 1, 2009, and February 20, 2010. Hence, the following data partition was used: 

‐ January 1, 2009 – June 1, 2009 — training dataset, with 4,992 total hourly samples; 
‐ June 1, 2009 – February 20, 2010 — testing dataset, with 4,680 total hourly samples.  

 
In the input NWP data, there are 11 NWP points geographically distributed over the wind park 
area. A single NWP reference point was chosen for each of the wind parks. For WPA, the data 
from NWP point 8 were used. For WPB, NWP point 6 was chosen as the reference point. These 
two NWP points are both located within the wind farm. 
 
With regard to forecasting horizon, the complete NWP data consists of two 48-hour forecasts per 
day. For the purposes of this chapter, only the morning NWP forecasts, launched at 6:00 AM, 
were used. The temporal horizon used in forecasts is “day-ahead,” so the predictions are 
developed for the following day. This means that the forecasts were created for the temporal 
horizon of t+18 up to t+42 hours, and there is a single forecast available for each time step, 
launched at 6:00 AM on the previous day.  
 

2.3 W2P Predictor Training  
2.3.1 General Information on W2P Training 
The predictor based on a neural network is an example of a Wind to Power or W2P model. For a 
detailed description of various prediction models, see [1].  
 
In practice, a W2P model takes the numerical weather (NWP) forecasts as inputs and gives the 
predicted wind power as output. The output y of a W2P g is a function of inputs x and W2P 
internal weights w, such that: 
 

,    (2-2) 
 
In the case of wind power prediction, the inputs correspond to the vector of explanatory 
variables, such as the NWPs of wind speed and direction. The output is generally the wind power 
prediction for a certain horizon. 
 
Training of such W2P corresponds to searching for a set of weights that performs the best 
mapping, according to the performance measure related to the error . The generalized 
process of W2P training is depicted in Fig. 2-3. 
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In other words, a W2P is subjected to the process of supervised training, where its weights, w, 
are adjusted by a training algorithm in order to produce a known output, y, from a known input, 
x. The set of known inputs and corresponding known outputs is a training set. The performance 
criterion is the metric used to evaluate the predictor’s performance.  
 

 
Fig. 2-3 A generalized representation of W2P training. 

A neural network consists of several layers of neurons. The neurons are linked by synapses, 
passing the signal from one neuron to another and conditioning it by synapse weight. A neuron’s 
output is the effect of an activation function acting on a linear combination of inputs from the 
previous layer and conditioned by synapses linking the neurons. A comprehensive introduction 
to neural networks is given in [5]. The process of training a neural network consists of making 
adjustments to the synapse weights in order to achieve better performance, according to the 
training criterion. It is worth noting that the neuron  in Fig. 2-4 always emits 1 — this is the 
bias neuron, and the synapse weight  corresponds to the value of bias for this neuron. 
 

 
Fig. 2-4 Neuron representation in a neural network (Source: Wikipedia) 

The neural network backpropagation algorithm applies a correction to synapse weights that is 
proportional to the partial derivative of the error with regard to the weight. In other words, it is a 
gradient descent algorithm in the space of weights: it seeks a direction for weight change that 
reduces the value of error (Fig. 2-5). 
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Fig. 2-5 Illustration of backpropagation algorithm process. 

Furthermore, neural network training algorithms in general can be divided in two main classes: 
‐ Batch training algorithms (require a set of samples), and 
‐ Incremental training algorithms (used in sample-by-sample training). 

 
The main difference between batch and incremental algorithms lies in the manner of presenting 
the training samples and weight and bias adjustments. While batch algorithms perform 
adjustments to network weights and biases only after the whole batch is presented to the 
network, the incremental training algorithms perform such adjustments after presenting each 
sample. In other words, for batch algorithms the gradients are cumulative and adjustments are 
performed after all of the samples have been presented. The batch set is typically the whole 
training dataset. 
 
A simple backpropagation algorithm directly uses the correction based on (cumulative, in the 
case of batch methods) gradient: 
 

Δ    (2-3) 
 
where the change from epoch  to epoch 1 is directly proportional to the gradient and 
conditioned by the learning rate . A small learning rate might lead the network to a local 
optimum and deliver unsatisfactory performance, while a higher learning rate means the change 
in weights will be more intensive, which may lead to unstable oscillatory behavior in the learning 
process, and thus a failure of convergence of W2P training.  
 
A typical measure for avoiding such problems is to add a momentum term  to the weight update 
equation: 
 

Δ    (2-4) 
 
The momentum term works as a constant in a feedback loop around Δ . If the error gradient 
keeps its sign over iterations, the momentum term will increase the steady convergence. On the 
other hand, if the sign of the gradient changes between consecutive iterations, the momentum 
term will attenuate the change, stabilizing the convergence process and avoiding oscillation. For 
the process to converge, it is obvious that the momentum has to be less than one, | | 1. 
 
Besides the classic backpropagation algorithm, there are other rules that have been devised to 
handle the weight update process. Among the batch training algorithms, the iRPROP [6] 
algorithm is considered to be a very robust and efficient algorithm for the mean square error 
training criterion. Typically, it is notably more efficient per training iteration than classic 

Compute the 
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training criterion

Determine the 
(cumulative) 
gradients
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layers, from 
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backpropagation. For this reason, the iRPROP algorithm with the classic MSE is used as a base 
for comparisons between algorithm performances. While it is based on the same fundamental 
rules, iRPROP uses a different weight update rule, so it does not use the learning and momentum 
parameters in the classic form.  
 
Even though batch training algorithms have, in general, more favorable characteristics if 
compared with those that are incremental, the latter are needed for adaptive training. Adaptive 
methods of training are necessary for wind power forecasting. Any W2P model trained offline 
will display, after some time and after the imminent appearance of so-called concept drift, a 
pattern of growing error in prediction values. To deal with such non-stationary behavior, 
adaptive methods are needed. For this reason, the methodology implemented in the neural 
network library implements incremental training algorithms in addition to the batch algorithms. 
In addition, the incremental algorithms implement the randomization of the learning patterns 
when incremental training methods are used for a set of patterns. Because the incremental 
training algorithms present the samples one by one, presenting the samples from a batch in the 
same order would lead to “overfitting” the network for some samples. This outcome is avoided 
by shuffling the order of samples. 
 
Considering the software implementation, the supervised training is implemented in a 
combination of the Python programming language and C++ programming language. The Python 
language enables simple interaction with the relational database in order to retrieve and store the 
relevant data, and the C++ neural network library is responsible for computationally more 
intensive tasks. The evaluation of training criteria is the most demanding task in the W2P 
training; thus, most of it is implemented in C++. Data management is somewhat split between 
Python code and the PostgreSQL database in order to maintain the flexibility of the training 
process. The code is organized in a manner that enables predictors to use an arbitrary number of 
explanatory parameters, and various predictors can be trained and used in parallel. Each of these 
could rely on its own set of input parameters (explanatory variables). 
 
2.3.1.1 Neural Network Library Implementaion Details 
As stated before, the neural network is implemented as a C++ library, and several classes are 
“exposed” to Python. The Python code has control over the neural network training process, 
while the computationally demanding tasks are implemented in C++. The library represents a 
software implementation of network structures and algorithms, and it was specifically developed 
for the purpose of this project.  
 
There are four main classes in the C++ library. The code structure of implemented C++ classes 
resembles the actual structure of the neural network, as follows: 

‐ The Neuron class implements the functions related to the neuron (i.e., bias adjustment), 
references the associated synapses, and implements calculation of various error metrics; 

‐ The Synapse class is primarily responsible for storing the synapse weight (a synapse is a 
connection between two neurons) and its adjustments; 

‐ The NeuralNetwork class encapsulates the entire network and implementation of the 
training algorithms; and 

‐ The Pattern class represents a training pattern (consisting of a set of inputs x and desired 
outputs T).  
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By means of the Boost.Python [7] interface, the neural network library interfaces with the rest of 
the forecasting method development platform. The NeuralNetwork class is “visible” from the 
Python code that prepares the data, and the dataset is, after extraction from the database, 
prepared as a vector of Patterns. The library also implements a “helper” RandomGen class that 
implements high-quality random number generators whose routines are based on the 
Boost.Random library. 
 
There is a significant difference in current practice as compared to the neural network 
architecture first developed for this project. The library used to deliver the results for this chapter 
is a newly developed library without dependencies on any pre-built neural network libraries, so 
the current version of the NN library is developed specifically for this project and customized for 
the purpose of specific W2P training.  
 
2.3.2 Training Error Measures  
For the supervised W2P training, a criterion related with forecast error is required. The error is 
defined as the difference between the desired value (target) and the W2P model output: 
 

   (2-5) 
 
In this project, the in-training performance evaluation criteria introduce Information Theoretic 
Learning (ITL) error measures [8]. The ITL measures include Gaussian kernels, and in the 
subsequent formulae, a Gaussian kernel is referenced as  . 
 
2.3.2.1 MSE – Minimum Square Error 
This is the classical neural network training criterion that minimizes the variance of the error 
distribution and has the form:  
 

min
N

∑    (2-6) 
 
where  is the error of sample  relative to target value  (and output ), and  is 
the total number of training samples. The minimum square error criterion is based on the 
assumption that the errors form a Gaussian distribution. 
 
2.3.2.2 MEE – Minimum Error Entropy 
This criterion minimizes the entropy of the errors, , which is equivalent to maximizing the 
information potential, , of the dataset: 
 

min log V y    max
N

∑ ∑ k    (2-7) 
 
where V y  

N
∑ ∑ k  and  is the Gaussian kernel with bandwidth 2 .  

 
The general idea behind minimizing error entropy is to compress the error distribution into a 
Dirac function, and then, by correcting the bias, the errors would be eliminated.  
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Only where errors really are Gaussian, the Gaussian distribution is a good approximation of error 
distribution, so the MSE criterion yields good performance. On the other hand, the MEE 
criterion does not impose Gaussian assumptions on the gaussianity of the error distribution; thus, 
it should perform well even for non-Gaussian error distributions. 
 
The primary disadvantage of MEE criterion is the computational burden it introduces in 
calculation. The double sum in the formulation of error function requires, for each training 
sample prediction error, calculation of Gaussian kernel values for error differences of that sample 
with all of the other samples’ errors. This requirement means that the algorithmic complexity of 
such a process is practically O(n2), which makes the problem intractable for use with a large 
number of samples, even though the neural network training library may use parallel 
(multithreaded) computation to calculate the estimation of error distributions. 
 
An adequate approximation is the so-called batch-sequential [9] training algorithm that randomly 
divides the training dataset into several smaller subsets, then calculates the error entropy for each 
of the subsets, instead of doing so for the whole training set. After calculation of the error 
entropy of the subsets, the network weights are updated. 
 
The random partition of the dataset is initialized at the beginning of each training epoch, that is, 
the partition is not kept constant over the epochs. This process requires an additional 
parameter—subset size. For the presented examples, subset size is set to approximately one-third 
of the whole training dataset (i.e., 1,500 patterns).  
 
The reasoning behind such an algorithm is combining the batch mode where an update of the 
weights is made only once after presenting all of the samples and calculating the cumulative 
gradient, with an incremental mode of training where weights are updated after presentation of 
each sample. The lowered size of subsets in comparison with the whole training set results in 
much faster computation of error entropy and consequently means that the error entropy 
calculation is tractable for larger datasets.  
 
2.3.2.3 MCC – Maximum Correntropy Criteria 
This criterion is based on correntropy measure and may be given by: 
 

max
N

∑ k    (2-8) 
 
Correntropy is a generalized similarity measure between two arbitrary scalar random variables. It 
is directly related to the probability of how similar two random variables are in a neighborhood 
of the joint space defined by the kernel bandwidth. If a Gaussian kernel is used, then the 
correntropy measure is equivalent to Euclidean norm, when the error is close to zero. If the error 
increases, it first becomes similar to a L1 norm and, for very large errors, correntropy becomes 
insensitive. This means that correntropy is a robust measure. However, the desired kernel size is 
important: for very large kernel sizes correntropy behaves analogously to the MSE metric. 
Typically, in the beginning of the training with MCC, it should be started with large kernel sizes 
so that the network would not ignore the presented patterns. This approach is also followed in the 
subsequent results – Gaussian kernel size is reduced after the initial 25% of training epochs. 
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2.3.2.4 MEEF – Minimum Error Entropy with Fiducial Points  
A problem of the minimum error entropy criterion is that it is not restricted to a zero mean. This 
criterion adds a MCC term to the MEE training criterion, in order to deal with the lack of 
constraint of the mean value error in the latter, as: 
 

max  
N

∑ k 1
N

∑ ∑ k    (2-9) 
 
where  is a weighting constant between 0 and 1. This training criterion aims to anchor the error 
distribution to a zero mean by defining a compromise between minimizing entropy and 
maximizing correntropy through a cost function. 
 
2.3.2.5 cMCC– Centered Maximum Correntropy Criterion  
This criterion is estimated as the maximum difference between MCC and MEE: 
 

max
N

∑ k
N

∑ ∑ k    (2-10) 
 
Further information on the underlying criteria can be found in [10] and [11]. However, the 
cMCC criterion as a difference between the MCC and MEE criteria is introduced in the scope of 
this project — this criteria aims to exploit the benefits of the MCC and MEE criteria, avoiding 
the worsening of bias when MEE is used while also keeping the robustness MEE criterion offers. 
 
2.3.2.6 Incremental Training and Error Entropy Criteria  
For criteria relying on error entropy, multiple samples are inherently required. A construction of 
an incremental training method requires a recursive setup for calculation of information.  
 
The formulation of the recursive update of information potential using a forgetting factor is: 
 

1 ∑    (2-11) 
 
where  is a forgetting factor and  is the size of the window for the recursive update. When a 
new sample is obtained for the epoch t+1, it conditions the existing value of information 
potential using the above formulation.  
 
2.3.3 Discrete Kalman Filters in WPF  
The experiences from the discipline of statistics show that a combination of multiple diverse 
forecasting models gives favorable results — capable of surpassing the performance of each of 
the models separately. The main reasoning behind this finding is that the nature of the errors of 
different models is also different; thus, if an appropriate aggregation scheme for multiple models 
is used, a combination may surpass the performance of any single model. The condition for 
combining models is that individual models should have a substantial level of disagreement.  
 
With regard to this project, several neural networks with different cost functions can be seen as 
different models. Their forecasts are then combined by using a Kalman filtering method. 
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A Kalman filter is an optimal recursive data processing algorithm that uses noisy measurements 
(with random variations) and other inaccuracies in order to obtain results that tend to be closer to 
the true values of the measurements. In the case of WPF, a Kalman filter would try to prefer the 
“better” model for a given condition.  
 
The Kalman filter produces estimates of the true values of measurements and their calculated 
values by predicting a value and estimating its uncertainty and weighted average, as well as 
computing the measured value. The highest weight is given to the value with the least amount of 
uncertainty. The estimates produced by this method tend to be closer to the true values than they 
are to the original measurements, because the weighted average has lower estimated uncertainty 
than either of the values that went into the weighted average. 
 
The Kalman filter has two distinct phases: predict and update. The former is a time update in 
which the estimate of the state from the previous time step, 1, is used to predict the state at 
the current timestep, . This a priori state estimate, , does not include observation information 
from the current timestep. Therefore,  and the a priori error covariance, , are respectively 
determined according to: 
 

     (2-12) 

  (2-13) 
 
where  is the input vector,  is the transport matrix,  the input matrix, and  is the process 
variance. 
 
In the update phase, on the other hand, the current a priori prediction is combined with current 
observation information to refine the state estimate. This improved prediction is termed the 
a posteriori state estimate. Hence, the blending factor (or Kalman gain), , the a posteriori state 
estimate, , and the a posteriori error, , are respectively given by: 
 

       (2-14) 

   (2-15) 

  (2-16) 
 
where  are the noisy measurements,  is a matrix,  is the identity matrix, and  an estimate of 
the measurement variance.  
 
Further information about Kalman filters can be found in [12] and [13]. While the algorithmic 
basis for the use of Kalman filters is developed in the project, the preliminary results are subject 
to revision at the moment. Additional data might be necessary for this purpose. 
 
2.3.4 Prediction Performance Evaluation Metrics 
In order to systematically evaluate forecasting performance, one has to establish a set of metrics. 
The following error metrics conform to a commonly accepted definition of systematic evaluation 
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metrics for prediction performance evaluation. 
 
The normalized prediction error is defined as 
 

| |    (2-17) 
 
which is the difference between target (realized value at time t+k, ) and forecasted value 

| , divided by the wind park installed power, . One can subsequently define the 
following metrics used to evaluate the quality of the forecasts, as follows:  
 
NMAE – Normalized Mean Absolute Error  
 

∑ | | |   (2-18) 
 
NRMSE – Normalized Root Mean Square Error 
 

∑ |    (2-19) 

 
An alternative use of root mean square error (RMSE) is to consider the Standard Deviation of the 
Errors (SDE), or its normalized value: 
 

∑ |    (2-20) 

 
Because the SDE criterion is an estimate of the standard deviation of the error distribution, only 
the random error contributes to the SDE criterion.  
 
NBIAS – Normalized bias (systematic error) 
 

∑ |     (2-21) 
 
All of the above measures depend on the absolute value of the error and thus do not indicate 
whether the prediction has a systematic error. BIAS measures exactly such kinds of systematic 
errors. 
 
In the following chapters, the above evaluation metrics are represented for each of the 
implemented training criteria and for each of the two wind parks. The evaluation period 
corresponds to the entire testing period. Furthermore, the results present the histogram 
representation of the forecasting errors to show the shape of error distribution. The comparison 
of prediction reliability is also indicated through plotting occurrences of forecasted values versus 
the occurrences of production values for different ranges of installed power.  
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2.4 Wind Power Point Forecasting Results 
In this section, the results of the new methodology for wind power point forecasting are 
presented. All of the metrics described previously are analyzed. As described in Section 2.2 for 
all of the cases presented, the data treatment is kept constant; thus, the only difference between 
the following cases is related to the choice of training algorithm and the evaluation metrics. 
 
The W2P prediction errors inevitably depend on the NWP data. For this reason, the performance 
of prediction assessment is limited to comparison between different criteria. While the absolute 
performance measures are visible from the following graphs, it may not be adequate to compare 
these results directly to forecasts from other systems, using different NWP models and different 
methods of data preprocessing and postprocessing.  
 
In other words, a direct performance comparison may be misleading given that for a W2P model, 
one of the crucial points is the quality and treatment of input data. The idea behind the following 
results was to present the advantage of using ITL criteria in W2P training for a large-scale wind 
farm in the United States. The data has been split into two “sub-wind” farms, and the following 
paragraphs illustrate the results obtained for both wind parks. 
 
2.4.1 Wind Farm A 
This wind farm is the larger of the two and has about twice as much installed capacity as wind 
farm B. In all of the cases presented subsequently, 800 iterations (epochs) of the training 
algorithm were used, and the input data were the same. 
 
2.4.1.1 Minimum Square Error – MSE  
For the offline training case, 800 iterations of the iRPROP training algorithm were used. For the 
iRPROP training algorithm the learning rate parameter has no effect given that it uses an 
adaptive method of setting the learning rate (Figs. 2-6 through 2-9). 
 

 

Fig. 2-6 NMAE and NRMSE, for offline training, in Wind Farm A – MSE. 
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Fig. 2-7 NBIAS for offline training, in Wind Farm A – MSE. 

 

 
Fig. 2-8 Histogram of error occurrences in Wind Farm A – MSE. 
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Fig. 2-9 Frequency of occurrence of forecasted and measured values, Wind Farm A – MSE. 

From the graphs above, it is evident that the network trained with the MSE criterion is weak in 
predicting the common power range close to zero, as well as the range in the proximity of 
nominal power. The network also exhibits the positive total bias of the forecasts. Note that if the 
error is defined as , the positive bias means underestimation.  
 
In Figs. 2-10 through 2-12, note that while the introduction of online learning does not have a 
strong effect on NMAE, it lowers the bias of MSE-based predictions and helps the network 
approximate the power distribution. 
 

 
Fig. 2-10 NMAE and NRMSE, for online training, in Wind Farm A – MSE.  
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Fig. 2-11 NBIAS for online training, in Wind Farm A – MSE.  

 

 
Fig. 2-12 Frequency of occurrence of forecasted and measured values, Wind Farm A – MSE. 

 
2.4.1.2 Maximum Correntropy Criterion – MCC   
In the following examples, a Gaussian kernel size  is lowered after the first 200 iterations, 
and a classic batch backpropagation training algorithm is used instead of iRPROP. The iRPROP 
algorithm is considered to be a very efficient training algorithm for MSE criterion. It uses 
different weight-updating rules and exhibits better per-epoch performance than “pure” batch 
backpropagation when MSE criterion is used. However, in spite of being more efficient in MSE 
training, it exhibits lower performance when MCC is used. The classic batch backpropagation 
algorithm requires setting of the learning rate parameter, which was set to 0.1 (Figs. 2-13 through 
2-16).  
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Fig. 2-13 NMAE and NRMSE, for offline training, in Wind Farm A – MCC. 

 

 
Fig. 2-14 NBIAS for offline training, in Wind Farm A– MCC. 
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Fig. 2-15 Histogram of error occurrences in Wind Farm A – MCC. 

 
Fig. 2-16 Frequency of occurrence of forecasted and measured values, Wind Farm A – MCC. 

 
If compared with the MSE criterion, the MCC successfully achieves a higher concentration of 
errors around zero, which is exactly the desired effect and is evident from the lower NMAE error 
for MCC in comparison with MSE. The effect is even more visible if frequency of occurrence is 
observed: MCC criterion more closely follows the occurrences of measured values, that is, the 
distribution of forecasted power is closer to realized values than with MSE criterion.  
 
When the MSE criterion is used, classic batch backpropagation requires more epochs to 
converge than iRPROP requires. The iRPROP algorithm with MSE performs better than batch 
backpropagation because of heuristic rules it uses in weight updating. One might conclude that 
for the MCC criterion, iRPROP should also perform better. However, this is not the case, and it 
seems that the heuristic rules are not as suitable for MCC criterion. Thus, for MCC the classic 
batch backpropagation algorithm was used instead (Figs. 2-17 through 2-19). 
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Fig. 2-17 NMAE and NRMSE, for online training, in Wind Farm A – MCC. 

 

 
Fig. 2-18 NBIAS for online training, in Wind Farm A – MCC. 
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Fig. 2-19 Frequency of occurrence of forecasted and measured values, Wind Farm A – MCC. 

Because the offline training succeeds in achieving good performance of the W2P model, the 
introduction of online training does not increase the performance significantly — only the bias is 
slightly lower. In addition, the testing dataset is relatively short (6 months only) so the effects of 
online training are not very visible. 
 
 
2.4.1.3 Minimum Error Entropy Criterion – MEE 
 
Figs. 2-20 through 2-23 capture findings related to the MEE criterion.  
 

 

Fig. 2-20 NMAE and NRMSE, offline training, in Wind Farm A – MEE. 
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Fig. 2-21 NBIAS for offline training, in Wind Farm A – MEE. 

 
Fig. 2-22 Histogram of error occurrences in Wind Farm A – MEE. 
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Fig. 2-23 Frequency of occurrence of forecasted and measured values, Wind Farm A – MEE. 

 
It is known from the theory of ITL that the “pure” MEE criterion is insensitive to mean. The 
result is confirmed in practice given that the MEE criterion, when applied in an offline setting, 
requires a final step to correct the bias. However, such correction is not as efficient as the 
corrections to bias made during the training, as employed in MSE and MCC criteria — a finding 
that is visible from the BIAS results. The MEE criterion is still more successful than the MSE 
criterion is in following the distribution of occurrence of measured values. In the above example, 
a classic batch iRPROP was used; thus, the above computation required substantially more 
computational effort than did the comparable MSE and MCC training. 
 
 
2.4.1.4 Minimum Error Entropy with Fiducial Points – MEEF 
 
Figs. 2-24 through 2-27 capture findings related to the MEEF criterion.  
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Fig. 2-24 NMAE and NRMSE, offline training, in Wind Farm A – MEEF. 

 

 
Fig. 2-25 NBIAS for offline training, in Wind Farm A – MEEF. 
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Fig. 2-26 Histogram of error occurrences in Wind Farm A – MEEF. 

 

 
Fig. 2-27 Frequency of occurrence of forecasted and measured values, Wind Farm A – MEEF. 

 
The MEEF, or maximum error entropy with fiducial points, introduces an additional weighting 
term that regulates the ratio between the MEE and MCC criteria. However, a general conclusion 
after repeated simulations is that in Wind Farm A, MEEF criteria yield slightly worse results 
than do MCC criteria. The same conclusion is applicable for the online case. With regard to 
run time, MEEF is comparable to MEE. 
 
 
2.4.1.5 Centered Correntropy – cMCC 
 
Figs. 2-28 through 2-31 capture findings related to the cMCC criterion.  
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Fig. 2-28 NMAE and NRMSE, offline training, in Wind Farm A – cMCC. 

 

 
 

Fig. 2-29 NBIAS for offline training, in Wind Farm A – cMCC. 
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Fig. 2-30 Histogram of error occurrences in Wind Park A – cMCC. 

 

 
Fig. 2-31 Frequency of occurrence of forecasted and measured values, Wind Farm A – cMCC. 

 
The basic idea behind the cMCC criterion is exploiting the robustness of MEE while not having 
to suffer from the pronounced bias of the forecast. In this regard, the cMCC behaves as expected, 
and its bias characteristics are similar to those of MCC. 
 
An interesting observation with regard to cMCC is the use of a learning momentum factor: for 
WPA training, the learning momentum does not have a desired effect. Instead, when the network 
is trained with cMCC and learning momentum, the training process has difficulties converging. 
For this reason in the above and following examples with cMCC, the learning momentum is 
always set to zero. 
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2.4.1.6 Summary of Performance for Various Criteria for WFA 
This section presents an overview and comparison of the exhibited performance of various 
criteria for Wind Farm A. For the sake of clarity, the offline measures are compared — in this 
park, the offline-trained W2P model performs relatively well, and the difference in the 
“behavior” of different forecasts is slightly more pronounced (Figs. 2-32 and 2-33). 
 

 
Fig. 2-32 Frequency of occurrence of forecasted and measured values, Wind Farm A – 

Comparison of performance of various ITL criteria with MSE. 

 

 
Fig. 2-33 Comparison of NMAE for various ITL criteria with MSE, Wind Farm A. 
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The latter illustration is particularly interesting: any ITL-based training criterion successfully 
surpasses the MSE criterion. Furthermore, the best performing criterion for Wind Farm A seems 
to be MCC, and in the above situation, it manages to achieve almost 20% better performance in 
terms of NMAE in some hours. Better performance of ITL criteria should not be surprising after 
considering the error distributions visible in histograms for each of the training methods. The 
training errors are clearly non-Gaussian — so a measure of error that does not rely on the 
Gaussian shape of the error curve should perform better.  
 
The former illustration shows the main drawback of using MSE criteria in the WFA setting — it 
overestimates the mid-range of production values, while underestimating high and low values. 
ITL methods perform much better in these ranges of values. 
 
All of the forecasting methods seem to exhibit less satisfactory behavior with regard to the 
highest range of values (close to installed power). The most significant reason for this behavior is 
described in the following power histograms (Figs. 2-34 and 2-35).  
 

 
Fig. 2-34 Histogram of power classes for the training period, Wind Farm A. 

 
Fig. 2-35 Histogram of power classes for the testing period, Wind Farm A. 
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Fig. 2-34 presents the histogram for the training period and Fig. 2-35 presents the histogram for 
the testing period. There are practically no occurrences of highest values in the training dataset, 
so all of the methods have a difficult task when this class of power has to be predicted. For this 
reason, the predicted versus realized graphs show that the prediction performance in this power 
class is somewhat lower. This problem is commonly resolved by using online (adaptive) training 
methods. However, for the visible impact of using such methods, a longer time span of the 
dataset used for testing may be required. 
 
One conclusion, however, is clear — ITL methods show a clear advantage over the classic MSE-
based training method. 
 
 
2.4.2 Wind Farm B 
This wind park has about half of the installed capacity compared to wind farm A. Even though 
the two wind parks are in the same area, forecasting WFB represents a slightly more challenging 
task. The dataset for the WFB represent the wind park’s first months of operation, so the 
frequency of low production is higher. In addition, for such a setting, it is expected that even in a 
limited duration dataset, the online learning methods provide notably better results than their 
offline counterparts. All of the general training parameters were the same as for WFA. 
 
2.4.2.1 Minimum Square Error – MSE  
For the offline training case (Figs. 2-36 through 2-39), 800 iterations of the iRPROP training 
algorithm were used. For the iRPROP training algorithm, the learning rate parameter has no 
effect because it uses an adaptive method of setting the learning rate. 
 

 

Fig. 2-36 NMAE and NRMSE, for offline training, in Wind Farm B – MSE. 
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Fig. 2-37 NBIAS for offline training, in Wind Farm B – MSE. 

 

 
Fig. 2-38 Histogram of error occurrences in Wind Farm B – MSE. 
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Fig. 2-39 Frequency of occurrence of forecasted and measured values, Wind Farm B – MSE. 

In comparison with the WFA results, a significantly larger bias is immediately visible. The fact 
that Wind Farm B was in the process of establishment also shows the importance of online 
training. In an online training setting (Figs. 2-40 through 2-42), the learning rate was set to 

0.001. 
 

 

 
Fig. 2-40 NMAE and NRMSE, for online training, in Wind Farm B – MSE.  



 

34 

 
Fig. 2-41 NBIAS for online training, in Wind Farm B – MSE.  

 
 

 
Fig. 2-42 Frequency of occurrence of forecasted and measured values, Wind Farm B – MSE. 

The effect of online learning is more pronounced in the case of bias, which is significantly 
lowered; however, the general characteristic of the forecasted versus realized power distribution 
is not significantly better when online MSE learning is used. 
 
 
2.4.2.2 Maximum Correntropy Criterion — MCC   
For the MCC criterion, the same settings as in WFA were used: the Gaussian kernel size  is 
lowered to 0.1 after the first 200 epochs; and for the remaining 600 epochs, the classic batch 
backpropagation method is used (Figs. 2-43 through 2-46). 
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Fig. 2-43 NMAE and NRMSE, for offline training, in Wind Farm B – MCC. 

 

 
Fig. 2-44 NBIAS for offline training, in Wind Farm B – MCC. 
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Fig. 2-45 Histogram of error occurrences in Wind Farm B – MCC. 

 

 
Fig. 2-46 Frequency of occurrence of forecasted and measured values, Wind Farm B – MCC. 

The MCC criterion’s key trait — that it successfully achieves better prediction for a class below 
10% of rated power — is evident here. However, because of the specifics of the power class 
distribution of WFB, neither MCC is able to accurately follow the shape of the distribution. The 
improvement in NMAE values, however, is by a lower margin than what is found in the case of 
WFA. 
 
The addition of online training has a favorable effect in the case of the MCC criterion, too 
(Figs. 2-47 through 2-49) — both the NMAE and bias are reduced in comparison with the offline 
MCC method (Fig. 2-43 and Fig. 2-44, respectively).  
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Fig. 2-47 NMAE and NRMSE, for online training, in Wind Farm B – MCC. 

 

 
Fig. 2-48 NBIAS for online training, in Wind Farm B – MCC. 
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Fig. 2-49 Frequency of occurrence of forecasted and measured values, Wind Farm B – MCC. 

 
 
2.4.2.3 Minimum Error Entropy Criterion – MEE 
 
Aspects of the MEE criterion’s performance are highlighted in Figs. 2-50 through 2-53. 
 
 

 

Fig. 2-50 NMAE and NRMSE, offline training, in Wind Farm B – MEE. 
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Fig. 2-51 NBIAS for offline training, in Wind Farm B – MEE. 

 

 
Fig. 2-52 Histogram of error occurrences in Wind Farm B – MEE. 
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Fig. 2-53 Frequency of occurrence of forecasted and measured values, Wind Farm B – MEE. 

The insensitivity of the MEE criterion to mean is shown here, as well, considering that the bias is 
also relatively large for WFB. However, the MEE criterion seems to be better performing than 
MCC in terms of following the power class distribution. On the other hand, if the NMAE 
criterion is used to evaluate predictions, then MCC performs slightly better than MEE. 
 
 
2.4.2.4 Minimum Error Entropy with Fiducial Points – MEEF 
 
Aspects of the MEEF criterion’s performance are highlighted in Figs. 2-54 through 2-57. 
 
 

 

Fig. 2-54 NMAE and NRMSE, offline training, in Wind Farm B – MEEF. 
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Fig. 2-55 NBIAS for offline training, in Wind Farm B – MEEF. 

 
 

 
Fig. 2-56 Histogram of error occurrences in Wind Farm B – MEEF. 
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Fig. 2-57 Frequency of occurrence of forecasted and measured values, Wind Farm B – MEEF. 

The behavior of MEEF criterion for the case of WFB is fairly similar to that of WFA. In the case 
of WFB, presumably as a result of the characteristics of the training dataset, the bias of MEEF is 
notably higher than it is in the case of MEEF applied in WFA. The introduction of online 
training (Figs. 2-58 through 2-60) is especially visible on the realized versus forecasted 
distribution graph. 
 
 

 
 

Fig. 2-58 NMAE and NRMSE, online training, in Wind Farm B, MEEF. 
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Fig. 2-59 NBIAS for online training, in Wind Farm B, MEEF. 

 
 

 
Fig. 2-60 Frequency of occurrence of forecasted and measured values, Wind Farm B. 

 
 
2.4.2.5 Centered Correntropy – cMCC 
 
The observation for WFB (Figs. 2-61 through 2-67) again confirms the value of online learning 
in the WFB dataset — the online learning performs notably better. For instance, the bias of 
cMCC online is half the bias of cMCC offline.  
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Fig. 2-61 NMAE and NRMSE, offline training, in Wind Farm B – cMCC. 

 
 

 
 

Fig. 2-62 NBIAS for offline training, in Wind Farm B – cMCC. 
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Fig. 2-63 Histogram of error occurrences in Wind Farm B – cMCC. 

 

 
Fig. 2-64 Frequency of occurrence of forecasted and measured values, Wind Farm B – cMCC. 
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Fig. 2-65 NMAE and NRMSE, online training, in Wind Farm B – cMCC. 

 

 
Fig. 2-66 NBIAS for online training, in Wind Farm B – cMCC. 
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Fig. 2-67 Frequency of occurrence of forecasted and measured values, Wind Farm B – CMCC. 

 
 
2.4.2.6 Summary of Performance for Various Criteria for WFB 
This section presents an overview and comparison of the exhibited performance for various 
criteria at Wind Farm B. Summary results are presented in Figs. 2-68 through 2-71.  
 

 
Fig. 2-68 Frequency of occurrence of forecasted and measured values, Wind Farm B – 

Comparison of performance of various ITL criteria with MSE. 
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Fig. 2-69 Comparison of NMAE for various ITL criteria with MSE, Wind Farm B. 

 

 

 
Fig. 2-70 Frequency of occurrence of forecasted and measured values, Wind Farm B – 

Comparison of performance of various online ITL criteria with MSE. 
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Fig. 2-71 Comparison of NMAE for various online ITL criteria with MSE, Wind Farm B. 

 
As compared to the figures above, it is obvious that the influence of online training is larger than 
the differences among the training criteria. Still, MCC with the online setting exhibits favorable 
performance, especially considering the small computation burden it requires. An interesting 
observation is performance of “pure” MEE criterion when compared to MSE in an offline setting 
— the MEE’s insensitivity to mean and corresponding problems — are a possible reason for this 
effect. 
 

2.5 Conclusions 
The results presented in this chapter document the application of ITL training criteria to WPF for 
two large-scale wind farms located in the Midwest, namely, Wind Farm A and Wind Farm B.  
 
