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Abstract

In this work, we establish an on-line optimization framework to exploit detailed
weather forecast information in the operation of integrated energy systems, such
as buildings and photovoltaic/wind hybrid systems. We first discuss how the use
of traditional reactive operation strategies that neglect the future evolution of the
ambient conditions can translate in high operating costs. To overcome this problem,
we propose the use of a supervisory dynamic optimization strategy that can lead
to more proactive and cost-effective operations. The strategy is based on the solu-
tion of a receding-horizon stochastic dynamic optimization problem. This permits
the direct incorporation of economic objectives, statistical forecast information, and
operational constraints. To obtain the weather forecast information, we employ a
state-of-the-art forecasting model initialized with real meteorological data. The sta-
tistical ambient information is obtained from a set of realizations generated by the
weather model executed in an operational setting. We present proof-of-concept sim-
ulation studies to demonstrate that the proposed framework can lead to significant
savings (more than 18 % reduction) in operating costs.
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1 Executive Summary
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Figure 1: Scheme of our approach

Reduction of energy consumption costs while improving the standard of living, is an
important national interest and thus a key research and development topic for all energy-
related research. An important concern is that such a reduction may be too expensive or
too difficult to deploy. Therefore, there is an increased interest in investigating “smart”
technologies, those that efficiently incorporate available knowledge and information to
reduce energy needs while providing the same or improved functionality.

In this paper, we demonstrate that incorporating forecasts and forecast uncertainty
information in advanced integrated energy systems control techniques can result in sig-
nificant cost and energy savings. Examples of such systems are hybrid energy systems for
building climate control and systems which include photovoltaic and wind energy sources.

We use a nonlinear stochastic model predictive control technique that employs stochas-
tic optimization to determine the optimal management schedule that preserves the func-
tional objectives, minimizes the cost and accounts for the uncertainty in the environmental
parameters, such as temperature and solar radiation.

Our approach has several layers, as shown in Figure 1. First, an uncertainty model,
for the weather forecast, described in Section 4 is produced by enhancing the widely
used Weather Research Forecast (WRF) code [30]. The model is then sampled in time
at the coordinate points of the integrated energy system. The resulting samples are
used to train a Gaussian process model of the uncertainty in the ambient parameters, as
described in Section 3.3. Finally, a stochastic optimization–nonlinear model predictive
control approach, described in Section 3, is solved by sample average approximation for
determining the optimal functioning regime of the integrated energy system.

This initial study suggests that our approach can result in tenths of percents reduction
in cost and/or energy consumption for the target integrated energy system, compared
with some of the current control strategies (we have observed a 18% cost reduction in our
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building model for standard insulation, as shown in Figure 12, and a 28 % cost reduction
for improved insulation, as shown in Figure 13 and 75% reduction (Figure 7) in the
operating costs of the photovoltaic hybrid energy system. Moreover, that implementation
of our strategy requires minimal capital investment costs for the building model, beyond
the computational effort ( for example, a new climate control panel, which can be remotely
controlled would be sufficient).

2 Introduction

During the past years, strong socio-economic pressures have forced diverse industrial sec-
tors to reassess the efficiency of current energy production and consumption facilities. In
particular, increasing fossil fuel prices and carbon emission taxes will require the consider-
ation of more efficient designs able to accommodate multiple energy sources and operating
strategies able to maximize their utilization in a cost-optimal manner. The design and
operation of these integrated energy systems are complex tasks because of multiple phys-
ical phenomena arising in different units and their because of their strong dependency on
exogenous disturbances such as the ambient conditions, time-varying demands, and time-
varying fuel and electricity prices. In this context, the availability of powerful simulation
technologies able to predict and assess the performance of these systems under a wide
variety of operating environments will become increasingly important.

Rigorous simulation models for myriad energy systems have been developed over the
past few years and have been used extensively for off-line design and retrofitting tasks. The
availability of these models has led to more systematic practices and, consequently, to more
cost-effective systems. Examples of available simulation software are: EnergyPlus and
ADVISOR, developed at the NREL Laboratory to simulate the performance of building
and hybrid vehicle systems [9; 22]; GCTool and PSAT, developed at Argonne National
Laboratory to simulate hybrid vehicles and power train systems [13; 19]; and TRNSYS,
developed at the University of Wisconsin to simulate a wide range of hybrid energy and
building systems [18]. With this simulation technology at hand, some natural questions
arise: Can we use these powerful models on-line to optimize the operation of energy
systems? How can we integrate these simulators with available optimization technology?
Can we handle highly uncertain and dynamic disturbances effectively?

The operation of industrial systems is normally decomposed in a hierarchical man-
ner, as sketched in Figure 2. The high level is normally known as the supervisory or
set-point optimization layer. At this level, the set-points are adjusted in order to opti-
mize the system economic performance. In the context of energy systems, this level is
also known as the centralized energy management system. The lower level is the regu-
latory control level that use available actuators to track the set-points dictated by the
supervisory level. Most state-of-the-art energy simulation packages provide closed-loop
simulation capabilities that can be used to design and test different operating strate-
gies. These capabilities are based mostly on proportional-integral-derivative (PID) and
logic-based controllers. PID controllers are limited to regulation tasks, while logic-based
controllers can be used for both regulation and set-point optimization. Logic-based con-
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trollers consist of a decision-making structure or tree designed to determine the controls
as a function of the current outputs and exogenous disturbances. The decision-making
structure and threshold values are tuned off-line using a simulation model in order to ob-
tain a desired performance [34; 36]. The application of logic-based strategies is intuitive
and can provide satisfactory results for regulatory control and basic optimization tasks.
However, performing high-level supervisory optimization tasks can become cumbersome
in large and tightly interconnected systems. The reason is that, as the amounts of in-
formation and number of decision variables grow, the logic structure becomes more and
more complex and tuning the associated threshold values becomes time-consuming and
impractical. In addition, once the logic-based controller is tuned by using the simulation
model on a variety of scenarios, the model will no longer be used on-line. Consequently, it
is difficult to guarantee adequate performance under unexpected conditions, and retuning
might be necessary. Moreover, handling economic objectives and operational limits can
become complicated under this framework.

Regulatory Level
(Set-Point Tracking)

Supervisory Level
(Set-Point Optimization)

Integrated Energy 

System

Exogenous Disturbances

Figure 2: Schematic representation of operation hierarchy in industrial systems.

