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Weather Forecast-Based Optimization of Integrated
Energy Systems

Victor M. Zavala,' Emil M. Constantinescu,’
Theodore Krause,® and Mihai Anitescu'
TMathematics and Computer Science Division

$Chemical Sciences and Engineering Division

Abstract

In this work, we establish an on-line optimization framework to exploit detailed
weather forecast information in the operation of integrated energy systems, such
as buildings and photovoltaic/wind hybrid systems. We first discuss how the use
of traditional reactive operation strategies that neglect the future evolution of the
ambient conditions can translate in high operating costs. To overcome this problem,
we propose the use of a supervisory dynamic optimization strategy that can lead
to more proactive and cost-effective operations. The strategy is based on the solu-
tion of a receding-horizon stochastic dynamic optimization problem. This permits
the direct incorporation of economic objectives, statistical forecast information, and
operational constraints. To obtain the weather forecast information, we employ a
state-of-the-art forecasting model initialized with real meteorological data. The sta-
tistical ambient information is obtained from a set of realizations generated by the
weather model executed in an operational setting. We present proof-of-concept sim-
ulation studies to demonstrate that the proposed framework can lead to significant
savings (more than 18 % reduction) in operating costs.



1 Executive Summary
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Figure 1: Scheme of our approach

Reduction of energy consumption costs while improving the standard of living, is an
important national interest and thus a key research and development topic for all energy-
related research. An important concern is that such a reduction may be too expensive or
too difficult to deploy. Therefore, there is an increased interest in investigating “smart”
technologies, those that efficiently incorporate available knowledge and information to
reduce energy needs while providing the same or improved functionality.

In this paper, we demonstrate that incorporating forecasts and forecast uncertainty
information in advanced integrated energy systems control techniques can result in sig-
nificant cost and energy savings. Examples of such systems are hybrid energy systems for
building climate control and systems which include photovoltaic and wind energy sources.

We use a nonlinear stochastic model predictive control technique that employs stochas-
tic optimization to determine the optimal management schedule that preserves the func-
tional objectives, minimizes the cost and accounts for the uncertainty in the environmental
parameters, such as temperature and solar radiation.

Our approach has several layers, as shown in Figure 1. First, an uncertainty model,
for the weather forecast, described in Section 4 is produced by enhancing the widely
used Weather Research Forecast (WRF') code [30]. The model is then sampled in time
at the coordinate points of the integrated energy system. The resulting samples are
used to train a Gaussian process model of the uncertainty in the ambient parameters, as
described in Section 3.3. Finally, a stochastic optimization—nonlinear model predictive
control approach, described in Section 3, is solved by sample average approximation for
determining the optimal functioning regime of the integrated energy system.

This initial study suggests that our approach can result in tenths of percents reduction
in cost and/or energy consumption for the target integrated energy system, compared
with some of the current control strategies (we have observed a 18% cost reduction in our



building model for standard insulation, as shown in Figure 12, and a 28 % cost reduction
for improved insulation, as shown in Figure 13 and 75% reduction (Figure 7) in the
operating costs of the photovoltaic hybrid energy system. Moreover, that implementation
of our strategy requires minimal capital investment costs for the building model, beyond
the computational effort ( for example, a new climate control panel, which can be remotely
controlled would be sufficient).

2 Introduction

During the past years, strong socio-economic pressures have forced diverse industrial sec-
tors to reassess the efficiency of current energy production and consumption facilities. In
particular, increasing fossil fuel prices and carbon emission taxes will require the consider-
ation of more efficient designs able to accommodate multiple energy sources and operating
strategies able to maximize their utilization in a cost-optimal manner. The design and
operation of these integrated energy systems are complex tasks because of multiple phys-
ical phenomena arising in different units and their because of their strong dependency on
exogenous disturbances such as the ambient conditions, time-varying demands, and time-
varying fuel and electricity prices. In this context, the availability of powerful simulation
technologies able to predict and assess the performance of these systems under a wide
variety of operating environments will become increasingly important.