Prior experience with the use of ITL criteria has shown favorable performance with distinct 
advantages over the classic MSE criterion. These findings have been confirmed here, and a new 
ITL-based criterion, centered correntropy, is introduced in this chapter. 
 
With regard to location specifics, the two wind farms are located next to each other and therefore 
experience similar terrain and weather conditions; however, their behavior and data differ. The 
turbines in WFA have been operated for a longer period of time, and the data series used for 
training showed a significant degree of dependence on the training criterion applied. On the other 
hand, WFB had just been established at the beginning of the observed data series, and thus we 
found that the use of online training was significantly more important. 
 
In theory, online training should assure better performance in the presence of concept drift. This 
effect, however, may not be very pronounced if the dataset contains a limited amount of data, so 
an elaborated concept drift is not visible in the data. In this chapter, slightly more than a year’s 
worth of data was available for both training and testing. For an established wind farm, the effect 
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of online training in the treatment of concept drift may appear to be more pronounced if the W2P 
model is tested over a longer period of time. Thus, for more detailed testing of the online training 
methods, a more extensive dataset would provide better insight into the behavior of online ITL 
criteria. 
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3 NEW CONTRIBUTIONS TO WIND POWER UNCERTAINTY FORECASTING: 
KERNEL DENSITY FORECAST  

This chapter is organized as follows: After an introductory description, Section 3.2 presents the 
motivation to represent the uncertainty by density functions. Section 3.3 describes two 
algorithms for kernel density forecast: the classical Nadaraya-Watson estimator and the quantile-
copula estimator. Section 3.4 presents the results for two case studies: National Renewable 
Energy Laboratory’s (NREL’s) Eastern Wind Integration and Transmission Study (EWITS) 
dataset and a U.S. wind farm. Section 3.5 presents a discussion about the goodness in 
probabilistic forecasts, and finally, Section 3.6 presents the conclusions and next steps. 
 

3.1 Introduction 
A single-valued forecast (or point/deterministic forecast) cannot provide to the forecast user 
information on the dispersion of observations around the predicted value. Therefore, it is 
essential to generate, together with (or as an alternative to) point forecasts, a representation of the 
wind power uncertainty.   
 
The algorithms from the state-of-the-art in wind power uncertainty forecasting can be found in 
[1]. Three key features have captured researchers’ attention: (i) how to represent the wind power 
uncertainty; (ii) the model chain for uncertainty forecasting; and (iii) time-adaptive (or online) 
models to cope with non-stationary data. 
 
The wind power uncertainty can take the form of probabilistic forecasts, risk indices, or 
scenarios for short-term wind power generation. Probabilistic forecasting consists of expressing 
the wind power generation or forecast error in “probabilistic terms,” such as: (a) parametric 
representation (e.g., Gaussian distribution); (b) moments of the distributions (e.g., mean, 
standard deviation, skewness); (c) a set of quantiles; (d) probability mass function (pmf); and 
(e) probability density function (pdf). Normally, the uncertainty representation is determined by 
the algorithm used (e.g., if quantile regression is used, the uncertainty is represented by a set of 
quantiles). 
 
The traditional model chain for wind power uncertainty forecasting, according to Juban et al. 
[14], consists of using as input the forecast errors or point forecasts from a wind power 
deterministic forecasting model. The uncertainty estimation model is placed after the model that 
produces wind power deterministic forecasts. One example of this model chain combines 
adapted resampling with fuzzy inference, as developed by Pinson [15]. A preferred approach 
consists either of using the Numerical Weather Prediction (NWP) forecast error as input for the 
uncertainty estimation method or computing the uncertainty directly from the NWP points. This 
class of algorithms avoids an intermediate step (conversion of wind to power, the W2P step) 
because they can produce probabilistic and deterministic forecasts. For instance, the local 
quantile regression described by Bremnes [16] forecasts the wind power generation quantiles 
based on information about explanatory variables (e.g., NWP forecasts); a set of quantiles 
characterize the uncertainty, and the point forecast could be associated with the median (quantile 
50%). The Kernel Density Estimation described by Juban et al. [17] also provides an uncertainty 
estimation and point forecast. 
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Most of the methods available in the literature are models trained in an offline mode, with the 
models unable to cope with changes in the underlying distributions of the several variables. 
Examples of offline forecasting algorithms are the quantile regression presented by Bremnes [16] 
and the model described by Juban et al. [17]. On the other hand, the tendency in the state of the 
art is to develop algorithms capable of adapting to changes in data; some examples are the time-
adaptive quantile regression model described by Møller et al. [18] and the conditional parametric 
autoregressive model recently developed by Pinson [19].  
 
Consequently, an algorithm for wind power uncertainty forecasting shall ideally have the 
following as prerequisites: (i) a high level of flexibility to represent wind power uncertainty; 
(ii) time-adaptive characteristics; and (iii) ability to avoid an intermediate step to compute point 
forecasts. However, point forecasts from different models could represent additional and useful 
information for uncertainty forecast.  
 
In this chapter, new contributions for the advancement beyond the state-of-the-art in wind power 
forecast uncertainty are presented. Two algorithms for wind power density forecast, which 
respect the three prerequisites mentioned above, are described.  
 

3.2 Motivation to Represent Wind Power Uncertainty by Probability Density 
Functions 

From an information theory perspective, the pdf contains all of the information associated with a 
random variable. For instance, it enables computation of the moments of the forecasted 
distribution. Therefore, we may argue that the pdf representation is generic and can be 
transformed into several uncertainty forms, such as quantiles, standard deviation, or skewness. 
 
The best way to represent uncertainty is determined by the end user’s requests and the nature of 
the decision-making problem being addressed. In general, one cannot talk about better and worse 
uncertainty representations, only of more or less adequate representations. However, the pdf 
delivers the necessary flexibility for addressing several decision-making problems. 
 
The problem of finding the “optimal” wind power bidding for the electricity market can be 
formulated with different methods when wind power uncertainty is considered. When the 
objective is to maximize the expected profit (or minimize the expected cost of imbalances), the 
aim consists of finding the optimal quantile, which for some electricity markets is determined by 
imbalances in price ratios [20]. It is possible to extract the optimal quantile from the pdf for each 
hour and, consequently, the “optimal” decision under the expected value paradigm. Botterud 
et al. [21] presented an approach based on maximizing the utility; for this approach, the pdf 
enables the production of a probability mass function (pmf) that can be used to compute the 
expected utility. Bourry et al. [22] described an approach based on portfolio theory where a 
trade-off between expected income and risk (described by the conditional value-at-risk) is 
evaluated to find the “optimal” bid. This approach is in line with the work developed by Matos 
[23], where the aim is to describe uncertainty by a set of deterministic risk measures. For this 
problem, the knowledge of the pdf allows the computation of any risk measure. For instance, it is 
possible to evaluate a trade-off between expected income and risk described by the variance and 
skewness.   



 

53 

The pdf representation is also useful to set the required operating reserve for the current and next 
days using, for instance, the method presented by Matos and Bessa [24]. The pdf representation 
provides the full probability distribution, which allows a better characterization of the tails. 
According to Bessa and Matos [25], the tails in the operating reserve problem are the critical 
factor, in particular if the system operator (SO) prefers a higher level of security (e.g., loss of 
load probability around 1%). 
 
The method described by Pinson et al. [26] to represent the uncertainty by scenarios with 
temporal correlation of forecast errors could also benefit from the pdf representation. With a 
forecasted pdf, the distribution is fully characterized and there is no need to perform an 
exponential interpolation.   
 
According to Nielsen et al. [27], the quantiles may cross in quantile regression, because to 
compute each quantile it is necessary to solve an independent optimization problem. The pdf 
forecasts supply directly non-crossing quantiles. However, this detail is minor because this 
behavior means that the uncertainty is lower between the quantiles. 
 
Finally, and as mentioned by several authors [17][28]–[30], for multimodal distributions a 
density forecast allows computation of the modes instead of just computing the expected value 
(which, in this case, is not a good summary of the distribution). It is unlikely to find wind power 
multimodal density distributions, but the mode or the median is still a better deterministic 
forecast, because normally the wind power distributions are highly skewed. With this approach, 
it is possible to follow the method described by Faugeras [30]:  
 

One can consider the statistician should first estimate the full conditional 
distribution to fully quantify the input of X on Y and then, once the general shape 
of the conditional density is given, to build some sensible point predictors and 
predictive sets. This is especially relevant if the predictive distribution is multi-
modal or skewed, which often arises in applications with non-Gaussian or non-
linear phenomena. 

 

3.3 Kernel Density Forecasting Methodology 
3.3.1 Basic Concepts 
The theoretical framework for Kernel Density Forecasting (KDF) is the Kernel Density 
Estimation (KDE) and Conditional Kernel Density Estimation (CKDE).  
 
3.3.1.1 Kernel Density Estimation 
KDE, which was introduced by Rosenblatt [31] in 1956, with several properties derived by 
Parzen [32] in 1962, consists of using a non-parametric estimator of a density function. Given 
independent and identically distributed data (i.i.d) X1,…,Xn drawn from an unknown density 
function f, the univariate KDE is given by: 

   

·
· ∑    (3-1) 
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where N is the number of samples, K is a Kernel function, and h the bandwidth parameter. 
Wolverton et al. [33] presented an alternative in 1959 formulated as: 

   

· ∑ ·    (3-2) 

 
where hi is the bandwidth parameter for each sample i. For instance, if the Kernel function is a 
Gaussian, the following estimator is considered: 
   

· ∑
√ ·

·    (3-3) 

 
The previous equation consists of placing a Gaussian Kernel in each sample Xi. The 
corresponding density function results, depicted in Fig. 3-1, show a density distribution 
estimated by dividing by 8 the sum of eight Gaussians (with variance 0.09) centered on eight 
samples.  
 
Given i.i.d multivariate data X1d,…,X2d from d different variables drawn from an unknown 
multivariate density function f, the multivariate KDE is given by: 
   

, … ,
· ,…,

· ∑ , … ,    (3-4) 

where K is a multivariate Kernel function and h1,…,hd a bandwidth vector. 
 
When the support of x (range of possible values) is different for d variables (which is the case of 
the wind power problem), the approach consists in using the product kernel estimator [34]: 
 

  , … , · ∑ ∏    (3-5) 

 
where Kj is the kernel function for variable j with bandwidth hj.  
 
Fig. 3-2 depicts the joint pdf computed using (3-5) for data from a real wind farm. This pdf 
represents the probability density associated to each point plotted in the wind speed versus wind 
power scatter of Fig. 3-3. The region with highest density in Fig. 3-2 matches the zones with 
highest concentration of points in Fig. 3-3.  
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Fig. 3-1 Illustration of the Parzen window method to estimate the pdf from a sample of 8 points  
D = {-1.3; -0.85; -0.8; 0; 0.1; 0.2; 1.4; 1.6} and with h=0,3. In red: the estimated pdf, obtained after 

the division by 8 of the sum of the individual Gaussians, so that its integral is equal to 1. 

 

 
Fig. 3-2 Joint probability density function of 

forecasted wind speed and measured wind power. 

 
Fig. 3-3 Scatter plot of forecasted wind 
speed versus measured wind power. 

 

3.3.1.2 Conditional Kernel Density Estimation 
Conditional density estimation consists of estimating the density of a random variable Y, 
knowing that the explanatory random variable X is equal to x. In other words, it consists of 
estimating the density of Y conditioned to X=x, f(y|X=x). The conditional density can be 
formulated as follows: 
   

   (3-6) 
 
where f(x,y) is the multivariate density function of X and Y (joint distribution function), and f(x) 
is the marginal density of X. 
 
It is also possible to have nonparametric conditional density estimation. The classic approach is 
the Nadaraya-Watson kernel smoother proposed by Rosenblatt [35] in 1969: 
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| , ∑ ·    (3-7) 
 
where ∑ . 

 
3.3.2 Nadaraya-Watson Estimator 
Hyndman et al. [36] considered the following modified Nadaraya-Watson (NW) estimator: 
 

| ∑ ·    (3-8) 

where  ∑  

 
and where the bandwidth hy controls the smoothness of each conditional density in the y 
direction, while hx controls the smoothness between conditional densities in the x direction. 
 
This estimator will be considered for wind power density forecast because its implementation is 
simple, and implementing its time-adaptive version is straightforward. Moreover, this estimator 
is also useful for benchmarking with the quantile-copula (QC) approach that will be described in 
the next sub-section. 
 
3.3.3 Quantile-Copula Estimator 
The quantile-copula estimator was introduced by Faugeras [37]. According to the authors, its 
main advantages over the existing methods are that: the methods based on the NW estimator are 
numerically unstable when the denominator is close to zero; for a problem with several 
explanatory variables, this method has only one kernel product, instead of two; at a conceptual 
level, density estimation should only be based on density estimation methods and not on 
regression approaches (like the NW estimator). Moreover, this estimator easily allows the 
inclusion of bounded data, such as the wind power. 
 
The main difference from the NW estimator is in the joint density function of Y and X. Almost at 
the same time, Faugeras [37] and Bouezmarni and Rombouts [38] proposed the idea of using a 
copula for modeling the dependency structure between Y and X. Regarding copulas, the Sklar 
theorem [39] says the following for the bivariate case:  
 
Let H be a two-dimensional distribution function with marginal distribution functions F and G. 
Then there is a copula C such that 
   

, , .   (3-9) 
 
Conversely, for any univariate distribution functions F and G and any copula C, the function H is 
a two-dimensional distribution function with marginals F and G. Furthermore, if F and G are 
continuous, then C is unique. 
 
This theorem means that the multivariate distribution function can be separated into two parts: 
(i) marginal functions that can be estimated separately; and (ii) a dependency structure between 
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the marginal which is modeled by the copula. For more details about copulas, see Nelson [40]. A 
conditional density estimator can be built from (3-9). So, we know that: 
   

, ,    (3-10) 
 
then (3-5) can be replaced by 
   

,
·

· , · · ,    (3-11) 
where u and v are a quantile transform of the data, u=FX(x) and v=FY(y), and c is the copula 
density function. 
 
Replacing (3-11) in (3-6), we have the following conditional density estimator: 
   

| · ,    (3-12) 
Now, it is necessary to build an estimator for (3-12). The idea proposed by Bouezmarni and 
Rombouts [38] was a semiparametric approach, where a parametric model is considered for the 
copula, and the marginal distributions are represented by a nonparametric model (empirical 
distribution function). However, we followed the idea described by Faugeras [37], where the 
copula density is estimated with KDE.  
 
The estimator for fY(y) is the KDE in (3-1). The copula density estimator is the estimator in (3-5) 
as follows (for the bivariate case): 
   

̂ , · ∑ ·    (3-13) 
 
where Ui and Vi are the data transformed by the empirical cumulative distribution function — 
Ui=FX

e(Xi) and Vi=FY
e(Yi). An empirical cumulative distribution function (cdf) is defined as: 

   
· ∑ Ι    (3-14) 

 
where I is the indicator function of event xi≤t. 
 
Fig. 3-4 depicts the copula pdf computed with (3-13) for the quantile transform of the wind speed 
and wind power, using (3-14), from a real wind farm. This copula density function represents the 
probability density associated to each point plotted in the wind speed versus the wind power 
scatter of Fig. 3-3.  
 
The copula represents the dependence structure between the two variables. Therefore, from  
Fig. 3-4 and Fig. 3-5, we see that there is a strong dependence in the two extreme corners, for 
example, when there are lower quantiles in wind speed (lower wind speed values), the wind 
power quantiles also present lower values with a higher probability.  
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An interesting conclusion is that this copula density seems very similar to a family of parametric 
copulas, the elliptical copulas [41].  
 
The quantile-copula CKDE is written as: 
  

|
·

· ∑ · · ∑ ·    (3-15) 

 
 
3.3.4 Formulation of the Wind Power Density Forecast Problem 
The wind power density forecast problem can be formulated as: forecast the wind power pdf at 
time step t for each look-ahead time step t+k of a given time horizon (e.g., up to 72 hours ahead) 
when knowing a set of explanatory variables (e.g., NWP forecasts, wind power measured values, 
hour of the day). 
 
Translating this sentence to an equation, we have: 
 

| |
, , |

|
   (3-16) 

 
where pt+k is the wind power forecasted for look-ahead time t+k, and xt+k|t are the explanatory 
variables forecasted for look-ahead time step t+k and available/launched at time step t. 
 
Equation (3-16) can be solved using the approaches presented in Sections 3.3.2 and 3.3.3, where 
the variable Y is the wind power, and the explanatory variables X are for instance: NWP 
variables (wind speed, wind direction, pressure), wind power point forecast, and measured wind 
power.  
 
Fig. 3-6 depicts what is called in [36] a stacked conditional plot. This plot represents the 
information contained in (3-16) and can be obtained with both approaches presented in 
Sections 3.3.2 and 3.3.3. It enables one to see the changes in the wind power density function 
conditioned to different values of forecasted wind speed (ranging from 0 to 20 m/s). The 
conditional densities for intermediate values of wind speed are very broad, and we may also 
detect a higher concentration of density in the tails for lower and higher values of wind speed. 
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Fig. 3-4 Bivariate copula density function of 

forecasted wind speed and measured wind power. 

 

Fig. 3-5 Scatter plot of quantile transform 
of forecasted wind speed versus 

measured wind power. 

 

 

 
Fig. 3-6 Stacked conditional plot for wind power and wind speed. 

3.3.5 Kernel Function Choice  
The choice of the kernel function for the wind power forecasting problem is a critical issue. It 
depends on the type of variable and data and represents an enormous impact on the model 
performance. 
 
In regard to the data type, we have in the wind power problem four different types: (i) wind 
power bounded between 0 (e.g., zero generation) and 1 (e.g., rated power); (ii) wind speed 
bounded between 0 and +Inf; (iii) variables (such as temperature) between –Inf and + Inf; and 
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(iv) circular variables, such as the hour of the day and the wind direction. For these four types, 
different kernels should be considered. 
 
In the literature, several kernels were proposed for variables with support [0,1], where some of 
these kernels are as follows: two different beta kernels proposed by Chen [42]; a boundary kernel 
developed by Zhang and Karunamuni [43]; the swapped Chen beta kernel proposed by Jones and 
Henderson [44]; and the bivariate Gaussian copula developed by Jones and Henderson [44]. 
 
We have tested all of these kernels, and for the wind power problem, the two Chen beta kernels 
presented better results than the others. Zhang [45] compared the performance of the Chen 
estimators with this boundary kernel, and the main conclusion was that for densities not 
exhibiting a shoulder (f’(0)=0), the beta kernel estimators have a serious boundary problem, and 
their performances are inferior to the boundary kernel. However, the results show that wind 
power problem respects the shoulder condition. 
 
Moreover, the variables u and v in (3-15) are bounded between [0,1]; therefore, the Chen beta 
kernels will be used for these variables. 
 
The two Chen beta kernels considered for modeling the wind power are: 
   

∑ / , /    (3-17) 
 
where Kp,q is the density function of a Beta(p,q) random variable, with p and q as the two 
positive shape parameters and with b being the bandwidth parameter of Kp,q; and 
 

∑ ,    (3-18) 
 
Kx,b

* are boundary kernels defined as 
 

,

/ , /    2 , 1 2
, / 0,2

/ ,    1 2 , 1
   (3-19) 

 
where , 2 2.5 4 6 2.25 /  and Kp,q is a Beta(p,q) density 
function.  
 
Fig. 3-7 and Fig. 3-8 depict the beta kernel shape for five different points and the Gaussian 
kernel for the same points, respectively. As shown, the beta kernels present a varying shape 
according to the values of x; in fact, the varying shape changes the amount of smoothing applied 
to the kernel estimator. Moreover, the kernels (and consequently the estimator) are non-negative, 
in contrast to the Gaussian kernel. The Gaussian kernel shape is fixed for any value of x. The 
Gaussian kernel may lead to inconsistent results at the boundaries. 
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Fig. 3-7 Beta kernels of (3-17) for b=0.02 (red 

[x=0.01], blue [x=0.1], green [x=0.5], grey [x=0.9], 
black [x=0.99]). 

 

Fig. 3-8 Gaussian kernels of (3-3) for 
h=0.02 (red [x=0.01], blue [x=0.1], green 

[x=0.5], grey [x=0.9], black [x=0.99]). 

 

As mentioned by Gourieroux and Monfort [46], the integrals computed from the beta kernels 
may not converge to their theoretical counterpart. This result may lead to distributions that do not 
have an integral (are of the distribution) equal to 1; in other words, this method leads to 
distributions that have no unit mass. Moreover, the kernel is also inconsistent for distributions 
that are point mass at 0% and 100%. This result is attributable to a lack of normalization, and the 
idea proposed by Gourieroux and Monfort is a modified beta kernel estimator (named “macro-
beta”): 
 

   (3-20) 

 
Because this formulation represents only a change of scale, the normalization for the CKDE is 
employed over the conditional function of (3-16). 
 
For the variables with support [0,+Inf], the kernels proposed in the literature are two gamma 
kernels proposed by Chen [47] and the boundary kernel proposed by Zhang [48]. The tests 
performed for the wind power problem resulted in better performance for both of Chen’s gamma 
kernels. 
 
The two gamma kernels considered for modeling the wind speed are: 
     

∑ / ,    (3-21) 
 
where b is the bandwidth parameter of Kp,q, which is the density function of a Gamma(p,q) 
random variable with p as the shape parameter and q as the scale parameter; and 
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∑ ,    (3-22) 
 
where Kp,q is a Gamma(p,q) density function and ρb(x) is given by 
     

/         2
/ 1     0,2    (3-23) 

 
For variables with unbounded support, the natural choices are the Gaussian kernel or the bi-
weight kernel. 
 
Finally, circular variables are a particular case for KDE. For instance, the difference between a 
wind direction of 350° and 10° is only 20°; the Euclidian distance (represented as ||.||) is 340°. 
The approach is to use circular distributions, such as the wrapped normal distribution or the 
von Mises distribution [49]. In this case, and because it is mathematically more simple and a 
close approximation to the wrapped normal distribution, we used the von Mises distribution. The 
von Mises distribution is given by: 
 

; ,
·

·    (3-24) 

 
where I0 is the modified Bessel function of the first kind and order 0 and defined by 
     

·    (3-25) 
 
The parameter μ is the directional center of the distribution, κ is the concentration parameter, and 
θ belongs to any interval of length 2π. The concentration parameter can be used to control the 
degree of smoothing in circular KDE, and it is analogous to the bandwidth parameter — 
although larger values lead to less smoothing. Fig. 3-9 depicts an example of circular KDE for 
the wind direction data. The points are represented in polar coordinates and placed in the circle 
line, while the five colored lines represent the density estimation for these sample points.  
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Fig. 3-9 Circular kernel density estimation for the wind direction data. 

Note that the circular kernels must also be used for variables u and v in the quantile-copula 
approach. In this case, it is necessary to perform a change of scale from [0,1] to [0, 6.266] (in 
radians). 

 
3.3.6 Time-adaptive Estimator  

Wegman and Davies [50] introduced a recursive estimator of KDE for (3-2) in 1979. The density 
function can be calculated recursively using the following: 

   

·
·

·    (3-26) 
 
The extension to the multivariate case (3-4) is straightforward. 
 
Equation (3-26) allows updating of the density function when new samples are available without 
also forcing the need to recompute the entire density function. However, as the number of t 
increases, the ratio (n-1)/n approaches one (and 1/n approaches zero), and then the new samples 
become redundant. Moreover, if there is a change in the generating structure of the data (non-
stationary data), this recursive estimation is incapable of automatically discarding older data. 

In order to overcome these problems, Wegman and Marchette [51] proposed the KDE estimator 
with exponential smoothing. The basic idea of exponential smoothing consists of the following: 

   

∑ 1 · ·∞ , 0 1   (3-27) 
 
where λ is a constant between 0 and 1, and Xk

t is the kth power of the random variable X at time t. 
This expression may be reformulated in a recursive formula as: 
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1 · ·    (3-28) 

 
Suppose that Xt has stationary moments so that the expected value is . Then, 

∑ 1 · ·∞ . This formulation means that in stationary cases, 
the exponentially smoothed Yt has exactly the same expectation as Xk would have.  
 
Note that λ (called the forgetting factor) controls how quickly or slowly the exponential 
smoothing adapts to the new data (exponential forgetting). A value of λ close to one means that 
the exponential smoothing puts more weight on the historical data and little weight on the most 
recent values, whereas when λ is closer to zero, the opposite is true. 
 
Wegman and Davies [50] applied this exponential smoothing to the recursive KDE of (3-26), 
and the KDE formulation with adjustable discarding of old data becomes: 
  

· ·    (3-29) 
 
Note that λ replaces (n-1)/t and (1-λ) replaces 1/n, and its value should be slightly below one. 
Caudle and Wegman [52] mentioned that λ can be represented in terms of n, and thus we have: 
   

   (3-30) 
 
So, n corresponds to the size of the equivalent sliding window in the time-adaptive KDE.  
 
To show the effect of the forgetting factor in contrast to the recursive estimation in KDE, an 
estimate of the density was constructed using 1,000 points from an exponential distribution (rate 
equal to 3) and then 500 points from a Normal Dist (mean=0,std. dev=1). The density estimation 
was evaluated and updated in another 500 points sampled from Normal Dist (mean=0,std. 
dev=1). This treatment introduces an artificial (and abrupt) change in the data structure in order 
to simulate what is known in the literature as “concept drift.”  
 
The estimated density for the 500 points of the test dataset is depicted in Fig. 3-10 for: batch 
estimation, where the density was computed from the 2,000 points; recursive estimation using 
the 500 points from the test dataset and (3-26); and exponential smoothing with λ=0.995 and 
using (3-29). The Gaussian Kernel was used. As shown in Fig. 3-10, the recursive formula and 
the batch estimation are numerically identical, and since they are unable to forget historical data, 
their density estimation does not correspond to the current data structure. On other hand, the 
exponential smoothing is capable of learning from the new examples; consequently, the density 
estimated with this method follows more precisely the histogram of the 500 points from the test 
dataset. 
 
Fig. 3-11 depicts the density estimated with four different values of λ. A higher value of λ (very 
close to one) is incapable of adapting to the new data structure, whereas for lower values of λ 
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(0.9 in this case), the method becomes numerically unstable. Therefore, the value of λ should be 
a trade-off between the degree of non-stationarity and the numerical stability of the KDE. 
 

 
Fig. 3-10 Estimated density function of  

500 points drawn from a N(0,1). 
Fig. 3-11 Estimated density function of  

500 points drawn from a N(0,1) obtained with 
different values for λ. 

 

3.3.6.1 Time-adaptive Nadaraya-Watson Estimator  
The Nadaraya-Watson Estimator can be converted to a time-adaptive estimator using (3-29).  
The estimator becomes   
   

|
· , · ·

· ·
   (3-31) 

 
where f(y|x=X)t is the knowledge of the model at time instant t, which is updated by using recent 
values of Y and X. 
 
For the wind power forecast problem, we have the following: 
 
I. | | : KDF model with knowledge at time step t; and 

 
II. New values of measured wind generation and NWP data are available (e.g., measured 

wind power generation in the last 24 hours and corresponding NWP data for the same 
period). This recent data is used to update the knowledge of the model, and the model in 
(I) becomes | | . 

 
This process is repeated in an online mode (when new values are available). 
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3.3.6.2 Time-adaptive Quantile-Copula Estimator  
The Quantile-Copula estimator can be converted to a time-adaptive estimator using (3-9). The 
idea is analogous to the one described for the Nadaraya-Watson; however, there is one important 
aspect related to this CKDE estimator. The quantile transform function — the empirical 
cumulative distribution function of (3-14) — is transformed to being time-adaptive by using the 
following equation: 
  

· 1 · Ι    (3-32) 
 
The estimator becomes  
    

| · ̂ ,    (3-33) 
 
where 
   

· 1 ·    (3-34) 
 
and 
   

̂ , · ̂ , 1 · ·    (3-35) 

 
where f(y|x=X)t represents the knowledge of the model at time instant t, which is updated by 
using recent values of Y and X.  
 
Note that different values of λ should be defined for (3-32) and (3-34), because the quantile 
transform of the data should change with a lower rate: otherwise, the model could become 
unstable. Note that this quantile transform theoretically could create some problems for the time-
adaptive model because this result implies that the transforming data structure is also changing. 
The tests in the subsequent sections will allow a better understanding of this method. 
 
For the wind power forecast problem, we have the following: 
 

| | : KDF model with knowledge at time step t; 
 
new values of measured wind generation and NWP data are available (e.g., measured wind 
power generation in the last 24 hours and corresponding NWP data for the same period). These 
recent data are used to update the knowledge of the model, and the model in (I) becomes 

| | . 
 
This process is repeated in an online mode (when new values are available). 
 



 

67 

3.4 Case Studies 
3.4.1 Evaluation Framework 
3.4.1.1 Benchmark Algorithms 
The results obtained with the Nadaraya-Watson estimator and the Quantile-copula estimator will 
be compared with the linear quantile regression model and the spline quantile regression [27]. 
The spline quantile regression is a model from the state-of-the-art in wind power forecasting, 
which consists of a linear quantile regression with the base functions formulated as cubic 
B-splines, in order to obtain the quantile with proportion α of the forecast errors. Each quantile is 
modeled as a sum of the nonlinear smooth functions of the forecasted wind power generation (or 
NWP forecasts). Spline bases are used to approximate each of the smooth functions as a linear 
combination of base functions. 
 
3.4.1.2 Evaluation Metrics 
A framework to evaluate wind power probabilistic forecasts is detailed in [53][54]. The 
evaluation set consists of a series of quantile forecasts for unique or varying nominal proportions 
and observations (measured values). The presented classification can be unconditional; however, 
because several variables might influence the quality of probabilistic forecasts, the evaluation 
can also become conditional in order to reveal the influence of such variables (e.g., by a look-
ahead time step).  

Calibration 
A requirement for probabilistic forecasts is that the nominal probabilities — or nominal 
proportions of quantile forecasts — are indeed respected in practice. Obviously, this requirement 
cannot be assessed on a single evaluation; thus, an evaluation set should be of a significant size. 
Forecasted probabilities should asymptotically approach the observed probabilities. In other 
words, in an infinite series of interval forecasts, empirical coverage should equal the pre-
assigned probability exactly. This property is commonly referred to as reliability or calibration. 
 
In statistics, the difference between empirical and nominal probabilities is considered to be the 
bias of the probabilistic forecasting method. Therefore, being unbiased, calibration is translated 
to the probability forecasts. Bias values are usually calculated for each quantile nominal 
proportion. However, care must be taken when evaluating calibration: it is not advisable to 
average the bias over the quantiles. Quantiles below 50% might, for instance, lead to an 
overestimation, and quantiles above 50% might lead to an underestimation, while the average 
bias of such prediction would be close to 0.  
 
In order to evaluate quantile forecasts, it is necessary to define the indicator variable. An 
indicator variable for a quantile forecast |  is: 
 

  ,
1   |

0 
   (3-36) 

 
The indicator variable refers to the actual outcome of pt+k at time t+k — that is, whether the 
quantile covers the actual outcome (“hit”) or not (“miss”). 
 
Furthermore, these indicators are defined as follows: 
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, # , 1 ,  (3-37) 

, # , 0 ,  (3-38) 
 
— that is, as sums of hits and misses, respectively, for a given horizon k over N realizations. 
 
A common way of checking calibration is to compare the empirical to the nominal coverage by 
using the indicators mentioned above, that is: 
 

,
1

,  (3-39) 

 
This way, the estimation αα kˆ of the actual coverage ααk for a given horizon k is obtained using the 
test set of N realizations. The calibration can also be averaged over the entire forecast time 
horizon. This approach is often used to create calibration diagrams. Calibration diagrams allow 
the calibration of several quantiles to be summarized, at the same time, providing an overview of 
whether a particular method systematically underestimates or overestimates uncertainty. 
 
The deviation from the “perfect calibration” (where empirical proportions match nominal or 
forecasted proportions) or the bias is given by: 
 

 (3-40) 

Sharpness 
Sharpness is the tendency of probability forecasts to move toward becoming discrete forecasts, 
as measured by the mean size of the forecast intervals (distance between quantiles). Quantiles are 
gathered by pairs in order to obtain intervals with different nominal coverage rates. This step 
yields an indication of their level of usefulness, where narrow intervals are desired. This measure 
does not depend on observations. Let | |

/
|

/  be the size of the central interval 
forecast with nominal coverage rate 1-α estimated at time t for lead time t+k. A measure of 
sharpness could then be provided as an average size of intervals: 
 

1
,  (3-41) 

 
By having a set of quantile forecasts in pairs, it is possible to summarize sharpness with 
diagrams, with αδ k being the function of nominal interval size.  

Resolution 
The resolution is the concept that evaluates the ability to provide situation-dependent assessment 
of the uncertainty. However, according to Pinson et al. [54], it is not possible to verify this 
property; therefore, resolution represents the variation of the size of the intervals. The standard 



 

69 

deviation of the interval size for a given look-ahead time step k and coverage rate (1-α) is 
computed as 

 

1
1 ,  (3-42) 

In this report the standard deviation was computed for each coverage rate. 

Skill Score 
The objective of scoring rules is to provide the whole information about a model’s performance 
in a single measure [53][54]. A scoring rule for measuring the performance associates a single 
numerical value ,  to a predictive distribution  if the event p materializes. It can be 
defined as 
 

′, ′ ,  (3-43) 

 
which is the score under  when the predictive distribution is ′. 
 
For nonparametric distributions, in this case represented by a set of m quantiles, Gneiting and 
Raftery [55] showed that a scoring rules of the form 
 

,  (3-44) 

 
where  is the indicator variable for the quantile with proportion , si is a nondecreasing 
function and h arbitrary, which is proper to evaluating this set of quantiles. The score of (3-44) is 
a positively rewarding score: a higher score value stands for a higher skill. 
 
The skill score used by several authors in the literature (e.g., [17][53][54]) and derived from 
(3-44) to evaluate wind power quantile forecasts is given by: 
 

,  (3-45) 

 
where  and . The higher the scoring rule, the better, and the 
maximum value is 0 for perfect probabilistic forecasts. 
 
The skill score can be computed for each look-ahead time step by using with the following: 
 

1
,  (3-46) 
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where N is the number of samples from the evaluation set. 
 
Pinson et al. [54] mentioned that using a unique proper skill score allows one to compare the 
overall skill of competitive approaches, given that scoring rules encompass all the aspects of 
probabilistic forecast evaluation. However, it does not inform on the contributions of calibration 
or sharpness and resolution to the skill score. Hence, these authors suggested that calibration 
should be assessed in a first analysis (as the primary requirement), and then the information 
provided by the skill score allows users to derive conclusions about the remaining metrics. 
 
3.4.2 Evaluation Results: NREL’s EWITS Study 
3.4.2.1 Case-Study Description  
The wind power data used are day-ahead wind power point forecasts and realized wind power 
generation for 15 sites in the state of Illinois within the Midwest Independent System Operator’s 
footprint for 2006 as obtained from NREL’s EWITS study [56]. The data were produced by 
combining a mesoscale NWP model with a composite power curve for a number of potential 
sites for wind power farms. The day-ahead forecasts were generated based on observed forecast 
errors from four real wind power plants. The resulting Markov chain forecast models for each of 
the four sites were randomly assigned to the sites in the dataset. The data methodology is 
explained in [57].  
 
We use the wind power data (forecasts and realized generation) for the period from January to 
August to train the uncertainty forecast models. The months between September and December 
are used as a test dataset. The main characteristics of the two datasets are presented in Table 3-1. 
The explanatory variable in this case study is the point forecast. 
 

Table 3-1 Statistical characteristics of the NREL training and testing dataset. 

Variables Nº Points Mean 
(p.u.) 

Median 
(p.u.) 