An alternative supervisory strategy is closed-loop real-time optimization (RTO) [23].
The idea is to use a steady-state rigorous model of the system and couple this to a large-
scale optimization solver. The optimizer will determine the optimal set-points that maxi-
mize the system profit using the current information of the exogenous disturbances. Note
that, since the set-points need to be satisfy the operational limits in the real system,
a precise rigorous model is needed. The RTO output set-points are passed to a set of
lower-level controllers that bring the system to the optimal steady-state. Once this is
accomplished, the set-points are recomputed by RTO using the updated disturbance in-
formation. An advantage of this framework is that economic objectives and operational
limits can be handled directly by the optimizer in a systematic manner. In addition,
the rigorous model is always used and adapted on-line. Consequently, tuning tasks are
significantly reduced. More important, it is always possible to guarantee that the sys-
tem is at an optimal operating point. As can be seen, RTO offers significant advantages
over logic-based strategies, specially in highly complex systems. Note also that, since
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time-varying factors such as energy prices or weather conditions can be seen as dynamic
disturbances that move the system away from the optimal operating point, RTO can be
seen as a closed-loop optimizer that rejects these disturbances and keeps track of the max-
imum system performance. As a result of these desirable economic adaptation features,
RTO capabilities are now widely used in conjunction with chemical process simulators
such as AspenPlus c© and ROMeo c©. This technology has generated millions of dollars in
annual savings in diverse sectors of the chemical industry [38]. Nevertheless, an impor-
tant limitation of RTO and logic-based strategies is that they are entirely reactive, in the
sense that only current disturbance information is used to make decisions. This feature
can limit their ability to handle highly dynamic disturbances efficiently. For instance, if
the set-points are updated at a higher frequency than the controller settling time, erratic
performance and instabilities can arise. This represents an important limitation in the
context of integrated energy systems where performance strongly depends on transient
disturbances.

In this work, we propose to use a dynamic real-time optimization (D-RTO) strategy
to perform economic supervisory decisions in integrated energy systems. The idea is in
principle similar to RTO, but the key difference is that a rigorous dynamic model is used
to compute future dynamic set-point trajectories [15]. We show that this strategy per-
mits a consistent handling of highly dynamic disturbances and can directly incorporate
forecast information. This adds proactiveness to the control actions and reduce costs.
In particular, we show that incorporating weather forecast information can translate in
significant savings in energy systems. Nevertheless, we demonstrate that using accurate
forecasts and uncertainty information is critical to achieve a reliable system performance.
To obtain this information, we first propose to construct data-based autoregressive models
using a Gaussian process modeling technique. While this strategy is useful to obtain quick
estimates of certain weather conditions and related uncertainty information, it is limited
to short-term forecasts and can give rise to conservative uncertainty bounds. Therefore,
we explore the potential of using detailed weather models. From an operational point
of view, these models are attractive because they can provide comprehensive information
such as spatio-temporal fields of ambient temperature, solar radiation and humidity. This
information can be fully exploited by the rigorous model embedded within the D-RTO
strategy. However, a limitation of current weather models is that the uncertainty informa-
tion is limited and/or in forms that are inconsistent with existing optimization technology.
To this end, we develop simplified uncertainty models for ambient variables that rely on
model dynamics and only require a small amount of empirical assumptions. The weather
model is driven in an operational setting with real data, and thus provides realistic and
attainable estimates on the uncertainty found in the meteorological fields. We argue that
connecting these powerful weather prediction models with modeling and optimization ca-
pabilities has the potential of achieving unprecedented energy utilization efficiencies and
cost reductions in diverse industrial and residential sectors. We present simulation studies
using a photovoltaic-hydrogen hybrid energy system and a building system to illustrate
the concepts.
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3 Optimization Framework

In this section, we derive the basic components of the proposed closed-loop dynamic
optimization (D-RTO) framework, explain its advantages over steady-state optimization
(RTO), and discuss extensions to consider stochastic disturbance information. We then
illustrate the economic impact of folding weather forecast information in the operation of a
photovoltaic-hydrogen hybrid energy system and a building system. Finally, we illustrate
the use of Gaussian process modeling technique to obtain on-line forecast information,
and we explain how this information can be connected to the optimization framework.

3.1 Stochastic Dynamic Optimization

To start the discussion, we consider a differential-algebraic equation (DAE) model of the
form

dz

dτ
= f (z(τ), y(τ), u(τ), χ(τ)) (1a)

0 = g(z(τ), y(τ), u(τ), χ(τ)) (1b)

z(0) = xk, (1c)

where τ is the model time dimension and tk is the current time in the real system. Variables
z(τ) are differential states, y(τ) are algebraic states, u(τ) are the controls or manipulated
variables, and χ(τ) are the exogenous disturbances. In this context, the term exogenous
refers to the fact that the disturbances are not affected by the system variables (e.g., energy
prices). The differential equations (1a) represent conservation equations (energy, mass,
and momentum), while the algebraic equations (1b) represent consistency conditions and
expressions to calculate physico-chemical properties. The initial conditions at time tk are
given by the current state of the system xk. Starting from this state and using a set of
future control and disturbance trajectories, we can predict the evolution of the system.
With these predictive capabilities, it is possible to formulate a dynamic optimization
problem of the form:

min
u(τ)

∫ tk+T

tk

ϕ(z(τ), y(τ), u(τ), χ(τ))dτ (2a)

dz

dτ
= f (z(τ), y(τ), u(τ), χ(τ)) (2b)

0 = g(z(τ), y(τ), u(τ), χ(τ)) (2c)

0 ≥ h(z(τ), y(τ), u(τ), χ(τ)) (2d)

z(tk) = xk, τ ∈ [tk, tk + T ], (2e)

where T is the length of the prediction or forecast horizon. The objective function (2a)
represents the system operational costs accumulated over the future horizon (e.g. heat-
ing/cooling utilities). The inequality constraints (2d) are used to represent operational
limits (e.g. temperature, pressure, and voltage levels). The dynamic optimization prob-
lem is infinite-dimensional because it depends on time, which is a continuous parameter.
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This problem can be approximated by a finite-dimensional nonlinear programming (NLP)
problem through discretization techniques. Note that any partial differential equation
(PDE) model can also be represented in DAE form through discretization along the space
dimensions.

To formulate the optimization problem at time tk, we know the value of the current
disturbance χ(tk) but the future disturbance trajectory is unknown. Nevertheless, we
know that the disturbances belong to an uncertain space χ(τ) ∈ Ωk, τ ∈ [tk, tk + T ] that
we can approximate. To do so, we make use of past disturbance information χ(τ), τ ∈
[tk − N, tk] and a suitable forecast model. The forecast model can be either data-based
or physics-based. In any case, we can assume that the model provides a predictive mean
χ̄(τ) and that the prediction errors follow a normal or Gaussian distribution such that
χ(τ) = N (χ̄(τ),V(τ)), where V(τ) is the covariance matrix. With this, the uncertain
space adopts an ellipsoidal form

Ωk := { z | (z − χ̄(τ))TV−1(τ)(z − χ̄(τ)) ≤ α}, (3)

where α represents an appropriate confidence level. This uncertainty region is sketched
in Figure 3. Under these assumptions, all that is needed to represent the uncertain
space is the predictive mean and the covariance matrix. However, the proposed structure
of the uncertainty space is a modeling assumption and hence might not be accurate.
Nevertheless, from practical point of view, what we seek from the approximate space
is that it can encapsulate the true disturbance realization and that it has a physically
meaningful structure.

Figure 3: Schematic representation of ellipsoidal uncertainty region.