Rigorous simulation models for myriad energy systems have been developed over the
past few years and have been used extensively for off-line design and retrofitting tasks. The
availability of these models has led to more systematic practices and, consequently, to more
cost-effective systems. Examples of available simulation software are: EnergyPlus and
ADVISOR, developed at the NREL Laboratory to simulate the performance of building
and hybrid vehicle systems [9; 22]; GCTool and PSAT, developed at Argonne National
Laboratory to simulate hybrid vehicles and power train systems [13; 19]; and TRNSYS,
developed at the University of Wisconsin to simulate a wide range of hybrid energy and
building systems [18]. With this simulation technology at hand, some natural questions
arise: Can we use these powerful models on-line to optimize the operation of energy
systems? How can we integrate these simulators with available optimization technology?
Can we handle highly uncertain and dynamic disturbances effectively?

The operation of industrial systems is normally decomposed in a hierarchical man-
ner, as sketched in Figure 2. The high level is normally known as the supervisory or
set-point optimization layer. At this level, the set-points are adjusted in order to opti-
mize the system economic performance. In the context of energy systems, this level is
also known as the centralized energy management system. The lower level is the requ-
latory control level that use available actuators to track the set-points dictated by the
supervisory level. Most state-of-the-art energy simulation packages provide closed-loop
simulation capabilities that can be used to design and test different operating strate-
gies. These capabilities are based mostly on proportional-integral-derivative (PID) and
logic-based controllers. PID controllers are limited to regulation tasks, while logic-based
controllers can be used for both regulation and set-point optimization. Logic-based con-



trollers consist of a decision-making structure or tree designed to determine the controls
as a function of the current outputs and exogenous disturbances. The decision-making
structure and threshold values are tuned off-line using a simulation model in order to ob-
tain a desired performance [34; 36]. The application of logic-based strategies is intuitive
and can provide satisfactory results for regulatory control and basic optimization tasks.
However, performing high-level supervisory optimization tasks can become cumbersome
in large and tightly interconnected systems. The reason is that, as the amounts of in-
formation and number of decision variables grow, the logic structure becomes more and
more complex and tuning the associated threshold values becomes time-consuming and
impractical. In addition, once the logic-based controller is tuned by using the simulation
model on a variety of scenarios, the model will no longer be used on-line. Consequently, it
is difficult to guarantee adequate performance under unexpected conditions, and retuning
might be necessary. Moreover, handling economic objectives and operational limits can
become complicated under this framework.

Supervisory Level
(Set-Point Optimization)

Regulatory Level
(Set-Point Tracking)

Integrated Energy
System

|

Exogenous Disturbances

Figure 2: Schematic representation of operation hierarchy in industrial systems.

An alternative supervisory strategy is closed-loop real-time optimization (RTO) [23].
The idea is to use a steady-state rigorous model of the system and couple this to a large-
scale optimization solver. The optimizer will determine the optimal set-points that maxi-
mize the system profit using the current information of the exogenous disturbances. Note
that, since the set-points need to be satisfy the operational limits in the real system,
a precise rigorous model is needed. The RTO output set-points are passed to a set of
lower-level controllers that bring the system to the optimal steady-state. Once this is
accomplished, the set-points are recomputed by RTO using the updated disturbance in-
formation. An advantage of this framework is that economic objectives and operational
limits can be handled directly by the optimizer in a systematic manner. In addition,
the rigorous model is always used and adapted on-line. Consequently, tuning tasks are
significantly reduced. More important, it is always possible to guarantee that the sys-
tem is at an optimal operating point. As can be seen, RTO offers significant advantages
over logic-based strategies, specially in highly complex systems. Note also that, since