Std. Dev. 
(p.u.) Skewness Kurtosis IQRa 

(p.u.) 
Train Dataset 

Forecast  5088 0.327 0.282 0.176 0.847 3.077 0.250 
Realized 5088 0.325 0.256 0.256 0.710 2.380 0.393 

Test Dataset 
Forecast 3672 0.333 0.303 0.185 0.631 2.679 0.274 
Realized 3672 0.337 0.280 0.250 0.568 2.196 0.397 

a IQR = Inter-quantile range; p.u. = power unit. 

 
3.4.2.2 Offline Evaluation Results  
For reasons of comparison, the probabilistic forecast is represented through a set of quantiles 
ranging from 5% to 95% with a 5% increment, as depicted in Fig. 3-12 in the form of a set of 
interval forecasts. 
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Fig. 3-12 Probabilistic forecast for NREL dataset obtained with the NW estimator. 

The Kernel function used in the Nadaraya-Watson (NW) and Quantile-Copula estimators were 
Chen’s beta kernels from (3-17) for both realized and forecasted wind power. The kernel size 
was 0.001 for both variables (determined experimentally by trial and error). The tests performed 
with different bandwidths showed that by changing the kernel bandwidth, the model changes 
from underestimation to overestimation and vice-versa.  
 
Fig. 3-13 depicts the calibration diagram averaged for the whole time horizon (24 hours) for the 
probabilistic forecasts obtained with the linear quantile regression (Linear QR), splines quantile 
regression (Splines QR), NW estimator (NW), and Quantile-copula (QC) estimator. Note that 
what is depicted in the diagram is the difference from the “perfect calibration” (according to 
[3-40]).  
 
All of the models presented in Fig. 3-13 show a deviation from the “perfect calibration” below 
5%, which, according to Juban et al. [14], is equivalent to what is found in the literature. For the 
quantiles above 55%, the NW and QC estimators present a lower deviation than the quantile 
regression methods. For quantiles below the median, the splines QR is competitive with the KDF 
methods, and for some quantiles it achieves the lowest deviation. For these quantiles, the QC 
approach also presents a lower deviation than the NW approach. On average, the methods 
overestimate (nominal proportions greater than empirical) the quantiles. 
 
Fig. 3-14 depicts a sharpness diagram where the x-axis is the nominal coverage of the forecast 
interval (1-α), and the y-axis is the average size of the intervals. In this case, the desired outcome 
is to have intervals with a smaller size for all coverage rates. In terms of sharpness, the 
forecasted quantiles presented relatively narrow amplitudes in all methods, although QR splines 
presented a lower sharpness. It is important to note that Juban et al. [14] found a trade-off 
between reliability and sharpness, meaning that improving the reliability will generally degrade 
the sharpness and vice-versa.  
 
Fig. 3-15 depicts the resolution diagram where the x-axis is the nominal coverage of the forecast 
interval (1-α), and the y-axis is the standard deviation of the intervals. The linear QR presented 
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the lowest standard deviation and, consequently, the lowest resolution. The other methods 
presented almost the same resolution, with a slight advantage for the splines QR.  
 
The diagrams depicted in Figs. 3-13 to 3-15 are averaged over the forecast time horizon. 
However, the uncertainty of the wind power forecast is influenced by several factors, such as the 
look-ahead time step. Therefore, Figs. 3-16 to 3-18 depict calibration, sharpness, and resolution 
for look-ahead time step t+17h. Note that the calibration diagram of Fig. 3-16 is different: the 
y-axis is the empirical proportion computed with (3-39). The “ideal” line is the perfect match 
between nominal and empirical proportions. Calibration is indicated by the proximity of the 
plotted curve to the “ideal” diagonal. If the curve lies below the line, over-forecasting is 
indicated (i.e., forecasted quantiles are too high); points above the line indicate under-forecasting 
(i.e., forecasted quantiles are too low). 
 

Fig. 3-13 Calibration diagram for the offline test 
with NREL data. 

 
Fig. 3-14 Sharpness diagram for the offline test 

with NREL data. 
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Fig. 3-15 Resolution diagram for the offline test 
with NREL data. 

Fig. 3-16 Calibration diagram for look-ahead 
time step t+17h. 

As shown in Fig. 3-16, when computed for a specific look-ahead time step, calibration presents a 
higher deviation from the “ideal” diagonal when compared to the calibration computed over the 
whole time horizon (depicted in Fig. 3-13). This figure depicts a situation with quantiles 
overestimation (nominal proportion higher than empirical); however, in some hours, there are 
also underestimations.   
 
The difference depicted in Fig. 3-17 between the methods in terms of sharpness is more 
pronounced. The same was verified for the resolution in Fig. 3-18. The calibration, sharpness, 
and resolution for other look-ahead time steps t+6h and t+22h are presented in Appendix A. 
 

Fig. 3-17Sharpness diagram for look-ahead  
time step t+17h. 

Fig. 3-18 Resolution diagram for look-ahead 
time step t+17h. 
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3.4.2.3 Time-adaptive Test: Proof of Concept 
The aim of this sub-section is to demonstrate that the time-adaptive concept works in conditional 
KDE and can be applied to the wind power problem. The same data described in Table 3-1 was 
used for this test. However, in order to introduce a change artificially in the data structure, we 
“disconnected” two sites (one of 211.6 MW and another of 616.1 MW, in a 5.19-GW total) 
during January–September, and these two sites were only “connected” after October.  
 
This situation was created artificially; however, it reproduces a situation that could happen to a 
system operator. For instance: a system operator is receiving forecasts from 13 wind farms; then, 
these forecasts are summed up and estimates of the uncertainty are associated to the total wind 
power generation; then, in October two wind farms are connected to the grid, and in this case, the 
knowledge from past observations is no longer valid. By using a time-adaptive model, the system 
operator is able to adapt to the new situation without requiring an offline training of the model. 
Moreover, the system operator will need to wait several months in order to have sufficient data 
to perform the offline training.    
 
The results will only be analyzed in terms of calibration, given that the major impact of this 
situation is in an underestimation and overestimation of the quantiles. Fig. 3-19 depicts the 
calibration diagram of the probabilistic forecasts obtained with the offline NW estimator and also 
with the time-adaptive NW estimator with three different values of λ. Fig. 3-20 depicts the 
calibration diagram for the offline and time-adaptive QC estimator. The preliminary tests showed 
that the value of λ for the empirical cumulative distribution function should be very low; in this 
case, a value equal to 0.9995 was used. 
 
Due to the increase in the wind power generation because of the connection of two wind farms, it 
is expected that the offline approach gives an underestimation of the quantiles for values below 
the 50% quantile and an overestimation of the quantiles for greater values. As an example, the 
95% quantile means that the probability of having wind generation above its value is only 5%; 
however, the empirical quantiles estimated with the offline approach say that this probability is 
13%. This finding means that the probability of having more wind generation in the system is 
higher than what is predicted. The opposite situation is verified for the quantiles below 50%, for 
example, the 10% quantile means that with 90% probability, the wind generation will be above 
its value; however, the empirical proportion for the offline approach says that this probability is 
15.1%.  
 
The time-adaptive approach can incorporate the recent information and discount the old 
information (controlled with λ). Therefore, underestimations and overestimations are corrected 
using this approach.  
 
For the NW estimator, the calibration obtained with λ equal to 0.999 and 0.995 is much better 
than that obtained by the offline approach. For instance, for the quantile 95%, the empirical 
proportions obtained with the time-adaptive approach is 92.3% with λ=0.999 and 91.2% with 
λ=0.995. For the 15% quantile, the empirical proportions are 12.7% (λ=0.999) and 13.6% 
(λ=0.995). The results for the QC estimator are different in terms of calibration; in this case, the 
estimator presents better calibration performance for λ equal to 0.999. 
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As a first consideration, the use of a lower value for λ would be recommended in order to foster 
quick learning of the new data structure. However, as the results for 0.99 show, this lower value 
leads to results that are comparable to the offline approach. The reason is that the KDF becomes 
numerically unstable, and thus it is unable to assimilate the recent information properly. The 
main conclusion is that a value of λ near 1 should be used and, in the case of concept change, this 
value could be reduced, but after a while it should be increased again. 
 
In Appendix A, the calibration for look-ahead time steps t+15h and t+20h are presented.  
 

Fig. 3-19 Calibration diagram for the NREL 
dataset with concept change and NW estimator. 

 
Fig. 3-20 Calibration diagram for the NREL 

dataset with concept change and QC estimator. 

 
3.4.3 Evaluation Results: Midwest Wind Farm 
3.4.3.1 Case-Study Description  
The wind power data is from a large-scale wind farm located in a flat terrain in the 
U.S. Midwest. The wind farm was divided into two “sub-wind farms” named Wind Farm A 
(WFA) and Wind Farm B (WFB). 
 
The complete dataset (SCADA and NWP) available for this project correspond to the period 
between January 2, 2009, and February 20, 2010. The NWP data was generated by the WRF 
model at Argonne National Laboratory and consists of several weather variables (e.g., wind 
speed, direction, temperature) for 11 geographically distributed NWP points.  
 
In these case studies, the reference NWP point used as input for WFA was point number 8, and 
for WFB, point 6 was used. The temporal horizon of the predictions used was as follows: the 
results presented from Section 3.4.3.2 to Section 3.4.3.4 were obtained for the temporal horizon 
of t+18h up to t+42h; for the results presented in Sections 3.4.3.5 and 3.4.3.6, the time horizon 
was t+6h up to t+48h.   
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For market purposes, the required temporal resolution of wind power forecasts is usually one 
hour. Both the SCADA and NWP data we used have temporal resolution of 10 minutes, so a 
simple average of the 10-minutes data was performed to produce hourly data. 
 
The explanatory variable in this case study, unless otherwise stated, is the wind speed forecast 
from the NWP model.  
 
3.4.3.2 Evaluation with Different Kernel Types  
Comparisons between six different kernel functions were performed for various combinations of 
the kernel bandwidths, σ, for wind speed and power. These kernel size values were determined 
experimentally (by trial and error) and using as a starting point the values suggested by the 
function cde.bandwidths from the R package “hdrcde” [58]. 
 
The Kernel functions used in the Nadaraya-Watson (NW) and Quantile-Copula (QC) estimators 
were Chen’s gamma and beta kernels (Chen 1 and Chen 2 from equations [3-17] [3-21] and 
[3-18] [3-22], respectively) and Boundary kernel (proposed by Zhang and Karunamuni [43]) for 
both wind speed and power variables; Chen’s beta kernels with X swapped with x (Beta 1x and 
Beta 2x from equations [3-17] and [3-20]) and jh kernel (developed by Jones and Henderson 
[44]) for the wind power variable. The kernel size values were determined experimentally 
(i.e., testing offline). 
 
The most important results using the NW and QC estimators for dataset A (training period from 
January 2, 2009, until July 31, 2009, and testing period between August 1, 2009, and 
February 20, 2010) in both wind farms and day-ahead forecasts (from t+18h to t+42h), are 
presented below. Results obtained for the other two estimators from the state-of-the-art, Spline 
Quantile Regression (QR) and Linear Quantile Regression (LQR), were the same among all 
kernels used for each bandwidth combination.  
 

Kernel Sizes: (hPower;  hWindSpeed) = (0.002; 0.04) 
Figs. 3-21 through 3-24 show results of offline testing of calibration at the stated kernel sizes 
using the WFA and WFB datasets. 
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Fig. 3-21 Calibration diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-22 Calibration diagram using QC 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-23 Calibration diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-24 Calibration diagram using QC 
estimator, for the offline test  

with WFB dataset A. 

 
For this kernel size choice, only Chen 1, Beta 1x, Boundary, and jh are able to perform results. 
Fig. 3-21 and Fig. 3-22 depict the calibration obtained for WFA using the NW and QC 
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estimators, respectively. In the former, Chen 1 performs better than do the other kernels; 
however, in QC, Beta 1x becomes the better performer between quantiles 40%–80%. In both the 
NW and QC estimators, the jh kernel has the worst performance. For this wind farm, there is a 
tendency to underestimate the quantiles. 
 
As for WFB, Fig. 3-23 shows that jh is the kernel with the best calibration using the NW 
estimator for quantiles above 35%; however, when using QC for quantiles above 30%, it is the 
Boundary kernel instead, as depicted in Fig. 3-24. For this wind farm, there is a tendency to 
overestimate the quantiles. 
 
Figs. 3-25 through 3-28 show results of offline testing of sharpness using the WFA and WFB 
datasets. 
 
 

Fig. 3-25 Sharpness diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-26 Sharpness diagram using QC 
estimator, for the offline test  

with WFA dataset A. 



 

79 

Fig. 3-27 Sharpness diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-28 Sharpness diagram using QC 
estimator, for the offline test  

with WFB dataset A. 

For both wind farms, sharpness results using the NW estimator are the same for all kernels. As 
illustrated in Fig. 3-26 and Fig. 3-28, Boundary performs worse in terms of sharpness in both 
wind farms when using the QC estimator. Moreover, this kernel has a worse resolution for QC, 
as depicted in Fig. 3-30 and Fig. 3-32, and when using the NW estimator, all kernels present the 
same resolution results in both wind farms (Figs. 3-29 through 3-32).  
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Fig. 3-29 Resolution diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-30 Resolution diagram using QC 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-31 Resolution diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-32 Resolution diagram using QC 
estimator, for the offline test  

with WFB dataset A. 
 
 
In terms of the skill score (Figs. 3-33 through 3-36), the Boundary kernel performs the worst 
when using the QC estimator for both wind farms. Fig. 3-33 shows that the WFA testing for NW 
presents worse performance in the skill score using the jh kernel. Chen 1 is the best not only for 
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NW but also for QC. Fig. 3-36, on the other hand, shows that the jh kernel has a better skill score 
for WFB when using QC. However, using NW for WFB, all kernels have a similar skill score. 

Fig. 3-33 Skill score diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-34 Skill score diagram using QC 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-35 Skill score diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-36 Skill score diagram using QC 
estimator, for the offline test  

with WFB dataset A. 

For this kernel size, the main conclusions are that for WFA, Chen 1 has the best overall 
calibration, and there is a tendency to underestimate the quantiles. In terms of sharpness and 
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resolution, the Boundary kernel performs worse than the others do when using the QC estimator; 
moreover, using the NW estimator leads to the same sharpness and resolution results between 
kernels, in both wind farms. As for the skill score, Boundary has the worst performance for QC 
in both wind farms, and in WFA Chen 1 presents the best performance in both estimators; in 
addition to this, for WFB using NW skill score results are the same for all kernels. 
 

Kernel Sizes: (hPower; hWindSpeed) = (0.004; 0.02) 
Figs. 3-37 through 3-40 show results of offline testing of calibration at the stated kernel sizes 
using the WFA and WFB datasets. 

Fig. 3-37 Calibration diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-38 Calibration diagram using QC 
estimator, for the offline test  

with WFA dataset A. 
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Fig. 3-39 Calibration diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-40 Calibration diagram using QC 
estimator, for the offline test  

with WFB dataset A. 

 
For this kernel size choice, only Chen 2 is not able to deliver results. Fig. 3-37 and Fig. 3-38 
depict the calibration obtained for WFA using the NW and QC estimators, respectively. In the 
former, Chen 1 performs better than do the other kernels; however, in QC, Beta 1x becomes the 
better performer for quantiles above 30%. In both the NW and QC estimators, the jh kernel has 
the worst performance. For this wind farm, there is a tendency to underestimate the quantiles. 
 
As for WFB, Fig. 3-39 and Fig. 3-40 show that Boundary is the kernel with best overall 
calibration. For this wind farm, there is a tendency to overestimate the quantiles. 
 
Figs. 3-41 through 3-44 present the sharpness results for WFA and WFB.  
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Fig. 3-41 Sharpness diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-42 Sharpness diagram using QC 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-43 Sharpness diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-44 Sharpness diagram using QC 
estimator, for the offline test  

with WFB dataset A. 

 

For both wind farms, the sharpness and resolution results using the NW estimator are the same 
for all kernels. As illustrated in Fig. 3-42 and Fig. 3-44, Boundary performs worse in terms of 
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sharpness in both wind farms when using the QC estimator and, as depicted in Fig. 3-46 and Fig. 
3-48, this kernel has the worst resolution for QC, as well.  

 

Figs. 3-45 through 3-48 present the resolution results. 

 

Fig. 3-45 Resolution diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-46 Resolution diagram using QC 
estimator, for the offline test  

with WFA dataset A. 

 
 
 



 

86 

Fig. 3-47 Resolution diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-48 Resolution diagram using QC 
estimator, for the offline test  

with WFB dataset A. 

 
 
In terms of the skill score, the Boundary kernel is the worst when using the QC estimator for 
both wind farms. Fig. 3-49 shows that for WFA using NW, the jh kernel presents the worst skill 
score performance. For this wind farm, Chen 1 is the best not only for NW but also for QC. Fig. 
3-52, on the other hand, shows that the jh kernel has a slightly better skill score for WFB when 
using QC. However, when using NW for WFB, all kernels have a similar skill score (Figs. 3-49 
through 3-52). 
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Fig. 3-49 Skill score diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-50 Skill score diagram using QC 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-51 Skill score diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-52 Skill score diagram using QC 
estimator, for the offline test  

with WFB dataset A. 
  
  
  
  
 
 
  
  
  
 

The main conclusions for this kernel size choice are the same as in the previous case. Therefore, 
for WFA, Chen 1 has the best overall calibration, and there is a tendency to underestimate the 
quantiles; for WFB, the kernel with better calibration performance is Boundary, and there is an 
overestimation of the quantiles. In terms of sharpness and resolution, the Boundary kernel 
performs worse than the others do when using the QC estimator; moreover, using the NW 
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estimator leads to the same sharpness and resolution results between kernels in both wind farms. 
As for the skill score, Boundary has the worst performance for QC in both wind farms, and in 
WFA, Chen 1 presents better performance in both estimators. In addition to this result, for WFB, 
when using the NW skill score, results are the same for all kernels. 

 

Kernel Sizes: (hPower; hWindSpeed) = (0.004; 1) 

Figs. 3-53 through 3-56 show results of offline testing of calibration at the stated kernel sizes 
using the WFA and WFB datasets. 

 

Fig. 3-53 Calibration diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-54 Calibration diagram using QC 
estimator, for the offline test  

with WFA dataset A. 
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Fig. 3-55 Calibration diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-56 Calibration diagram using QC 
estimator, for the offline test  

with WFB dataset A. 

For this kernel size choice, only the Boundary kernel is not able to deliver results. Fig. 3-53 and 
Fig. 3-54 depict the calibration obtained for WFA using NW and QC estimators, respectively. In 
the former, Chen 1 performs better than do the other kernels; however, in QC Beta 1x becomes a 
better performer for quantiles above 60%. In both the NW and QC estimators, the jh kernel has 
the worst performance, although in NW, Chen 2 has also bad results. For this wind farm, there is 
a tendency to underestimate the quantiles. 
 
As for WFB, Fig. 3-55 shows that for the NW estimator, Chen 1 is the kernel with best overall 
calibration, and Chen 2 is the worst. Chen 2 becomes better when using QC between quantile 
20%–60%, as depicted in Fig. 3-56. 
 
Figs. 3-57 through 3-60 present the results for sharpness.  
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Fig. 3-57 Sharpness diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-58 Sharpness diagram using QC 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-59 Sharpness diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-60 Sharpness diagram using QC 
estimator, for the offline test  

with WFB dataset A. 

In both wind farms, the sharpness and resolution results (Figs. 3-61 through 3-64) are the same. 
Using the NW estimator, Chen 2 presents better results in terms of sharpness and resolution. As 
illustrated in Fig. 3-58 and Fig. 3-60, Beta 1x performs better in terms of sharpnes in both wind 
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farms when using the QC estimator. However, resolution results using QC are the same for all 
kernels in both wind farms, as depicted in Fig. 3-62 and Fig. 3-64. 

Fig. 3-61 Resolution diagram using the 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-62 Resolution diagram using QC 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-63 Resolution diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-64 Resolution diagram using QC 
estimator, for the offline test  

with WFB dataset A. 
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Figs. 3-65 through 3-68 present results for the skill score.  

Fig. 3-65 Skill score diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-66 Skill score diagram using QC 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-67 Skill score diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-68 Skill score diagram using QC 
estimator, for the offline test  

with WFB dataset A. 
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When using QC estimator, Fig. 3-66 and Fig. 3-68 show that, for both wind farms, Chen 1 and 
Beta 1x have the best performance in terms of skill score, although the former is better; on the 
other hand, jh has the worst skill score. As depicted in Fig. 3-65 and Fig. 3-67, when using the 
NW estimator in both wind farms, the Chen 2 kernel has the worst performance in terms of the 
skill score in the first and last look-ahead hours, this being the best kernel during the hours in 
between.  
 
The main conclusions for this kernel choice are that Chen 1 has the best overall calibration, and 
there is a tendency to underestimate the quantiles. In terms of sharpness and resolution, Chen 2 
has the best performance when using the NW estimator. Even though all of the kernels have the 
same resolution, when using QC, the best sharpness results are performed by Beta 1x. As for the 
skill score, jh has the worst overall performance for QC in both wind farms, and Chen 1 presents 
the best performance. In addition to this result, for both wind farms when using NW, Chen 2 has 
the worst performance in terms of the skill score in the first and last look-ahead hours, this being 
the best kernel during the hours in between. 
  
  
  
  
 
  
  
  
 
  
  
  
  

Kernel Sizes: (hPower; hWindSpeed) = (0.01; 1.2) 
Figs. 3-69 through 3-72 show results of offline testing of calibration at the stated kernel sizes 
using the WFA and WFB datasets. 

 

Fig. 3-69 Calibration diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-70 Calibration diagram using QC 
estimator, for the offline test  

with WFA dataset A. 
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Fig. 3-71 Calibration diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-72 Calibration diagram using QC 
estimator, for the offline test  

with WFB dataset A. 

 
Using the NW estimator, Chen 2 presents better results in terms of sharpness (Figs. 3-73 through 
3-76) and resolution (Figs. 3-77 through 3-80). As illustrated in Fig. 3-74 and Fig. 3-76, Beta 1x 
performs better in terms of sharpness in both wind farms when using the QC estimator. 
However, resolution results using QC are similar for all kernels in both wind farms as depicted in 
Fig. 3-78 and Fig. 3-80.  
 
Similar to the previous case, for this kernel size choice, only the Boundary kernel is not able to 
deliver results. Fig. 3-69 and Fig. 3-70 depict the calibration obtained for WFA using the NW 
and QC estimators, respectively. In the former, Chen 1 performs better than do the other kernels; 
however, in QC, Chen 2 is better for quantiles between 15% and 55%. In both the NW and QC 
estimators, the jh kernel has the worst overall performance, although in NW, Chen 2 pulls bad 
results as well.  
 
As for WFB, Fig. 3-71 shows that for the NW estimator, Chen 1 is the kernel with best overall 
calibration, and Chen 2 is the worst. Chen 2 becomes a better performer when using QC, as 
depicted in Fig. 3-72. For both wind farms, there is a tendency to underestimate the quantiles. 
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Fig. 3-73 Sharpness diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-74 Sharpness diagram using QC 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-75 Sharpness diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-76 Sharpness diagram using QC 
estimator, for the offline test  

with WFB dataset A. 
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Fig. 3-77 Resolution diagram using the 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-78 Resolution diagram using QC 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-79 Resolution diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-80 Resolution diagram using QC 
estimator, for the offline test  

with WFB dataset A. 

 
In terms of the skill score (Figs. 3-81 through 3-84), when using the QC estimator, Fig. 3-82 and 
Fig. 3-84 show that for both wind farms, Chen 1 has the best performance; on the other hand, jh 
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has the worst skill score. As depicted in Fig. 3-81 and Fig. 3-83, when using the NW estimator in 
both wind farms, the Chen 2 kernel has the worst performance in terms of the skill score in the 
first and last look-ahead hours, this being the best kernel during the hours in between.  

Fig. 3-81 Skill score diagram using NW 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-82 Skill score diagram using QC 
estimator, for the offline test  

with WFA dataset A. 

Fig. 3-83 Skill score diagram using NW 
estimator, for the offline test  

with WFB dataset A. 

Fig. 3-84 Skill score diagram using QC 
estimator, for the offline test  

with WFB dataset A. 
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The main conclusions for this kernel are similar to the ones drawn in the previous case. Hence, 
Chen 1 has the best overall calibration, and there is a tendency to underestimate the quantiles. In 
terms of sharpness and resolution, Chen 2 has the best performance when using the NW 
estimator. Even though all of the kernels have the same resolution, when using QC, the best 
sharpness results are performed by Beta 1x. As for the skill score, jh has the worst overall 
performance for QC in both wind farms, and Chen 1 presents the best performance. In addition 
to this finding, for both wind farms when using NW, Chen 2 has the worst performance in terms 
of the skill score in the first and last look-ahead hours, this being the best kernel during the hours 
in between. 
 
Kernel Method Results 
Results comparing different kernels under distinct kernel sizes proved that Chen 1 (gamma and 
kernel function) is the estimator with the best overall calibration performance. All kernels have 
similar sharpness results — except when the power kernel size is large, when Chen 2 and 
Beta 1x are good methods using NW and QC, respectively. Similar results among kernels are 
also obtained for resolution, although Chen 2 and Boundary stand out for having good 
performance. In terms of skill score, Chen 1 is better for the QC estimator, and for NW, Chen 2 
performs better during mid look-ahead hours. 
 
 
3.4.3.3 Evaluation of Dataset Characteristics Sensitivity 
Comparisons were performed for six different datasets: 
 

A. Training period from January 2, 2009, until July 31, 2009; and testing period between 
August 1, 2009, and February 20, 2010. 

B. Training period from August 1, 2009, until February 20, 2010; and testing period between 
January 2, 2009, and July 31, 2009.  

C. Training period between January 2, 2009, and June 30, 2009; and testing period from July 1, 
2009, until February 20, 2010. 

D. Training period between July 1, 2009, and February 20, 2010; and testing period from 
January 2, 2009, until June 20, 2009.  

E. Training period from January 2, 2009, until August 31, 2009; and testing period between 
September 1, 2009, and February 20, 2010. 

F. Training period from September 1, 2009, until February 20, 2010; and testing period 
between January 2, 2009, and August 31, 2009.  

 
Because from all of the kernels used, Chen 1 was the one which revealed the best overall 
performance (namely in terms of sharpness), it is the one chosen to evaluate the sensitivity of the 
results toward the dataset characteristics. Hence, for a kernel size choice of (σPower; σWindSpeed) = 
(0.002; 0.04), results are presented for datasets A–F in both wind farm A (WFA) and B (WFB). 
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Dataset A 

The main characteristics of the training and testing dataset A of WFA are presented inTable 3-2 
and for WFB are presented in Table 3-3. The training period was from January 2, 2009, until 
July 31, 2009; the testing period was between August 1, 2009, and February 20, 2010. 
 
The statistical field that changes the most in this dataset is kurtosis. Wind speed kurtosis doubles 
from training to testing for both WFA and WFB, and the inverse occurs for power in WFA. The 
values of power kurtosis are negative, whereas they are positive for wind speed. Moreover, in 
WFB, the training period is slightly longer than the testing period. 
 

Table 3-2 Statistical characteristics of the WFA training and testing dataset A. 

Variables Nº Points Mean Median Std. Dev. Skewness Kurtosis IQRa 
Train Dataset 

Wind Speed (m/s) 4992 7.488 7.045 3.370 0.552 0.055 4.526 
Wind power 

(p.u.) 4992 0.328 0.259 0.273 0.485 -1.012 0.468 

Test Dataset 
Wind Speed (m/s) 4680 6.981 6.626 3.288 0.555 0.119 4.434 

Wind power 
(p.u.) 4680 0.315 0.235 0.293 0.727 -0.618 0.471 

a IQR = Inter-quantile range; p.u. = power unit. 

Table 3-3 Statistical characteristics of the WFB training and testing dataset A. 

Variables Nº Points Mean Median Std. Dev. Skewness Kurtosis IQRa 
Train Dataset 

Wind Speed (m/s) 5052 7.299 6.892 3.418 0.570 0.060 4.526 
Wind power 

(p.u.) 5052 0.302 0.238 0.260 0.606 -0.843 0.432 

Test Dataset 
Wind Speed (m/s) 4824 6.661 6.253 3.308 0.624 0.192 4.548 

Wind power 
(p.u.) 4824 0.309 0.227 0.290 0.768 -0.559 0.463 

a IQR = Inter-quantile range; p.u. = power unit. 

 
Fig. 3-85 depicts the calibration obtained for WFA using various estimators. This graph shows 
that QR approaches (linear and splines) have the best overall calibration results, with KDF 
estimators (NW and QC) performing better than the splines QR only for quantiles above 65%. 
KDF estimators underestimate the quantiles. 
 
Fig. 3-86 presents sharpness results, which are better for splines QR and worse for QC. These 
estimators have the best resolution as well, as depicted in Fig. 3-87. 
 
The splines QR has better performance in terms of the skill score, whereas linear QR has the 
worst. Hence, the skill score performance of the KDF estimators lies between the QR 
approaches, where NW is better than QC, as shown in Fig. 3-88. 
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Fig. 3-85 Calibration diagram for the offline test 
with WFA dataset A. 

Fig. 3-86 Sharpness diagram for the offline 
test with WFA dataset A. 

Fig. 3-87 Resolution diagram for the offline test 
with WFA dataset A. 

Fig. 3-88 Skill score diagram for the offline test 
with WFA dataset A. 

 
 
Fig. 3-89 through Fig. 3-92 depict the results for WFB. The graphs show that the behavior is 
similar to that of the WFA case, except for the calibration and resolution. In fact, for quantiles 
above 25%, the KDF estimators have better calibration performance than splines QR, with linear 
QR being the worst approach; moreover, quantiles tend to be overestimated. Linear QR has the 
worst resolution in WFB. 
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Fig. 3-89 Calibration diagram for the offline test 
with WFB dataset A. 

Fig. 3-90 Sharpness diagram for the offline test 
with WFB dataset A. 

Fig. 3-91 Resolution diagram for the offline test 
with WFB dataset A. 

Fig. 3-92 Skill score diagram for the offline test 
with WFB dataset A. 

 
 
The main conclusions for dataset A are that splines QR has the best overall calibration, although 
KDF approaches also present good performance, particularly in WFB. Splines QR has the best 
sharpness in both wind farms, and linear QR the worst resolution in WFB. In terms of skill score, 
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QR approaches have the best and the worst performance and, among the KDF estimators, NW is 
better. 

Dataset B 
The main characteristics of the training and testing dataset B of WFA are presented in  
Table 3-4 and for WFB are presented in Table 3-5. The training period was between August 1, 
2009, and February 20, 2010; the testing period was from January 2, 2009, until July 31, 2009.  
 
The statistical field that changes most in this dataset is kurtosis. Because the only difference 
between this dataset and the previous is the exchange of training and testing, the changes in 
kurtosis referred to for dataset A are inverted in dataset B. Hence, wind speed kurtosis halves 
from training to testing for both WFA and WFB. In contrast to wind speed, power kurtoses are 
negative, and in WFA their values double from training to testing. Moreover, in WFB, the 
training period is slightly shorter than the testing period. 
 

Table 3-4 Statistical characteristics of the WFA training and testing dataset B. 

Variables Nº Points Mean Median Std. Dev. Skewness Kurtosis IQRa 
Train Dataset 

Wind Speed (m/s) 4680 6.981 6.626 3.288 0.555 0.119 4.434 
Wind power 

(p.u.) 4680 0.315 0.235 0.293 0.727 -0.618 0.471 

Test Dataset 
Wind Speed (m/s) 4992 7.488 7.045 3.370 0.552 0.055 4.526 

Wind power 
(p.u.) 4992 0.328 0.259 0.273 0.485 -1.012 0.468 

a IQR = Inter-quantile range; p.u. = power unit. 

 

Table 3-5 Statistical characteristics of the WFB training and testing dataset B. 

Variables Nº Points Mean Median Std. Dev. Skewness Kurtosis IQRa 
Train Dataset 

Wind Speed (m/s) 4824 6.661 6.253 3.308 0.624 0.192 4.548 
Wind power 

(p.u.) 4824 0.309 0.227 0.290 0.768 -0.559 0.463 

Test Dataset 
Wind Speed (m/s) 5052 7.299 6.892 3.418 0.570 0.060 4.526 

Wind power 
(p.u.) 5052 0.302 0.238 0.260 0.606 -0.843 0.432 

a IQR = Inter-quantile range; p.u. = power unit. 

 
Fig. 3-93 depicts the calibration obtained for WFA using various estimators. This graph shows 
that for quantiles below 60%, QC has the best calibration results, and above 60%, the QR 
estimators become better. Quantiles tend to be underestimated. 
 
Fig. 3-94 presents sharpness results, which are better for splines QR and worse for QC. In terms 
of resolution, linear QR performs better than do the other estimators, which are almost the same, 
as depicted in Fig. 3-95. 
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Fig. 3-96 shows that QC has better performance in terms of the skill score, while linear QR has 
the worst. 

Fig. 3-93 Calibration diagram for the offline test 
with WFA dataset B. 

Fig. 3-94 Sharpness diagram for the offline test 
with WFA dataset B. 

Fig. 3-95 Resolution diagram for the offline test 
with WFA dataset B. 

Fig. 3-96 Skill score diagram for the offline test 
with WFA dataset B. 
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Fig. 3-97 through Fig. 3-100 depict the results for WFB. The graphs show that the behavior is 
similar to that found for WFA. 

Fig. 3-97 Calibration diagram for the offline test 
with WFB dataset B. 

Fig. 3-98 Sharpness diagram for the offline test 
with WFB dataset B. 

Fig. 3-99 Resolution diagram for the offline test 
with WFB dataset B. 

Fig. 3-100 Skill score diagram for the offline test 
with WFB dataset B. 
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The main conclusions for dataset B are that QC has the best calibration for quantiles below 60%, 
and estimators underestimate the quantiles; splines QR has the best sharpness and linear QR the 
best resolution; in terms of skill score QC has the best performance. 
 

Dataset C 
The main characteristics of the training and testing datasets C of WFA are presented inTable 3-6, 
and for WFB are presented inTable 3-7. The training period was between January 2, 2009, and 
June 30, 2009; and the testing period was from July 1, 2009, until February 20, 2010. 
 
The statistical field that changes most in this dataset is kurtosis. Wind speed kurtosis changes 
sign from negative to positive between training and testing, respectively. In WFA, the module of 
wind speed kurtosis increases 6 times, while in WFB, it increases 22 times. Power kurtoses are 
negative and halve their value from training to testing in both wind farms. Moreover, the training 
period is slightly shorter than the testing period. 
 

Table 3-6 Statistical characteristics of the WFA training and testing dataset C. 

Variables Nº Points Mean Median Std. Dev. Skewness Kurtosis IQRa 
Train Dataset 

Wind Speed (m/s) 4248 7.739 7.297 3.410 0.515 -0.030 4.681 
Wind power 

(p.u.) 4248 0.351 0.308 0.275 0.381 -1.115 0.482 

Test Dataset 
Wind Speed (m/s) 5424 6.853 6.474 3.231 0.575 0.181 4.387 

Wind power 
(p.u.) 5424 0.299 0.215 0.286 0.800 -0.468 0.463 

a IQR = Inter-quantile range; p.u. = power unit. 

 
Table 3-7 Statistical characteristics of the WFB training and testing dataset C. 

Variables Nº Points Mean Median Std. Dev. Skewness Kurtosis IQRa 
Train Dataset 

Wind Speed (m/s) 4308 7.557 7.122 3.456 0.541 -0.009 4.770 
Wind power 

(p.u.) 4308 0.321 0.262 0.263 0.524 -0.957 0.443 

Test Dataset 
Wind Speed (m/s) 5568 6.547 6.102 3.253 0.632 0.229 4.511 

Wind power 
(p.u.) 5568 0.294 0.209 0.284 0.836 -0.409 0.449 

a IQR = Inter-quantile range; p.u. = power unit. 