To exploit the entire statistical information at hand, we formulate an stochastic dy-
namic optimization problem of the form

min
u(τ)

E
χ(τ)∈Ωk

[
∫ tk+T

tk

ϕ(z(τ), y(τ), u(τ), χ(τ))dτ

]

(4a)

dz

dτ
= f (z(τ), y(τ), u(τ), χ(τ)) (4b)

0 = g(z(τ), y(τ), u(τ), χ(τ)) (4c)

0 ≥ h(z(τ), y(τ), u(τ), χ(τ)) (4d)

z(tk) = xk, τ ∈ [tk, tk + T ], χ(τ) ∈ Ωk. (4e)
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where symbol E[·] denotes the expectation operator. From the solution of this problem,
we obtain the state and control trajectories z∗(τ), y∗(τ), u∗(τ), τ ∈ [tk, tk +T ] that we can
send to a lower-level controller as set-points. The controller will try to keep the system
at the recommended target. At the next time step tk+1, we obtain the updated state of
the system xk+1 and the updated forecast disturbance information Ωk+1 that we use to
solve the next stochastic problem (4). In this way, feedback is introduced. The resulting
closed-loop D-RTO strategy is as follows

1. Current State and Forecast: At time tk, obtain current state xk, disturbance
mean χ̄(τ) and associated covariance matrix V(τ), τ ∈ [tk, tk + T ].

2. Compute Set-Points: Solve stochastic optimization problem (4). Send optimal
set-points z∗(τ), y∗(τ), u∗(τ), τ ∈ [tk, tk + T ] to low-level control layer.

3. Update: At tk + ∆, set k ← k + 1 and repeat process.

In Figure 4, we sketch this conceptual closed-loop optimization framework and its in-
teraction with the low-level control layer and the forecasting capability. Note that the
disturbance forecast information needs to be updated as frequently as possible in order
avoid deterioration of the economic performance. In principle, we could use only the
predictive mean χ̄(τ) without taking uncertainty into account and solve the determinis-
tic problem (2). With this approach, however, we cannot guarantee satisfaction of the
operational constraints. Note also that, in the presence of uncertainty, the cost function
becomes a probability distribution because it depends on all the possible realizations of
the disturbances. Therefore, optimizing a single instance of the cost function is meaning-
less. In the above formulation, we assumed that the mean of the objective distribution
is an adequate measure of the performance of the system. However, this need not be
the case. For instance, we could also choose the mean-risk approach of Markowitz where
we seek to minimize simultaneously the mean and the variance of the cost distribution.
In this stochastic optimization framework, the structure of the cost function becomes a
design task because it is entirely problem dependent.

The stochastic dynamic formulation is significantly more computationally demanding
than the deterministic dynamic optimization formulation. The reason is that the uncer-
tain space Ωk is also infinite dimensional. To solve the stochastic optimization problem,
we propose to use a sample-average approximation (SAA) approach. The idea is to ob-
tain independent samples from the disturbance distribution to obtain a Ns realizations
{χ1(τ), χ2(τ), ..., χNs

(τ)}. The samples are illustrated in Figure 3. With this, the approx-
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imate stochastic problem becomes

min
u(τ)

1

Ns

Ns
∑

j=1

[
∫ tk+T

tk

ϕ(zj(τ), yj(τ), u(τ), χj(τ))dτ

]

(5a)

dzj

dτ
= f (zj(τ), yj(τ), u(τ), χj(τ)) (5b)

0 = g(zj(τ), yj(τ), u(τ), χj(τ)) (5c)

0 ≥ h(zj(τ), yj(τ), u(τ), χj(τ)) (5d)

zj(tk) = xk, τ ∈ [tk, tk + T ], j = 1, ..., Ns. (5e)

In this formulation, all the variables become a function of the particular disturbance re-
alization except the controls, which are decision variables. One of the key advantages of
the SAA approach is that it is straightforward to implement. Moreover, it is particu-
larly suitable for large-scale systems, because it gives rise to highly structured problems
[21]. This structure can be exploited in parallel computer architectures. The theoretical
properties of the SAA approach have been widely studied in the context of nonlinear pro-
gramming. For instance, it has been shown that solutions of the SAA problem converge
at an exponential rate to the solution of the stochastic counterpart [29]. Although no
formal convergence results exist in the context of infinite-dimensional dynamic optimiza-
tion problems, we can expect that the available convergence guarantees can be used under
some mild assumptions. Note that in the SSA approach the forecast capability can send
the disturbance samples directly to the D-RTO component instead of the full covariance
matrix. This can be useful in large-scale systems because the forecast capability can
run in a centralized manner (consider a large weather model) and send the disturbance
information to multiple D-RTO agents running on smaller dedicated machines.

If we shrink the prediction horizon of the stochastic dynamic optimization problem (2)
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to zero, T → 0, we recover the steady-state RTO problem:

min
u

ϕ(z, y, u, χ(tk)) (6a)

0 = f (z, y, u, χ(tk)) (6b)

0 = g(z, y, u, χ(tk)) (6c)

0 ≥ h(z, y, u, χ(tk)). (6d)

This strategy finds the steady-state economic optimal operating point based only on the
current disturbances χ(tk), that are known. With this, we no longer rely on any fore-
casting mechanism, and the problem reduces to a finite-dimensional NLP problem that is
significantly less computationally expensive. While all these seem to be practical advan-
tages, in the next section we will show that strong economic penalties can be incurred by
making these simplifications.

3.2 Economic Impact of Forecasting

In this section, we discuss some of the advantages of folding forecast information in op-
erations. To do so, we present closed-loop D-RTO simulation studies on a photovoltaic-
hydrogen (PV-H2) hybrid energy system and on a building system. Our objective is to
illustrate how the use of forecast information can add proactiveness to the D-RTO strategy
and how this translates in lower operating costs.

Photovoltaic-Hydrogen Hybrid Energy System

PV-H2 systems have been recently identified as a promising energy storage alternative.
They are particularly attractive for remote areas where grid connections are expensive. In
addition, they can be combined with wind power and diesel generators to provide back-
up power in commercial buildings and industrial facilities. Economic studies have been
performed in the U.S. by NREL [17; 24] and some prototypes have already been built
in Germany, Switzerland and Norway [33]. The system consists of a set of photovoltaic
arrays that generate electric power from the solar radiation. The radiation follows strong
dynamic trends occurring at different time-scales (e.g. day-by-day and seasonal). In
Figure 5, we present solar radiation data at position 41 59’N/87 54’W in the Chicago, IL,
area for year 2004. The data are obtained from the National Solar Radiation Data Base
[26].

The structure of the particular system under consideration has been obtained from
[33] and is sketched in Figure 6. The available solar power from the arrays is used to
satisfy a given user load. Any excess power can be stored in a battery system or can be
used to produce hydrogen by water electrolysis. Hydrogen acts as an energy carrier that
can be stored in pressurized tanks or in a solid material. When the solar power is not
sufficient to satisfy the load, the deficit can be covered by the battery or from the stored
hydrogen. If hydrogen is needed, this can be converted back to electric power through
a fuel cell system. More details can be found in [39]. The dynamic model used in this
study comprises a system-wide power balance motivated from [1; 20]. The power entering
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Figure 6: Schematic representation of photovoltaic-hydrogen hybrid system

through the solar module at a particular time τ is denoted by PPV (τ) (kW). This can
be calculated by using the measured radiation G(τ) (kW/m2) and the module design
characteristics. The electric current goes through a DC-DC converter that seeks to match
the electric current voltage to the voltage of the distribution busbar. This conditioning
process has an inherent efficiency θPV and generates power losses. The remaining power
θPV PPV (τ) is sent to the busbar to satisfy the current load Pload(τ). The excess power can
be used to produce hydrogen in the electrolyzer and/or to charge the battery. In order to
run the electrolyzer, the power extracted PEL(τ) passes through a buck DC-DC converter,
which brings the current voltage down to the operating voltage of the electrolyzer. The
efficiency of this step is θBU . The remaining power θBUPEL(τ) enters the electrolyzer. The
conversion process to hydrogen has an efficiency θEL. The net price for each power unit
produced by the electrolyzer is given by CEL. Since hydrogen can be seen as an asset, the
net price can be negative. The produced power θBUθELPEL(τ) in the form of hydrogen is
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stored in a storage system modeled by the differential equation

dEH2

dτ
= θBUθELPEL(τ) − PFC(τ), (7)

where EH2
(τ) is the total energy stored (kWh) at time τ . The hydrogen state of charge

is defined as

SOCH2
(τ) = 100

EH2
(τ)