time-varying factors such as energy prices or weather conditions can be seen as dynamic
disturbances that move the system away from the optimal operating point, RTO can be
seen as a closed-loop optimizer that rejects these disturbances and keeps track of the max-
imum system performance. As a result of these desirable economic adaptation features,
RTO capabilities are now widely used in conjunction with chemical process simulators
such as AspenPlus® and ROMeo®©. This technology has generated millions of dollars in
annual savings in diverse sectors of the chemical industry [38]. Nevertheless, an impor-
tant limitation of RTO and logic-based strategies is that they are entirely reactive, in the
sense that only current disturbance information is used to make decisions. This feature
can limit their ability to handle highly dynamic disturbances efficiently. For instance, if
the set-points are updated at a higher frequency than the controller settling time, erratic
performance and instabilities can arise. This represents an important limitation in the
context of integrated energy systems where performance strongly depends on transient
disturbances.

In this work, we propose to use a dynamic real-time optimization (D-RTO) strategy
to perform economic supervisory decisions in integrated energy systems. The idea is in
principle similar to RTO, but the key difference is that a rigorous dynamic model is used
to compute future dynamic set-point trajectories [15]. We show that this strategy per-
mits a consistent handling of highly dynamic disturbances and can directly incorporate
forecast information. This adds proactiveness to the control actions and reduce costs.
In particular, we show that incorporating weather forecast information can translate in
significant savings in energy systems. Nevertheless, we demonstrate that using accurate
forecasts and uncertainty information is critical to achieve a reliable system performance.
To obtain this information, we first propose to construct data-based autoregressive models
using a Gaussian process modeling technique. While this strategy is useful to obtain quick
estimates of certain weather conditions and related uncertainty information, it is limited
to short-term forecasts and can give rise to conservative uncertainty bounds. Therefore,
we explore the potential of using detailed weather models. From an operational point
of view, these models are attractive because they can provide comprehensive information
such as spatio-temporal fields of ambient temperature, solar radiation and humidity. This
information can be fully exploited by the rigorous model embedded within the D-RTO
strategy. However, a limitation of current weather models is that the uncertainty informa-
tion is limited and/or in forms that are inconsistent with existing optimization technology.
To this end, we develop simplified uncertainty models for ambient variables that rely on
model dynamics and only require a small amount of empirical assumptions. The weather
model is driven in an operational setting with real data, and thus provides realistic and
attainable estimates on the uncertainty found in the meteorological fields. We argue that
connecting these powerful weather prediction models with modeling and optimization ca-
pabilities has the potential of achieving unprecedented energy utilization efficiencies and
cost reductions in diverse industrial and residential sectors. We present simulation studies
using a photovoltaic-hydrogen hybrid energy system and a building system to illustrate
the concepts.



3 Optimization Framework

In this section, we derive the basic components of the proposed closed-loop dynamic
optimization (D-RTO) framework, explain its advantages over steady-state optimization
(RTO), and discuss extensions to consider stochastic disturbance information. We then
illustrate the economic impact of folding weather forecast information in the operation of a
photovoltaic-hydrogen hybrid energy system and a building system. Finally, we illustrate
the use of Gaussian process modeling technique to obtain on-line forecast information,
and we explain how this information can be connected to the optimization framework.

3.1 Stochastic Dynamic Optimization

To start the discussion, we consider a differential-algebraic equation (DAE) model of the
form

dz

o = F),y(r),ulr),x(7)) (1a)
0 = g(z(7),y(1),u(r), x(7)) (1b)
2(0) = =y, (1c)

where 7 is the model time dimension and ?; is the current time in the real system. Variables
z(7) are differential states, y(7) are algebraic states, u(7) are the controls or manipulated
variables, and x(7) are the exogenous disturbances. In this context, the term exogenous
refers to the fact that the disturbances are not affected by the system variables (e.g., energy
prices). The differential equations (la) represent conservation equations (energy, mass,
and momentum), while the algebraic equations (1b) represent consistency conditions and
expressions to calculate physico-chemical properties. The initial conditions at time ¢ are
given by the current state of the system z;. Starting from this state and using a set of
future control and disturbance trajectories, we can predict the evolution of the system.
With these predictive capabilities, it is possible to formulate a dynamic optimization
problem of the form:

xmn/k o (=(7), y(7), ul(r), X(r))dr (2a)