 
Fig. 3-101 depicts the calibration obtained for WFA using various estimators. This graph shows 
that QR approaches have the best overall calibration results, with linear QR performing better for 
quantiles below 65%. 
 
Fig. 3-102 presents sharpness results that are better for splines QR and worse for QC. In terms of 
resolution, linear QR is the worst, as depicted in Fig. 3-103. 
 



 

106 

The splines QR has better performance in terms of the skill score, while linear QR has the worst. 
Hence, the skill score performance of KDF estimators lies between QR approaches, with NW 
performing better than QC, as shown in Fig. 3-104. 

Fig. 3-101 Calibration diagram for the offline 
test with WFA dataset C. 

Fig. 3-102 Sharpness diagram for the offline test 
with WFA dataset C. 

Fig. 3-103 Resolution diagram for the offline 
test with WFA dataset C. 

Fig. 3-104 Skill score diagram for the offline test 
with WFA dataset C. 
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Fig. 3-105 through Fig. 3-108 depict the results for WFB. The graphs show that the behavior is 
similar as in the WFA case, except for the calibration. In fact, for quantiles above 45%, KDF 
estimators become better performers than splines QR, with linear QR being the approach with 
the worst calibration performance. Moreover, estimators tend to overestimate the quantiles. 

Fig. 3-105 Calibration diagram for the offline 
test with WFB dataset C. 

Fig. 3-106 Sharpness diagram for the offline test 
with WFB dataset C. 

Fig. 3-107 Resolution diagram for the offline 
test with WFB dataset C. 

Fig. 3-108 Skill score diagram for the offline test 
with WFB dataset C. 
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The main conclusions for dataset C are that QR estimators have better overall calibration, 
although KDF approaches also present a good performance, particularly in WFB; splines QR has 
the best sharpness and linear QR the worst resolution; in terms of the skill score, QR approaches 
have the best and the worst performance and, among the KDF estimators, NW is better. 

 

Dataset D 

The main characteristics of the training and testing datasets D of WFA are presented in  
Table 3-8 and for WFB are presented in Table 3-9. The training period was from July 1, 2009, 
until February 20, 2010; and the testing period was between January 2, 2009, and June 30, 2009. 
 
The statistical field that changes most in this dataset is kurtosis. Wind speed kurtosis changes 
sign from positive to negative between training and testing, respectively. In WFA, the module of 
wind speed kurtosis decreases 6 times, while in WFB, it decreases 22 times. Power kurtoses are 
negative and double their value from training to testing in both wind farms. Moreover, the 
training period is slightly longer than the testing one. 
 

Table 3-8 Statistical characteristics of the WFA training and testing dataset D. 

Variables Nº Points Mean Median Std. Dev. Skewness Kurtosis IQRa 
Train Dataset 

Wind Speed (m/s) 5424 6.853 6.474 3.231 0.575 0.181 4.387 
Wind power 

(p.u.) 5424 0.299 0.215 0.286 0.800 -0.468 0.463 

Test Dataset 
Wind Speed (m/s) 4248 7.739 7.297 3.410 0.515 -0.030 4.681 

Wind power 
(p.u.) 4248 0.351 0.308 0.275 0.381 -1.115 0.482 

a IQR = Inter-quantile range; p.u. = power unit. 

 
Table 3-9 Statistical characteristics of the WFB training and testing dataset D. 

Variables Nº Points Mean Median Std. Dev. Skewness Kurtosis IQRa 
Train Dataset 

Wind Speed (m/s) 5568 6.547 6.102 3.253 0.632 0.229 4.511 
Wind power 

(p.u.) 5568 0.294 0.209 0.284 0.836 -0.409 0.449 

Test Dataset 
Wind Speed (m/s) 4308 7.557 7.122 3.456 0.541 -0.009 4.770 

Wind power 
(p.u.) 4308 0.321 0.262 0.263 0.524 -0.957 0.443 

a IQR = Inter-quantile range; p.u. = power unit. 

 
 
Fig. 3-109 depicts the calibration obtained for WFA using various estimators. This graph shows 
that NW has the best overall calibration results. 
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Fig. 3-110 presents sharpness results, which are better for splines QR and worse for QC. In terms 
of resolution, linear QR performs better than the other estimators, which are almost the same, as 
depicted in Fig. 3-111. 
 
Fig. 3-112 shows that QC has better performance in terms of the skill score, while linear QR has 
the worst.  

Fig. 3-109 Calibration diagram for the offline 
test with WFA dataset D. 

Fig. 3-110 Sharpness diagram for the offline test 
with WFA dataset D. 

Fig. 3-111 Resolution diagram for the offline 
test with WFA dataset D. 

Fig. 3-112 Skill score diagram for the offline test 
with WFA dataset D. 
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Fig. 3-113 through Fig. 3-116 depict the results for WFB. The graphs show that the behavior is 
similar as in the WFA case, except for calibration, where for quantiles below 60%, QC has the 
best performance; in addition to this result, estimators tend to underestimate quantiles. 
 

Fig. 3-113 Calibration diagram for the offline 
test with WFB dataset D. 

Fig. 3-114 Sharpness diagram for the offline 
test with WFB dataset D. 

Fig. 3-115 Resolution diagram for the offline 
test with WFB dataset D. 

Fig. 3-116 Skill score diagram for the offline test 
with WFB dataset D. 
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The main conclusions for dataset D are that KDF estimators have the best calibration for 
quantiles below 60% (NW in WFA and QC in WFB); splines QR has the best sharpness and 
linear QR the best resolution; and in terms of the skill score, QC has the best performance. 

 

Dataset E 
The main characteristics of the training and testing datasets E of WFA are presented in  
Table 3-10, and for WFB are presented in Table 3-11. The training period was between 
January 2, 2009, and August 31, 2009; and the testing period was from September 1, 2009, until 
February 20, 2010. 
 
The statistical field that changes most in this dataset is kurtosis. In WFA, wind speed kurtosis is 
positive and increases 4 times, while in WFB, it increases almost 5 times. Power kurtoses are 
negative. Moreover, the training period is longer than the testing one in both wind farms. 
 

Table 3-10 Statistical characteristics of the WFA training and testing dataset E. 

Variables Nº Points Mean Median Std. Dev. Skewness Kurtosis IQR* 
Train Dataset 

Wind Speed (m/s) 5736 7.338 6.912 3.360 0.551 0.040 4.483 
Wind power 

(p.u.) 5636 0.319 0.262 0.270 0.516 -0.964 0.459 

Test Dataset 
Wind Speed (m/s) 3936 7.104 6.808 3.305 0.557 0.164 4.527 

Wind power 
(p.u.) 3936 0.327 0.244 0.300 0.696 -0.713 0.483 

a IQR = Inter-quantile range; p.u. = power unit. 

 
Table 3-11 Statistical characteristics of the WFB training and testing dataset E. 

Variables Nº Points Mean Median Std. Dev. Skewness Kurtosis IQR 
Train Dataset 

Wind Speed (m/s) 5796 7.147 6.735 3.402 0.574 0.053 4.667 
Wind power 

(p.u.) 5796 0.296 0.229 0.258 0.624 -0.809 0.435 

Test Dataset 
Wind Speed (m/s) 4080 6.761 6.384 3.336 0.629 0.234 4.602 

Wind power 
(p.u.) 4080 0.319 0.237 0.297 0.740 -0.645 0.474 

a IQR = Inter-quantile range; p.u. = power unit. 

 
Fig. 3-117 depicts the calibration obtained for WFA using various estimators. This graph shows 
that QR approaches have better overall calibration results, although KDF estimators become 
better performers for quantiles above 65%. 
 
Fig. 3-118 presents sharpness results, which are better for splines QR and worse for QC. In terms 
of resolution, all estimators have similar results (Fig. 3-119). The splines QR has better 
performance in terms of the skill score, while linear QR has the worst. Hence, the skill score 
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performance of KDF estimators lies between the QR approaches, with NW performing better 
than QC, as shown in Fig. 3-120. 
 

Fig. 3-117 Calibration diagram for the offline 
test with WFA dataset E. 

Fig. 3-118 Sharpness diagram for the offline test 
with WFA dataset E. 

Fig. 3-119 Resolution diagram for the offline 
test with WFA dataset E. 

Fig. 3-120 Skill score diagram for the offline test 
with WFA dataset E. 

 
Fig. 3-121 through Fig. 3-124 depict the results for WFB. The graphs show that the behavior is 
similar as in the WFA case, except for the calibration and resolution. In fact, for quantiles above 
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25%, the KDF estimators become better performers than splines QR, where linear QR has the 
worst calibration performance; moreover, quantiles tend to be overestimated. As for resolution, 
linear QR performs worse than do the other estimators, where results are generally the same. 

Fig. 3-121 Calibration diagram for the offline 
test with WFB dataset E. 

Fig. 3-122 Sharpness diagram for the offline 
test with WFB dataset E. 

Fig. 3-123 Resolution diagram for the offline 
test with WFB dataset E. 

Fig. 3-124 Skill score diagram for the offline test 
with WFB dataset E. 

 
The main conclusions for dataset E are that QR estimators have better overall calibration, 
although KDF approaches also present good performance, particularly in WFB; splines QR has 
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the best sharpness and linear QR the worst resolution; and in terms of the skill score, QR 
approaches have the best and the worst performance and, among the KDF estimators, NW is 
better.  
 
Dataset F 
The main characteristics of the training and testing datasets F of WFA are presented in  
Table 3-12, and for WFB are presented in Table 3-13. The training period was from 
September 1, 2009, until February 20, 2010; and the testing period was between January 2, 2009, 
and August 31, 2009. 
 
The statistical field that changes the most in this dataset is kurtosis. In WFA, wind speed kurtosis 
is positive and decreases 4 times, while in WFB, it decreases almost 5 times. Power kurtoses are 
negative. Moreover, the training period is shorter than the testing period for both wind farms. 
 

Table 3-12 Statistical characteristics of the WFA training and testing dataset F. 

Variables Nº Points Mean Median Std. Dev. Skewness Kurtosis IQRa 
Train Dataset 

Wind Speed (m/s) 3936 7.104 6.808 3.305 0.557 0.164 4.527 
Wind power 

(p.u.) 3936 0.327 0.244 0.300 0.696 -0.713 0.483 

Test Dataset 
Wind Speed (m/s) 5736 7.338 6.912 3.360 0.551 0.040 4.483 

Wind power 
(p.u.) 5636 0.319 0.262 0.270 0.516 -0.964 0.459 

a IQR = Inter-quantile range; p.u. = power unit. 

 
Table 3-13 Statistical characteristics of the WFB training and testing dataset F. 

Variables Nº Points Mean Median Std. Dev. Skewness Kurtosis IQRa 
Train Dataset 

Wind Speed (m/s) 4080 6.761 6.384 3.336 0.629 0.234 4.602 
Wind power 

(p.u.) 4080 0.319 0.237 0.297 0.740 -0.645 0.474 

Test Dataset 
Wind Speed (m/s) 5796 7.147 6.735 3.402 0.574 0.053 4.667 

Wind power 
(p.u.) 5796 0.296 0.229 0.258 0.624 -0.809 0.435 

a IQR = Inter-quantile range; p.u. = power unit. 

 
Fig. 3-125 depicts the calibration obtained for WFA using various estimators. This graph shows 
that for quantiles below 50%, QC has the best calibration results, and above 50%, splines QR 
becomes the better performer. These approaches underestimate quantiles. 
 
Fig. 3-126 presents sharpness results, which are better for splines QR and worse for QC. In terms 
of resolution, for quantiles below (above) 70%, linear QR performs worse (better) than the other 
estimators, which are almost the same, as depicted in Fig. 3-127.  
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Fig. 3-128 shows that QC has better performance in terms of the skill score, while linear QR has 
the worst.  
 

Fig. 3-125 Calibration diagram for the offline 
test with WFA dataset F. 

Fig. 3-126 Sharpness diagram for the offline 
test with WFA dataset F. 

Fig. 3-127 Resolution diagram for the offline 
test with WFA dataset F. 

Fig. 3-128 Skill score diagram for the offline test 
with WFA dataset F. 

 
Fig. 3-129 through Fig. 3-132 depict the results for WFB. The graphs show that the behavior is 
similar as in the WFA case. 
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Fig. 3-129 Calibration diagram for the offline 
test with WFB dataset F. 

Fig. 3-130 Sharpness diagram for the offline 
test with WFB dataset F. 

Fig. 3-131 Resolution diagram for the offline 
test with WFB dataset F. 

Fig. 3-132 Skill score diagram for the offline test 
with WFB dataset F. 

 
The main conclusions for dataset F are that QC has the best calibration for quantiles below 60%; 
splines QR has the best sharpness and linear QR the best resolution for quantiles above 70%; and 
in terms of the skill score, QC has the best performance. 
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Dataset Results 
In spite of similar results for both wind farms, outputs were revealed to change under different 
data characteristics between training and testing. In fact, if wind speed and power kurtosis 
increase (in module) from training to testing, regardless of their sign and whether the training 
dataset is larger or smaller than the testing dataset, QR estimators have the best calibration, 
although for WFB, KDF approaches are better for quantiles above 30%. QR approaches have the 
best sharpness and the worst resolution, namely, splines in the former and linear QR in the latter. 
As for the skill score, QR estimators deliver the best and the worst performances, and NW is 
better than QC. 
 
If, on the other hand, wind and power kurtosis decrease (in module) from training to testing, 
regardless their sign and whether the training dataset is larger or smaller than the testing dataset, 
QC is better for quantiles below 60%, although in dataset D, NW has the better performance 
instead. QR approaches have the best sharpness and resolution. In terms of the skill score, QC is 
the estimator with the best results. 
 
3.4.3.4 Evaluation with Different Parameters  
In order to assess the performance of the estimators under different parameters, several tests 
were run for each kernel size combination, using the Chen 1 kernel with dataset A, for both wind 
farms. Results are as follows. The kernel size values were determined experimentally (via trial 
and error) and use as a starting point the values suggested by the function cde.bandwidths from 
the R package “hdrcde” [58]. 
 

Kernel size: (hPower; hWindSpeed) = (0.002; 0.04) 

Fig. 3-133 depicts the calibration obtained for WFA using various estimators. This graph shows 
that QR approaches have better calibration results. KDF estimators tend to underestimate the 
quantiles. 
 
Fig. 3-134 presents sharpness and Fig. 3-135 resolution. In both, splines QR has the best 
performance and QC the worst, although resolution results are very similar among estimators. 
 
The splines QR has better performance in terms of the skill score, whereas linear QR has the 
worst. Hence, the skill score performance of KDF estimators lies between the QR approaches, 
with NW performing better than QC, as shown in Fig. 3-136. 
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Fig. 3-133 Calibration diagram for the offline test 
with WFA dataset A. 

Fig. 3-134 Sharpness diagram for the offline 
test with WFA dataset A. 

Fig. 3-135 Resolution diagram for the offline test 
with WFA dataset A. 

Fig. 3-136 Skill score diagram for the offline 
test with WFA dataset A. 

 
 
 
Fig. 3-137 through Fig. 3-140 depict the results for WFB. The graphs show that the behavior is 
similar as in the WFA case, except for the calibration and resolution, in which linear QR is 
clearly the worst (see Figure 3-139). For quantiles above 25%, the KDF estimators become better 
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performers than splines QR, with linear QR being the approach with the worst calibration 
performance. Moreover, the estimators tend to overestimate the quantiles. 

Fig. 3-137 Calibration diagram for the offline 
test with WFB dataset A. 

Fig. 3-138 Sharpness diagram for the offline test 
with WFB dataset A. 

Fig. 3-139 Resolution diagram for the offline 
test with WFB dataset A. 

Fig. 3-140 Skill score diagram for the offline test 
with WFB dataset A. 

 
The main conclusions for this kernel size choice are that splines QR has the best overall 
calibration in WFA, although in WFB, KDF approaches in particular have a better performance; 
splines QR has the best sharpness and resolution; and in terms of the skill score, QR approaches 
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have the best and the worst performance (splines QR and linear QR, respectively) and, among 
the KDF estimators, NW is better. 
 

Kernel size: (hPower; hWindSpeed) = (0.004; 0.02) 

Fig. 3-141 depicts the calibration obtained for WFA using various estimators. This graph shows 
that QR approaches have better calibration results. Estimators tend to underestimate the 
quantiles. 
 
Fig. 3-142 presents sharpness and Fig. 3-143 resolution. In both, splines QR has the best 
performance and linear QR the worst, although resolution results are very similar among 
estimators. 
 
The splines QR has better performance in terms of the skill score, while linear QR has the worst. 
Hence, the skill score performance of KDF estimators lies between the QR approaches, with NW 
performing better than QC, as shown in Fig. 3-144. 

Fig. 3-141 Calibration diagram for the offline test 
with WFA dataset A. 

Fig. 3-142 Sharpness diagram for the offline 
test with WFA dataset A. 
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Fig. 3-143 Resolution diagram for the offline test 
with WFA dataset A. 

Fig. 3-144 Skill score diagram for the offline 
test with WFA dataset A. 

Fig. 3-145 through Fig. 3-148 depict the results for WFB. It is shown that the behavior is similar 
as in the WFA case, except for the calibration. In fact, for quantiles above 25%, the KDF 
estimators become better performers than splines QR, with linear QR being the approach with 
the worst calibration performance. Moreover, quantiles tend to be overestimated. 

Fig. 3-145 Calibration diagram for the offline 
test with WFB dataset A. 

Fig. 3-146 Sharpness diagram for the offline 
test with WFB dataset A. 
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Fig. 3-147 Resolution diagram for the offline 
test with WFB dataset A. 

Fig. 3-148 Skill score diagram for the offline test 
with WFB dataset A. 

 
The main conclusions for this kernel size choice are that splines QR has the best overall 
calibration in WFA, although in WFB, KDF approaches are better; splines QR has the best 
sharpness and resolution; and in terms of the skill score QR approaches have the best and the 
worst performance and, among the KDF estimators, NW is better. 
 

Kernel size: (hPower; hWindSpeed) = (0.01; 0.05) 

Fig. 3-149 depicts the calibration obtained for WFA using various estimators. This graph shows 
that QR approaches are better than KDF estimators, which tend to underestimate the quantiles. 
 
Fig. 3-150 presents sharpness and Fig. 3-151 resolution. In both, splines QR has the best 
performance and QC the worst, although resolution results are very similar among estimators. 
 
The splines QR has better performance in terms of the skill score, while QC and linear QR are 
worse, as shown in Fig. 3-152. Among the KDF estimators NW is the best. 
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Fig. 3-149 Calibration diagram for the offline test 
with WFA dataset A. 

Fig. 3-150 Sharpness diagram for the offline 
test with WFA dataset A. 

Fig. 3-151 Resolution diagram for the offline test 
with WFA dataset A. 

Fig. 3-152 Skill score diagram for the offline 
test with WFA dataset A. 

 
 
Fig. 3-153 through Fig. 3-156 depict the results for WFB. The graphs show that the behavior is 
similar as in the WFA case, except for the resolution, where linear QR is the worst, and 
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calibration, where KDF estimators have better overall calibration than splines QR, with linear 
QR being the approach with the worst calibration performance and QC the best. 

Fig. 3-153 Calibration diagram for the offline test 
with WFB dataset A. 

Fig. 3-154 Sharpness diagram for the offline 
test with WFB dataset A. 

Fig. 3-155 Resolution diagram for the offline test 
with WFB dataset A. 

Fig. 3-156 Skill score diagram for the offline 
test with WFB dataset A. 

 
The main conclusions for this kernel size choice are that splines QR has the best overall 
calibration in WFA, although KDF approaches perform better in WFB; splines QR has the best 
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sharpness and resolution; and in terms of the skill score, splines QR has the best performance 
and, among the KDF estimators, NW is better. 
 

Kernel size: (hPower; hWindSpeed) = (0.004; 0.04) 

Fig. 3-157 depicts the calibration obtained for WFA using various estimators. This graph shows 
that QR approaches have better calibration results and that KDF estimators tend to underestimate 
the quantiles, although their performance is better than in the previous kernel choice. 
 
Fig. 3-158 presents sharpness and Fig. 3-159 resolution. In both, splines QR has the best 
performance and QC the worst. 
 
The splines QR has better performance in terms of the skill score, while linear QR has the worst, 
as shown in Fig. 3-160. Among the KDF approaches, NW is better. 

Fig. 3-157 Calibration diagram for the offline 
test with WFA dataset A. 

Fig. 3-158 Sharpness diagram for the offline 
test with WFA dataset A. 



 

126 

Fig. 3-159 Resolution diagram for the offline test 
with WFA dataset A. 

Fig. 3-160 Skill score diagram for the offline 
test with WFA dataset A. 

 
Fig. 3-161 through Fig. 3-164 depict the results for WFB. The graphs show that the behavior is 
similar as in the WFA case, except for the resolution, in which linear QR is the worst, and 
calibration, where KDF estimators have better overall calibration than splines QR, with linear 
QR being the approach with the worst performance and NW the best. 

Fig. 3-161 Calibration diagram for the offline 
test with WFB dataset A. 

Fig. 3-162 Sharpness diagram for the offline test 
with WFB dataset A. 
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Fig. 3-163 Resolution diagram for the offline 
test with WFB dataset A. 

Fig. 3-164 Skill score diagram for the offline test 
with WFB dataset A. 

 
  
 

 
The main conclusions for this kernel size choice are that splines QR has the best overall 
calibration in WFA, although KDF approaches perform better in WFB; splines QR has the best 
sharpness and resolution; and in terms of the skill score, splines QR has the best performance 
and, among the KDF approaches NW is better. 
 

Kernel size: (hPower; hWindSpeed) = (0.008; 0.05) 

Fig. 3-165 depicts the calibration obtained for WFA using various estimators. This graph shows 
that QR approaches have better calibration results and that KDF estimators tend to underestimate 
the quantiles. 
 
Fig. 3-166 presents sharpness and Fig. 3-167 resolution. In both, splines QR has the best 
performance and QC the worst, although resolution results are very similar among estimators. 
 
The splines QR has better performance in terms of skill score, while linear QR and QC are 
worse, as shown in Fig. 3-168. 
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Fig. 3-165 Calibration diagram for the offline test 
with WFA dataset A. 

Fig. 3-166 Sharpness diagram for the offline 
test with WFA dataset A. 

Fig. 3-167 Resolution diagram for the offline test 
with WFA dataset A. 

Fig. 3-168 Skill score diagram for the offline 
test with WFA dataset A. 

 
Fig. 3-169 through Fig. 3-172 depict the results for WFB. The graphs show that the behavior is 
similar as in the WFA case, except for the calibration, where KDF estimators have better overall 
calibration than splines QR, with linear QR being the approach with the worst performance and 
QC the best.  
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Fig. 3-169 Calibration diagram for the offline 
test with WFB dataset A. 

Fig. 3-170 Sharpness diagram for the offline 
test with WFB dataset A. 

Fig. 3-171 Resolution diagram for the offline 
test with WFB dataset A. 

Fig. 3-172 Skill score diagram for the offline test 
with WFB dataset A. 

 
  
 

 
The main conclusions for this kernel size choice are that splines QR has the best overall 
calibration in WFA, while KDF approaches perform better in WFB; splines QR has the best 
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sharpness and resolution; and in terms of the skill score, splines QR has the best performance, 
followed by NW, and linear QR and QC estimators are the worst. 
 

Kernel size: (hPower; hWindSpeed) = (0.008; 1) 

Fig. 3-173 depicts the calibration obtained for WFA using various estimators. This graph shows 
that QR approaches have better calibration results and that KDF estimators tend to underestimate 
the quantiles. 
 
Fig. 3-174 presents sharpness and Fig. 3-175 resolution. In both, splines QR has the best 
performance and QC the worst. 
 
The splines QR has better performance in terms of the skill score, while QC has the worst, as 
shown in Fig. 3-176. 

Fig. 3-173 Calibration diagram for the offline test 
with WFA dataset A. 

Fig. 3-174 Sharpness diagram for the offline 
test with WFA dataset A. 
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Fig. 3-175 Resolution diagram for the offline test 
with WFA dataset A. 

Fig. 3-176 Skill score diagram for the offline 
test with WFA dataset A. 

 
Fig. 3-177 through Fig. 3-180 depict the results for WFB. The graphs show that the behavior is 
similar as in the WFA case, except for the calibration, where for quantiles above 25%, KDF 
estimators become better performers than do splines QR, with linear QR being the approach with 
the worst calibration performance and NW the best. 

Fig. 3-177 Calibration diagram for the offline 
test with WFB dataset A. 

Fig. 3-178 Sharpness diagram for the offline test 
with WFB dataset A. 
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Fig. 3-179 Resolution diagram for the offline 
test with WFB dataset A. 

Fig. 3-180 Skill score diagram for the offline test 
with WFB dataset A. 

 
The main conclusions for this kernel size choice are that splines QR has the best overall 
calibration in WFA, although in WFB, KDF approaches perform better; splines QR has the best 
sharpness, and QC the worst resolution; and in terms of the skill score, QR approaches have the 
best performance and QC is the worst. 
 

Kernel size: (hPower; hWindSpeed) = (0.01; 1.2) 
Fig. 3-181 depicts the calibration obtained for WFA using various estimators. This graph shows 
that QR approaches have better calibration results and that KDF estimators tend to underestimate 
the quantiles. 
 
Fig. 3-182 presents sharpness and Fig. 3-183 resolution. In both, splines QR has the best 
performance and QC the worst. 
 
The splines QR has better performance in terms of the skill score, while linear QC has the worst, 
as shown in Fig. 3-184. 
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Fig. 3-181 Calibration diagram for the offline 
test with WFA dataset A. 

Fig. 3-182 Sharpness diagram for the offline 
test with WFA dataset A. 

Fig. 3-183 Resolution diagram for the offline test 
with WFA dataset A. 

Fig. 3-184 Skill score diagram for the offline 
test with WFA dataset A. 

 
Fig. 3-185 through Fig. 3-188 depict the results for WFB. The graphs show that the behavior is 
similar as in the WFA case, except for the calibration, where KDF estimators have better overall 
performance than do splines QR, with linear QR being the approach with the worst calibration 
results and NW the best. 
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Fig. 3-185 Calibration diagram for the offline 
test with WFB dataset A. 

Fig. 3-186 Sharpness diagram for the offline test 
with WFB dataset A. 

Fig. 3-187 Resolution diagram for the offline 
test with WFB dataset A. 

Fig. 3-188 Skill score diagram for the offline test 
with WFB dataset A. 

 

The main conclusions for this kernel size choice are that splines QR has the best overall 
calibration in WFA, although KDF approaches perform better in WFB; splines QR has the best 
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sharpness and resolution; and in terms of the skill score, QR approaches have the best 
performance and QC is the worst.  

 

Kernel size: (hPower; hWindSpeed) = (0.004; 1) 

Fig. 3-189 depicts the calibration obtained for WFA using various estimators. This graph shows 
that QR approaches have better calibration results and that KDF estimators tend to underestimate 
the quantiles. 
 
Fig. 3-190 presents sharpness and Fig. 3-191 resolution. In both, splines QR has the best 
performance and QC the worst. 
 
The splines QR has better performance in terms of the skill score, while QC has the worst, as 
shown in Fig. 3-192. 

Fig. 3-189 Calibration diagram for the offline test 
with WFA dataset A. 

Fig. 3-190 Sharpness diagram for the offline 
test with WFA dataset A. 
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Fig. 3-191 Resolution diagram for the offline test 
with WFA dataset A. 

Fig. 3-192 Skill score diagram for the offline 
test with WFA dataset A. 

 
Fig. 3-193 through Fig. 3-196 depict the results for WFB. The graphs show that the behavior is 
similar as in the WFA case, except for the calibration, where KDF estimators have better overall 
calibration than splines QR, with linear QR being the approach with the worst performance and 
NW the best. 

Fig. 3-193 Calibration diagram for the offline 
test with WFB dataset A. 

Fig. 3-194 Sharpness diagram for the offline test 
with WFB dataset A. 
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Fig. 3-195 Resolution diagram for the offline 
test with WFB dataset A. 

Fig. 3-196 Skill score diagram for the offline test 
with WFB dataset A. 

 
  
 

 
The main conclusions for this kernel size choice are that splines QR has the best overall 
calibration in WFA, while KDF approaches perform better in WFB; splines QR has the best 
sharpness and resolution; and in terms of the skill score, QR approaches have the best 
performance and the QC estimators are the worst. 

Kernel Sizes Results 
For wind speed kernel sizes smaller than 1, QR estimators perform better in WFA, while in 
WFB, KDF approaches have the best calibration, particularly for quantiles above 30%. 
Sharpness, resolution, and skill score results were similar among the four approaches in both 
wind farms, such that splines QR has the best sharpness and resolution performance, although 
the latter is almost the same for all estimators; in terms of the skill score, splines QR is the best, 
followed by NW, QC, and linear QR competing for the worst performance. 
 
On the other hand, for wind speed kernel sizes equal to or larger than 1, results are worse than 
they are in the previous case, although calibration and sharpness display similar behavior. For 
both wind farms, QC has the worst resolution and QR approaches have the best skill score 
performance. 
 
 
3.4.3.5 48 Hours-Ahead Offline Evaluation Results  
In this subsection, the impact of the different variables forecasted by the NWP model will be 
studied. Moreover, the results with forecasts launched at 6:00 AM and 6:00 PM are also 
evaluated. 
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The training dataset for both wind farms was selected to have 70% of all examples (30% of 
examples for testing). The following training and testing datasets were considered: 

• Wind farm A (WFA): Training set ran from January 1, 2009, to November 21, 2009 
(12,169 points), and the testing set ran from November 22, 2009, to February 20, 2010 
(5,203 points); 

• Wind Farm B (WFB): Training set ran from January 1, 2009, to November 18, 2009 
(12,384 points), and the testing set ran from November 19, 2009, to February 20, 2010 
(5,332 points). 

The following models were considered and compared: (M0) wind speed; (M1) wind speed + 
direction; (M2) wind speed + hour of the day; (M3) wind speed + look-ahead time step; 
(M4) wind speed + direction + hour of the day; and (M5) wind speed + direction + look-ahead 
time step. 

Wind Farm A 

Nadaraya-Watson (NW) KDF 

The following kernel functions were used in the NW estimator and WFA: 

• Wind power generation: Chen’s beta kernel from (3-17) with a bandwidth equal to 0.008; 
• Wind speed forecast: Chen’s gamma kernel from (3-21) with a bandwidth equal to 0.05; 
• Wind direction: von Mises distribution from (3-24) with a bandwidth equal to 2.5; 
• Look-ahead time step: Chen’s beta kernel from (3-17) with a bandwidth equal to 0.1; 
• Hour of the day: von Mises distribution from (3-24) with a bandwidth equal to 2.5. 

The kernel bandwidth values were determined experimentally (via trial and error) and using as a 
starting point the values suggested by the function cde.bandwidths from the R package “hdrcde” 
[58]. 
 
Fig. 3-197 depicts the calibration obtained with an offline approach for WFA and using NWP 
launched at 6 AM, while Fig. 3-198 depicts the calibration obtained with NWP launched at 
6 PM. The calibration between the two figures is slightly different: the NWP from 6 AM 
presents a better performance, in particular for quantiles below 50%. From the five different 
models (M0–M5), the best performance is from models M3 (wind speed + look-ahead time step) 
and M0 (wind speed) for both studies. Nevertheless, the performance of all methods is rather 
similar, and there are no significant differences. 
 
Note that the inclusion of direction in the model (M1) decreases the performance in terms of 
calibration. Because the look-ahead time step seems to improve the calibration performance, in 
Fig. 3-199 and Fig. 3-200 the calibration diagram is depicted for look-ahead time step t+6h 
obtained with 6 AM and 6 PM NWPs. The calibration for t+15h can be found in Appendix B. 
The results show, on overall terms, a best performance for models M2 and M3.   
 
An interesting result can be found in Appendix B for look-ahead time step t+15h. The model M2 
and M4 are overestimating the quantiles, while the other methods are underestimating. 
 
Fig. 3-201 and Fig. 3-202 depict the sharpness obtained for WFA with 6 AM and 6 PM NWP. 
The sharpness is rather similar for all models; the same is true when it is computed for a specific 
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look-ahead time step, such as t+6h in Fig. 3-203 and Fig. 3-204, or t+15h in Appendix B. 
Nevertheless, models M4 and M5 present the best sharpness performance, while M1 presents the 
lowest performance.  
 
Fig. 3-205 and Fig. 3-206 depict the resolution obtained for WFA. In this case, the model M4 
presents the best performance for both 6 AM and 6 PM NWPs. The worst performance is from 
M0. When the analysis is performed for the look-ahead time step t+6h (Fig. 3-207 and  
Fig. 3-208), the model with best performance is M1; however, for t+15h (see Appendix B), the 
best performance is from M4. Hence, on overall terms, the best resolution performance is from 
model M4. 
 
Fig. 3-209 and Fig. 3-210 present the skill score computed for each look-ahead time step with 
(3-46) for 6 AM and 6 PM NWPs. The performance of all of these models is rather similar, with 
a slight advantage for models M2 and M3 at both 6 AM and 6 PM.  
 

 
Fig. 3-197 Calibration diagram for WFA with 

6:00 AM NWP and NW models M0–M5. 

 
Fig. 3-198 Calibration diagram for WFA with 

6:00 PM NWP and NW models M0–M5. 
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Fig. 3-199 Calibration diagram for WFA with 
6:00 AM NWP and NW models M0–M5  

for look-ahead time step t+6h. 

Fig. 3-200 Calibration diagram for WFA with 
6:00 PM NWP and NW models M0–M5  

for look-ahead time step t+6h. 

  

 
Fig. 3-201 Sharpness diagram for WFA with 

6:00 AM NWP and NW models M0–M5. 

 
Fig. 3-202 Sharpness diagram for WFA with 

6:00 PM NWP and NW models M0–M5. 
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Fig. 3-203 Sharpness diagram for WFA with 6:00 
AM NWP and NW models M0–M5  

for look-ahead time step t+6h. 

Fig. 3-204 Sharpness diagram for WFA with 
6:00 PM NWP and NW models M0–M5  

for look-ahead time step t+6h. 

 

 
Fig. 3-205 Resolution diagram for WFA with 

6:00 AM NWP and NW models M0–M5. 

 
Fig. 3-206 Resolution diagram for WFA with 

6:00 PM NWP and NW models M0–M5. 
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Fig. 3-207 Resolution diagram for WFA with 
6:00 AM NWP and NW models M0–M5  

for look-ahead time step t+6h. 

Fig. 3-208 Resolution diagram for WFA with 
6:00 PM NWP and NW models M0–M5  

for look-ahead time step t+6h. 

 

 
Fig. 3-209 Skill score diagram for WFA  

with 6:00 AM NWP and NW models M0–M5. 
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Fig. 3-210 Skill score diagram for WFA  

with 6:00 PM NWP and NW models M0–M5. 

 

Quantile-Copula (QC) KDF 

The following kernel functions were used in the Quantile-Copula (QC) estimator and WFA: 

• Wind power generation: Chen’s beta kernel from 3-19 with a bandwidth equal to 0.008; 
• Wind speed forecast: Chen’s beta kernel from 3-19 with a bandwidth equal to 0.008; 
• Wind direction: von Mises distribution from 3-26 with a bandwidth equal to 1.0; 
• Look-ahead time step: Chen’s beta kernel from 3-19 with a bandwidth equal to 0.2; 
• Hour of the day: von Mises distribution from 3-26 with a bandwidth equal to 1.0. 