Emax
H2

, (8)

where Emax
H2 is the nominal maximum capacity (kWh). A certain amount of power PFC(τ)

can be withdrawn from the storage to feed a fuel cell and generate electric power. The
conversion process has an efficiency θFC . The cost for each unit of power produced by the
fuel cell is given by CFC . The remaining power is then passed through a boost DC-DC
converter that brings the voltage of the current up to the operating voltage of the busbar.
The process has an efficiency θBO. The remaining power θFCθBOPFC(τ) is sent to the
distribution busbar. The system might be able to buy a given amount of power PG(τ)
from the grid in order to balance the system. This power will have a cost CG that depends
on the location and the degree of independence required by the application. In this study,
we assume that the hybrid system is grid independent. Accordingly, we set CG = ∞. In
other words, if the demand cannot be met by the available resources, a high penalty cost
will be paid. Excess power at the busbar can also be dumped to the grid or environment,
which is modeled by variable PD(τ). The cost of dumped power is CD . If the power is
dumped to the grid, this cost becomes an asset (set by net-metering rates). The power
remaining at the busbar can be used to either charge or discharge the battery. The net
battery power PB(τ) is calculated by the balance at the busbar,

PB(τ) = θPV PPV (τ) + PG(τ) + θFCθBUPFC(τ) − PEL(τ) − Pload(τ) − PD(τ). (9)

The stored energy in the battery is given by

dEB

dτ
= PB(τ), (10)

and the state-of-charge is,

SOCB(τ) = 100
EB(τ)

Emax
B

. (11)

The fixed model inputs are PPV (τ) and Pload(τ). The degrees of freedom (controls) are
PEL(τ), PFC(τ), PG(τ), and PD(τ). Although this is a relatively simple hybrid, the
operating decisions are complicated. For instance, the round-trip efficiency of the hydrogen
storage system can be 70% or less, while that of the battery is around 90%. Therefore,
larger amounts of power are lost if energy is decided to be stored as hydrogen. In addition,
operating costs associated with the electrolyzer and the fuel cell must be taken into account
(e.g., water and oxygen supplies). On the other hand, the battery capacity is usually small,
giving a few days of autonomy. Consequently, it might not be immediately evident which
component is the optimal one to store and provide energy at a particular time. The
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Figure 7: Impact of forecast horizon on economic performance of PV-H2 system.

operational problems can become much more complicated if the system is connected to
other devices with different efficiencies and operating costs, such as thermal solar plants,
wind turbines, and diesel generators.

The operational objectives in these systems are to maximize hydrogen production,
minimize operating costs, and satisfy the loads at all times. To obtain a reference for the
best possible economic performance of the PV-H2 system, we solve a dynamic optimization
problem with perfect solar radiation information and a prediction horizon of 8760 hours
(one year). The problem formulation is given in equation (12). In the following, we
refer to this strategy as the open-loop strategy. The electrolyzer conversion efficiency was
assumed to be 75%, while that of the fuel cell was assumed to be 50%. Both efficiencies
were obtained from [36]. The unitary operating cost for the electrolyzer was assumed
to be 7.4 $/kg-H2 and was obtained from [31]. For simplicity, we assumed equal fuel
cell operating costs. A constant load of 1 kW and a maximum peak PV power of 5 kW
were assumed. To solve this problem, we apply an implicit Euler discretization approach,
implement the resulting NLP problem in AMPL [11], and solve it with the state-of-the-art
optimization solver KNITRO c© [5]. The solution of this problem provides the optimal plan
for the electrolyzer, fuel cell, and battery powers that satisfy the load in a cost-optimal
manner. The minimum operating costs for the electrolyzer and fuel cell are on the order of
$1,000. The total hydrogen produced is 380 Nm3 which is equivalent to 1140 kWh. This
is enough hydrogen to fulfill a load of 1 kW continuously for 45 days. Since the open-loop
strategy uses all the available radiation information over one year, we use the minimum
cost as a reference for the best achievable economic performance of the system. We then
evaluate the performance of closed-loop D-RTO strategies with perfect forecast radiation
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information with variable prediction horizons. This provides a measure of the economic
impact of adding more and more forecast information to make the control decisions. The
horizons considered are 1 hr, 3 hr, 6 hr, 9 hr, 12 hr, 1 day, 3 days, 7 days, and 14
days. From each scenario, we compute the relative costs using the 1-year horizon cost as
reference. The scenario corresponding to 1 hr represents the economic performance of a
purely reactive strategy (such as closed-loop RTO).

min
PEL(τ), PFC(τ),
PG(τ), PD(τ)

∫ tk+T

tk

[CELPEL(τ) + CFCPFC(τ) + CGPG(τ) + CDPD(τ)] dτ

dEH2

dτ
= θBUθELPEL(τ) − PFC(τ) (12a)

SOCH2
(τ) = 100

EH2
(τ)

Emax
H2

(12b)

PB(τ) = θPV PPV (τ) + PG(τ) + θFCθBUPFC(τ)

−PEL(τ) − Pload(τ) − PD(τ) (12c)

dEB

dτ
= PB(τ) (12d)

SOCB(τ) = 100
EB(τ)

Emax
B

(12e)

0 ≤ SOCH2
(τ) ≤ 100 (12f)

0 ≤ SOCB(τ) ≤ 100 (12g)

EH2
(tk) = Ek

H2 (12h)

EB(tk) = Ek
B, τ ∈ [tk, tk + T ] (12i)
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Figure 8: Impact of forecast horizon on fuel cell power profiles.

The first results of this economic study are presented in Figure 7. Several interesting
and unexpected conclusions can be drawn: (1) the relative operating costs decay quickly
to zero as the horizon is increased; (2) for a purely reactive RTO strategy (1 hr), the
relative costs can go as high as 300%; and (3) the minimum cost can be obtained with a
short forecast (14 days). This last result has important practical implications because it
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implies that nearly optimal performance can be guaranteed for relatively short horizons.
The economic penalty of using a forecast of 1 day is just an increase of 10% in relative
costs, whereas the penalty for a forecast of 12 hr goes up to 31%. This implies that a
practical forecast horizon should be sufficiently long to capture the periodicity of the daily
radiation. The reason for these strong economic penalties becomes evident from Figure 8.
Here, we present the power profiles for the fuel cell for both the optimal open-loop and the
12 hr closed-loop cases. Note that shorter forecasts induce much more aggressive control
actions, which in turn affect the operating costs. As we increase the prediction horizon,
the system is allowed to react more proactively and plan more carefully, resulting in
smoother controls and lower costs. In Figure 9 we present the hydrogen storage profiles for
increasing forecast horizons. The 14-day forecast produces the same amount of hydrogen
as the optimal open-loop strategy. On the other hand, a 1-hr forecast strategy can lead to
large hydrogen losses (around 50%). The main reason is that, as the horizon is increased,
the operating strategy can exploit the battery capacity more efficiently and avoid power
losses arising in the hydrogen storage loop.