%~ £(=(r),y(7), u(r), x(7) (2b)
0= &(=(r), y(r), ulr), X(7)) (20
0> h(=(r), y(r), u(r), x(7) (24)
Z(tk) =T, TE [tk,tk + T], (26)

)

where T' is the length of the prediction or forecast horizon. The objective function (2a
represents the system operational costs accumulated over the future horizon (e.g. heat-
ing/cooling utilities). The inequality constraints (2d) are used to represent operational
limits (e.g. temperature, pressure, and voltage levels). The dynamic optimization prob-
lem is infinite-dimensional because it depends on time, which is a continuous parameter.



This problem can be approximated by a finite-dimensional nonlinear programming (NLP)
problem through discretization techniques. Note that any partial differential equation
(PDE) model can also be represented in DAE form through discretization along the space
dimensions.

To formulate the optimization problem at time ¢, we know the value of the current
disturbance x(t;) but the future disturbance trajectory is unknown. Nevertheless, we
know that the disturbances belong to an uncertain space x(7) € Q, 7 € [tg, tx + T that
we can approximate. To do so, we make use of past disturbance information x(7),7 €
[t — N, tx] and a suitable forecast model. The forecast model can be either data-based
or physics-based. In any case, we can assume that the model provides a predictive mean
X(7) and that the prediction errors follow a normal or Gaussian distribution such that
X(7) = N(x(7),V(7)), where V(1) is the covariance matrix. With this, the uncertain
space adopts an ellipsoidal form

Q= {z](z =x(7)"VH(1)(z = x(7)) < a}, (3)

where « represents an appropriate confidence level. This uncertainty region is sketched
in Figure 3. Under these assumptions, all that is needed to represent the uncertain
space is the predictive mean and the covariance matrix. However, the proposed structure
of the uncertainty space is a modeling assumption and hence might not be accurate.
Nevertheless, from practical point of view, what we seek from the approximate space
is that it can encapsulate the true disturbance realization and that it has a physically
meaningful structure.

(72 -|—'T

Figure 3: Schematic representation of ellipsoidal uncertainty region.

To exploit the entire statistical information at hand, we formulate an stochastic dy-
namic optimization problem of the form

min [/ " (e y(r) ulr), x () (1a)

u(r) x(r)EM

E — £ (=(r),y(7), u(r), x(7) (4v)

0= &(=(7),y(7), u(r), x(7) (40)

0> h(:(r). y(r) u(r). x(7)) (4d)

Z(tk) =T, TE [tk, tr + T], X(T) € (46)
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where symbol E[-] denotes the expectation operator. From the solution of this problem,
we obtain the state and control trajectories z*(7), y*(7),u*(7), T € [ty, tx + T that we can
send to a lower-level controller as set-points. The controller will try to keep the system
at the recommended target. At the next time step tx,1, we obtain the updated state of
the system x;.; and the updated forecast disturbance information 2., that we use to
solve the next stochastic problem (4). In this way, feedback is introduced. The resulting
closed-loop D-RTO strategy is as follows

1. Current State and Forecast: At time ¢y, obtain current state xj, disturbance
mean X(7) and associated covariance matrix V(7),7 € [ty, tx + T].

2. Compute Set-Points: Solve stochastic optimization problem (4). Send optimal
set-points z*(7), y* (1), u*(7), T € [tg, tx + T to low-level control layer.

3. Update: At t;, + A, set k < k + 1 and repeat process.

In Figure 4, we sketch this conceptual closed-loop optimization framework and its in-
teraction with the low-level control layer and the forecasting capability. Note that the
disturbance forecast information needs to be updated as frequently as possible in order
avoid deterioration of the economic performance. In principle, we could use only the
predictive mean y(7) without taking uncertainty into account and solve the determinis-
tic problem (2). With this approach, however, we cannot guarantee satisfaction of the
operational constraints. Note also that, in the presence of uncertainty, the cost function
becomes a probability distribution because it depends on all the possible realizations of
the disturbances. Therefore, optimizing a single instance of the cost function is meaning-
less. In the above formulation, we assumed that the mean of the objective distribution
is an adequate measure of the performance of the system. However, this need not be
the case. For instance, we could also choose the mean-risk approach of Markowitz where
we seek to minimize simultaneously the mean and the variance of the cost distribution.
In this stochastic optimization framework, the structure of the cost function becomes a
design task because it is entirely problem dependent.