The kernel bandwidth values were determined experimentally (vai trial and error) and using as a 
starting point the values suggested by the function cde.bandwidths from the R package “hdrcde” 
[58]. 
 
Fig. 3-211 and Fig. 3-212 depict the calibration obtained with an offline approach for WFA and 
using NWP launched at 6 AM and 6PM, respectively. The calibration between the two figures is 
slightly different: the NWP from 6 AM presents a better performance, in particular for quantiles 
below 50%. From the five different models (M0–M5), the best performance is from models M3 
(wind speed + look-ahead time step) and M2 (wind speed + hour of the day) for both studies. 
The performance of all methods is rather similar, and there are no significant differences.  
 
In the QC estimator, the inclusion of wind direction in the model (M1) increases the calibration 
performance for some quantiles. 
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Fig. 3-213 and Fig. 3-214 depict the calibration diagram for look-ahead time step t+6h obtained 
with 6 AM and 6 PM NWPs. The calibration for t+15h can be found in Appendix B. The results 
show, on overall terms, a best performance for models M2 and M3.   
 

Fig. 3-211 Calibration diagram for WFA with 
6:00 AM NWP and QC models M0–M5. 

Fig. 3-212 Calibration diagram for WFA with 
6:00 PM NWP and QC models M0–M5. 

Fig. 3-213 Calibration diagram for WFA with 
6:00 AM NWP and QC models M0–M5  

for look-ahead time step t+6h. 

Fig. 3-214 Calibration diagram for WFA with 
6:00 PM NWP and QC models M0–M5  

for look-ahead time step t+6h. 

 
Fig. 3-215 and Fig. 3-216 depict the sharpness obtained for WFA with 6 AM and 6 PM NWPs. 
The sharpness is almost equal for all models, even when it is computed for each look-ahead time 
step (see Fig. 3-217, Fig. 3-218, and Appendix B). 
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Fig. 3-219 and Fig. 3-220 depict the resolution obtained for WFA. In this case, the model M4 
presents the best performance for both 6 AM and 6 PM NWPs, although the performances of M5 
and M1 are also very close. The results are verified for look-ahead time step t+6h (Fig. 3-221 
and Fig. 3-222). 
 
Fig. 3-223 and Fig. 3-224 present the skill score computed for each look-ahead time step and for 
6 AM and 6 PM NWPs. The performance of all of these models is very similar, with a slight 
advantage for models M2 and M3 at both 6 AM and 6 PM.  
 

Fig. 3-215 Sharpness diagram for WFA with  
6:00 AM NWP and QC models M0–M5. 

Fig. 3-216 Sharpness diagram for WFA with 
6:00 PM NWP and QC models M0–M5. 

Fig. 3-217 Sharpness diagram for WFA with 
6:00 AM NWP and QC models M0–M5  

for look-ahead time step t+6h. 

Fig. 3-218 Sharpness diagram for WFA with 
6:00 PM NWP and QC models M0–M5  

for look-ahead time step t+6h. 
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Fig. 3-219 Resolution diagram for WFA with 
6:00 AM NWP and QC models M0–M5. 

Fig. 3-220 Resolution diagram for WFA with  
6:00 PM NWP and QC models M0–M5. 

 

Fig. 3-221 Resolution diagram for WFA with 
6:00 AM NWP and QC models M0–M5  

for look-ahead time step t+6h. 

Fig. 3-222 Resolution diagram for WFA with 
6:00 PM NWP and QC models M0–M5  

for look-ahead time step t+6h. 
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Fig. 3-223 Skill score diagram for WFA with 6:00 AM NWP and QC models M0–M5. 

 
Fig. 3-224 Skill score diagram for WFA with 6:00 PM NWP and QC models M0–M5. 

 

Splines Quantile Regression (splines QR) 

For the circular variables, such as direction and hour of the day, a periodic cubic spline basis 
with equidistant knots is used. This is carried out by the S-PLUS/R functions pb.bse, pb.h, and 
bint0 available at http://www.imm.dtu.dk/~han/pub.  
 
Fig. 3-225 and Fig. 3-226 depict the calibration obtained with an offline approach for WFA and 
using NWP launched at 6 AM and 6 PM, respectively. As with the other methods, the calibration 
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between the two figures is slightly different: the NWP from 6 AM presents a better performance, 
in particular for quantiles below 50%. For this method, the models with best calibration 
performance are M0 and M1; however, the overall performance is generally very similar. 
 
Also for this estimator, the inclusion of wind direction increases the calibration performance for 
some quantiles. 
 
Fig. 3-227 and Fig. 3-228 depict the calibration diagram for look-ahead time step t+6h obtained 
with 6 AM and 6 PM NWPs. For this look-ahead time step, it is very difficult to find the model 
with the best performance.  
 
Fig. 3-229 and Fig. 3-230 depict the sharpness obtained for WFA with 6 AM and 6 PM NWPs. 
The sharpness is almost equal for all models, even when it is computed for each look-ahead time 
step (Fig. 3-231 and Fig. 3-232). 
 
Fig. 3-233 and Fig. 3-234 depict the resolution obtained for WFA. In this case, the models from 
M2–M5 present the best performance for both 6 AM and 6 PM NWPs. For look-ahead time step 
t+6h, it is the reverse situation, as depicted in Fig. 3-235 and Fig. 3-236. 
 
Fig. 3-237 and Fig. 3-238 present the skill score computed for each look-ahead time step and for 
6 AM and 6 PM NWPs. The performance of all of these models is very similar, with a slight 
advantage for models M2–M5 at both 6 AM and 6 PM.  
 
 

Fig. 3-225 Calibration diagram for WFA with 
6:00 AM NWP and splines QR models M0–M5. 

Fig. 3-226 Calibration diagram for WFA with 
6:00 PM NWP and splines QR models M0–M5. 
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Fig. 3-227 Calibration diagram for WFA with 
6:00 AM NWP and splines QR models M0–M5 

for look-ahead time step t+6h. 

Fig. 3-228 Calibration diagram for WFA with 
6:00 PM NWP and splines QR models M0–M5 

for look-ahead time step t+6h. 

  

 
Fig. 3-229 Sharpness diagram for WFA with  

6:00 AM NWP and splines QR models M0–M5. 

 
Fig. 3-230 Sharpness diagram for WFA with 

6:00 PM NWP and splines QR models M0–M5. 
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Fig. 3-231 Sharpness diagram for WFA with  

6:00 AM NWP and splines QR models M0–M5 
for look-ahead time step t+6h. 

Fig. 3-232 Sharpness diagram for WFA with 
6:00 PM NWP and splines QR models M0–M5 

for look-ahead time step t+6h. 

 

Fig. 3-233 Resolution diagram for WFA with  
6:00 AM NWP and splines QR models M0–M5. 

Fig. 3-234 Resolution diagram for WFA with 
6:00 PM NWP and splines QR models M0–M5. 
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Fig. 3-235 Resolution diagram for WFA with 
6:00 AM NWP and splines QR models M0–M5 

for look-ahead time step t+6h. 

 
Fig. 3-236 Resolution diagram for WFA with 

6:00 PM NWP and splines QR models M0–M5 
for look-ahead time step t+6h. 

 

 
Fig. 3-237 Skill score diagram for WFA  

with 6:00 AM NWP and splines QR models M0–M5. 
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Fig. 3-238 Skill score diagram for WFA with 6:00 PM NWP and splines QR models M0–M5. 

 

Concluding Results and Remarks 

The performance of all models is very similar, and there is no model that dominates the others in 
all criteria. However, the look-ahead time step improves the calibration and skill score of the 
NW and QC estimators, whereas for the splines QR, a simple model with wind speed presents 
the best result. For some quantiles, the wind direction also improves the results. 
 
Nevertheless, the model M3 with wind speed and look-ahead time step is the one that presents 
the best overall performance in the three uncertainty forecast algorithms. Hence, Fig. 3-239 
through Fig. 3-246 resume the comparison between model M3 for the NW, QC, and splines QR 
estimators. Note that the calibration is presented for quantiles between 1% and 5% in 1% steps, 
then from 5% to 95% in 5% steps, and finally from 95% to 99% in 1% steps. 
 
The following conclusions can be derived for wind farm A: 

• NW estimator presents the best calibration performance for the 6 AM NWP; 
• QC presents the best calibration for the 6 PM NWP; 
• NW and QC have the same performance in terms of sharpness, resolution, and skill score; 
• Splines QR presents the best sharpness and resolution performance;  
• Splines QR presents the best calibration for the left tail, whereas KDF methods present 

the best calibration for the right tail; 
• KDF methods have almost the same performance as QR in terms of skill score. Although 

QR is better than KDF for some look-ahead steps, it is also worse in others; and 
• The methods with better calibration present a worse performance in terms of sharpness 

and resolution. 
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Fig. 3-239 Calibration diagram for WFA with 
6:00 AM NWP and NW, QC, and QR models. 

Fig. 3-240 Calibration diagram for WFA with 
6:00 PM NWP and NW, QC, and QR models. 

Fig. 3-241 Sharpness diagram for WFA with  
6:00 AM NWP and NW, QC, and QR models. 

Fig. 3-242 Sharpness diagram for WFA with 
6:00 PM NWP and NW, QC, and QR models. 
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Fig. 3-243 Resolution diagram for WFA with  
6:00 AM NWP and NW, QC, and QR models. 

Fig. 3-244 Resolution diagram for WFA with 
6:00 PM NWP and NW, QC, and QR models. 

Fig. 3-245 Skill score diagram for WFA with  
6:00 AM NWP and NW, QC, and QR models. 

Fig. 3-246 Skill score diagram for WFA with 6:00 
PM NWP and NW, QC, and QR models. 

Wind Farm B 

Nadaraya-Watson (NW) KDF 

The following kernel functions were used in the NW estimator and WFB: 

• Wind power generation: Chen’s beta kernel from (3-17) with a bandwidth equal to 0.08; 
• Wind speed forecast: Chen’s gamma kernel from (3-21) with a bandwidth equal to 1.0; 
• Wind direction: von Mises distribution from (3-24) with a bandwidth equal to 2.5; 
• Look-ahead time step: Chen’s beta kernel from (3-17) with a bandwidth equal to 0.1; 
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• Hour of the day: von Mises distribution from (3-24) with a bandwidth equal to 2.5. 

The kernel bandwidth values were determined experimentally (via trial and error) and using as a 
starting point the values suggested by the function cde.bandwidths from the R package “hdrcde” 
[58]. 
 
Fig. 3-247 and Fig. 3-248 depict the calibration obtained for WFB using NWPs launched at 
6 AM and 6 PM, respectively. The calibration performance is similar between the two figures. 
For quantiles below 55%, the models with the best performance are M0–M1 and M4–M5, 
whereas for quantiles above 55%, models M2–M3 present the best performance. In general, the 
models’ performance is almost equal. 
 
For this wind farm, the inclusion of the wind direction in the model helps improve the 
performance for some quantiles (see Fig. 3-248). 
 
The calibration performance for look-ahead t+6h is depicted in Fig. 3-249 and Fig. 3-250, 
whereas the performance for t+15h can be found in Appendix C. When the analysis is performed 
for each look-ahead time, there are more variations between models. Although it is difficult to 
identify the best models in these figures, it seems that the model that only used wind speed (M0) 
presents the worst performance. 
 
 

Fig. 3-247 Calibration diagram for WFB with 
6:00 AM NWP and NW models M0–M5. 

Fig. 3-248 Calibration diagram for WFB with 
6:00 PM NWP and NW models M0–M5. 
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Fig. 3-249 Calibration diagram for WFB with 
6:00 AM NWP and NW models M0–M5  

for look-ahead time step t+6h. 

 
Fig. 3-250 Calibration diagram for WFB with 

6:00 PM NWP and NW models M0–M5  
for look-ahead time step t+6h. 

 
Fig. 3-251 and Fig. 3-252 depict the sharpness obtained for WFB with 6 AM and 6 PM NWPs. 
The sharpness is rather similar for all models; the same is detected when it is computed for a 
specific look-ahead time step, such as t+6h in Fig. 3-253 and Fig. 3-254, or t+15h in 
Appendix C. Nevertheless, models M4 and M5 present the best sharpness performance.  
 
Fig. 3-255 and Fig. 3-256 depict the resolution obtained for WFB. In this case, the model M4 
presents the best performance for both the 6 AM and 6 PM NWPs. The worst performance is 
from M0. When the analysis is performed for look-ahead time step t+6h (Fig. 3-257 and  
Fig. 3-258), the model with the best performance is M1; however, for t+15h (see Appendix C), 
the best performance is from M4.  
 
Fig. 3-259 and Fig. 3-260 present the skill score computed for each look-ahead time step for the 
6 AM and 6 PM NWPs. The skill score performance is not significantly different for all models. 
The models with the best performance are M2 and M3 for both 6 AM and 6 PM. The worst 
performance is from model M1.  
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Fig. 3-251 Sharpness diagram for WFB with  

6:00 AM NWP and NW models M0–M5. 
Fig. 3-252 Sharpness diagram for WFB with 

6:00 PM NWP and NW models M0–M5. 

 
Fig. 3-253 Sharpness diagram for WFA with  

6:00 AM NWP and NW models M0–M5  
for look-ahead time step t+6h. 

Fig. 3-254 Sharpness diagram for WFA with 
6:00 PM NWP and NW models M0–M5  

for look-ahead time step t+6h. 
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Fig. 3-255 Resolution diagram for WFB with 
6:00 AM NWP and NW models M0–M5. 

 
Fig. 3-256 Resolution diagram for WFB with 

6:00 PM NWP and NW models M0–M5. 

Fig. 3-257 Resolution diagram for WFB with 
6:00 AM NWP and NW models M0–M5  

for look-ahead time step t+6h. 

Fig. 3-258 Resolution diagram for WFB with 
6:00 PM NWP and NW models M0–M5  

for look-ahead time step t+6h. 
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Fig. 3-259 Skill score diagram for WFB  

with 6:00 AM NWP and NW models M0–M5. 

 

 
Fig. 3-260 Skill score diagram for WFB  

with 6:00 PM NWP and NW models M0–M5. 
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Quantile-Copula (QC) KDF 

The following kernel functions were used in the QC estimator and WFA: 

• Wind power generation: Chen’s beta kernel from (3-17) with a bandwidth equal to 0.04; 
• Wind speed forecast: Chen’s beta kernel from (3-17) with a bandwidth equal to 0.04; 
• Wind direction: von Mises distribution from (3-24) with a bandwidth equal to 1.0; 
• Look-ahead time step: Chen’s beta kernel from (3-17) with a bandwidth equal to 0.2; 
• Hour of the day: von Mises distribution from (3-24) with a bandwidth equal to 1.0. 

The kernel bandwidth values were determined experimentally (via trial and error) and using as a 
starting point the values suggested by the function cde.bandwidths from the R package “hdrcde” 
[58]. 
 
Fig. 3-261 and Fig. 3-262 depict the calibration for WFB using NWPs launched at 6 AM and 
6 PM, respectively. The best performance is from models M2 and M3. Nevertheless, there is no 
significant difference between models’ performance. 
 
Fig. 3-263 and Fig. 3-264 depict calibration diagrams for look-ahead time step t+6h obtained 
with 6 AM and 6 PM NWPs. The calibration for t+15h can be found in Appendix C. From these 
figures, it is difficult to distinguish the model with the best performance; however, model M3 
presents a regular performance. 
 

Fig. 3-261 Calibration diagram for WFB with 
6:00 AM NWP and NW models M0–M5. 

Fig. 3-262 Calibration diagram for WFB with 
6:00 PM NWP and NW models M0–M5. 
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Fig. 3-263 Calibration diagram for WFB with 
6:00 AM NWP and QC models M0–M5  

for look-ahead time step t+6h. 

Fig. 3-264 Calibration diagram for WFB with 
6:00 PM NWP and QC models M0–M5  

for look-ahead time step t+6h. 

 
Fig. 3-265 and Fig. 3-266 depict the sharpness obtained for WFB with 6 AM and 6 PM NWPs. 
The sharpness is almost the same for all models; the same is verified when it is computed for a 
specific look-ahead time step, such as t+6h in Fig. 3-267 and Fig. 3-268, or t+15h in 
Appendix C.  
 
Fig. 3-269 and Fig. 3-270 depict the resolution obtained for WFB. The models’ performance is 
almost similar, but with a slight advantage for models M4 and M2 for both the 6 AM and 6 PM 
NWPs. When the analysis is performed for look-ahead time step t+6h (Fig. 3-271 and  
Fig. 3-272), the differences are more distinct, but models M4 and M2 also present the best 
performance.    
 
Fig. 3-273 and Fig. 3-274 present the skill score computed for each look-ahead time step for the 
6 AM and 6 PM NWPs. The performance of all of these models is rather similar, with a slight 
advantage for models M2 and M3 at both 6 AM and 6 PM. 
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Fig. 3-265 Sharpness diagram for WFB with  

6:00 AM NWP and QC models M0–M5. 
Fig. 3-266 Sharpness diagram for WFB with 

6:00 PM NWP and QC models M0–M5. 

 
Fig. 3-267 Sharpness diagram for WFA with  

6:00 AM NWP and QC models M0–M5  
for look-ahead time step t+6h. 

Fig. 3-268 Sharpness diagram for WFA with 
6:00 PM NWP and QC models M0–M5  

for look-ahead time step t+6h. 
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Fig. 3-269 Resolution diagram for WFB with 
6:00 AM NWP and QC models M0–M5. 

Fig. 3-270 Resolution diagram for WFB with 
6:00 PM NWP and QC models M0–M5. 

Fig. 3-271 Resolution diagram for WFB with 
6:00 AM NWP and QC models M0–M5  

for look-ahead time step t+6h. 

Fig. 3-272 Resolution diagram for WFB with  
6:00 PM NWP and QC models M0–M5  

for look-ahead time step t+6h. 

 

Nominal coverage rate [%]

In
te

rv
al

s 
st

d.
 d

ev
ia

tio
n 

le
ng

th
 [%

 o
f r

at
ed

 p
ow

er
]

10 20 30 40 50 60 70 80 90

0
5

10
15

20 M0
M1
M2
M3
M4
M5

Nominal coverage rate [%]

In
te

rv
al

s 
st

d.
 d

ev
ia

tio
n 

le
ng

th
 [%

 o
f r

at
ed

 p
ow

er
]

10 20 30 40 50 60 70 80 90

0
5

10
15

20 M0
M1
M2
M3
M4
M5

Nominal coverage rate [%]

In
te

rv
al

s 
st

d.
 d

ev
ia

tio
n 

le
ng

th
 [%

 o
f r

at
ed

 p
ow

er
]

10 20 30 40 50 60 70 80 90

0
5

10
15

20 M0
M1
M2
M3
M4
M5

Nominal coverage rate [%]

In
te

rv
al

s 
st

d.
 d

ev
ia

tio
n 

le
ng

th
 [%

 o
f r

at
ed

 p
ow

er
]

10 20 30 40 50 60 70 80 90

0
5

10
15

20 M0
M1
M2
M3
M4
M5



 

164 

 
Fig. 3-273 Skill score diagram for WFB  

with 6:00 AM NWP and QC models M0–M5. 

 

 
Fig. 3-274 Skill score diagram for WFB  

with 6:00 PM NWP and QC models M0–M5. 
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Splines Quantile Regression (splines QR) 

Fig. 3-275 and Fig. 3-276 depict the calibration obtained for WFB and using NWP launched at 
6 AM and 6 PM, respectively. The calibration between the two figures is almost equal. The 
models with the best calibration performance are M0, M2, and M3; however, the overall 
performance is generally very similar. The inclusion of wind direction reduces the calibration 
performance for some quantiles. 
 
Fig. 3-277 and Fig. 3-278 depict the calibration diagram for look-ahead time step t+6h obtained 
with 6 AM and 6 PM NWPs. For this look-ahead time step, it is very difficult to find the model 
with the best performance.  
 
 

Fig. 3-275 Calibration diagram for WFB with 
6:00 AM NWP and splines QR models M0–M5. 

Fig. 3-276 Calibration diagram for WFB with 
6:00 PM NWP and splines QR models M0–M5. 
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Fig. 3-277 Calibration diagram for WFB with 
6:00 AM NWP and splines QR models M0–M5 

for look-ahead time step t+6h. 

Fig. 3-278 Calibration diagram for WFB with 
6:00 PM NWP and splines QR models M0–M5 

for look-ahead time step t+6h. 

 
Fig. 3-279 and Fig. 3-280 depict the sharpness obtained for WFB with 6 AM and 6 PM NWPs. 
The sharpness is almost equal for all models, with a slight advantage for model M0. The same is 
detected for look-ahead time step t+6h (Fig. 3-281 and Fig. 3-282). 
 
Fig. 3-283 and Fig. 3-284 depict the resolution obtained for WFB. In this case, the models from 
M2 and M3 present the best performance for both the 6 AM and 6 PM NWPs, and also for look-
ahead time step t+6h (depicted in Fig. 3-285 and Fig. 3-286). 
 
Fig. 3-287 and Fig. 3-288 present the skill score computed for each look-ahead time step and for 
the 6 AM and 6 PM NWPs. The models with the best performance are M2–M5, whereas models 
M0 (only for 6 AM) and M1 present the worst performance. 
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Fig. 3-279 Sharpness diagram for WFB with  

6:00 AM NWP and splines QR models M0–M5. 
Fig. 3-280 Sharpness diagram for WFB with 

6:00 PM NWP and splines QR models M0–M5. 

 

Fig. 3-281 Sharpness diagram for WFB with 
6:00 AM NWP and splines QR models M0–M5 

for look-ahead time step t+6h. 

Fig. 3-282 Sharpness diagram for WFB with 
6:00 PM NWP and splines QR models M0–M5 

for look-ahead time step t+6h. 
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Fig. 3-283 Resolution diagram for WFB with 
6:00 AM NWP and splines QR models M0–M5. 

Fig. 3-284 Resolution diagram for WFB with 
6:00 PM NWP and splines QR models M0–M5. 

Fig. 3-285 Resolution diagram for WFB with 
6:00 AM NWP and splines QR models M0–M5 

for look-ahead time step t+6h. 

Fig. 3-286 Resolution diagram for WFB with 
6:00 PM NWP and splines QR models M0–M5 

for look-ahead time step t+6h. 
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Fig. 3-287 Skill score diagram for WFB  

with 6:00 AM NWP and splines QR models M0–M5. 

 

 
Fig. 3-288 Skill score diagram for WFB  

with 6:00 PM NWP and splines QR models M0–M5. 
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Concluding Results and Remarks 

In the case of this wind farm, the performance of all models is also very similar, and there is no 
model that dominates the others in all criteria. The model M3 with wind speed and the look-
ahead time step was the one that presents the best overall performance in the three uncertainty 
forecast algorithms. Hence, Fig. 3-289 through Fig. 3-296 resume the comparison between 
model M3 for the NW, QC, and splines QR estimators. Note that the calibration is presented for 
quantiles between 1% and 5% in 1% steps, then from 5% to 95% in 5% steps, and finally from 
95% to 99% in 1% steps. 
 
The following conclusions can be derived for wind farm B: 

• The NW estimator presents the best overall calibration performance; 
• QC presents good calibration performance; 
• QC presents a better performance in terms of sharpness and resolution when compared to 

NW; 
• Splines QR presents the best sharpness and resolution performance;  
• The QR approaches underestimate the quantiles of the left tail, whereas the KDF methods 

overestimate them; 
• The QR estimators present the best performance for the right tail; 
• Splines QR presents the best results in terms of skill score; Pinson et al. [54] mentioned 

that the skill score of (3-44) is a generalization of the loss function considered in quantile 
regression, hence, it could justify why quantile regression presents the best performance 
in this criteria; 

• NW presents a significantly worse performance in terms of skill score. This result was 
attributable to a worse performance in terms of sharpness and calibration; and 

• QC presents a competitive performance with QR in terms of the skill score. 

 

 
Fig. 3-289 Calibration diagram for WFB with 6:00 

AM NWP and NW, QC, and QR models. 
Fig. 3-290 Calibration diagram for WFB with 
6:00 PM NWP and NW, QC, and QR models. 
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Fig. 3-291 Sharpness diagram for WFB with 
6:00 AM NWP and NW, QC, and QR models. 

Fig. 3-292 Sharpness diagram for WFB with 
6:00 PM NWP and NW, QC, and QR models. 

Fig. 3-293 Resolution diagram for WFB with 
6:00 AM NWP and NW, QC, and QR models. 

Fig. 3-294 Resolution diagram for WFB with 
6:00 PM NWP and NW, QC, and QR models. 
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Fig. 3-295 Skill score diagram for WFB with 6:00 
AM NWP and NW, QC, and QR models. 

Fig. 3-296 Skill score diagram for WFB with 6:00 
PM NWP and NW, QC, and QR models. 

 
 
As mentioned before, the methods with better calibration present worse performance in terms of 
sharpness. Hence, by choosing a kernel bandwidth that increases the NW calibration 
performance, we were reducing the sharpness and resolution performance. If a different kernel 
bandwidth was considered for the variables, then the performance in terms of calibration would 
likely decrease; however, performance in the other metrics would increase significantly.  
 
The following bandwidths were considered: 0.04 for wind power, 0.1 for wind speed, and 0.1 for 
the look-ahead time step. The results are depicted in Fig. 3-297 to Fig. 3-304. With these 
bandwidths, the calibration performance decreased but were still better than QC overall. The 
improvement was verified in both sharpness and calibration, which allowed a significant increase 
in the skill score. The skill score performance of KDF is competitive with the one for QR. 
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Fig. 3-297 Calibration diagram for WFB with 
6:00 AM NWP and NW, QC, and QR models. 

 
Fig. 3-298 Calibration diagram for WFB with 
6:00 PM NWP and NW, QC, and QR models. 

 

Fig. 3-299 Sharpness diagram for WFB with 
6:00 AM NWP and NW, QC, and QR models. 

Fig. 3-300 Sharpness diagram for WFB with 
6:00 PM NWP and NW, QC, and QR models. 
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Fig. 3-301 Resolution diagram for WFB with 
6:00 AM NWP and NW, QC, and QR models. 

Fig. 3-302 Resolution diagram for WFB with 
6:00 PM NWP and NW, QC, and QR models. 

 

Fig. 3-303 Skill score diagram for WFB with 6:00 
AM NWP and NW, QC, and QR models. 

Fig. 3-304 Skill score diagram for WFB with 6:00 
PM NWP and NW, QC, and QR models. 
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values, λ was represented by the corresponding n value according to (3-30). Thus, three values 
for λ were considered: 0.99963477 (which corresponds to n=2,738 points), 0.999 (which 
corresponds to n=1,000 points), and 0.995 (which corresponds to n=200 points). 
 

Nadaraya-Watson (NW) KDF 
The same kernel and bandwidths used in subsection 3.4.2.2 for the offline version was also 
considered for the time-adaptive versions. 
 
Fig. 3-305 depicts the calibration results for wind farm A. The time-adaptive version with 
λ=0.99963477 (n=2,738 points) and λ=0.999 (n=1,000 points) achieved the best performance, 
whereas having a small number of points in the sliding window leads to a worse performance 
when comparing to the offline results. When the calibration is computed by the look-ahead time 
step, as Fig. 3-306 depicts for t+20h and Appendix D for t+15h and t+10h, the same results are 
verified. Results with the lowest λ present the worst performance.  
 
The version with higher λ does not have a significant impact on the sharpness (depicted in Fig. 
3-307) and resolution (depicted in Fig. 3-308). Note that the version with 200 points presents the 
best resolution performance. 
 
Fig. 3-309 depicts the skill score for the offline and time-adaptive versions. The best 
performance was obtained with the time-adaptive versions with 2,738 and 1,000 points, whereas 
the version with 200 points presents the worst performance. The difference between the offline 
and time-adaptive versions is only noticeable in the first 28 look-ahead time steps.  
 
Fig. 3-310 depicts the calibration results for wind farm B. For this wind farm, the best 
performance is for 1,000 points; however, when the calibration is computed for a look-ahead 
time step (t+20h in Fig. 3-311), the version with 200 points presents the best results; the same is 
valid for t+15 depicted in Appendix E. 
 
Fig. 3-312 and Fig. 3-313 depict the sharpness and resolution for wind farm B. Only the time-
adaptive version with 200 points presents a different sharpness performance (the worst), whereas 
this version presents the best resolution performance. 
 
Fig. 3-314 depicts the skill score for wind farm B. An interesting result is that the time-adaptive 
version with 200 points presents the best performance for several look-ahead time steps. As an 
example, the evaluation results for look-ahead time step t+40h are depicted in Fig. 3-315 to  
Fig. 3-317. As depicted in these figures, the version with 200 points has the best resolution and 
calibration performance for this look-ahead time step; consequently, this result will lead to a 
higher skill score. 
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Fig. 3-305 Calibration diagram for the NW time-
adaptive model with WFA dataset. 

Fig. 3-306 Calibration diagram for t+20h 
obtained with the NW time-adaptive model  

for the WFA dataset. 

 

Fig. 3-307 Sharpness diagram for the NW time-
adaptive model with WFA dataset. 

Fig. 3-308 Resolution diagram obtained with the 
NW time-adaptive model for the WFA dataset. 
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Fig. 3-309 Skill score diagram for the NW time-
adaptive model for the WFA dataset. 

Fig. 3-310 Calibration diagram for the NW time-
adaptive model with WFB dataset. 

Fig. 3-311 Calibration diagram for t+20h 
obtained with the NW time-adaptive model for 

the WFB dataset. 

Fig. 3-312 Sharpness diagram for the NW time-
adaptive model with WFB dataset. 
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Fig. 3-313 Resolution diagram for the NW time-
adaptive model with WFB dataset. 

Fig. 3-314Skill score diagram obtained with the 
NW time-adaptive model for the WFB dataset. 

Fig. 3-315 Calibration diagram for t+40h 
obtained with the NW time-adaptive model for 

the WFB dataset. 

Fig. 3-316 Sharpness diagram for t+40h 
obtained with the NW time-adaptive model for 

the WFB dataset. 
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Fig. 3-317 Resolution diagram for t+40h obtained  

with the NW time-adaptive model for the WFB dataset. 

 
One conclusion that can be derived from these results is that the time-adaptive approach changes 
calibration, or in other words, it changes the bias of the probabilistic forecasts. This change in 
probabilistic bias is performed in a rather uniform fashion for each quantile (it is almost a linear 
shift); however, for the version with 200 points, this change is not uniform. 
 

Quantile-Copula (QC) KDF 

The same kernel and bandwidths used in Section 3.4.3.5 for the offline version were also 
considered for the time-adaptive versions. Note that the time-adaptive version of the empirical 
cumulative distribution function (Eq. 3-34 in Section 3.3.6.2) has a different λ value. Because 
this dataset does not have significant variations in the data structure (in contrast to the dataset 
used in Section 3.4.2.3), the adopted value was 0.9999. Note that a smaller value would lead to 
very poor results.   
 
Fig. 3-318 depicts the calibration results for wind farm A. The time-adaptive version with 
λ=0.99963477 (n=2,738 points) and λ=0.999 (n=1,000 points) achieved the best performance. 
The same results are obtained by the look-ahead time step; Fig. 3-319 depicts this result for 
t+20h and Appendix D for t+15h and t+10h.  
 
The version with higher λ does not have a significant impact on sharpness (depicted in  
Fig. 3-320) and resolution (depicted in Fig. 3-321). Note that the offline and time-adaptive 
version with 200 points presents the best performance of resolution. 
 
Fig. 3-322 depicts the skill score for the offline and time-adaptive versions. The best 
performance was obtained with the time-adaptive versions with 2,738 and 1,000 points, whereas 
the version with 200 points presents the worst performance.  
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Fig. 3-323 depicts the calibration results for wind farm B. For this wind farm, the best 
performance is for 1,000 points; however, when calibration is computed for a look-ahead time 
step (t+20h in Fig. 3-324), the version with 200 points presents the best results; the same is valid 
for t+15h depicted in Appendix E. 
 
Fig. 3-325 and Fig. 3-326 depict the sharpness and resolution for wind farm B. The conclusions 
are similar to the ones derived for wind farm A. 
 
Fig. 3-327 depicts the skill score for wind farm B. An interesting result is that the time-adaptive 
version with 200 points presents the best performance for several look-ahead time steps. This 
result occurs for the hours where the calibration performance is better, such as at the look-ahead 
time steps t+20h and t+15h. The worst performance is from the offline version. 
 

 

Fig. 3-318 Calibration diagram for the QC time-
adaptive model with WFA dataset. 

Fig. 3-319 Calibration diagram for t+20h 
obtained with the QC time-adaptive model for 

the WFA dataset. 
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Fig. 3-320 Sharpness diagram for the QC time-
adaptive model with WFA dataset. 

Fig. 3-321 Resolution diagram obtained with the 
QC time-adaptive model for the WFA dataset. 

  

Fig. 3-322 Skill score diagram for the QC time-
adaptive model for the WFA dataset. 

Fig. 3-323 Calibration diagram for the QC time-
adaptive model with WFB dataset. 
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Fig. 3-324 Calibration diagram for t+20h 
obtained with the QC time-adaptive model for 

the WFB dataset. 

Fig. 3-325 Sharpness diagram for the QC time-
adaptive model with WFB dataset. 

  

Fig. 3-326 Resolution diagram for the QC time-
adaptive model with WFB dataset. 

Fig. 3-327 Skill score diagram obtained with the 
QC time-adaptive model for the WFB dataset. 

3.5 Goodness in Probabilistic Forecasts: A Discussion 
Only the quality of the probabilistic forecast was evaluated in this chapter (Section 3.4) by using 
four different metrics (calibration, sharpness, resolution, and skill score). These four evaluation 
metrics only evaluate the correspondence between the forecasts and the reality, and no 
considerations are made about the impact on decision-making problems.  
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It is essential to compare the results also from the end-user’s perspective, which consists of the 
additional value (e.g., economic, technical, psychological) introduced by the probabilistic 
forecasts in a particular decision-making problem. In the WPF literature, there are three main 
decision-making problems: (i) finding the “optimal” wind power bid for the electricity market; 
(ii) setting the operating reserve in systems with high penetration of wind power; and 
(iii) establishing unit commitment. These decision-making problems have different end-users, 
mainly wind power generation companies (WGENCOs) and system operators (SOs). 
 
The evaluation of the probabilistic forecast value can be performed solely by the use of 
probabilistic forecasts in a specific decision-making problem and subsequent evaluation of the 
decision’s quality. However, the quality metrics used in this chapter can provide hints about the 
forecast value, but the interpretation will differ from problem to problem.  
 
In what concerns the wind power bidding problem, the most important information comes from 
the calibration metric, in particular for the methodologies that try to find the “optimal quantile” 
(for more details, refer to [20] and [59]). Under certain assumptions, in these methodologies the 
bid is equal to a quantile value that is found to be the “optimal” (e.g., under the expected value 
paradigm). Hence, the bias in the probabilistic forecast (represented by the calibration) is the 
motive for making “bad” and “good” bids. The same is valid for decision rules where a trade-off 
between expected value and risk is evaluated. For instance, if the risk is represented by the value 
at risk (which is a quantile of the pdf), a huge probabilistic bias may lead to an under- or 
overestimation of the risk; moreover, only a good calibration guarantees the accuracy in the 
expected value computation. The sharpness and resolution are not very relevant for this problem. 
 
For the bidding problem the probabilistic forecasts produced with KDF methods present better 
calibration and are therefore likely to have a higher value compared to the ones obtained with 
QR methods.   
 