We emphasize that steady-state RTO is the state of the art in industrial control tech-
nology and has brought significant economic benefits. The main reason is that it can
manage multiple energy and material sources and identify the most cost-efficient conver-
sion routes through the simulation model. In addition, it can adapt the operating point
as the disturbances affecting costs change in time. Nevertheless, from the present study,
one can see that the performance of RTO is far from the maximum potential performance.
D-RTO inherits all the favorable properties of RTO, but it can also incorporate distur-
bance forecast information. As can be seen, adding this information directly reflects in
significantly more cost-efficient operations.
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Figure 9: Impact of forecast horizon on hydrogen production.

Building System

Commercial buildings are energy-intensive facilities where considerable cost savings can
be realized through optimal operating strategies. As an example, researchers have found
that the thermal mass of a building can be used for temporal energy storage [3]. With
this, it is possible to optimize the temperature set-points trajectories during the day to
shift the heating and cooling electricity demands to off-peak hours and thus reduce costs.
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For instance, a cooling strategy that has been used in commercial facilities consists in
cooling down as much as possible the building at night when electricity is cheaper so as to
reduce the amounts of cooling needed during the day when electricity is more expensive
[4]. Since the thermal response of the building can be slow (order of hours), this can be
exploited to reduce the on-peak electricity demand the next day. However, we point out
that an issue might arise in the implementation of these peak-shifting strategies: namely,
the optimal timing at which it is decided to start the cooling at night directly depends
on the ambient temperature expected the next day. In addition, special care needs to be
taken to stay within the thermal comfort zone at all times. Motivated by these factors,
in this case study we analyze the effect of adding forecast temperature information in a
D-RTO strategy. We demonstrate that the D-RTO strategy can be easily generalized to
consider simultaneous peak-shifting for both cooling and heating during the entire year
and to consider multiple energy sources.

Ambient

Temperature

Wall

HVAC

System

Figure 10: Schematic representation of building integration with heating, ventilation, and
air-conditioning (HVAC) system.

The building system under consideration is sketched in Figure 10. We assume a total
volume of 10,000 m3 and a total surface area of 3,500 m2. The building is equipped with a
gas furnace, an electric heater, and an electric cooling system. Ambient temperature data
at position 40 30’N/80 13’W in the Pittsburgh, PA, area for year 2006 were obtained from
the National Weather Service Office [25]. The temperature profile is presented in Figure
11. As with solar radiation, strong stochastic effects can be observed at different scales. As
opposed to solar radiation, however, accounting for variations at night is also necessary.
The dynamic response of the building internal temperature is modeled by an ordinary
differential equation; the building wall is modeled by a second-order PDE that accounts
for conductive effects along the wall. The ambient temperature enters the model through
a Neumann boundary condition at the wall external face. The basic heat-transfer model
structure has been obtained from [6]. To analyze the effect of adding forecast information
of the ambient temperature, we follow the approach described in the previous section. We
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first solve an open-loop dynamic optimization problem with perfect forecast information
and a prediction horizon of one year. The optimization problem has the following form:

min
ϕc(τ),ϕgas

h
(τ),ϕelec

h
(τ)

∫ tk+T

tk

[

Celec(τ)ϕelec
c (τ) + Celec(τ)ϕelec

h (τ) + Cgasϕ
gas
h (τ)

]

dτ

CI ·
∂TI

∂τ
= ϕgas

h (τ) + ϕelec
h (τ) − ϕelec

c (τ) − S · α′ · (TI(τ) − TW (τ, 0)) (13a)

∂TW

∂τ
= β ·

∂2TW

∂x2
(13b)

0 = α′ (TI(τ) − TW (τ, 0)) + k ·
∂TW

∂x

∣

∣

∣

∣

(τ,0)

(13c)

0 = α′′ (TW (τ, L) − TA(τ)) + k ·
∂TW

∂x

∣

∣

∣

∣

(τ,L)

(13d)

Tmin
I ≤ TI(τ) ≤ Tmax

I (13e)

TI(0) = T k
I (13f)

TW (0, x) = T k
W (x) (13g)

where TA(τ) is the ambient temperature, TI(τ) is the internal temperature, and TW (τ, x)
is the wall temperature (all of them in oC). The controls are the gas heating power ϕgas

h (τ),
the electric heating power ϕelect

h (τ), and the electric cooling power ϕelec
c (τ) (all of them in

kcal/hr). The model parameters are summarized in Table 1. The base wall thickness was
assumed to be 0.20 m. We assume an on-peak electricity price of 0.12 $/kWh available
from 9 a.m. to 10 p.m. The off-peak price is 0.04 $/kWh. A demand rate of 16 $/kW is
charged for the monthly peak electricity demand. The natural gas price is fixed at 0.10
$/kWh. Average prices were obtained from [35]. The thermal comfort zone is assumed
to be 69-77oF . The above PDE-constrained optimization problem was discretized using
a central difference scheme in the axial dimension and an implicit Euler scheme in time.
The resulting NLP was implemented in AMPL and solved with the solver IPOPT [37].

From the solution of the open-loop dynamic optimization problem, we obtain the
optimal cost and use it as a reference for the best economic performance of the system.
The resulting minimum annual cost is $28,672 (demand cost is approximately 60% of total
cost). We then solve closed-loop D-RTO problems over the entire year with prediction
horizons of 1, 3, 6, 9, 12, 16, and 24 hr. An update time ∆ of 1 hr was used. The
relative costs (excluding demand costs) are presented in Figure 12. As can be seen, for
a purely reactive strategy, the relative costs can go as high as 24% as a result of lack of
proactiveness. In addition, we observe that an horizon of 24 hr is sufficient to achieve
the minimum potential costs. This is explained by the fact that the thermal mass of the
building cannot be used for a long time because there exists thermal losses through the
wall. In fact, we found that as the building insulation is enhanced, the costs can be further
reduced. In Figure 13, we present the relative costs with an increased wall thickness of 0.3
m. As can be seen, using a forecast of 24 hr can reduce costs by 45%. On the other hand,
when the building is poorly insulated, increasing the forecast horizon does not reduces
the costs. In other words, the economic potential of adding forecast information is tightly
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related to the ability to store energy in the system, which is in turn influenced by the
building characteristics.