The stochastic dynamic formulation is significantly more computationally demanding
than the deterministic dynamic optimization formulation. The reason is that the uncer-
tain space () is also infinite dimensional. To solve the stochastic optimization problem,
we propose to use a sample-average approximation (SAA) approach. The idea is to ob-
tain independent samples from the disturbance distribution to obtain a N, realizations
{x1(7), x2(7), ..., xn.(7) }. The samples are illustrated in Figure 3. With this, the approx-
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Figure 4: Structure of closed-loop stochastic optimization framework.

imate stochastic problem becomes

o1 NS[
min —
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In this formulation, all the variables become a function of the particular disturbance re-
alization except the controls, which are decision variables. One of the key advantages of
the SAA approach is that it is straightforward to implement. Moreover, it is particu-
larly suitable for large-scale systems, because it gives rise to highly structured problems
[21]. This structure can be exploited in parallel computer architectures. The theoretical
properties of the SAA approach have been widely studied in the context of nonlinear pro-
gramming. For instance, it has been shown that solutions of the SAA problem converge
at an exponential rate to the solution of the stochastic counterpart [29]. Although no
formal convergence results exist in the context of infinite-dimensional dynamic optimiza-
tion problems, we can expect that the available convergence guarantees can be used under
some mild assumptions. Note that in the SSA approach the forecast capability can send
the disturbance samples directly to the D-RTO component instead of the full covariance
matrix. This can be useful in large-scale systems because the forecast capability can
run in a centralized manner (consider a large weather model) and send the disturbance
information to multiple D-RTO agents running on smaller dedicated machines.

If we shrink the prediction horizon of the stochastic dynamic optimization problem (2)



to zero, T — 0, we recover the steady-state RTO problem:

ml}n @(Zvyauaxa;k)) (6&)
0 = g(z7y7u7X(tk)) <6C)
0 > h(z,y,u,x(tk))- (6d)

This strategy finds the steady-state economic optimal operating point based only on the
current disturbances x(tx), that are known. With this, we no longer rely on any fore-
casting mechanism, and the problem reduces to a finite-dimensional NLP problem that is
significantly less computationally expensive. While all these seem to be practical advan-
tages, in the next section we will show that strong economic penalties can be incurred by
making these simplifications.

3.2 Economic Impact of Forecasting

In this section, we discuss some of the advantages of folding forecast information in op-
erations. To do so, we present closed-loop D-RTO simulation studies on a photovoltaic-
hydrogen (PV-H,) hybrid energy system and on a building system. Our objective is to
illustrate how the use of forecast information can add proactiveness to the D-RTO strategy
and how this translates in lower operating costs.

Photovoltaic-Hydrogen Hybrid Energy System

PV-H, systems have been recently identified as a promising energy storage alternative.
They are particularly attractive for remote areas where grid connections are expensive. In
addition, they can be combined with wind power and diesel generators to provide back-
up power in commercial buildings and industrial facilities. Economic studies have been
performed in the U.S. by NREL [17; 24] and some prototypes have already been built
in Germany, Switzerland and Norway [33]. The system consists of a set of photovoltaic
arrays that generate electric power from the solar radiation. The radiation follows strong
dynamic trends occurring at different time-scales (e.g. day-by-day and seasonal). In
Figure 5, we present solar radiation data at position 41 59’N/87 54’W in the Chicago, IL,
area for year 2004. The data are obtained from the National Solar Radiation Data Base
[26].