The value of probabilistic forecasts used as input for setting an operating reserve (for more 
details, refer to [24] and [60]) is contained in the three metrics. The SO in this problem normally 
sets a reference value for a risk index; for example, ERCOT (the Electric Reliability Council of 
Texas, i.e., the Texas Independent System Operator) defines a nonspinning reserve 
corresponding to quantile 95% of the historical total forecast error (i.e., the same as setting a loss 
of load probability equal to 0.05). Hence, the bias of the probabilistic forecasts (calibration) 
provides information about the under- and overestimation of the risk [25]. Probabilistic forecasts 
with considerable bias value may lead to decisions with very bad consequences (e.g., power 
system blackouts) and represent a source of stress to the operators. As an example, the operator 
may choose an operating reserve equal to the 1% quantile of the system generation margin 
distribution (distribution of the difference between generation and load), but because of the bias 
in the wind power uncertainty forecast, this quantile may actually be 5%, meaning that the real 
probability of loss of load is 0.05 (instead of just 0.01). 
 
According to Matos and Bessa [24], the shape of the forecast distribution has an impact on the 
operating reserve requirements. Therefore, sharpness and resolution that are measures for the 
shape of forecast distributions are also important factors. Moreover, a forecast with higher 
sharpness means a forecast with a higher “amount of uncertainty.” In the operating reserve 
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problem, this distribution leads to uncertainty intervals with higher amplitude, which could 
represent an increase in the reserve values.  
 
However, this behavior is not yet studied; Bessa and Matos [25] only studied the calibration 
property. It is also important to stress that forecasts with a higher value for sharpness can cover 
extreme events (improbable, with very bad consequences).  
 
For the operating reserve problem, apparently the calibration is the most important factor, so the 
probabilistic forecasts produced with KDF methods could have a higher value as compared to 
those obtained with QR methods. However, we should emphasize again that the sharpness and 
resolution in probabilistic forecasts may also be an important factor in this problem. 
 
Unit commitment is a time-dependent decision-making problem, so that the wind power 
uncertainty should be represented by wind power scenarios that respect the probabilistic 
forecasts [26]. The quality of decisions is related with scenario quality, and the quality of the 
scenarios is related with the probabilistic forecast quality. In general, probabilistic forecasts with 
higher calibration and sharpness would lead to better representation in terms of scenarios. As 
mentioned by Pinson et al. [26] regarding the probabilistic forecast quality: “If these marginal 
distributions used as input were not reliable, the generated scenarios would also not be reliable.” 
Hence, the aim is to have probabilistic forecasts that are a good compromise between calibration 
and sharpness. The results presented in this chapter show that KDF methods provide a 
satisfactory compromise between these two metrics.  
 
Finally, the KDF methods have the possibility of controlling the calibration by changing the 
kernel’s size. This flexibility could be considered an advantage over the QR methods for some 
problems (the bidding problem, for instance). 
 

3.6 Conclusions 
The KDF models present results consistent with what is found in the wind power uncertainty 
forecast literature.  
 
From the results and sensitivity analyses performed in Sections 3.4.3.2, 3.4.3.3, and 3.4.3.4, it is 
possible to derive the following conclusions: 

• Chen’s gamma and beta kernels from (3-17) and (3-21) have better performance not only 
in calibration but also in skill score; 

• Different dataset characteristics lead to distinct results in calibration and skill score; 
• Different wind speed kernel sizes (either lower or larger than 1) lead to distinct results in 

terms of the resolution and skill score; 
• The KDF methods have a tendency to present a better performance in terms of calibration 

in WFB; 
• All of the kernels presented similar sharpness and resolution results, although QR 

methods tend to have a better performance; and 
• The skill scores of splines QR and NW and of linear QR and QC are rather similar. 
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From the complete case study presented in Sections 3.4.3.5 and 3.4.3.6, it is possible to derive 
the following conclusions: 

• The KDF methods have a tendency to present better performance in terms of calibration; 
• The QR methods have a tendency to present better performance in terms of sharpness and 

resolution; 
• The skill scores of the QR and KDF methods are rather similar; 
• The time-adaptive approaches for both NW and QC changes the bias of the probabilistic 

forecasts (calibration), while changing slightly the sharpness and resolution; and 
• The time-adaptive approach improves the skill score when compared with the offline 

approach. 

The main contributions to the state-of-the-art from the two models described in this chapter are 
the following: 

• In comparison to the KDF model developed by Juban et al. [17], the NW estimator 
described in this chapter is time-adaptive; 

• The model presented by Juban et al. [17] is an adaption of the classic NW estimator, 
whereas our approach is different and based on selecting the adequate kernel for 
modeling the different variables in the wind power forecast problem. Our proposal is 
simple and provides enough robustness to deal with any type of variables, such as using 
circular kernels (e.g., von Mises distribution) for circular variables (e.g., wind direction); 
and 

• The QC approach was applied for the first time to the wind power forecasting problem 
and also with circular variables. Moreover, a time-adaptive version of the method is 
described and evaluated. 

As future developments, we envision the following research topics: 

• Inclusion of wind power measurements in the uncertainty forecast model in order to 
improve very short-term forecasts (e.g., forecasts for look-ahead time steps below 
6 hours); 

• Development of an adaptive strategy for the forgetting factor (λ); 

• Development of heuristic rules for setting the kernel bandwidths; 

• Development of an evaluation scheme that accounts for the end-users’ preferences and 
ideas of “good forecasts,” for example, a skill score oriented for a decision-making 
problem. 
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4 WIND POWER RAMP FOREACSTING: A PROPOSAL 
This chapter presents a new method for ramp event detection and a comparative study about the 
existing definitions and methodologies to forecast ramp events. The paper is structured as 
follows. After an introductory section, Section 4.2 describes the formal and informal terms 
defined in the literature. Section 4.3 presents a new methodology, based on scenarios, for 
probabilistic ramp event detection and visualization. Section 4.4 illustrates a comparative study 
of the new proposal using the terms defined in the literature. Section 4.5 summarizes the 
conclusions stated through the study. 
 

4.1 Introduction 
One of the major issues in wind power generation are ramp events. These events are 
characterized by sudden and wide changes, either an increase or a decrease, of wind power 
generation. In the presence of such events, system operators (SOs) have to develop operational 
procedures in order to satisfy the load and maximize both the economical and environmental 
benefits. The longer the time-ahead prediction of such events, the higher the uncertainty and 
effectiveness of such procedures. To deal with a ramp-up event, a wind power producer may 
have to reduce generation, according to its market commitments; or the SO may use downward 
spinning reserve to compensate these ramps. During a ramp-down event, the SO will typically 
need to activate fast upward spinning reserve (i.e., switch on fast start-up units) [61], increasing 
the system operating cost. 
    
Recently, with the dissemination of modern turbine technology and large wind farms, the 
percentage of energy from wind sources relative to the peak load is rapidly increasing in many 
parts of the world. Thus, the demand for more reliable wind power is pushing up the critical need 
for ramp events detection and prediction [62]. For instance, [63] reported a rapid and large ramp-
down event in the Electric Realiability Council of Texas (ERCOT) area on February 26, 2008, 
that forced ERCOT to declare system emergency, with a high-cost system condition. This type of 
event underscores how crucial having an accurate forecast of ramp events and quantification of 
ramp forecast accuracy is to the large-scale integration of wind energy into electrical grids, and 
also helps market participants better understand the risk involved in trades at times of high 
variability [64]. 
 
One of the main problems in ramp forecasting is how to define a ramp. In fact, there is no 
standard formal definition of it [62][65][66], and almost all existing literature reports different 
definitions, depending, for instance, on the location or on the farm’s size.  
 

4.2 Ramp Event Definitions 
Ramp forecasting is a relatively new research field. In order to study the ramp phenomena, it is 
important to define what is or could be considered to be a ramp event. According to AWS 
Truewind’s technical report for the Alberta Pilot Project [67], a ramp is a change in the power 
output with a large enough amplitude and over a relatively short period of time. These events 
may cause grid management problems in the next few hours or days. The same idea also appears 
in [64][68]. The expressions swings, extreme events, or rapid changes are also used and 
considered as being synonymous with a ramp event [69]. Fig. 4-1 illustrates the ramp definition 
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presented in [64]: a change in the wind farm power output of at least 50% of the installed 
capacity in a time span of four hours or less. 
 

 
Fig. 4-1 Ramp event definition: a change in power of at least 50% of the capacity, over a maximum 

duration period of 4 hours (freely based on figure from [70]) . 

4.2.1 Characteristics of Ramp Definitions 
The authors in [64] and [71] define several relevant characteristics for ramp definition, 
characterization, and identification:  to define a ramp, we have to determine values for its three 
key characteristics — direction, duration, and magnitude. 
 
With respect to direction, there are two basic types of ramps: upward ramps (or ramp-ups), and 
downward ramps (or ramp-downs). The former, characterized by an increase of wind power, 
result from a rapid rise in wind speeds, which might (although not necessarily) be due to low-
pressure systems, low-level jets, thunderstorms, wind gusts, or other similar weather phenomena. 
Downward ramps are due to a decrease in wind power, which may occur because of a sudden 
depletion of the pressure gradient, or may be due to very high wind speeds that lead wind 
turbines to reach cut-out limits (typically 22–25 m/s) and shut down in order to prevent the wind 
turbine from experiencing damage [72]. In order to consider a ramp event, the minimum duration 
is assumed to be 1 hour in [71], although in [62], these events lie in intervals of 5 to 60 minutes. 
The magnitude of a ramp is typically represented by the percentage of the wind farm’s nominal 
power — its nameplate capacity. 
 
Duration and magnitude are usually related. For example, [71] considers rapid ramp events when 
the hourly change in power output is greater than or equal to 10% of the nominal capacity of the 
wind farm. In addition to this definition, the AWS report [67] suggests that:   

• An important downward ramp occurs only if the power change in one hour is, at least, 
15% of the total capacity;  

• An important upward ramp occurs if the power change in one hour is, at least, 20% of 
total capacity.  

 
In the next subsection, we present some ramp event definitions using these characteristics. 
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4.2.2 Ramp Definitions 
Although it is easy to identify ramps visually, there is no agreed-upon and/or accepted formal 
definition of a ramp event [62][65][66]. In this section, we present four ramp event definitions. 
As mentioned above, a ramp event can be characterized according to three features: direction, 
magnitude, and duration. However, if we consider that ramp magnitude values range from 
positive to negative, then we can characterize a ramp using only magnitude and duration 
features. The sign of the magnitude value can give us the ramp direction: positive magnitude 
values correspond to upward ramps, and negative magnitude values correspond to downward 
ramps. 
 
In the definitions below, a ramp event can be identified according to the power signal, P t , and 
two user-defined parameters (one of the definitions requires only one parameter to identify a 
ramp). The parameter Δ  is related to the ramp duration (given in minutes or hours) and defines 
the size of the time interval considered to identify a ramp. In [71][73], some results are presented 
that relate this parameter to the type and magnitude of identified ramps. The other parameter, 

, is related to the ramp magnitude feature and provides a cut-off level on the power changes. 
The  parameter is usually defined according to the specific features of the wind farm site. 
This threshold value depends on the amount of wind power installed, and is defined as a 
percentage of the nominal wind power capacity or a specified amount of MW (megawatts). In 
[62], the authors claim that defining the  value according to the wind farm nominal capacity 
can produce unreliable results. They analyze historical measurements, considering that the 
nominal capacity of a wind farm is always changing: at each moment, one or several units can be 
turned off. They studied the sensitivity of two ramp definitions to each of the two parameters 
introduced above:  ranging from 150 to 600 MW and Δ  values varying between 5 and 
60 minutes. 
 
The first defintion that we present here has been formally described in [62]. 
 
Definition 1: A ramp event is considered to occur at the start of an interval if the magnitude of 
the increase or decrease in the power signal, at time Δ  ahead of the interval, is greater than the 
threshold value, : 
 

| Δ |    (4-1) 
This inequality only considers the values at the end points of the interval, ignoring the ramps that 
occur in the middle. To address this issue, [62] extended the previous definition. 
 
Definition 2: A ramp is considered to occur in a time interval, Δ , if the difference between the 
maximum and the minimum power output measured in that interval is greater than the threshold 
value, : 
 

max P t, t Δ min P t, t Δ P    (4-2) 
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This inequality considers the total magnitude of the power fluctuation through the interval. 
However, this definition does not consider the curve’s slope: that is, how fast the power output 
decreases or increases. In order to analyze this important factor, we cannot consider an absolute 
threshold like , as we need a time-relative threshold. 
 
A more elaborate definition considers the rate of change in power output over a period of time 
[66]. The authors define Power Ramp Rate, or slope, to be the rate of change of the power with 
respect to time. This measure is expressed in  (megawatts per minute).  
 
Definition 3: A ramp is considered to have occurred if the difference between the power 
measured at the initial and final points of a time interval, Δ , is greater than a predefined 
reference value to the Power Ramp Rate, : 
 

|P P |    (4-3) 
 
In the definitions presented in equations (4-1) and (4-3), we can easily identify the type of ramp: 
if , we are analyzing a downward ramp; otherwise it is an upward one. On the 
other hand, this distinction is not that clear in (4-2). In this latter case, we can identify the type of 
the ramp by using the relative position of the extreme time points within the interval. If the 
maximum power output occurs after the minimum power output, we have an upward ramp; 
otherwise, we are experiencing a downward ramp. 
 
While the definitions above work directly with the wind power signal, other approaches 
transform the signal into a more appropriate representation. A usual transformation consists of 
considering -order differences in the power amplitude. This strategy is used, for example, in 
[74]. Let  be the wind power time series and  the associated transformed signal that was 
obtained according to 

 
; 1, … ,    (4-4) 

 
In this formula, the parameter  stands for the number of averaged power differences to be 
considered.  
 
Definition 4: A ramp event is said to occur in an interval if the absolute value of the filtered 
signal, , exceeds a given threshold value, : 
 

|p | P    (4-5) 
 
If required, the ramp time is considered to be the interval point for which the filtered signal has 
its maximum magnitude. This definition was introduced in [74].  
 
Definition 5: This definition is based on filter techniques from signal processing to remove 
unwanted frequency components from a signal. We have developed this new definition under 
this project. It uses a high-pass filter, that is, a filter that passes high-frequency signals and 
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attenuates (reduces the amplitude of) signals with frequencies lower than the cut-off frequency. 
The simpler high-pass filter can be formulated as: 
 

1 1    (4-6) 
 
It can only pass relatively high frequencies because it requires large (i.e., fast) changes and tends 
to forget its prior output values quickly (see Fig. 4-2) . A large α implies that the output will 
decay very slowly but will also be strongly influenced by even smaller changes in the input 
signal. A constant input (i.e., an input with 1 0) will always decay to zero. A 
small α implies that the output will decay quickly, requiring large changes in the input 
(i.e., 1  is large) so that the output varies considerably. 
 

 
Fig. 4-2 Example of applying Definition 5, using a high-pass filter. The top panel presents the 
original signal. The bottom panel represents the high-pass filtered output signal. The output 

signal increases only when there is a fast variation of the input signal.    

 
Small variations in the output signal might be removed using a band filter. A band filter sets to 0 
all data points whose absolute value is smaller than an admissible threshold. Filter-based ramp 
detection can be applied using the predictions for the total park, for individual turbines, or 
forecast scenarios as the input signals. The filtered signal from different scenarios (or turbines) 
are aggregated using histograms that will be explained in the following section. 
 
 

4.3 New Methodology for Detecting Ramp Event Probability 
4.3.1 Basic Ideas for a New Model 
The construction of a model for ramp event prediction has a precise guideline. The goal is to 
produce a model able to supply decision models with data of a probabilistic nature, such that 
generator scheduling and dispatch decisions may be made in a framework of risk analysis — 
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taking into account the trade-off between risk of loss because of unexpected ramping that the 
system cannot cope with and the cost of hedging against such risk. 
 
Although there are no good industrial models that would directly produce such a risk-minded 
generator schedule, this approach is seen as the most promising line of development in decision 
models for system operation, given a high penetration of volatile or intermittent resources. 
 
Therefore, the objective of the new model is to produce as results, for each hour of the generator 
scheduling/unit commitment exercise, information regarding the possibility of occurrence of a 
ramp event in the form of probabilities up or down. 
 
The simplest form is to have a single definition of a ramp (taken from some industry definition), 
either based on the rate of change in wind power and the duration of change, or based on a 
certain magnitude of change within a given time interval — producing, for each hour, a 
probability of occurrence of such an event. 
 
A more complex output may combine a series of ramp definitions into a ramp probabilistic 
distribution for each hour. Hence, this distribution represents the probability of having a ramp 
event of a certain magnitude or higher for a range of magnitudes. 
 
The departing point to build such a model will be a probabilistic description of the wind power 
forecast. In this chapter, we adopt a wind power scenario generator as used in [75], which can be 
considered the state-of-the-art and that has been used in other tasks of the project, such as in a 
model to supply wind power scenarios for unit commitment. 
 
Although this chapter does not discuss the quality of this scenario generator model, it should be 
kept in mind that its quality conditions significantly affect the quality of the ramp forecasting 
exercise. The scenarios used in this study have been generated according to the methodology 
introduced by Pinson et al. [76], which is equivalent to producing scenarios under a Monte Carlo 
process. 
 
The new model is not intended to produce directly the input to a unit commitment program. 
Regarding the concept developed at INESC Porto together with Argonne, this input is under the 
form of scenarios entering as data in a stochastic programming application; and this input will 
generate a schedule that, in the probabilistic sense, will define the optimal decisions.  
 
The set of scenarios is condensed from a discrete representation of the probability density 
function (pdf) associated with the wind power forecast. This pdf already has information on the 
frequency of occurrence of ramps at any hour — therefore, an optimization of the unit 
commitment with a stochastic programming model will take into account this factor. So, why do 
we specifically need a mechanism to forecast ramp events? 
 
This (new) model serves two purposes. First, it can be used as a tool to generate alarms and 
allow the system operator to pay particular attention to specific hours. Complementing this 
purpose, the system operator has more information in order to allow hedging against dangerous 
ramp events — by adjusting the schedule to meet some target of risk that can now be quantified. 
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Second, it may be used to check and validate the generator schedules proposed by the unit 
commitment algorithm. One must bear in mind that the number of scenarios supplied as input of 
a stochastic optimization model must necessarily be small, for reasons of computing feasibility. 
There is a gross discretization of the continuous representation of the pdf, which implies 
unavoidable approximations. A tool that allows the verification of the proposals from a complex 
optimization process seems valuable. Otherwise, some unit commitment outcomes might be 
regarded as obscure or incomprehensible to system operators, because these outcomes are 
derived from a compromise within a set of scenarios; or as being difficult in terms of perceiving 
its full implications, in contrast to the straightforwardness of a deterministic strategy based on a 
point forecast. 
 
In a nutshell, the scenario generator model is able to produce likely scenarios for the evolution of 
the wind power in the coming 24 or 48 hours. These scenarios must be seen as fair drawings of a 
Monte Carlo process. By examining the scenarios and counting under a comparison with a target 
ramp shape (or definition), one may calculate the sample probability of encountering a ramp of a 
given shape or magnitude at each hour. This calculated probability also allows one to build 
cumulative probability functions, describing for each threshold, P, the probability of having a 
ramp event equal or greater than P at a given hour or defined time step. 
 
The integration of the new model in the wind power forecasting landscape now becomes easy to 
understand, and Fig. 4-3 illustrates this integration: an implicit model for the pdf of the wind 
power is a common model, both for ramp event analysis and for unit commitment. This model 
requires a reduced set of scenarios that must be generated as representatives of a much larger set. 
The large set is used directly to produce a probabilistic description of ramp events, which may be 
coupled with the output of the unit commitment module in order to allow validation and possible 
hedging. 
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Fig. 4-3 Conceptual modules relating scenario generation, unit commitment,  
and ramp event analysis. 

 
 
4.3.2 Development 
This chapter opens the discussion and proposes a new way to detect and represent the possibility 
of ramping events in short-term wind power forecasting. Ramping is a remarkable characteristic 
in a time series associated with a drastic value change in a set of consecutive time steps. In the 
context of system operation, three properties are important to define the perception of the event: 
the amplitude of change, the duration, and the probability of occurrence at a given time step. 
Amplitude and duration are associated with the slope. The probability of occurrence is associated 
with phase error in prediction. Ramping may be classified as up or down, depending on the sign 
of the slope. Phase errors may be of advancement or delay, relative to a specific point forecast.  
 
Both properties (slope and phase error) are important from the point of view of one of the main 
users of wind power forecasts: the SO. Thus, these properties may have important implications in 
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the decisions associated with unit commitment or generation scheduling, especially if there is 
thermal generation dominance in the power system. Most large thermal generators cannot start 
up under short notice, nor can they change their output at a fast pace (otherwise, a severe 
reduction to their lifetime may arise). Therefore, unit commitment decisions, which must be 
taken some 24–48 hours in advance, must prepare the generation schedule in order to 
accommodate any forecasted drastic changes in wind power availability smoothly. 
 
Going beyond research results, companies providing load forecasting services and tools advertise 
in the range of 1–3% of mean absolute percentage error (MAPE) for distribution load forecasting 
in short-term horizons [77]. From many published results, the range of MAPE for wind power 
short-term forecasting is in the range of 10–30% [78]. Therefore, we can say that the uncertainty 
in wind power prediction is about one order of magnitude larger than the uncertainty in load 
prediction. The latter is traditionally accommodated by defining a policy for spinning reserve 
(which may be some hybrid form of percentage of load plus some quantity related to the size of 
the largest generating unit in the system — to take finite reliability into account). However, with 
uncertainty in wind power prediction being much larger and extremely variable over the course 
of the hours of the day, the unit commitment exercise must consider alternative models that may 
take into account risk — because defining some sort of deterministic spinning reserve criterion 
may be too expensive, for the unused capacity or for shortages of capacity. 
 
In order to allow unit commitment to take ramping into account, one must supply as input data 
information about the possibility of having a ramping event and about the probability of this 
event appearing shifted, relative to the predicted hour. This prediction cannot be performed 
without departing from a probabilistic model for the wind power prediction.  
 
 
4.3.2.1 Generating a Discrete Representation of the Joint pdf of the Wind Power 

Prediction 
The approach proposed in this chapter requires the existence of some wind power models, such 
that one is able to extract, in the Monte Carlo sense, sampled events within a given time horizon 
(see Fig. 4-4). Without loss of generality, we assume that the time horizon is of 48 hours. 
Therefore, a wind power scenario is any time series or sequence of wind power values within 
that time frame. This may also be seen as a point in a 48-h dimension space. Sampling wind 
power scenarios is thus sampling points in this 48-dimension space. A wind power prediction 
model that includes uncertainty representation has a way of generating scenarios according to the 
joint probability density function in this space. 
 
One must bear in mind that in a wind power forecasting model, there are important cross-time 
dependencies, so that the prediction at each hour cannot be taken as an independent random 
variable. A traditional way to represent such dependencies is through second-order statistics by 
establishing correlation (or covariance) matrices. This approach is subject to comments and 
reservations; however, it is beyond the scope of this discussion. Nevertheless, it does not seem 
feasible to achieve an explicit mathematical formula describing the pdf of the prediction in the 
joint 48-dimension space. 
 
One model that has been proposed in the literature [79], as applied to wind power forecasting, 
allows the generation of wind power scenarios from an implicit representation of the pdf via a set 
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of cross-time correlation matrices. Each scenario departs from a seed that is randomly sampled at 
the initial time step, and then the following time step values are generated with the help of the 
correlation matrices. 
 

 
Fig. 4-4 Scenarios generated, point forecast, and actual measured value. 

 
This chapter does not discuss the validity of this approach. However, this model allows one to 
sample and generate wind power scenarios in the Monte Carlo fashion. A scenario is an event, 
associated to which is a pdf value in the joint space. If one generates a large sample of scenarios, 
it is expected that these will spread in space and will be distributed with a frequency dictated by 
the pdf. A large sample will be a good discrete approximation of the true pdf. The availability of 
such a sample is the first step to take in the new model proposed. 
 
4.3.2.2 Detecting Ramps 
The second step is to have available a detection procedure for ramp events, such as those defined 
in the previous section. Given the industry’s concerns, one needs an agreed-upon definition of a 
ramp event in order to proceed — this definition will be a typical wind power change that may 
be perceived as harmful by the industry. The definition is likely to vary, depending on the size of 
the region and the ramping flexibility in the portfolio of other generating resources, among other 
factors. 
 
The simplest definition is in terms of slope. A general statement could be that given a time 
window of size  (with  ∆ ,  being an integer and ∆  the size of the time step in the wind 
power series), a ramp is equivalent to a change |ΔP| in wind power above a certain threshold 

. Up or down is defined according to the sign of ΔP. 
 
A ramp detection exercise may thus be carried out by running a moving window over a wind 
power series and applying a matching filter to detect similarities between any stretch of the time 
series and the ramp filter. Therefore, if this model is applied over one wind power scenario, it 
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indicates whether or not a matching ramping event is detected (see Fig. 4-1) for each hour at the 
beginning of the moving window. 
 
 
4.3.2.3 Building a Probabilistic Ramp Representation 
The detection model described above acts as an indicator function for each hour in the time 
series. The scenario generation model acts as a sampling mechanism in the Monte Carlo sense. 
The stage is set to generate a probabilistic representation of the ramp events implicit in the wind 
power prediction. In order to achieve such representation, the following sequence of operations 
must be followed: 
 

1. Generate a large set of N wind power scenarios, sampled with the wind power forecasting 
model. 

2. For each scenario, detect in each hour the possibility of having a ramp event of each of 
the types defined. 

3. Count the total of ramp event detections in each hour for the whole sampled set of 
scenarios associated with each ramp type. 

4. Based on the sample ratio of number of detected events ni of type i over the size N of the 
sampled set, define probabilities for each ramp event in each hour of the forecasting 
horizon. 
 

4.3.2.3.1 Event Occurrence 
We define Vote Counting, , for each time step k: 

 

V ∑ F ∆PN P    (4-7) 
 
where  is the number of predicted power signals/scenarios,  is one of the ramp definitions 
previously presented, ∆  is a variation in power,  the admissible ramp magnitude, and  a 
Boolean function, such that:  

    
X 0   if X FALSE

1   if X TRUE    (4-8) 
 
We can estimate the probability of an event, , at a time step  with: 
 

P E
N

V    (4-9) 
 
By defining a cut-off threshold, thr, on the probability , we identify an event at time step k 
if . In Section 4.4.1, we present a technique to find the optimum threshold. We use 
this methodology to identify either ramp-up or ramp-down events. 
 
 
 
 



 

198 

4.3.2.4 Building a Probabilistic Ramp Representation 
Assume we have several scenarios for the wind power. All of the scenarios are for the same time 
horizon and granularity. We use histograms to aggregate ramp event detection, produced by 
several sources (scenarios), using any of the definitions presented in this chapter. As mentioned, 
each histogram interval corresponds to a specific variation in power; the value associated with 
the interval corresponds to a probability. 

4.3.2.4.1 Building Histograms and Cumulative Ramp Probability Diagrams 
To build a vertical histogram, we define a set of intervals ∆ , ranging from  to a user-
specified maximum power change, and define the Vote Counting for each histogram interval  
as: 
  

V ∑ ∆ P ∆PN ∆ P    (4-10) 
 
where the lower and upper bound of the histogram intervals are  and , respectively. These 
results allow one to build a cumulative diagram by adding the vote counting for all categories 
above each threshold. Fig. 4-5 illustrates the use that may be given to these cumulative ramp 
probability diagrams. 
 
 

 

Fig. 4-5 Use of cumulative ramp probability diagrams. Given Pref as a value in MW (or percentage 
of the wind farm nominal capacity), p(P≥Pref) gives the probability of having a ramp event with a 

change equal to or greater than Pref. In this diagram, Pmin represents the minimum value of power 
variation that is acceptable to trigger a ramp event alarm. 

 
 
4.3.2.5 Visualization of Ramp Events 
The following charts in Fig. 4-6, Fig. 4-7, and Fig. 4-8 present illustrative examples of using 
definition 5 with histograms to report ramps with different magnitudes and the corresponding 
probabilities. Blue histograms report Ramp-Up events; while red histograms report Ramp-Down 
events. 
 

Pmin Pref 

p(P≥Pmin) 

p(P≥Pref) 
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Fig. 4-6 Ramp-Up and Ramp-Down Histograms obtained using our voting method and definition 5. 
This figure also shows, in the subfigure above, one day of the wind farm production and the wind 

power point forecast for the same period. These results were obtained  
by using 3 hours’ aggregation.  

 
These figures, which are extracted from the case study data base detailed in the following 
chapter, present the point forecasting curve for three sampled days, as well as the actual wind 
power measured in the same period. These curves are indicative only, because the calculation is 
not based on them. The ramp probabilities are derived from a probabilistic representation of the 
wind power prediction. Because this model is based on scenarios obtained by a Monte Carlo 
sampling, the meaning of a ramp event probability being p is the following: p is the probability 
of following a wind power prediction scenario sampled for 24 hours that contains, at the given 
hour, a ramp event satisfying the definition.  
 
Below these curves, there is a set of cumulative ramp probability diagrams for every three hours. 
The ramp definition encompassed 3 hours, and the results are displayed for 3-h time steps. 
However, the definition of ramp may be applied as a moving window every hour. 
 
Notice that by inspecting the cumulative diagrams, in some hours there is a clear indication of 
ramp up or ramp down; in other cases, both movements may happen. Moreover, using the 
optimum threshold introduced in Section 4.3.2.3, in some hours the system identifies a ramp-up 
or ramp-down event by drawing circumferences. The system plots a blue circumference when a 
ramp-up event is identified and plots a red circunference when a ramp-down event is identified.  
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Fig. 4-7 Example of probability modeling of ramp-up and ramp-down possibilities. 

 
Fig. 4-8 Example of probability modeling of ramp-up and ramp-down possibilities. 
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4.4 Comparative Performance Assessment of the New Method 
The system discussed in the previous section attaches a probability to the magnitude of ramp 
events. On the basis of this information, the decision maker decides whether or not to take 
action. For example, on the basis of the information that “there is an 80% probability of a ramp-
up event to occur in the next 3 hours,” the decision maker may or may not take an action. While 
the information is probabilistic, the action is not. The assessment of probabilistic forecasts must 
take into account the consequences, that is, the actions triggered by the information provided. 
Incorrect actions have associated costs, and different types of errors might have different costs. 
The cost associated with the action “act” when the event does not occur might be different from 
the cost of not having taken action when the event occurred. Depending on the costs (or the ratio 
of costs) of false alarms and misses, the decision maker might decide to act only when the 
probability of events is high. Key questions are: How do we define what constitutes a high 
probability? How do we define the decision threshold when costs are unknown? The Receiver 
Operating Characteristic (ROC) space allows us to plot a false alarm rate versus a missed rate, 
and find the “best” operating point under varying cost ratios [80][81].  
 
In the following subsections, we present some metrics that can be used to evaluate ramp event 
forecasting systems. Furthermore, we will introduce phase error and the algorithm that we use to 
correct phase errors. 
 
 
4.4.1 Metrics for Ramp Event Detection 
Here we present metrics to evaluate event forecasters. First, we describe the metrics to evaluate 
deterministic forecast systems, and then we present metrics used to evaluate probabilistic 
forecasting systems, including basic concepts of the ROC space. It is important to note that the 
metrics that we present to evaluate deterministic forecasts can be used, by applying simple 
procedures, to evaluate probabilistic forecasting systems as well. 
 
4.4.1.1 Determininstic Forecast 
Two widely used statistics to evaluate the quality of deterministic forecast systems are Precision 
and Recall. Precision is defined as the ratio between the number of true positive events and the 
number of positive forecasts. Recall is defined as the ratio between the number of true positives 
and the number of observed positives. To illustrate the computation of these metrics, we present 
in Table 4-1 a general contingency table used to summarize the results of an event forecasting 
system. 
 

Table 4-1 Contingency table representing event observation and event forecast. 

 Event  Observation 

Event 
Forecast 

 Yes No 
Yes TP a (hits) FP (false alarms) 
No FN (misses) TN 

 
a TP = true positive; FP = false positive; FN = false negative; TN = true negative. 

 
Formally, and using the illustrative table, we can write the definition of True Positive Rate (TPR) 
as:   
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Precision TP
TP FP

   (4-11) 
 
Precision answers the question: What fraction of the predicted “yes” events really occur? 

   
Recall TP

TP FN
.   (4-12) 

 
Recall answers the question: What fraction of the observed “yes” events were correctly forecast? 
 
The F-Measure [82] combines Precision and Recall using the harmonic mean:  

     
F‐Measure 2 P R

P R
   (4-13) 

 
In the context of ramp event detection, true negatives are irrelevant. Another useful metric is the 
Critical Success Index (CSI) [83], defined as: 

   

CSI  TP
TP FN FP

   (4-14) 
 
Analogous to Precision and Recall, the CSI metric takes values in the interval [0;1], where 1 
means correct prediction. CSI measures the fraction of observed and/or forecast events that were 
correctly predicted. It can be thought of as the accuracy achieved when correct negatives have 
been removed from consideration, that is, CSI is only concerned with forecasts that count. Being 
sensitive to hits, CSI penalizes both misses and false alarms. One of the works that uses such a 
metric to evaluate a ramp event forecast system is described in [73]. 
 
The Hanssen & Kuipper’s Skill Score (KSS) [84][85], also known as Pierce’s Skill Score or the 
True Skill Score, is a widely used metric that takes into account all of the elements of the 
contingency table. It measures the ability to separate “yes” events from the “no” events. The 
KSS can be defined by means of the hit rate  and false alarm rate  as: 

 
KSS H F TP TN FP FN

TP FN FP TN
   (4-15) 

 
The KSS takes values in the interval [−1;1], where 0 indicates no skill and 1 the perfect score. 
 
When predicting rare events having large TN values, the KSS approaches the value of the hit 
rate, thus becoming vulnerable to hedging, a strategy that consists in always forecasting event 
occurrences. This score is more appropriate for verifying frequently occurring events.  
 
A special purpose score aiming to verify predictions of rare events is the Extreme Dependency 
Score (EDS) [86]. This metric does not account for the false positive alarms (FPs), nor the 
nonoccurring events (TNs); however, it considers the total number of cases for the sample size 
( ):  
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EDS TP FN ⁄
TP⁄ 1   (4-16) 

 
This metric has some good properties (as it does not tend to zero for vanishing events and it is 
not explicitly dependent on the bias), but it is sensible to hedging. The EDS score range is [−1,1], 
where −1 is the worst score and 1 is the perfect score. The EDS is −1 when the base rate 

 is one, and is one when the hit rate (H) is one. It answers the question: What is 
the relation between forecast and observed rare events? 
 
Another metric that is suitable to analyse rare events, being less sensible to hedging, is the Odds 
Ratio (OR). This metric can be defined easily in terms of the hit rate (H) and false alarm rate (F): 

   

OR H H⁄
F F⁄    (4-17) 

 
The OR formula presents the ratio between the odds of making a hit and the odds of making a 
false alarm. The score of OR ranges from 0 to ∞. The perfect OR score is ∞, and the OR score 
exceeds one when the hit rate is higher than the false alarm rate. This measure answers the 
question: What is the ratio between the odds of a “yes” forecast and the odds of making a bad 
forecast? 
 
 
4.4.1.2 Probabilistic Forecast 
A probabilistic forecast assigns a probability to the prediction. A clear characteristic of 
probabilistic forecasts is the introduction of a degree of freedom: the use of a threshold on the 
probability to decide the ocurrence of events. A technique that can be used to assess the 
performance of a probabilistic forecast system and to choose the optimal threshold is the 
Receiver Operating Characteristic, or ROC curve. Another metric that can be used to assess the 
accuracy of a probabilistic forecast is the Brier Score [87]. 

4.4.1.2.1 The ROC Space 
The ROC curve is a plot of the sensitivity versus the specificity of a binary classifier system, as 
its discrimination threshold is varied. The ROC curve is obtained by plotting the fraction of true 
positives (sensitivity) versus the fraction of false positives, as the criterion threshold changes 
[80][81].  
 