In Figure 14 we present the temperature set-points for the 24-hr and 1-hr forecast
cases during 10 days in the winter season. As can be seen, the 24 hr forecast strategy
determines the optimal timing at which electric heating needs to be turned on at night.
Note that the optimum timing and the peak temperature depend on the expected ambient
temperature. On the other hand, the reactive strategy is not able to foresee the structure
of the electricity prices. This strategy suggests that the optimal policy is to keep the
temperature set-point always at the lowest possible value in order to reduce the overall
heating costs. Although this strategy seems intuitive, it is clearly not optimal if the
structure of the electricity rates and the thermal mass of the building can be exploited.
From Figure 15, we observe that the optimal cooling policy during the summer follows
a peak-shifting strategy. The resulting policy recommends to let the building cool down
at night until the temperature gets close to the lower limit of the comfort zone. During
the day, the building is allowed to heat up progressively until it reaches the highest limit
of the comfort zone. Similar results have been obtained by Braun and coworkers [4].
The proposed closed-loop D-RTO framework can account for time variations and correct
the policy automatically on-line. In this simplified study the cooling requirements are
negligible since we only account for heat gains and losses through the wall. In addition,
the day-night temperature difference at this location is quite large during summer, as seen
in Figure 15. A more detailed study should also account for internal heat gains, radiation
heating, air recycling, and humidity factors. Nevertheless, with these preliminary results,
we would like to illustrate that the performance of operating strategies can benefit from
anticipating the weather conditions.
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Figure 11: Ambient temperature in Pittsburgh PA, 2006.

3.3 Gaussian Process Modeling

In the previous sections, we have demonstrated that important economic benefits can
be realized by using weather forecast information. But several questions arise: Can we
get accurate forecast information? What techniques can be used? In which form is
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Figure 12: Impact of forecast horizon on economic performance of building system. Base
insulation.
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Figure 13: Impact of forecast horizon on economic performance of building system. Well-
insulated building.

the information needed? What is the effect of neglecting uncertainty? In this section,
we present a technique to derive empirical forecast and uncertainty information based
solely on data. This will be used to explain how to connect the closed-loop optimization
framework with the forecast capabilities. We show that, while the empirical strategy is
practical and useful, it has important limitations. This motivates our interest in obtaining
more consistent forecast information through a detailed weather model.

The most straightforward forecasting alternative is to use historical data to construct a
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Figure 14: Optimal temperature set-points of closed-loop D-RTO with 1 hr and 24 hr
forecasts. Comfort zone is highlighted in gray.
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Figure 15: Internal temperature set-point and ambient temperature during 10 days in
summer season. Closed-loop D-RTO with a forecast of 24 hr was used. Comfort zone is
highlighted in gray.

time-series regression model. An approach that has recently received attention is Gaussian
process (GP) modeling [28]. The idea is to construct the regressive model by specifying
the structure of the covariance matrix rather than the structure of the dynamic model
itself as in the Box-Jenkins approach [2]. We have found that this feature makes the GP
approach more flexible. To illustrate the use of this technique, we construct a forecast
model for the solar radiation by regressing the future radiation (output) χk+1 to the current
and previous radiation values χk, ..., χk−N that can be obtained from available data bases
[26]. In this case, N is selected long enough to capture the day-to-day periodicity of the
radiation. With this, we define the model inputs as Xj = [χk, ..., χk−N ] and the outputs as
Yj = χk+1. We collect a number of input-output pairs j = 1, ..., NT to obtain the training
data sets. In this case, we assume that the inputs are correlated through an exponential
covariance function of the form

V(Xj,Xi, η) := η0 + η1 · exp

(

−
1

η2

‖Xj − Xi‖
2

)

, (14)

where η1, η2 and η3 are hyperparameters estimated by maximizing the log likelihood func-
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Table 1: Building model parameters.
Parameter Value Units Meaning

β 0.001 m2

hr
thermal diffusivity of wall

CI 34,800 kcal
oC

internal heat capacity
k 0.1 kcal

m·hr·oC
conductivity of wall

S 3,500 m2 wall total surface area
A 1,000 m2 usable total surface area
V 10,000 m3 building total volume
α′ 4 kcal

m2·hr·oC
convective heat transfer coefficient (wall inner side)

α′′ 10 kcal
m2·hr·oC

convective heat transfer coefficient (wall outer side)
L 0.20 m wall thickness

Celec 0.12 $
kWh

off-peak electricity cost

Celec 0.04 $
kWh

on-peak electricity cost

Cgas 0.10 $
kWh

natural gas cost

tion:

log p(Y|η) = −
1

2
YV−1(X,X, η)Y −

1

2
log det(V(X,X, η)). (15)

Once the optimal hyperparameters η∗ are obtained, we can compute mean predictions YP

with associated covariance VP at a set of test points XP . In our context, these are the
time-varying radiation trends. The resulting GP posterior distribution is:

YP = V(XP ,X, η∗)V−1(X,X, η∗)Y (16a)

VP = V(XP ,XP , η∗) − V(XP ,X, η∗)V−1(X,X, η∗)V(X,XP , η∗) (16b)

We use approximately 400 training data sets from the Chicago, IL, data presented in
Figure 5. In Figure 16, we present the mean forecast and 100 samples drawn from the
normal distribution N (YP ,VP ) on a particular day. Note that the forecast distribution
is able to capture the true radiation values. In addition, the variance is small at night, as
suggested from physical intuition. This implies that the assumed covariance structure is
reasonable.

To illustrate the importance of considering the forecast uncertainty explicitly in the D-
RTO formulation, we revisit the case study for the photovoltaic-hydrogen system described
in Section 3.2. A GP model is used to obtain the forecast information. We consider two
closed-loop optimization strategies. The first one is a D-RTO deterministic strategy that
uses only the mean forecast coming from the GP model. The second is a stochastic
D-RTO strategy that samples the uncertain space predicted from the GP model. A
forecast horizon of one day is used. In Figure 17, we present the hourly operating costs
for both closed-loop strategies. As can be seen, the deterministic strategy is unable
to satisfy the load, which is indicated by large penalty costs. On the other hand, the
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Figure 16: Solar radiation samples of predicted forecast distribution.

stochastic strategy is always able to satisfy the load. Note that at a particular time tk
the closed-loop optimizer dictates the future power production set-points that will satisfy
the demand. Since the deterministic strategy does not take all possible realizations of the
solar radiation into account, it can overestimate the actual solar radiation and produce
less power than what is required. On the other hand, the stochastic strategy does take all
possible realizations into account and ensures that no matter what the actual radiation
will be, enough power will always be available. This enhanced robustness is particularly
critical in off-grid or stand-alone systems. Nevertheless, we emphasize that this robustness
can also lead to significant deterioration of economic performance if the uncertainty bounds
are wide. From Figure 16, we see that the uncertainty bounds obtained from the Gaussian
model are wide during the day. We have also found that the GP model is not able to
capture long-term and spatial trends. Another issue that arises in this context is that
obtaining measurement data is expensive and is usually not available on site. Motivated
by these limitations, in the following section we explore the potential of using a detailed
weather model to obtain more accurate and cheap forecast information. In addition, we
present extensions to extract detailed uncertainty information in a systematic manner and
in a form that is consistent with the proposed stochastic D-RTO strategy.
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Figure 17: Performance of closed-loop deterministic and stochastic D-RTO strategies with
forecast horizon of 24 hr.