The structure of the particular system under consideration has been obtained from
[33] and is sketched in Figure 6. The available solar power from the arrays is used to
satisfy a given user load. Any excess power can be stored in a battery system or can be
used to produce hydrogen by water electrolysis. Hydrogen acts as an energy carrier that
can be stored in pressurized tanks or in a solid material. When the solar power is not
sufficient to satisfy the load, the deficit can be covered by the battery or from the stored
hydrogen. If hydrogen is needed, this can be converted back to electric power through
a fuel cell system. More details can be found in [39]. The dynamic model used in this
study comprises a system-wide power balance motivated from [1; 20]. The power entering
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Figure 5: Total solar radiation in Chicago, IL, 2004.
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Figure 6: Schematic representation of photovoltaic-hydrogen hybrid system

through the solar module at a particular time 7 is denoted by Ppy(7) (kW). This can
be calculated by using the measured radiation G(7) (kW/m?) and the module design
characteristics. The electric current goes through a DC-DC converter that seeks to match
the electric current voltage to the voltage of the distribution busbar. This conditioning
process has an inherent efficiency py and generates power losses. The remaining power
Opy Ppy (7) is sent to the busbar to satisfy the current load Pj.q(7). The excess power can
be used to produce hydrogen in the electrolyzer and/or to charge the battery. In order to
run the electrolyzer, the power extracted Pgr(7) passes through a buck DC-DC converter,
which brings the current voltage down to the operating voltage of the electrolyzer. The
efficiency of this step is fpy. The remaining power 0y Pry () enters the electrolyzer. The
conversion process to hydrogen has an efficiency 6g;. The net price for each power unit
produced by the electrolyzer is given by C'gr. Since hydrogen can be seen as an asset, the
net price can be negative. The produced power 0py0rr Prr(7) in the form of hydrogen is

11



stored in a storage system modeled by the differential equation

dEpy,
dr

= 0pulpLPeL(T) — Ppc(T), (7)

where Fyp,(7) is the total energy stored (kWh) at time 7. The hydrogen state of charge
is defined as
En 2 (T)

max ’
EH2

SOCy, (1) = 100

(8)

where E7}57 is the nominal maximum capacity (kWh). A certain amount of power Ppc(7)
can be withdrawn from the storage to feed a fuel cell and generate electric power. The
conversion process has an efficiency rc. The cost for each unit of power produced by the
fuel cell is given by Crc. The remaining power is then passed through a boost DC-DC
converter that brings the voltage of the current up to the operating voltage of the busbar.
The process has an efficiency 0po. The remaining power 0pc0poPrc(T) is sent to the
distribution busbar. The system might be able to buy a given amount of power Pg(T)
from the grid in order to balance the system. This power will have a cost C¢ that depends
on the location and the degree of independence required by the application. In this study,
we assume that the hybrid system is grid independent. Accordingly, we set C¢ = co. In
other words, if the demand cannot be met by the available resources, a high penalty cost
will be paid. Excess power at the busbar can also be dumped to the grid or environment,
which is modeled by variable Pp(7). The cost of dumped power is Cp . If the power is
dumped to the grid, this cost becomes an asset (set by net-metering rates). The power
remaining at the busbar can be used to either charge or discharge the battery. The net
battery power Pg(7) is calculated by the balance at the busbar,

Pg(1) = 0py Ppy (1) + Pa(T) + 0pcOpu Pro(T) — Ppr(T) — Poga(T) — Pp(T).  (9)

The stored energy in the battery is given by

dEg
F = PB(T)7 (10)

and the state-of-charge is,
Ep(7)

mazr *
EB

SOCg(T) =100 (11)
The fixed model inputs are Ppy (7) and Ply.q(7). The degrees of freedom (controls) are
Pgr(7), Prc(T), Pg(7), and Pp(7). Although this is a relatively simple hybrid, the
operating decisions are complicated. For instance, the round-trip efficiency of the hydrogen
storage system can be 70% or less, while that of the battery is around 90%. Therefore,
larger amounts of power are lost if energy is decided to be stored as hydrogen. In addition,
operating costs associated with the electrolyzer and the fuel cell must be taken into account
(e.g., water and oxygen supplies). On the other hand, the battery capacity is usually small,
giving a few days of autonomy. Consequently, it might not be immediately evident which
component is the optimal one to store and provide energy at a particular time. The

12
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Figure 7: Impact of forecast horizon on economic performance of PV-H, system.

operational problems can become much more complicated if the system is connected to
other devices with different efficiencies and operating costs, such as thermal solar plants,
wind turbines, and diesel generators.