The fraction of true positives was defined as Precison in (4-11). The fraction of false positives or 
the false positive rate is defined as 
   

FPR FP
FP TN

   (4-18) 
 
The best possible prediction method would yield a point in the upper left corner or coordinate 
(0;1) of the ROC space, representing a 100% sensitivity (no false negatives) and 100% 
specificity (no false positives). The diagonal of the ROC space corresponds to a random guess. A 
determinisc forecast defines a point in the ROC space. Points above the diagonal correspond to 
predictions better than a random choice, while points below correspond to predictions worse than 
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a random guess. A probabilistc forecast defines a trajectory in the ROC space, where each point 
in the trajectory corresponds to a different threshold. The threshold corresponding to the closest 
point to (0;1) is optimal in the sense that it provides the best trade-off between misses and false 
alarms.  
 
Assume we have two vectors P and O, where P denotes the forecast vector and O denotes the 
vector of measurements. The vectors are of the same size, meaning that they refer to the same 
time interval and they are aligned; the same index in both vectors refers to the same time-stamp. 
All of the definitions reported in Section 4.2.2 can be rewritten in the form: ∆ , , 
where ΔP is a variation in power. 
 
By applying one of the definitions previously described, we obtain two new vectors ΔP and ΔO 
that represent the variation in power given by the definition used. A negative value corresponds 
to reductions in power and are used to detect ramp downs, while a positive value corresponds to 
increases in power and thus is used in ramp-up detection.  
 
Assume we know an admissible value of . The elements of ΔO are either above or below the 
reference power, denoting the occurrence of a ramp. Next, we sort both descending vectors 
according to the values in ΔP. It is expected that positive high values correspond to ramp-up 
events, while low negative values correspond to ramp-down events. 
 
The ROC curve is generated as follows. Starting from the point (0,0) in the ROC space, we 
traverse top-down the ΔO vector (ordered descendant by the values in ΔP), if that point is above 
the reference, we move up by one step; otherwise, we move one step to the right. The 45° line 
corresponds to the best trade-off between the true positive rate and the false-positive rate. This 
line is the desired working point, assuming equal costs for both types of errors and uniform class 
distribution. 
 
Fig. 4-9 illustrates the interpretation of the ROC space. A point on the trajectory with slope equal 
to 1, such as (FPR,TPR), is associated with the most convenient threshold to distinguish between 
detection and no-detection, when the cost of missing a positive is equal to the cost of assuming a 
positive when there is none. Other points with different slopes are associated with different cost 
relations. The ROC curve plots the performance of a forecaster for different operating points 
(i.e., for different and unknown cost ratios [81]). 
 
More formally, consider that we are generating binary forecasts, where each observation can be 
labeled using one of two classes in the set {yes,no}, and a forecast can output the corresponding 
{Yes,No}(we use uppercase in the forecast labels for clarity). Consider that we know the 
distribution of yes and no events, that is, the probabilities  and , and that we define 
the costs ;  and ;  to be, respectively, the costs of predicting an event 
when no event occurs (a False Positive) and the cost of predicting no event when a event really 
occurs (a False Negative). Then, the slope of the line (a tangent line) that intersects the ROC 
curve at the optimum operating point, a point with coordinates ,  that is associated 
with a probability threshold, under the defined costs is: 
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slope P ;
P ;

   (4-19) 
 
If we do not know this distribution, we can estimate the distribution from the observations.   
 
 

 
Fig. 4-9 Illustration of the ROC space. The solid curve describes the variation of (FPR, TPR) when 

the discriminating threshold that separates recognizing from not recognizing that an event 
occurred is changed. The dashed diagonal is the line associated with random guesses. The dash-

dot curve corresponds to a different model, which is not as good as the one that produces  
the solid line. 

 
The point ,  where the tangent line and the curve intersect is the optimum operating 
point, in the sense that this point minimizes the Expected Cost given by the following 
expression: 
 

1 TPR ; ;    (4-20) 
 
If we define ;  as the probability of predicting an event when it does not occur (the 
probability of having a false positive) and ;  the probability of predicting that an event 
does not occur when it really occurs (the probability of having a false negative), we can write the 
above formula as: 
 

; ;  ; ;    (4-21) 
 
We obtain this formula by using the conditional probabilities and the equalities 

|  and | .     
 

False positive rate 

True positive rate 
(precision) 

TPR 

FPR 

Random guess 

better

worse
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Another useful method that relies on the ROC space and that can be used to select the best 
model/classifier from a set of models/classifiers is the ROC convex hull. The ROC convex hull is 
a ROC curve that connects the best operation points of a set of models/classifiers. By inspecting 
the ROC convex hull curve, we can choose the best model/classifier for specified class 
distributions and costs. Moreover, classifiers that are always bellow the ROC convex hull are 
considered suboptimal and can be discarded. 

4.4.1.2.2 The Brier Score 
For forecasts that assign a probabilty to each event, a more informed metric might be used. The 
Brier score is a score function that measures the accuracy of a set of probability assessments. It 
measures the average squared deviation between predicted probabilities for a set of events and 
their outcomes. It is computed as:  

   

BS
N

∑ F ON    (4-22) 
 
where  is the probability that was forecasted, O  the actual outcome of the event at instance  
(0 if it does not happen and 1 if it happens), and  is the number of forecasting instances. A 
lower score represents higher accuracy. 
 
 
4.4.2 Phase Error 
Errors in ramp event prediction can be split into two types: misses (or false negatives) and false 
alarms (or false positives). A ramp event occurred in the former, although the forecasting system 
does not predict the event. In this case, the output of a forecasting system may have time-shift 
predictions. If this behavior is generalized, we may say that the system predictions are affected 
by phase errors. This issue can be the result of a wide set of factors, including NWP errors, 
model bias, etc., and can severely affect the performance of some forecasting systems. In the 
latter case, there is no ramp event, and the forecasting system predicted an event.  
 
To address the phase error issued in a forecasting system, we need to identify events that occur in 
a timestamp, , not predicted at that time but predicted instead to occur in the time period 
immediately before or after the current one in the time interval  ∆ ;   ; ∆ . The 
algorithm to correct phase errors starts by identifying each one of these shifted events. For each 
event, it updates the contingency table counts by adding 1 to true positives and decrementing 
both the number of false positives and the number of false negatives by one. 
 

4.5 Experimental Evaluation 
All of the definitions and methods presented in this chapter are mainly heuristic, and their 
assessment must be experimental. We may formulate several hypotheses: Is there any ramp 
definition that is better overall? Is there any metric that is better overall? The answer to these 
questions is no. In this section, we study the five definitions presented in Section 4.2.2 and 
present some interesting conclusions. We conclude that some definitions exhibit better 
performance than others under some circumstances. We start by describing the data and 
describing the experiments’ configurations. Then, we present the results obtained. For each 
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metric, we present results for all parameters and for each type of ramp event. At the end of this 
chapter, we discuss the results and summarize the main findings.  
 
 
4.5.1 The Data 
In this study, we consider the data from the power measured in a large-scale wind farm located in 
the U.S. Midwest and 5,000 possible forecast scenarios (of wind power). This data correspond to 
a time period of 12 weeks (10/21/2009 to 02/18/2010). The data from the wind farm are 
measurements registered by a SCADA system that outputs measurements in a 10-minute time 
stamp, and the data from the scenarios are one-hour, time-stamp predictions generated by the 
wind power prediction platform developed in this project. The scenario generator launch time is 
6 a.m., and all scenarios are generated for the 24 hours of the next day (i.e., the forecast horizon 
is from 18 hours to 42 hours). 
 
 
4.5.2 Design of the Experiments 
With these experiments, we aim to study and evaluate the performance of the probabilistic ramp 
detection system outlined above. Our system has a preprocessing stage, where we aggregate the 
measured and predicted signals, if needed, and two main components: the application of the 
ramp definitions and an event detection methodology, which is a voting scheme that outputs 
probabilities and that is used to forecast events.  
 
In the preprocessing stage, we run experiments by aggregating the original signal using 1-, 2-, 
and 3-hours window aggregation. Concerning the study of ramp definitions, the second step 
consists in studying the sensitivity of each definition to two different parameters: the size of the 
time step ∆  and phase error. For the size of the time step, we test ∆  equal to 1, 2, 3, and 
4 time periods. Regarding the nature of definitions four and five, as defined in Section 4.2.2, we 
do not analyze the sensitivity of these two definitions to the size of the time step. When 
analyzing definition five, we only present results for ∆ 1. For definition four, we analyze four 
values of the nam parameter, where nam equal to 1, 2, 3, and 4. Concerning the phase error, we 
analyze time-stamp errors of 0, 2, and 4 periods. 
 
Concerning the forecast horizon, we do not present results for a specific time horizon. In our 
experiments, we compute all of the metrics by taking into account the full range of the scenarios 
forecast horizon, and we consider all events that occur from 18 hours to 42 hours ahead. Thus, 
we present what can be called a time-aggregated performance analysis.    
 
Regarding the last phase of our system, we evaluate a probabilistic forecasting system that uses 
the voting scheme and a point forecasting system, both developed in this project. By presenting a 
comparison between the two systems, our goal is to analyze the advantages and disadvantages of 
using the probabilistic forecasting system. We hope to show that by exploring the degrees of 
freedom of the probability space, we can find the optimum probability threshold and make 
operating decisions under varying costs of misses or false alarms. Therefore, we compute a set of 
event detection metrics for a set of probability thresholds, ranging in the interval [0;1], and also 
present ROC curves. Moreover, we briefly present a decision-making framework that is 
grounded on ROC curves and considers equal and different costs for misses and false alarms. 
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Concerning the event detection metrics, we compute CSI, F-Measure, EDS, KSS, and Odds 
Ratio.  
 
At this point, and before presenting the experimental results, we repeat the structure of our 
system. Assume we have two vectors P and O, where P denotes the forecast vector and O 
denotes the vector of measurements. By first applying a signal aggregation, we obtain two 
vectors of the same size that refer to the same time interval and are aligned; the same index in 
both vectors refers to the same time stamp. Then, all of the definitions reported in Section 4.2.2 
can be rewritten in the form: ∆ , , where ΔP is a variation in power and one of the 
definitions previously described, and we obtain two new vectors ΔP and ΔO that represent the 
variation in power given by the definition used. A negative value corresponds to reductions in 
power and is used to detect ramp downs, whereas a positive value corresponds to increases in 
power and is being used in ramp-up detection.  
 
Assume we know an admissible value of . The elements in ΔP and ΔO are either above or 
below the reference power, denoting the occurrence of a ramp. Then, by using this knowledge, 
we use the voting scheme described in Section 4.3.2.3.1 to obtain ramp probability at each 
time stamp. In the last phase, we use a probability threshold to identify event occurrence.  
 
 
4.5.3 Experimental Results 
In this subsection, we show tables and figures that summarize the results obtained by running our 
method using the data described in Section 4.5.1. We also present a comparison against a point 
forecast methodology.  
 
First, we present results obtained by computing a set of metrics: CSI, F-Measure, KSS, EDS, and 
Odds Ratio; then, we present the ROC curves and some experiments that aim to demonstrate the 
contribution of ROC curves in decision support tasks. When analyzing each metric, we present 
results for both types of ramps (i.e., up and down ramps). 
 
 
4.5.3.1 Experimental Results 
Here we present the results obtained by running our system, a probabilistic forecasting system, a 
reference methodology, and a point forecasting system. To access the validity of our 
methodology, we compute a set of metrics: CSI, F-Measure, KSS, EDS, and Odds Ratio. For 
each metric, we present tables and figures for a specific setup and then discuss other main 
findings. Each table presents (1) the results for three-hour aggregation, defining an upward or 
downward ramp of magnitude change higher than 25% of the wind farm nominal power; and 
(2) the  value, which occurs in a time period, which means 1. By using this t value, 
definitions one, two, and three lead to equal results. Regarding the nature of definition 4, a 
moving average, we present results by setting 2. When setting 1, we obtain 
almost the same results as those obtained when running definitions one, two, and three. Finally, 
we report results that show the advantage of including phase errors.  
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4.5.3.1.1 CSI 
Table 4-2 presents comparative results between the probabilistic forecast and a point forecast 
system for the ramp-up event detection problem and the CSI metric. We compute the CSI metric 
for a set of probability thresholds, ranging in the interval [0;1]. The probability threshold that 
maximizes CSI is considered to be the optimum threshold. Probabilistic results are obtained 
using the optimum threshold, the point in Fig. 4-10 where CSI achieves the maximum value. In 
this example, the optimum threshold for definitions 4 and 5 was 0.2; and for definition 1, the best 
threshold was 0.3. 
 
 

Table 4-2 Ramp-Up event detection and CSI metric value. Comparison between  
our methodology and a point forecast system.    

RAMP UP – CSI 
Probabilistic Forecast Point Forecast 

   DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 
Events Occurred  63 101 77 63 101 77 
Events Forecast  120 220 335 24 57 31 
True Positives  20 53 55 7 23 8 
True Negatives  813 708 619 896 841 876 
False Positives  100 167 280 17 34 23 
False Negatives  43 48 22 56 78 69 
CSI  0.123 0.198 0.154 0.088 0.170 0.080 

 
 

 
Fig. 4-10 CSI plot for different probability thresholds and ramp-up event detection.  

Better results correspond to high CSI values.  

 
Table 4-3 presents comparative results between the probabilistic forecast and a point forecasting 
system for the ramp-down event detection problem and the CSI metric. Probabilistic results are 
obtained using the optimum threshold, the point in Fig. 4-11 where CSI achieves the maximum 
value. In this example, the optimum threshold for all three definitions was 0.3. 
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Table 4-3 Ramp-down event detection and CSI metric value. Comparison between our 
methodology and a point forecast system. 

RAMP DOWN – CSI 
Probabilistic Forecast Point Forecast 

  DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 
Events Occurred 71 104 75 71 104 75 
Events Forecast 116 137 103 28 61 32 
True Positives 25 48 27 6 29 13 
True Negatives 814 783 825 883 840 882 
False Positives 91 89 76 22 32 19 
False Negatives 46 56 48 65 75 62 
CSI 0.154 0.249 0.179 0.065 0.213 0.138 

 
 

 
Fig. 4-11 CSI plot for different probability thresholds and ramp-down event detection.  

Better results correspond to high CSI values. 

 
In Table 4-4 and Table 4-5 we present results by considering phase errors using the technique 
described in Section 4.1. As expected, by allowing phase errors of 2 and 4 time points, we reduce 
the FP number and obtain a high number of true positives, thus obtaining better CSI values.  
 
 

Table 4-4 CSI taking phase error into account. 

RAMP UP - CSI 
Probabilistic Forecast Point Forecast 

 Phase Error 
       (∆ ) DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 

0 0.123 0.198 0.154 0.088 0.170 0.080 
2 0.303 0.358 0.323 0.176 0.306 0.241 
4 0.381 0.451 0.375 0.261 0.374 0.317 
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Table 4-5 CSI taking phase error into account. 

RAMP DOWN – CSI 
Probabilistic Forecast Point Forecast 

 Phase Error 
       (∆ ) DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 

0 0.154 0.249 0.179 0.065 0.213 0.138 
2 0.333 0.362 0.299 0.193 0.310 0.189 
4 0.403 0.452 0.391 0.207 0.352 0.230 

 
 
Regarding the other parameters, the CSI metric increases with the aggregation in both ramp 
types. By looking at the size of the time step, ∆ , we have two distinct cases. When addressing 
the ramp-up event detection problem, we obtain high CSI values for ∆ 1 and ∆ 2, and 
lower values for ∆ 3 and ∆ 4. Conversely, we obtain high CSI values for ∆ 3 and 
∆ 4, and low values for ∆ 1 and ∆ 2. 
 
Moreover, if we inspect the results obtained by running definitions 2 and 3, we observe that, for 
definition 2, the CSI value increases with the size of the time step and, for ∆ 1, we obtain 
better CSI results than the ones obtained by using definition 1. On the other hand, by using 
definition 3, we obtain worse results with the increase of the size of the time step.  
 
By looking at the results obtained by using definition four, we can say that by setting the nam 
parameter equal to one, we obtain almost the same results as the ones presented by definitions 1, 
2, 3, and 5. When we increase the value of the nam parameter, we obtain better CSI values for 
definition 4 than for the first three definitions, even if we set the size of the time step equal to the 
nam parameter value. As already mentioned above, we do not introduce the size of the time step 
in definition 5, and the results that we obtain by running this definition only show that CSI 
values increase with the aggregation size and the phase error. This conclusion is also valid for all 
of the other four definitions. We can also say that we obtain higher CSI values when running our 
system to forecast ramp-down events than when we run our system to identify ramp-up events. 
This result is especially clear when we use large sizes of the time step.  
 
Furthermore, we can say that, despite the parameters configuration and ramp types, the optimum 
probability threshold is usually found within the interval 0.1; 0.4 .  
 

4.5.3.1.2 F- Measure 
Table 4-6 presents comparative results between the probabilistic forecast and a point forecast 
system for the ramp-up event detection problem and the F-Measure metric. Probabilistic results 
are obtained using the optimum threshold, the point in Fig. 4-12 where F-Measure achieves the 
maximum value. In this example, the optimum threshold for definitions 4 and 5 was 0.2, and for 
definition 1 the best threshold was 0.3. This result is quite similar to the one obtained by 
computing the CSI metric. 
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Table 4-6 Ramp-Up event detection and F-Measure metric value.  
Comparison between our methodology and a point forecast system. 

RAMP UP – F-Measure 
Probabilistic Forecast Point Forecast 

  DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 
Events Occurred 63 101 77 63 101 77 
Events Forecast 120 220 335 24 57 31 
True Positives 20 53 55 7 23 8 
True Negatives 813 708 619 896 841 876 
False Positives 100 167 280 17 34 23 
False Negatives 43 48 22 56 78 69 
F-Measure 0.219 0.330 0.267 0.161 0.291 0.149 

 
 

 
Fig. 4-12 F-Measure plot for different probability thresholds and ramp-up event detection.  

Better results correspond to high F-Measure values. 

 
Table 4-7 presents comparative results between the probabilistic forecast and a point forecast 
system for the ramp-down event detection problem and F-Measure metric. Probabilistic results 
are obtained using the optimum threshold, the point in Fig. 4-13 where F-Measure achieves the 
maximum value. In this example, the optimum threshold for definitions 1 and 5 was 0.3, and for 
definition 4, it was 0.4. 
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Table 4-7 Ramp-Down event detection and F-Measure metric value.  
Comparison between our methodology and a point forecast system. 

RAMP DOWN – F-Measure 
Probabilistic Forecast Point Forecast 

  DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 
Events Occurred 71 104 75 71 104 75 
Events Forecast 117 137 103 28 61 32 
True Positives 25 48 27 6 29 13 
True Negatives 813 783 825 883 840 882 
False Positives 92 89 76 22 32 19 
False Negatives 46 56 48 65 75 62 
F-Measure 0.266 0.399 0.303 0.121 0.352 0.243 

 
 

 
Fig. 4-13 F-Measure plot for different probability thresholds and ramp-down event detection. 

Better results correspond to high F-Measure values.  

 
In Table 4-8 and Table 4-9, we present results by allowing phase errors. As expected, by 
allowing phase errors of 2 and 4 time points, we reduce the false positive number and obtain a 
high number of true positives, thus obtaining better F-Measure values. Inside brackets, and in 
small font, we present, for each definition, the ratio between the F-Measure value of the current 
cell and the F-Measure value obtained by not considering any phase error, ∆t 0.   
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Table 4-8 F-Measure taking phase error into account. 

RAMP UP – F-Measure 
Probabilistic Forecast Point Forecast 

 Phase Error 
       (∆ ) DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 

0 0.219 0.330 0.267 0.161 0.291 0.149 
2 0.303 0.528 0.488 0.299 0.468 0.389 
4 0.552 0.621 0.545 0.414 0.544 0.481 

 
 

Table 4-9 F-Measure taking phase error into account. 

RAMP DOWN – F-Measure 
Probabilistic Forecast Point Forecast 

 Phase Error 
       (∆ ) DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 

0 0.266 0.399 0.303 0.121 0.352 0.243 
2 0.500 0.531 0.461 0.323 0.473 0.318 
4 0.574 0.622 0.562 0.343 0.521 0.374 

 
 
By inspecting the F-Measure values for all results, the conclusions are the same as the ones when 
computing the CSI metric. There are no significant advantages of one metric over the other.    
 

4.5.3.1.3 EDS 
Table 4-10 presents comparative results between the probabilistic forecast and a point forecast 
system for the ramp-up event detection problem and the EDS metric. Probabilistic results are 
obtained using the optimum threshold, the point in Fig. 4-14 where EDS achieves the maximum 
value. In this example, the optimum threshold for all three definitions was 0.1. 
 
 

Table 4-10 Ramp-UP event detection and EDS metric value.  
Comparison between our methodology  

and a point forecast system. 

RAMP UP – EDS 
Probabilistic Forecast Point Forecast 

  DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 
Events Occurred 63 101 77 63 101 77 
Events Forecast 666 530 636 24 57 31 
True Positives 54 85 69 7 23 8 
True Negatives 301 430 332 896 841 876 
False Positives 612 445 567 17 34 23 
False Negatives 9 16 8 56 78 69 
EDS 0.893 0.859 0.917 0.110 0.210 0.057 
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Fig. 4-14 EDS plot for different probability thresholds  

and ramp-up event detection. Better results correspond  
to high EDS values. 

 
Table 4-11 presents comparative results between the probabilistic forecast and a point forecast 
system for the ramp-down event detection problem and the EDS metric. Probabilistic results are 
obtained using the optimum threshold, the point in Fig. 4-15 where EDS achieves the maximum 
value. In this example, the optimum threshold for all definitions was 0.1. 
 
 

Table 4-11 Ramp-Down event detection and EDS metric value.  
Comparison between our methodology  

and a point forecast system. 

RAMP DOWN – EDS 
Probabilistic Forecast Point Forecast 

  DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 
Events Occurred 71 104 75 71 104 75 
Events Forecast 661 531 612 28 61 32 
True Positives 66 88 67 6 29 13 
True Negatives 310 429 356 883 840 882 
False Positives 595 443 545 22 32 19 
False Negatives 5 16 8 65 75 62 
EDS 0.945 0.861 0.916 0.029 0.274 0.188 
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Fig. 4-15 EDS plot for different probability thresholds  

and ramp-down event detection. Better results correspond  
to high EDS values.  

 
In Table 4-12 and Table 4-13, we present results by allowing phase errors. By allowing phase 
errors of 2 and 4 time points, we reduced the false positive number and obtained a high number 
of true positives, thus obtaining better EDS values.  
 
 

Table 4-12 EDS taking phase error into account. 

RAMP UP – EDS 
Probabilistic Forecast Point Forecast 

 Phase Error 
       (∆ ) DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 

0 0.893 0.859 0.917 0.110 0.210 0.057 
2 1 0.991 0.990 0.270 0.386 0.323 
4 1 0.991 1 0.373 0.453 0.401 

 
 

Table 4-13 EDS taking phase error into account. 

RAMP DOWN – EDS 
Probabilistic Forecast Point Forecast 

 Phase Error 
       (∆ ) DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 

0 0.945 0.861 0.916 0.029 0.274 0.188 
2 1 0.966 0.979 0.275 0.391 0.267 
4 1 0.991 1 0.294 0.434 0.320 
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By looking at EDS results, we can say that the EDS values decrease with the size of the time 
step, when running definition 1, and increase when running definition 2. Regarding definition 4, 
we obtain worse results with the decrease of the nam parameter. In general, for all definitions, 
we obtain better results for low probability thresholds and large aggregations. As expected, we 
also obtain better results by considering phase errors.  
 
As in the previous two metrics, when we run our system to identify ramp-down events, we obtain 
higher EDS values than when we run our algorithm to identify ramp-up events. 

4.5.3.1.4 OR 
Table 4-14 presents comparative results between the probabilistic forecast and a point forecast 
system for the ramp-up event detection problem and OR metric. Probabilistic results are obtained 
using the optimum threshold, the point in Fig. 4-16 where OR achieves the maximum value. In 
this example, the optimum threshold for all three definitions was 0.8.  
 
 

Table 4-14 Ramp-UP event detection and OR metric value.  
Comparison between our methodology and a point forecast system. 

RAMP UP – OR 
Probabilistic Forecast Point Forecast 

  DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 
Events Occurred 63 101 77 63 101 77 
Events Forecast 2 6 2 24 57 31 
True Positives 1 4 1 7 23 8 
True Negatives 912 873 898 896 841 876 
False Positives 612 2 1 17 34 23 
False Negatives 1 97 76 56 78 69 
OR 14.710 18 11.816 6,588 7.294 4.416 

 

 
Fig. 4-16 Odds Ratio plot for different probability thresholds  

and ramp-up event detection. Better results correspond  
to high CSI values. 
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Table 4-15 presents comparative results between the probabilistic forecast and a point forecast 
system for the ramp-down event detection problem and OR metric. Probabilistic results are 
obtained using the optimum threshold, the point in Fig. 4-17 where OR achieves the maximum 
value. In this example, the optimum threshold for definition 1 was 0.1, for definition 4 was 0.6, 
and for definition 5 was 0.5. 
 
 

Table 4-15 Ramp-Down event detection and OR metric value.  
Comparison between our methodology and a point forecast system. 

RAMP DOWN – OR 
Probabilistic Forecast Point Forecast 

  DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 
Events Occurred 71 104 75 71 104 75 
Events Forecast 661 28 29 28 61 32 
True Positives 66 15 11 6 29 13 
True Negatives 310 859 883 883 840 882 
False Positives 595 13 18 22 32 19 
False Negatives 5 89 64 65 75 62 
OR 6.877 11.137 8.431 3.705 10.150 9.733 

 
 

 
Fig. 4-17 Odds Ratio plot for different probability thresholds  
and ramp-down event detection. Better results correspond  

to high Odds Ratio values. 

 
In Table 4-16 and Table 4-17, we present results by allowing phase errors. By allowing phase 
errors of 2 and 4 time points, we reduce the false positive number and obtain a high number of 
true positives, thus obtaining better OR values. In side brackets and in the small font, we present, 
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for each definition, the ratio between the OR value of the current cell and the OR value obtained 
by not considering any phase error, ∆t 0. 
 
 

Table 4-16 OR taking phase error into account. 

RAMP UP – OR 
Probabilistic Forecast Point Forecast 

 Phase Error 
       (∆ ) DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 

0 14.710 18 11.816 6.588 7.294 4.416 
2 ∞ 103.488 ∞ 21.32 24.715 33.338 
4 ∞ 103.488 ∞ 60.467 45.595 91.152 

 
 

Table 4-17 OR taking phase error into account. 

RAMP DOWN – OR 
Probabilistic Forecast Point Forecast 

 Phase Error 
       (∆ ) DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 

0 6.877 11.137 8.431 3.705 10.150 9.733 
2 ∞ 30.816 34.747 21.648 23.182 17.313 
4 ∞ 106.850 ∞ 25.586 33.444 26.940 

 
When evaluating the OR results, we can say that the OR values decrease with increasing time 
step size, either when running our system to identify ramp-up or ramp-down events. Strangely, 
when running definition 4, the OR values increase with the nam parameter. We also obtained 
higher OR values when running our system to forecast ramp-up events than we did when running 
it to forecast ramp-down events. Another interesting issue is the shape of the OR curve. When 
we set the size of the time step to small values, we obtain the maximum OR values for large 
probability thresholds. When we work with larger time steps, a parabola shape results; the 
maximum OR values are near the probabilities 0 and 1. Again, the OR increases with 
aggregation and phase error.   
 

4.5.3.1.5 KSS 
Table 4-18 presents comparative results between the probabilistic forecast and a point forecast 
system for the ramp-up event detection problem and KSS metric. Probabilistic results are 
obtained using the optimum threshold, the point in Fig. 4-18 where KSS achieves the maximum 
value. In this example, the optimum threshold for all definitions was 0.2. 
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Table 4-18 Ramp-UP event detection and KSS metric value.  
Comparison between our methodology and a point forecast system. 

RAMP UP – KSS 
Probabilistic Forecast Point Forecast 

  DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 
Events Occurred 63 101 77 63 101 77 
Events Forecast 398 220 335 24 57 31 
True Positives 47 53 55 7 23 8 
True Negatives 562 708 619 896 841 876 
False Positives 351 167 280 17 34 23 
False Negatives 16 48 22 56 78 69 
KSS 0.362 0.334 0.403 0.092 0.189 0.078 

 

 

 
Fig. 4-18 KSS plot for different probability thresholds and ramp-up event detection. Better results 

correspond to high KSS values. 

 
 
Table 4-19 presents comparative results between the probabilistic forecast and a point forecast 
system for the ramp-down event detection problem and KSS metric. Probabilistic results are 
obtained using the optimum threshold, the point in Fig. 4-19 where KSS achieves the maximum 
value. In this example, the optimum threshold for all definitions was 0.2. 
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Table 4-19 Ramp-Down event detection and KSS metric value.  
Comparison between our methodology and a point forecast system. 

RAMP DOWN – KSS 
Probabilistic Forecast Point Forecast 

  DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 
Events Occurred 71 104 75 71 104 75 
Events Forecast 400 233 298 28 61 32 
True Positives 55 61 52 6 29 13 
True Negatives 560 700 655 883 840 882 
False Positives 345 172 246 22 32 19 
False Negatives 16 43 23 65 75 62 
KSS 0.393 0.389 0.420 0.060 0.242 0.152 

 
 

 
Fig. 4-19 KSS plot for different probability thresholds and ramp-down event detection.  

Better results correspond to high KSS values. 

 
In Table 4-20 and Table 4-21, we present results by allowing phase errors. By allowing phase 
errors of 2 and 4 time points, we reduce the false positive number and obtain a high number of 
true positives, thus obtaining better KSS values. In side brackets and in small font, we present, 
for each definition, the ratio between the KSS value of the current cell and the KSS value that we 
obtain by not considering any phase error, ∆t 0. 
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Table 4-20 KSS taking phase error into account. 

RAMP UP – KSS 
Probabilistic Forecast Point Forecast 

 Phase Error 
       (∆ ) DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 

0 0.362 0.334 0.403 0.092 0.189 0.078 
2 0.599 0.632 0.685 0.194 0.343 0.262 
4 0.666 0.754 0.713 0.280 0.410 0.332 

 
 

Table 4-21 KSS taking phase error into account. 

RAMP DOWN – KSS 
Probabilistic Forecast Point Forecast 

 Phase Error 
       (∆ ) DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 

0 0.393 0.389 0.420 0.060 0.242 0.152 
2 0.606 0.648 0.666 0.212 0.350 0.210 
4 0.691 0.744 0.724 0.227 0.393 0.253 

 
 
The results obtained by computing the KSS metric, to access the performance of our 
probabilistic system, is similar to the ones that we obtained when computing the EDS metrics. 
We get almost the same behavior and there is no relevant information to add here. 
 

4.5.3.1.6 ROC Curves 
Fig. 4-20 presents the ROC curves for definitions 1, 4, and 5, for different Pref values. The best-
performing curves are those that define the convex hull. For different working regimes (the ratio 
of costs between false alarm rate and false negative rate), different Pref values must be chosen. 
 
 

Fig. 4-20 ROC Curves for definitions 1, 4, and 5, respectively, for different Pref values  
(20%, 25%, and 30% power change).  
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Fig. 4-21 plots the best ROC curve for different ramp definitions. The convex hull is defined by 
the curves corresponding to definitions 4 and 5, which indicate some advantages of using these 
definitions to detect ramp ups. 
 
 

 
Fig. 4-21 ROC curves for the different methods under evaluation (25% power change). 

 
 
Fig. 4-22 presents the ROC Curves for definitions 1, 4, and 5 for different Pref values. 
 
 

   
Fig. 4-22 ROC Curves for definitions 1, 4 and 5, respectively, for different Pref values (20%, 25% 

and 30% power change). 
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Fig. 4-23 plots the best ROC curve for different ramp definitions. Again, the convex hull is 
defined by the curves corresponding to definitions 4 and 5, which indicate some advantages of 
using these definitions to detect ramp downs. 

 
Fig. 4-23 ROC curves for the different methods under evaluation (25% power change). 

 

4.5.3.1.6.1 Optimum Operating Point and Minimizing the Expected Cost 
In this subsection, we present the optimum operating point for two cost configurations, each one 
considering the cost of False Positives and the cost of False Negatives. In configuration one, we 
define the error costs to be ; 200, that is, the cost of an FN (cFN), and 

; 10, that is, the cost of an FP (cFP). In configuration two, we consider 
; 10 and ; 200. To compute the slope of the tangent line and 

the Expected Cost, we use equations (4-19) and (4-21) given in Section 4.4.1.2.1. 
 
We first present results showing the optimal operating point for both types of ramps, and then we 
present the figures, analyzing the probabilistic forecasting costs. The results presented in each 
table or figure use the same settings described above: a three-hour aggregation, where the size of 
the time step is equal to one and phase errors are not considered. 
 
In Table 4-22, for each ramp type and three definitions, we present the number of time points, 
the number of events that occurred (Yes events), and the number of non-events (No events), as 
well as two slopes — one for configuration one and another for configuration two.   
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Table 4-22 Slope of tangent line for the two cost configurations and both ramp types. 

 Slope of the Tangent Line 
 RAMP UP RAMP DOWN 
   DEF1 DEF4 DEF5 DEF1 DEF4 DEF5 
 Time points 976 976 976 976 976 976 
 Number of Yes events 63 101 77 71 104 75 
 Number of No events 913 875 899 905 872 901 

Sl
op

e Conf. 1 (cFN=200;cFP=10) 0,725 0,433 0,584 0,637 0,419 0,601 

Conf. 2 (cFN=10;cFP=200) 289,841 173,267 233,506 254,930 167,692 240,267 
 
 
In Fig. 4-24 and Fig. 4-25, we present the ROC curves obtained when predicting upward and 
downward ramps, respectively, using definitions 1, 4, and 5. In these ROC curves, we can see 
some probability thresholds associated with a point , . We also present two lines, each 
associated with a cost configuration. The blue line is the tangent line at the optimum point 
according to configuration one, and the red line is the tangent line according to configuration 
two. 
 
 

 
Fig. 4-24 ROC curves for ramp-up event detection using the definitions 1, 4, and 5, respectively. 

 

Fig. 4-25 ROC curves for ramp-down event detection using the definitions 1, 4, and 5, respectively. 
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By computing the slope and drawing the ROC curves and tangent lines, we can obtain the 
optimum operating point, according to the user-defined costs; however, we cannot directly 
access the expected costs for the full range of probability thresholds. 
 
In Fig. 4-26, Fig. 4-27, and Fig. 4-28, we present, for the ramp-up events, the expected cost (see 
Equation [4-21]) for each definition as a function of cut-off frequency. In each figure, we present 
the expected cost for each of the two cost configurations. By using these figures, we can easily 
identify the optimum operating point, the one that was identified above when using the tangent 
line. This kind of analysis has some advantages over the previous one, as we can directly obtain 
the expected cost for each probability threshold. In Fig. 4-29, Fig. 4-30, and Fig. 4-31, we 
present the same information for the ramp-down events.  
 
By inspecting the figures, we can see that for configuration one (that penalizes the FN severely), 
we obtain the optimum operating threshold, ranging from 0.0 to 0.2. The optimum operating 
threshold is the probability threshold where we obtain the minimum expected cost. This result 
means that we need a small percentage of scenarios voting to forecast a ramp; in another way, we 
will predict a ramp in a wide number of points, given that FPs are penalized less than are the 
FNs. In contrast, when we analyze configuration two, we see the expected cost decreasing when 
the probability threshold increases. This result means that a ramp event will be hard to predict 
because we need a large percentage of scenarios saying that an event will occur. This finding 
means that we need to be more careful when predicting a ramp event, given that FPs are severely 
penalized.    
 