4 Uncertainty Quantification

In this section we describe the development for an uncertainty model for the ambient tem-
perature and ground solar radiation. The ground solar radiation uncertainty results from
the incoming solar radiation and is driven through the complex and chaotic atmospheric
processes. To our knowledge, there are no analytic or parametric models that describe
this type of uncertainty. The reason is, in part, that solar radiation is included in the
Earth energy budget feedback loop, and modeling it requires good knowledge of the state
of the atmosphere. Furthermore, several physical processes involved in this system are not
well understood or modeled. Parametric models calibrated to certain locations and time
frames have been used to ascertain the radiation levels on the ground [32; 14]; however,
the uncertainty in the radiation was never ascertained.

The major sources of uncertainty in solar radiation include cloud cover, temperature,
and humidity [32]. Several models that rely on the minimum and maximum daily tem-
perature have been devised in [32; 14]. This dependence implies a dynamic aspect of
the uncertainty. For instance, the variation of the radiation is tightly connected with the
probability of having or not having cloud cover and with the cloud type.

We employ a numerical weather prediction (NWP) model to assess the forecast un-
certainty in the temperature and solar radiation. First we develop a model for a priori
uncertainties in the temperature because of its tight connections with relative humidity
and cloud cover. The uncertainties in the solar radiation as well as in the temperature
field are then evolved though the NWP model dynamics.

4.1 Numerical Weather Prediction Model – WRF

Weather Research and Forecasting (WRF) model is a state-of-the-art mesoscale numerical
weather prediction system designed to serve both operational forecasting and atmospheric
research needs [30]. The current version of the model, WRF 3.1, with the default settings
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is used for the forecast and uncertainty estimation in the temperature and radiation fields.
The solar radiation model within WRF is based on the Dudhia scheme [10].

We briefly describe the experimental setting. The data used in the WRF model corre-
sponds to North American Regional Reanalysis data set that covers 160E-20W, 10N-80N,
with a resolution of 10 minutes of a degree. There are 29 pressure levels (1000-100 hPa,
excluding the surface) and a three-hour output frequency. The time period under consid-
eration ranges from August 1-30, 2006. This data set includes meteorological fields such
as temperature, wind, and humidity, as well as geophysical forcings such as soil albedo
and vegetation type.

The ground solar radiation field is predicted by the model physics based on the initial
conditions and WRF forecast fields.

4.2 Ensemble Approach to Uncertainty Quantification

The uncertain model states are described through random variables. We consider random
variables with a Gaussian probability density function N (µ,B). This is a reasonable
assumption for large-scale applications with many uncertain parameters such as WRF.
By using the Gaussian distribution, the uncertainty is described completely by the random
variable mean µ and covariance matrix B.

The covariance matrix is typically large (grows with the square of the number of
uncertainty states) and hence in practice is approximated with a reduced model [8] or
with an ensemble of realizations [27]. We next discuss the latter approach.

Uncertainty Representation via Ensemble of Realizations

The covariance matrix can be approximated from an ensemble of realizations in the follow-
ing way. For n variables, the (unbiased) covariance matrix B ∈ R

n×n can be approximated
by an ensemble of m realizations, xi, 1 ≤ i ≤ m, with

B ≈
1

m − 1

m
∑

i=1

(xi − x) (xi − x)T , x =
1

m

m
∑

i=1

xi .

One also has

B = D
1

2 CD
1

2 , Ci,j =
Bi,j

√

Di,i

√

Dj,j

=
Bi,j

σiσj

=
σ2

i,j

σiσj

, 1 ≤ i, j ≤ n ,

where C is the full symmetric correlation matrix and D is a diagonal matrix holding the
local variances (Di,i = σ2

i ).
To explain how the uncertain variables are evolved by the model dynamics, we intro-

duce the tangent linear and adjoint models and make some simplifying assumptions.

Tangent Linear and Adjoint Models

We denote by M the (non)linear model that evolves the state y from time index i to i+1:

y(ti+1) = M(y(ti)) .
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The tangent linear model (TLM), M , describes the propagation of small perturbations
δy(ti) through the system M:

M (y(ti) + δy(ti)) = M (y(ti)) +
dM

dy
· (δy(ti)) + O(δy2(ti)) →

δy(ti+1) = M · δy(ti) + O(δy2(ti)) , M =
dM

dy
.

The transpose of the TLM is called the adjoint of the TLM model, M∗.

Error Propagation in the Presence of Model and Data Errors

Consider the true solution of the model at time ti, ytrue(ti). The numerical model is not
perfect, and the true solution at ti+1 is given by

ytrue(ti+1) = M (ytrue(ti)) + η(ti) ,

where η represents the model errors that are considered unbiased with covariance Q,
η ∈ N (0, Q).

The initial solution is not known exactly. Therefore, the numerical solution at time
ti+1, y(ti+1), is obtained from the model evolution of the true solution perturbed with
errors that are represented by a set of unbiased random variables ε(t), ε ∈ N (0, B):

y(ti+1) = M (ytrue(ti) + ε(ti)) ,

We remark that y(ti+1) is a random variable, and we compute its covariance matrix P :

P =(y(ti+1) − ytrue(ti+1)) (y(ti+1) − ytrue(ti+1))
T = (17)

(M (ytrue(ti) + ε(ti)) −M (ytrue(ti)) + η(ti)) ·

· (M (ytrue(ti) + ε(ti)) −M (ytrue(ti)) + η(ti))
T .

The following assumptions are made:

• Errors due to initial conditions modeled by ε and model errors (η) are uncorrelated,
and

• the error growth is well approximated by the linearized model.

Therefore we have

(M (ytrue(ti) + ε(ti))) η(ti)T = 0

and

M (ytrue(ti) + ε(ti)) −M (ytrue(ti)) = M · ε(ti) .
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It follows that (17) becomes

P = (M · ε(ti) + η(ti)) (M · ε(ti) + η(ti))
T ,

= Mε(ti)εT (ti)MT + M · ε(ti)η(ti)T + η(ti)εT (ti)MT + η(ti)η(ti)T ,

= MBM∗ + Q . (18)

Equation (18) represents an approximation of the error covariance P obtained by the
propagation of the error covariance B through the linearized model in the presence of
model errors.

The WRF model propagates the uncertainties in the temperature field according to
(18). However, in order to estimate P which characterizes the forecast uncertainty, we
first need to specify the “background” covariance B. We next introduce a method that
can be used to estimate B.

The NCEP Method for Covariance Estimation

The NCEP (former NMC) method [27; 12; 16] has been used to estimate the spatial
uncertainty information in numerical weather prediction. An ensemble of realizations y
is used to approximate the covariance matrix. Then differences among several perturbed
forecasts verifying at the same time are used to approximate the covariance matrix [27; 7],

B ≈ (y(t48h) − y(t24h))(y(t48h) − y(t24h))T ,

where the time indices are not necessarily restricted to the indicated values and (. . . )
represents the ensemble average. This approach typically results in a low-rank noisy ap-
proximation; however, one can estimate characteristic correlation distances (e.g., average
radius within one standard deviation). A new covariance matrix can be constructed by
using a Gaussian distribution that fits the empirical correlation distance.