The operational objectives in these systems are to maximize hydrogen production,
minimize operating costs, and satisfy the loads at all times. To obtain a reference for the
best possible economic performance of the PV-H, system, we solve a dynamic optimization
problem with perfect solar radiation information and a prediction horizon of 8760 hours
(one year). The problem formulation is given in equation (12). In the following, we
refer to this strategy as the open-loop strategy. The electrolyzer conversion efficiency was
assumed to be 75%, while that of the fuel cell was assumed to be 50%. Both efficiencies
were obtained from [36]. The unitary operating cost for the electrolyzer was assumed
to be 7.4 $/kg-Hy and was obtained from [31]. For simplicity, we assumed equal fuel
cell operating costs. A constant load of 1 kW and a maximum peak PV power of 5 kW
were assumed. To solve this problem, we apply an implicit Euler discretization approach,
implement the resulting NLP problem in AMPL [11], and solve it with the state-of-the-art
optimization solver KNITRO® [5]. The solution of this problem provides the optimal plan
for the electrolyzer, fuel cell, and battery powers that satisfy the load in a cost-optimal
manner. The minimum operating costs for the electrolyzer and fuel cell are on the order of
$1,000. The total hydrogen produced is 380 Nm? which is equivalent to 1140 kWh. This
is enough hydrogen to fulfill a load of 1 kW continuously for 45 days. Since the open-loop
strategy uses all the available radiation information over one year, we use the minimum
cost as a reference for the best achievable economic performance of the system. We then
evaluate the performance of closed-loop D-RTO strategies with perfect forecast radiation
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information with variable prediction horizons. This provides a measure of the economic
impact of adding more and more forecast information to make the control decisions. The
horizons considered are 1 hr, 3 hr, 6 hr, 9 hr, 12 hr, 1 day, 3 days, 7 days, and 14
days. From each scenario, we compute the relative costs using the 1-year horizon cost as
reference. The scenario corresponding to 1 hr represents the economic performance of a
purely reactive strategy (such as closed-loop RTO).
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Figure 8: Impact of forecast horizon on fuel cell power profiles.

The first results of this economic study are presented in Figure 7. Several interesting
and unexpected conclusions can be drawn: (1) the relative operating costs decay quickly
to zero as the horizon is increased; (2) for a purely reactive RTO strategy (1 hr), the
relative costs can go as high as 300%; and (3) the minimum cost can be obtained with a
short forecast (14 days). This last result has important practical implications because it
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implies that nearly optimal performance can be guaranteed for relatively short horizons.
The economic penalty of using a forecast of 1 day is just an increase of 10% in relative
costs, whereas the penalty for a forecast of 12 hr goes up to 31%. This implies that a
practical forecast horizon should be sufficiently long to capture the periodicity of the daily
radiation. The reason for these strong economic penalties becomes evident from Figure 8.
Here, we present the power profiles for the fuel cell for both the optimal open-loop and the
12 hr closed-loop cases. Note that shorter forecasts induce much more aggressive control
actions, which in turn affect the operating costs. As we increase the prediction horizon,
the system is allowed to react more proactively and plan more carefully, resulting in
smoother controls and lower costs. In Figure 9 we present the hydrogen storage profiles for
increasing forecast horizons. The 14-day forecast produces the same amount of hydrogen
as the optimal open-loop strategy. On the other hand, a 1-hr forecast strategy can lead to
lar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>