 

Fig. 4-26 Expected cost using definition 1: cFN=200 and cFP=10 (left),  
and cFN=10 and cFP=200 (right).  
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Fig. 4-27 Expected cost using definition 4: cFN=200 and cFP=10 (left),  
and cFN=10 and cFP=200, (right).  

 

 

Fig. 4-28 Expected cost using definition 5: cFN=200 and cFP=10 (left),  
and cFN=10 and cFP=200, (right). 
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Fig. 4-29 Expected cost using definition 1: cFN=200 and cFP=10 (left),  

and cFN=10 cFP=200, (right). 

 
 

 
Fig. 4-30 Expected cost using definition 4:  cFN=200 and cFP=10 (left),  

and cFN=10 and cFP=200 (right). 
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Fig. 4-31 Expected cost using definition 5:  FN=200 and FP=10 (left),  
and FN=10 and FP=200 (right). 

 
4.5.3.2 Analysis of the Results 
In the development of our system, we use each one of the ramp definitions, a voting strategy, and 
a metric to find the optimum operating point. Regarding the definitions, we have three 
definitions that work over the power signal and two definitions that work over a filtered signal. 
The first three definitions are directly comparable, whereas the other two are more difficult to 
compare. One of the main issues is the size of the time step. In definitions 4 and 5, we do not 
have such parameters; however, in definition 4 we have the nam parameter, which defines the 
size of the interval and, therefore, the number of time points to include in the moving average. In 
definition 5, we have defined it by using one step ahead.     
 
By setting the size of the step ahead to one, we obtain the same results when running definitions 
1, 2, and 3. We obtain almost the same results when we run definition 4 with nam=1. In the case 
of definition 5, we almost always obtain better results than the ones obtained by running the 
other four definitions. 
 
If we set the size of the step ahead to values higher than one, we obtain different results. The 
results of definition 2 are better than the ones obtained by definitions 1 and 3. The results 
obtained when running definition 3 are less comparable, as in this definition we are working with 
a ratio between power differences at the endpoints and the size of the time step ahead. If we 
change the power reference value accordingly, definition 1 is the result. Regarding definition 4, 
if we set nam parameter to values higher than one, we obtain better results than by using any of 
the other definitions.   
 
Concerning the voting strategy that is at the core of our system and its success, we can say that 
by using it we can explore the diversity in the scenarios and generate valuable probabilistic 
forecasts. By using our voting strategy, in conjunction with a technique that we use to choose the 
optimum operating point, we realize significant improvements against the reference technique — 
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a point forecast system. For all metrics that we use to choose the optimum operating point, we 
obtain significant wins.  
 
Despite the results, we test a set of metrics aiming to answer some open questions: What is the 
best metric that we can use to find the optimum operating point? How do we measure the 
performance of a probabilistic ramp forecasting system? Is there an overall best metric? Do any 
of the metrics’ results reflect the aims and objectives of power system operators? 
 
By inspecting the results of each metric, we obtain groups of metrics. In one group, we have CSI 
and F-Measure. By using each one of these two metrics, we find an optimum operating point (the 
probability threshold) which, when we run our system using that probability threshold, we obtain 
an almost equal number of forecast events and occurring events and a balanced number of FP 
and FN events. The second group of metrics includes EDS and KSS. When using these metrics 
to find the optimum operating point, we obtain a low-probability threshold. By using this 
operating point, we are always predicting a ramp event, a phenomena also known as hedging, 
and getting a large number of false positives. The third group includes the OR metric. By using 
this metric, two cases result: (1) if we do not consider phase errors, we obtain a large operating 
point and, therefore, a small number of events and FPs; and (2) if we consider phase errors, an 
OR curve having a shape similar to a parabola results. In the fourth group, we have the ROC 
curves. By using these curves, we can access the performance of the ramp forecast system under 
varying costs of predicting the wrong class. This way, we can include economic information in 
the search for the optimum operating point. In conjunction with the expected cost formula, we 
obtain a decision-making framework that is flexible and can include valuable economic 
knowledge. If operated by an experienced technician who knows the costs of making prediction 
errors, by inspecting the expected cost graph, the operator can both minimize the expected cost 
and analyze the risk of each decision. 
 
Thus, by presenting this report, we expect that experienced operators can obtain help in deciding 
which metric best fits their operations. In our opinion, having the ability to inspect the range of 
FPs and FNs that can be obtained by using any of the metrics of the first three groups points to 
the development and use of a flexible system, such as the ROC curves and expected cost curves. 
By using these techniques, we add flexibility to our system that will be difficult to surpass.   
 
Regarding the study of the other parameters, we can say that we experience better predictions 
with both types of ramps if we use large sizes of the time step. This result is particularly clear 
when predicting ramp-down events. This phenomenon can be explained by the smooth changes 
in the wind, especially in downward ramps. Concerning the aggregation, we also obtain better 
results if we work with large aggregation intervals. 
 
As expected, if we analyze the results obtained by allowing the phase error, we realize important 
gains in performance metrics. If time precision can be relaxed, then the phase error technique 
should be used.  
 
In summary, we highlight the main findings: 

• The probabilistic ramp event forecast system presented in this chapter proves that it can 
generate better ramp predictions than a point forecast system over a range of metrics. 
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Moreover, by using a probabilistic ramp event forecasting system, the user can perform a 
risk analysis.     

• The vertical histograms give additional valuable information. For instance, if a wide 
number of scenarios predict a large ramp, the probability of correctly predicting a ramp is 
higher.  

• The ROC curves and Expected Cost framework have the flexibility to assess the 
performance of forecasters and allow us to find the optimum operating point. Their use is 
intuitive and can provide business information.   

• If the prediction timing of each event can be relaxed, the phase error technique must be 
used. By using this technique, we can obtain important gains.   

• There are several ramp event definitions, and the best ramp definition to use at a specific 
wind farm depends on what the forecast will be used for and can be dependent on the 
terrain conditions, equipment technical requirements, and other operation conditions. 
Despite this observation, definitions 4 and 5 seem to provide better results according to the 
majority of the metrics tested. 

• The downward ramps are easier to predict than the upward ones. This result is especially 
clear if we consider large sizes of the time step. 

 
Overall, we can say that we achieve better results by using large sizes of the aggregation window 
and large sizes of the time step.   
 

4.6 Conclusions 
Ramp event forecasting is an important topic, and the number of works addressing this problem 
is rapidly increasing. In this chapter, we presented a new definition of ramp events based on 
high-pass filters — a new method for probabilistic ramp event detection based on scenarios — 
and we performed an extensive experimental evaluation using some recently proposed ramp 
definitions. Another contribution of this work is the visualization method. Probabilistic ramp 
events are presented using histograms of cumulative ramp probability functions. Each bin 
corresponds to ramp magnitude, and the corresponding value is the probability of observing a 
ramp event of magnitude equal to or greater than that of magnitude. We should stress that the 
proposed method is independent of a particular ramp event definition and can be implemented 
using any ramp definition.  
 
The analysis of the performance of the method indicates that we obtained important gains when 
we compare our system against a reference model (i.e., a point forecast system). So far, the 
success of ramp prediction methods reported in the literature is not impressive, and some failure 
may be explained by phase errors inherited from the meteorological wind prediction models. A 
study on this factor was also conducted in this chapter. The study shows that by using a 
technique to correct phase errors, we can realize important gains. 
 
In the last phase of the development of this work, we identified a new and promising 
methodology that learns weights for each bin in the vertical histogram and then uses a weighted 
voting to generate probabilities. We have already developed a prototype that uses this 
methodology and have run some experiments. In a preliminary analysis, we can say that we 
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obtain some improvements over the model described in this chapter. Therefore, this study 
delivers advances to the state-of-the-art and provides strong directions for future work. 
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5 GENERAL CONCLUSIONS 
 
In this report, we have documented our work on developing improved statistical methods for 
WPF. The main conclusions and contributions to the current state-of-the-art for each area of 
research are briefly summarized below.  
 
For wind power point forecasting, we focused on the training criteria used in the computational 
learning algorithms (we used a neural network), which converts weather forecasts and 
observational data to a point forecast for wind power. In particular, we focused on the use of ITL 
training criteria, which are not built on the assumption of a Gaussian distribution of the 
forecasting errors. Through extensive testing of different training criteria on a large-scale wind 
farm located in the U.S. Midwest, we found that: 
 
• The ITL training criteria showed a favorable performance in terms of lower forecasting 

errors compared to the classical MSE criterion;  
• The improvements of the ITL criteria were particularly significant for low and high wind 

power output levels; 
• A new ITL-based training criterion, centered correntropy, was introduced for the first time 

in this report; 
• Among several ITL-based criteria, the maximum correntropy criterion (MCC) showed 

good results and also has a low computational burden; 
• The results showed evidence that online training assures better results in the presence of 

concept drift in the training data. 
 
Within wind power uncertainty forecasting, we developed and tested novel time-adaptive 
algorithms based on KDF. We developed a time-adaptive KDF model using the NW estimator. 
Furthermore, we applied the QC estimator for the first time to the WPF problem. In both cases, 
we paid particular attention to the choice of adequate kernels. Through extensive testing and 
comparison to QR on several datasets, we found that: 
 
• KDF methods showed a tendency to present a better performance than QR in terms of 

calibration; 
• The QR methods showed a tendency to present a better performance in terms of sharpness 

and resolution; 
• The aggregate skill score of the QR and KDF methods were rather similar; 
• The application of the time-adaptive KDF models improved the results compared to offline 

training of the KDF algorithms; 
• Adequate kernel selection for each variable proved to be very important in KDF, both in 

terms of kernel type and kernel size; 
• An important advantage of KDF is that it estimates the full probability distribution for 

wind power at any forecast horizon. 
 
For wind power ramp forecasting, we presented a new definition of ramp events based on high-
pass filters, a new method for probabilistic ramp event detection based on scenarios, and 
performed an extensive experimental evaluation using some recently proposed ramp definitions. 
From the analysis and results, we conclude that: 
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• The proposed probabilistic method obtained important gains when compared to a reference 

model (i.e., a point forecast system); 
• By using a technique to correct phase errors, we obtrained important gains in forecasting 

performance; 
• A number of different ramp definitions exist. The proposed method is independent of a 

particular ramp event definition and can be implemented using any definition;  
• The visualization of the ramp forecast is important. In the proposed method, probabilistic 

ramp events are presented using histograms of cumulative ramp probability functions. 
 
Finally, most of the WPF prototypes and algorithms developed in the project and used to 
generate the results documented in this report have been integrated into a software platform for 
WPF research named “ARGUS-PRIMA.” More information about the platform can be obtained 
by contacting Argonne National Laboratory. 
 
 
 
  



 

235 

6 REFERENCES 
 
[1] C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, G. Conzelmann, “Wind Power 

Forecasting: State-of-the-Art 2009,” Argonne National Laboratory, Report ANL/DIS-10-
1, 2009. Available at: http://www.dis.anl.gov/projects/windpowerforecasting.html. 

[2] A. Botterud, Z. Zhou, J. Wang, R.J. Bessa, J. Mendes, J. Sumaili, V. Miranda, “Use of 
Wind Power Forecasting in Operational Decisions,” Technical Report, Argonne National 
Laboratory and INESC Porto, Sept. 2011. 

[3] Official website of PostgreSQL, open-source database. Available at: 
http://www.postgresql.org/. 

[4] Official website of WRF – Weather Research and Forecasting Model, a mesoscale 
numerical weather prediction system. Available at: http://www.wrf-model.org/. 

[5] S. Haykin, Neural Networks and Learning Machines – 3rd Edition, Pearson Education, 
New Jersey, 2009. 

[6] C. Igel, M. Hüsken, “Improving the Rprop learning algorithm,” In H. Bothe and R. Rojas, 
editors, Proceedings of the Second International ICSC Symposium on Neural 
Computation (NC 2000), pp. 115–121, ICSC Academic Press, 2000. 

[7] Boost C++ Libraries. Available at: http://www.boost.org/. 

[8] J.C. Principe, D. Xu, “Information-theoretic learning using Renyi’s quadratic entropy,” in 
J.-F. Cardoso, C. Jutten, and P. Loubaton, editors, Proceedings of the First International 
Workshop on Independent Component Analysis and Signal Separation, Aussois, France, 
pages 407–412, 1999. 

[9] J.M. Santos, J. Marques de Sá, L.A. Alexandre, “Batch-sequential algorithm for neural 
networks trained with entropic criteria,” Proceedings of the 15th Int. Conf. on Artificial 
Neural Networks, (p. 91–96), 2005. 

[10] R.J. Bessa, V. Miranda, J.C. Principe, A. Botterud, J. Wang, “Information Theoretic 
Learning applied to Wind Power Modeling,” 2010 IEEE World Congress on 
Computational Intelligence, Barcelona, Spain, Jul. 2010. 

[11] R.J. Bessa, V. Miranda, A. Botterud, J. Wang, “‘Good’ or ‘Bad’ Wind Power Forecasts: 
A Relative Concept,” Wind Energy, Vol. 14, No. 5, pp. 625–636, 2011. 

[12] G. Welch, G. Bishop, “An Introduction to the Kalman Filter,” SIGGRAPH, 2001. 
Available at: http://www.cs.unc.edu/~welch/kalman/. 

[13] D. Simon, “Kalman Filtering,” Embedded Systems Programming, 2001. Available at: 
http://calypso.inesc-id.pt/FCUL/psm/docs/kalman-dan-simon.pdf. 



 

236 

[14] J. Juban, L. Fugon, G. Kariniotakis, “Uncertainty estimation of wind power forecasts,” in 
Proceedings of the European Wind Energy Conference EWEC’08, Brussels, Belgium, 
March 31–April 03, 2008. 

[15] P. Pinson, Estimation of the uncertainty in wind power forecasting, Ph.D. dissertation, 
Ecole des Mines de Paris, 2006. 

[16] J.B. Bremnes, “Probabilistic wind power forecasts using local quantile regression,” Wind 
Energy, vol. 7, no. 1, pp. 47–54, 2004. 

[17] J. Juban, N. Siebert, G. Kariniotakis, “Probabilistic short-term wind power forecasting for 
the optimal management of wind generation,” in Proceedings of the IEEE Power Tech 
Conference, Lausanne, Switzerland, July 2007.  

[18] J.K. Møller, H.A. Nielsen, H. Madsen, “Time-adaptive quantile regression,” 
Computational Statistics & Data Analysis, vol. 52, no. 3, pp. 1292–1303, Jan. 2008. 

[19] P. Pinson, “On probabilistic forecasting of wind power time-series,” submitted to Wind 
Energy, April 26 2010. 

[20] J.B. Bremnes, “Probabilistic wind power forecasts using local quantile regression,” Wind 
Energy, vol. 7, pp. 47–54, 2004. 

[21] A. Botterud, J. Wang, R. Bessa, H. Keko, V. Miranda, “Risk management and optimal 
bidding for a wind power producer,” in Proceedings of the IEEE PES General Meeting, 
Minneapolis, USA, 2010. 

[22] F. Bourry, J. Juban, L.M. Costa, G. Kariniotakis, “Advanced strategies for wind power 
trading in short-term electricity markets,” in Proceeding of the European Wind Energy 
Conference & Exhibition EWEC 08, Brussels, Belgium, March 31– April 3, 2008. 

[23] M.A. Matos, “Decision under risk as a multicriteria problem,” European Journal of 
Operational Research, vol. 181, no. 3, pp. 1516–1529, Sept. 2007. 

[24] M.A. Matos, R. Bessa, “Setting the operating reserve using probabilistic wind power 
forecasts,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 594-603, 2011.  

[25] R. Bessa, M.A. Matos, “Comparison of probabilistic and deterministic approaches for 
setting operating reserve in systems with high penetration of wind power,” in 
Proceedings of the 7th Mediterranean Conference and Exhibition on Power Generation, 
Transmission, Distribution and Energy Conversion — MedPower2010, Agia Napa, 
Cyprus, Nov. 7–10, 2010. 

[26] P. Pinson, G. Papaefthymiou, B. Klockl, H.Aa. Nielsen, H. Madsen, “From probabilistic 
forecasts to statistical scenarios of short-term wind power production,” Wind Energy, 
vol. 12, no. 1, pp. 51–62, 2009. 



 

237 

[27] H.A. Nielsen, H. Madsen, T.S. Nielsen, “Using quantile regression to extend an existing 
wind Power Forecasting system with probabilistic forecasts,” Wind Energy, vol. 9,  
no. 1–2, pp. 95–108, 2006. 

[28] D.M. Bashtannyk, R.J. Hyndman, “Bandwidth selection for kernel conditional density 
estimation,” Computational Statistics & Data Analysis, vol. 36, pp. 279–298, 2001. 

[29] J.G. Gooijer, D. Zerom, “On conditional density estimation,” Statistica Neerlandica, 
vol. 57, pp. 159–176, 2003. 

[30] O.P. Faugeras, “Prediction via the quantile-copula conditional density estimator,” 
Toulouse School of Economics Working Papers Series, no. 09-124, Dec. 2009. 

[31] M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,” The 
Annals of Mathematical Statistics, vol. 27, no. 3, pp. 832–837, 1956. 

[32] E. Parzen, “On Estimation of a probability density function and mode,” The Annals of 
Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076, 1962. 

[33] C. Wolverton, T.J. Wagner, “Asymptotically optimal discriminant functions for pattern 
classification,” IEEE Transactions on Information Theory, vol. 15, no. 2, pp. 258–265, 
March 1969. 

[34] M.P. Wand, M.C. Jones, “Multivariate plug-in bandwidth selection,” Computational 
Statistics, vol. 9, pp. 97–116, 1994. 

[35] M. Rosenblatt, Conditional probability density and regression estimators, in Multivariate 
Analysis II, New York: Academic Press, pp. 25–31, 1969. 

[36] R.J. Hyndman, D.M. Bashtannyk, G.K. Grunwald, “Estimating and visualizing 
conditional densities,” Journal of Computational and Graphical Statistics, vol. 5, no. 4, 
pp. 315–336, Dec. 1996. 

[37] O.P. Faugeras, “A quantile-copula approach to conditional density estimation,” Journal 
of Multivariate Analysis, vol. 100, pp. 2083–2099, Oct. 2009. 

[38] T. Bouezmarni, J.V.K. Rombouts, “Semiparametric multivariate density estimation for 
positive data using copulas,” Computational Statistics & Data Analysis, vol. 53, no. 6, 
pp. 2040–2054, Apr. 2009. 

[39] M. Sklar, “Fonctions de répartition à n dimensions et leurs marges,” Publications de 
l’Institut de Statistique de L’ Université de Paris, vol. 8, pp. 229–231, 1959. 

[40] R. Nelson, An Introduction to Copulas. Lecture Notes in Statistics, New York: Springer, 
vol. 139, 1999. 

[41] G. Frahm, M. Junker, and A. Szimayer, “Elliptical copulas: applicability and limitations,” 
Statistics & Probability Letters, vol. 63, no. 3, pp. 275–286, July 2003. 



 

238 

[42] S.X. Chen, “Beta kernel estimators for density functions,” Computational Statistics & 
Data Analysis, vol. 31, no. 2, pp. 131–145, 1999. 

[43] S. Zhang, R.J. Karunamuni, “On kernel density estimation near endpoints,” Journal of 
Statistical Planning and Inference, vol. 70, no. 2, pp. 301–316, Jul. 1998. 

[44] M.C. Jones, D.A. Henderson, “Miscellanea kernel-type density estimation on the unit 
interval,” Biometrika, Oxford University Press for Biometrika Trust, vol. 94, no. 4, 
pp. 977–984, 2007. 

[45] S. Zhang, “Boundary performance of the beta kernel estimators,” Journal of 
Nonparametric Statistics, vol. 22, no. 1, pp. 81–104, Jan. 2010. 

[46] C. Gourieroux, A. Monfort, “(Non) consistency of the beta kernel estimator for recovery 
rate distribution,” Working Paper Nº2006-31, Istitut National de la Statistique et des 
Etudes Economiques, Dec. 2006. 

[47] S.X. Chen, “Probability density function estimation using gamma kernels,” Annals of the 
Institute of Statistical Mathematics, vol. 52, no. 3, pp. 471–480, Sept. 2000. 

[48] S. Zhang, “A note on the performance of the gamma kernel estimators at the Boundary,” 
Statistics and Probability Letters, vol. 80, no. 7–8, pp. 548–557, April 2010. 

[49] K.V. Mardia, P.E. Jupp, Directional statistics, Wiley’s Series in Probability and 
Statistics, Nov. 1999. 

[50] E.J. Wegman, H.I. Davies, “Remarks on recursive estimators of a probability density,” 
The Annals of Statistics, vol. 7, no. 2, pp. 316–327, 1979. 

[51] E.J. Wegman, D.J. Marchette, “On some techniques for streaming data: a case study of 
Internet packet headers,” Journal of Computational and Graphical Statistics, vol. 12, 
no. 4, pp. 893–914, 2003. 

[52] K.A. Caudle, E.J. Wegman, “Nonparametric density estimation of streaming data using 
orthogonal series,” Computational Statistics and Data Analysis, vol. 53, pp. 3980–3986, 
2009. 

[53] P. Pinson, G. Kariniotakis, H.A. Nielsen, T.S. Nielsen, H. Madsen, “Properties of 
quantile and interval forecasts of wind generation and their evaluation,” in Proceedings of 
the European Wind Energy Conference EWEC’06, Athens, Greece, 2006. 

[54] P. Pinson, H.A. Nielsen, J.K. Moller, H. Madsen, G. Kariniotakis, “Nonparametric 
probabilistic forecasts of wind power: required properties and evaluation,” Wind Energy, 
vol. 10, no. 6, pp. 497–516, Nov. 2007. 

[55] T. Gneiting, A.E. Raftery, “Strictly proper scoring rules, prediction, and estimation,” 
Journal of the American Statistical Association, vol. 102, no. 477, pp. 359–378, 
March 2007. 



 

239 

[56] Eastern Wind Integration and Transmission Study (EWITS), National Renewable Energy 
Laboratory (NREL). Available at: http://www.nrel.gov/wind/systemsintegration/ 
ewits.html. 

[57] M. Brower, “Development of Eastern Regional Wind Resource and Wind Plant Output 
Datasets,” NREL Subcontract Report NREL/SR-550-46764, December 2009. 

[58] R.J. Hyndman, J. Einbeck, M. Wand, “Package ‘hdrcde,’” R Manual, April 2010. 
Available at: http://www.robjhyndman.com/software/hdrcde. 

[59] V.R. Jose, R.L. Winkler, “Evaluating quantile assessments,” Operations Research, 
vol. 57, no. 5, pp. 1287–1297, Sept. 2009. 

[60] D. Maggio, “Integrating wind forecasting into market operation - ERCOT,” presentation 
at Utility Wind Integration Group (UWIG) Workshop, Phoenix, AZ, United States, 
Feb. 18–19, 2009. 

[61] J. Parkes, J. Wasey, A. Tindal, “Wind Energy Trading Benefits through Short-Term 
Forecasting,” in European Wind Energy Conference, 2006. 

[62] C. Kamath, “Understanding Wind Ramp Events Through Analysis of Historical Data,” in 
IEEE PES Transmission and Distribution Conference and Expo, New Orleans, LA, 
United States, 2010. 

[63] N. Francis, “Predicting Sudden Changes in Wind Power Generation,” in North American 
WindPower, 2008. 

[64] B. Greaves, J. Collins, J. Parkes, A. Tindal, “Temporal Forecast Uncertainty for Ramp 
Events,” in European Wind Energy Conference 2009 (EWEC), Marseille, France, 2009. 

[65] U. Focken, M. Lange, “Wind power forecasting pilot project in Alberta,” Oldenburg, 
Germany: energy & meteo systems GmbH, 2008. 

[66] A. Kusiak, H. Zheng, “Prediction of Wind Farm Power Ramp Rates: A Data-Mining 
Approach,” Journal of Solar Energy Engineering, vol. 131, 2009. 

[67] AWS Truewind-LLC, “AWS Truewind's Final Report for the Alberta Forecasting Pilot 
Project,” Alberta, Canada, 2008. 

[68] N. Cutler, M. Kay, H. Outhred, I. MacGill, “High-Risk Scenarios for Wind Power 
Forecasting in Australia,” in Proceedings of the European Wind Energy Conference & 
Exhibition, 2007. 

[69] N. Cutler, M. Kay, K. Jacka, T.S. Nielsen, “Detecting, Categorizing, and Forecasting 
Large Ramps in Wind Farm Power Output Using Meteorological Observations and 
WPPT,” Wind Energy, pp. 453–470, 2007. 



 

240 

[70] J. Parkes, J. European Wind Energy Conference, March 2009. Available at: 
http://www.ewec2009proceedings.info/allfiles/205_EWEC2009presentation.ppt. 

[71] C.W. Potter, E. Grimit, B. Nijssen, “Potential Benefits of a Dedicated Probabilistic Rapid 
Ramp Event Forecast Tool,” IEEE, 2009. 

[72] J. Freedman, M. Markus, R. Penc, “Analysis of West Texas Wind Plant Ramp-up and 
Ramp-down Events,” AWS Truewind, LLC, Albany, NY, United States, 2008. 

[73] J.W. Zack, S. Young, M. Cote, J. Nocera, “Development and Testing of an Innovative 
Short-Term Large Wind Ramp Forecasting System,” in Wind Power Conference & 
Exhibition, Dallas, Texas, United States, 2010. 

[74] A. Bossavy, R. Girard, G. Kariniotakis, “Forecasting Uncertainty Related to Ramps of 
Wind Power Production,” in Proceedings of the European Wind Energy Conference, 
Warsaw, Poland, 2010. 

[75] G. Kariniotakis, I. Martí, D. Casas, P. Pinson, T.S. Nielsen, H. Madsen, G. Giebel, 
J. Usaola, I. Sanchez, A.M. Palomares, R. Brownsword, J. Tambke, U. Focken, 
M. Lange, P. Louka, G. Kallos, C. Lac, G. Sideratos, G. Descombes, “What performance 
can be expected by short-term wind power prediction models depending on site 
characteristics?,” in European Wind Energy Conference, London, UK, 2004. 

[76] P.Pinson, H. Madsen, H. A. Nielsen, Papaefthymiou, B. Klockl, “From Probabilistic 
Forecasts to Statistical Scenarios of Short-term Wind Power Production,” Wind Energy, 
vol. 12, pp. 51–62, 2009. 

[77] TESLA, Inc. Available at: http://www.teslaforecast.com/TeslaModel.aspx. 

[78] M.G. De Giorgi, A. Ficarella, M. Tarantino, “Error analysis of short-term wind power 
prediction models,” Applied Energy, vol. 88, no. 4, pp. 1298–1311, 2011. 

[79] P. Pinson, “Estimation of the uncertainty in wind power forecasting,” École des Mines de 
Paris, Paris, PhD Dissertation, 2006. 

[80] D. Hand, “Measuring classifier performance: a coherent alternative to the area under the 
ROC curve,” Machine Learning, vol. 77, pp. 103–123, 2009. 

[81] F. Provost, T. Fawcett, “Analysis and visualization of classifier performance: 
Comparison under imprecise class and cost distributions,” in Third International 
Conference on Knowledge Discovery and Data Mining (KDD), California, USA, 1997, 
pp. 43–48. 

[82] C.J. Rijsbergen, Information Retrieval. London: Butterworths, 1979. 

[83] J.T. Schaefer, “The Critical Success Index as an Indicator of Warning Skill,” Weather 
Forecasting, no. 5, pp. 570–575, 1990. 



 

241 

[84] K.T. Bradford, R.L. Carpenter, B. Shaw, “Forecasting Southern Plains Wind Ramp 
Events Using the WRF Model at 3-km,” in AMS Student Conference, 2010. 

[85] A.W. Hanssen, W.J.A. Kuipers, “On the relationship between the frequency of rain and 
various meteorological parameters,” Mededelingen van de Verhandlungen, vol. 81,  
pp. 2–15, 1965. 

[86] A. Ghelli, C. Primo, “On the use of the extreme dependency score to investigate the 
performance of an NWP model for rare events,” Meteorological Applications, vol. 16, 
pp. 537–544, 2009. 

[87] G. Brier, “Verification of forecasts expressed in terms of probability,” Monthly weather 
review, vol. 78, no. 1, pp. 1–3, 1950. 

  



 

242 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally blank 
 
 
 

 
  



 

243 

APPENDIX A 
 
Evaluation Results for NREL Dataset Offline Tests 
 
Figs. A-1 through A-10 present results using data from the National Renewable Energy 
Laboratory (NREL). 
 
 

Fig. A-1 Calibration diagram for look-ahead 
time step t+6h (NREL data). 

Fig. A-2 Sharpness diagram for look-ahead time 
step t+6h (NREL data). 

Fig. A-3 Resolution diagram for look-ahead time 
step t+6h (NREL data). 

Fig. A-4 Calibration diagram for look-ahead time 
step t+22h (NREL data). 
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Fig. A-5 Sharpness diagram for look-ahead time 
step t+22h (NREL data). 

Fig. A-6 Resolution diagram for look-ahead time 
step t+22h (NREL data). 

Fig. A-7 Calibration diagram for the NREL 
dataset with concept change and NW estimator 
for look-ahead time step t+15h. 
 
 
 

Fig. A-8 Calibration diagram for the NREL 
dataset with concept change and NW estimator 

for look-ahead time step t+20h. 
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Fig. A-9 Calibration diagram for the NREL 
dataset with concept change and QC estimator 

for look-ahead time step t+15h. 

Fig. A-10 Calibration diagram for the NREL 
dataset with concept change and QC estimator 

for look-ahead time step t+20h. 
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APPENDIX B 
 
Offline Evaluation Results for Wind Farm A 
 
Figs. B-1 through B-12 present offline results for Wind Farm A. 
 
 

Fig. B-1 Calibration diagram for WFA  
with 6:00 AM NWP and NW models M0–M5  

for look-ahead time step t+15h. 

Fig. B-2 Calibration diagram for WFA  
with 6:00 PM NWP and NW models M0–M5  

for look-ahead time step t+15h. 

Fig. B-3 Sharpness diagram for WFA  
with 6:00 AM NWP and NW models M0–M5  

for look-ahead time step t+15h. 

 Fig. B-4 Sharpness diagram for WFA  
with 6:00 PM NWP and NW models M0–M5  

for look-ahead time step t+15h. 
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Fig. B-5 Resolution diagram for WFA  

with 6:00 AM NWP and NW models M0–M5  
for look-ahead time step t+15h. 

Fig. B-6 Resolution diagram for WFA  
with 6:00 PM NWP and NW models M0–M5  

for look-ahead time step t+15h. 

 

Fig. B-7 Calibration diagram for WFA  
with 6:00 AM NWP and QC models M0–M5  

for look-ahead time step t+15h. 

Fig. B-8 Calibration diagram for WFA  
with 6:00 PM NWP and QC models M0–M5  

for look-ahead time step t+15h. 
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Fig. B-9 Sharpness diagram for WFA  
with 6:00 AM NWP and QC models M0–M5  

for look-ahead time step t+15h. 

Fig. B-10 Sharpness diagram for WFA  
with 6:00 PM NWP and QC models M0–M5  

for look-ahead time step t+15h. 

 

Fig. B-11 Resolution diagram for WFA  
with 6:00 AM NWP and QC models M0–M5  

for look-ahead time step t+15h. 

Fig. B-12 Resolution diagram for WFA  
with 6:00 PM NWP and QC models M0–M5  

for look-ahead time step t+15h. 
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APPENDIX C 
 
Offline Evaluation Results for Wind Farm B 
 
Figs. C-1 through C-12 present offline results for Wind Farm B. 
 
 

Fig. C-1 Calibration diagram for WFB  
with 6:00 AM NWP and NW models M0–M5  

for look-ahead time step t+15h. 

Fig. C-2 Calibration diagram for WFB  
with 6:00 PM NWP and NW models M0–M5  

for look-ahead time step t+15h. 

 
Fig. C-3 Sharpness diagram for WFB  

with 6:00 AM NWP and NW models M0–M5  
for look-ahead time step t+15h. 

Fig. C-4 Sharpness diagram for WFB  
with 6:00 PM NWP and NW models M0–M5  

for look-ahead time step t+15h. 
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Fig. C-5 Resolution diagram for WFB  
with 6:00 AM NWP and NW models M0–M5  

for look-ahead time step t+15h. 

Fig. C-6 Resolution diagram for WFB  
with 6:00 PM NWP and NW models M0–M5  

for look-ahead time step t+15h. 

 
Fig. C-7 Calibration diagram for WFB  

with 6:00 AM NWP and QC models M0–M5  
for look-ahead time step t+15h. 

Fig. C-8 Calibration diagram for WFB  
with 6:00 PM NWP and QC models M0–M5  

for look-ahead time step t+15h. 

Nominal coverage rate [%]

In
te

rv
al

s 
st

d.
 d

ev
ia

tio
n 

le
ng

th
 [%

 o
f r

at
ed

 p
ow

er
]

10 20 30 40 50 60 70 80 90

0
5

10
15

20 M0
M1
M2
M3
M4
M5

Nominal coverage rate [%]

In
te

rv
al

s 
st

d.
 d

ev
ia

tio
n 

le
ng

th
 [%

 o
f r

at
ed

 p
ow

er
]

10 20 30 40 50 60 70 80 90

0
5

10
15

20 M0
M1
M2
M3
M4
M5

Nominal proportion rate [%]

D
ev

ia
tio

n 
[%

]

5 15 25 35 45 55 65 75 85 95

-5
0

5
10

M0
M1
M2
M3
M4
M5

Nominal proportion rate [%]

D
ev

ia
tio

n 
[%

]

5 15 25 35 45 55 65 75 85 95

-5
0

5
10

M0
M1
M2
M3
M4
M5



 

253 

Fig. C-9 Sharpness diagram for WFB  
with 6:00 AM NWP and QC models M0–M5  

for look-ahead time step t+15h. 

Fig. C-10 Sharpness diagram for WFB  
with 6:00 PM NWP and QC models M0–M5  

for look-ahead time step t+15h. 

Fig. C-11 Resolution diagram for WFB  
with 6:00 AM NWP and QC models M0–M5  

for look-ahead time step t+15h. 

Fig. C-12 Resolution diagram for WFB  
with 6:00 PM NWP and QC models M0–M5  

for look-ahead time step t+15h. 
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APPENDIX D 
 
Time-adaptive Evaluation Results for Wind Farm A  
Figs. D-1 through D-4 present time-adaptive results for Wind Farm A.  
 
 

Fig. D-1 Calibration diagram for t+15h obtained 
with the NW time-adaptive model  

for the WFA dataset. 

Fig. D-2 Calibration diagram for t+10h obtained 
with the NW time-adaptive model  

for the WFA dataset. 

 

Fig. D-3 Calibration diagram for t+15h obtained 
with the QC time-adaptive model  

for the WFA dataset. 

Fig. D-4 Calibration diagram for t+10h obtained 
with the QC time-adaptive model  

for the WFA dataset. 
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APPENDIX E 
 
Time-adaptive Evaluation Results for Wind Farm B  
 
Figs. E-1 through E-4 present time-adaptive results for Wind Farm B.  
 

Fig. E-1 Calibration diagram for t+15h obtained 
with the NW time-adaptive model  

for the WFB dataset. 

Fig. E-2 Calibration diagram for t+10h obtained 
with the NW time-adaptive model  

for the WFB dataset. 

 

Fig. E-3 Calibration diagram for t+15h obtained 
with the QC time-adaptive model  

for the WFB dataset. 

Fig. E-4 Calibration diagram for t+10h obtained 
with the QC time-adaptive model  

for the WFB dataset. 
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