An Uncertainty Model for Temperature

The NCEP method is used to construct an uncertainty model for the temperature field.
The inferred characteristic horizontal correlation distance for this experiment is approxi-
mated by LH = 2 degrees and by LV = 500 meters in the vertical direction. The spatial
correlation function between two points y(t, xi, yi, zi) and y(t, xj, yj, zj) is then given by

Ci,j = exp

(

−
(xj − xi)

2 + (yj − yi)
2

L2
H

−
(zj − zi)

2

L2
V

)

. (19)

The correlation function (19) is used to construct the covariance matrix from which the
initial ensemble for the temperature field is drawn.

We consider that the true initial temperature field is not known exactly but is correctly
represented in the probabilistic framework by an unbiased random vector εT (t0). The
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initial temperature field, T (t0), is properly characterized by a random vector TB(t0) with
the following properties:

TB(t0) = T (t0) + εT (t0) , εT (t0)εT (t0)T = BTT , εT (t0) = 0 ⇒

⇒ TB(t0) ∈ N (T (t0), BTT ) .

The initial temperature field is approximated by an m-member ensemble drawn from
BTT :

TB
[i](t0) = T (t0) + G (σ I) C (σ I) GT ξi , 1 ≤ i ≤ m , ξ ∈ N (0, 1) ,

where error variance is set to σ = 1, and G transforms the unbalanced variables into full
quantity for temperature. Matrix G is chosen to be σG(zi)I, where

σG(zi) = T (t0, zi)/ max
i

(

T (t0, zi)
)

.

Therefore, the temperature perturbation depends on the average temperature on the cor-
responding layer, and most (99%) of the members have a variation of ±5K, which is a
sensible value selected for this experiment.

Validation of the uncertainty temperature model. We next validate the forecast
and uncertainty temperature model by using independent observations described in Sec.
3.2 for the Pittsburgh area [25]. In Figure 18 we show an ensemble of 30 members
for temperature realizations, the expected temperature value, and an independent set of
observations for five days (Aug. 1–6, 2006). The realization’s envelope encloses the true
(measured) solution for most time indices, except for day three, which indicates a possible
sensor malfunction. Therefore the uncertainty model is well approximated at least for this
test case.

Spatial error correlations for the temperature field. The ensemble forecast pro-
vides sufficient information to describe the spatial error distribution. As described in Sec.
4.2 we illustrate the horizontal correlation field for the temperature error in the Pitts-
burgh area [25]. In Figure 19 we show the error correlation that corresponds to 10 AM
August 1 and August 2, 2006. The noise observed in the correlation field can be reduced
by increasing the ensemble size.

4.3 Uncertainty Model for Radiation

It is known that the solar radiation is sensitive to variations in the temperature field [32].
To this end, we use the initial temperature ensemble developed in the previous section to
characterize the uncertainty in both the forecast temperature and solar radiation. In other
words, the weather model is used to evolve the uncertainty in the initial temperature field
to uncertainty in the solar radiation. The resulting radiation and temperature ensembles
are then used to construct approximations to the first two statistical moments of the
radiation and temperature uncertainty variables.
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Figure 18: Forecast and measured temperature for the Pittsburgh airport area during
August 1–6, 2006.
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Figure 19: Correlation field for the temperature errors in the Pittsburgh area at 10 AM
on consecutive days.

Define y = [T, ν, ỹ]T , where T represents the temperature, ν the ground solar radiation,
and ỹ the rest of the state vector y. We remark that the ground solar radiation is not a
model input and its prior distribution is not explicitly present in the weather model. The
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temperature covariance, BTT , is evolved in time as described in (18):




PT,T PT,ν PT,ỹ

PT,ν Pν,ν Pν,ỹ

PT,ỹ Pν,ỹ Pỹ,ỹ





∣

∣

∣

∣

∣

∣

εT (t0) = M
(

TB(t0) = T (t0) + εT (t0), ỹ
)

. (20)

Further, the covariance matrix for the radiation can be approximated by

Pν,ν = MT→νBT,T M∗
T→ν + Q , (21)

where MT→ν represents the TLM for ν(ti+1) = MT→ν (T (ti), ỹ(ti)); that is, MT→ν is the
subset of equations involved in obtaining the solar radiation from temperature.

Under these considerations, the uncertainty in the temperature field is completely de-
scribed by the expected value on the model forecast and covariance matrix PT,T . Similarly,
the uncertainty in the ground radiation is also completely specified by the expected value
of the ensemble forecast and covariance Pν,ν .

The solar radiation forecast for the Pittsburgh area that corresponds to the tempera-
ture profile shown in Figure 18 is illustrated in Figure 20. The prediction for this case is
relatively clustered, albeit a slight variation can be noticed during the day. Other regions,
not shown in this study, present a different outcome in the daytime forecast.
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Figure 20: Forecast solar radiation for the Pittsburgh airport area during August 1–6 ,
2006.

5 Discussions and Future Work

In this work, we have demonstrated that significant costs reductions, on the range of 18-
75 %, can be achieved in integrated energy systems by using operation technology that
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can anticipate the weather conditions in a systematic manner. In this section, we discuss
scientific, engineering, and infrastructure obstacles that would need to be overcome.

5.1 Possible Deployment Strategy

In our calculations of the building model and the hybrid energy system, the largest com-
putation time by far was taken by the calculation of the weather uncertainty model. On
the other hand, should such a system be deployed on a regional or national scale, nearly
spatially collocated customers could share virtually all of the information uncertainty
calculation. This fact points out to a possible deployment strategy where a dedicated
supercomputer is used to carry out the weather uncertainty portion of the calculation,
regional or local Gaussian process modeling is done in a dedicated climate data center,
and the control strategy is computed either in the customer facility or residence or by
a vendor that runs one thread per customer and accesses the data center to obtain the
uncertainty information at the required location.

5.2 Scientific and Technological Advances Needed

The assessment of the impact of our approach is based on a relatively limited number
of detailed building and hybrid energy models. Therefore, one immediate need is an
expansion of the database of models for which we can run our experiments, as well as
carrying out such experiments at multiple locations (we point out, nonetheless, that our
experiments were run in fairly high density areas, so we expect that our performance
results will extrapolate to those cases as well). More detailed models may result in more
savings as well as more computational needs. In addition, it is conceivable that advanced
building technologies would result in the addition of sensors whose information should
also be incorporated in the control strategy; a proper mathematical formulation for that
case needs to be developed.

In terms of the further scientific advances needed, immediate needs include the exten-
sion of Gaussian process approach used in both space and time in a way that allows for
scalable calculations when such a system is deployed on a regional scale.

In our examples we have assumed that the end user of our approach resides at one
of the grid points of the mesh where the calculation was carried out; the computational
and development requirements are expected to be much larger for off-grid uncertainty
quantification.

Perhaps the area with the deepest need is the one of uncertainty quantification of
weather models, where many problems that would result in superior models are not yet
solved. These include appropriate uncertainty models that account for a multiscale ap-
proach (such as a coupled national-regional model), as well as improved ways of assessing
the effects of initial choices of the uncertainty parameters on the end assessments.

Important advances are also needed in tools that are suitable for large-scale on-line
stochastic optimization. These include adaptive sampling, which would result in a reduc-
tion of the number of scenarios that need to be considered for a given confidence level, as
well as iterative methods for computing the optimization set-point.
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