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OPTIMAL EXPLICIT STRONG-STABILITY-PRESERVING GENERAL
LINEAR METHODS: COMPLETE RESULTS∗

EMIL M. CONSTANTINESCU† AND ADRIAN SANDU ‡

Abstract. This paper constructs strong-stability-preserving general linear time-stepping methods that
are well suited for hyperbolic PDEs discretized by the method of lines. These methods generalize both
Runge-Kutta (RK) and linear multistep schemes. They have high stage orders and hence are less susceptible
than RK methods to order reduction from source terms or nonhomogeneous boundary conditions. A
global optimization strategy is used to find the most efficient schemes that have low storage requirements.
Numerical results illustrate the theoretical findings.

Key words. general linear methods, method of lines, strong-stability-preserving, monotonicity

AMS subject classifications. 65M20, 65L06

1. Introduction. The numerical solution of time-dependent partial differential equa-
tions and nonlinear hyperbolic conservation laws are of great practical importance as they
model diverse physical phenomena that appear in areas such as mechanical and chemical
engineering, aeronautics, astrophysics, meteorology and oceanography, financial modeling,
and environmental sciences. Representative examples for nonlinear hyperbolic conservation
laws include gas dynamics, shallow-water flow, groundwater flow, non-Newtonian flows,
traffic flows, and advection and dispersion of contaminants.

In the method of lines approach the temporal and spatial discretizations are inde-
pendent. Traditionally Runge-Kutta (RK) and linear multistep (LM) methods have been
used for the integration of ODEs, DAEs, and semi-discrete, time-dependent PDEs. Gen-
eral linear (GL) methods [2, 4, 15, 22, 42], under various names (e.g., hybrid methods,
pseudo Runge-Kutta) represent a natural generalization of both Runge-Kutta and linear
multistep methods that are aimed at improving their stability and accuracy while taking
advantage of precomputed information. They use both internal stages such as RK methods
and information from previous solution steps such as LM methods.

The development of GL methods is challenging because of the order and stability con-
straints. Moreover, the solutions to hyperbolic PDEs may not be smooth: shock waves
or other discontinuous behavior can develop even from smooth initial data. In such cases
strong-stability-preserving (SSP) numerical methods that satisfy nonlinear stability re-
quirements are necessary to avoid nonphysical behavior (spurious oscillations, etc.) [40, 17].
This aspect is illustrated by one of our numerical examples in Fig. 7.3.a and explained
later in this manuscript. The GL methods very robust schemes with a large number of
degrees of freedom; however, little work has been done in the context of SSP methods.
Previous work includes GL methods for linear problems or simplified GL representations
[28, 43, 17, 26].

GL methods preserve the linear invariants of the underlying system. They are thus
well suited for consistent discretizations of conservation laws, for example, conservation of
mass and momentum. However, the algebraic complexity of the order and stability condi-
tions prevents one from analytically crafting effective high-order GL methods. Therefore,
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numerical searches are employed in practice. In this context it is desirable to find the global
optimal solution as exemplified by the search for optimal, SSP fourth-order explicit RK
methods [45, 33].

In this research we are concerned with the numerical solution of nonlinear time-
dependent partial differential equations in the method of lines approach. In this framework,
the discretization of spatial operators yields a set of coupled time-dependent ordinary dif-
ferential equations:

y′(t) = f
(
t, y(t)

)
, t0 ≤ t ≤ tFinal , y(t0) = y0 , (1.1)

where y ∈ RN is the semi-discrete state and f represents a discrete version of the spatial
operators. System (1.1) is nonauthonomous. For brevity, however, we skip the time argu-
ment of f , unless noted otherwise. In this work we do not consider the adjoint operator of
f [39], that is, its downwind version.

The purpose of this work is twofold. First, we investigate the theoretical aspects of
the SSP property for a class of GL methods that it is most likely to be useful in practice
– schemes with multiple stages and multiple steps. Second, we construct new optimal SSP
time-stepping schemes that can be readily used in practice. Specifically, in this study (i)
we develop a transformation that allows multistage-multistep methods to be expressed as
GL methods; (ii) for this class of methods we find the global optimal explicit schemes of
orders 2, 3, and 4 with any combination of 2, 3, and 4 stages and steps; and, (iii) we
explore the construction of such methods with high stage orders. To our knowledge these
are the first explicit multistage methods with high stage orders.

The rest of the paper is organized as follows. In Sec. 2 we present background theory
on GL methods and SSP time-stepping schemes. The representation of the proposed SSP
GL methods is given in Sec. 3. In Sec. 4 we introduce a transformation that converts
the proposed representation to the standard GL framework, and in Sec. 5 we present the
formulation of the optimization problem for finding the coefficients of the methods. We
discuss the proposed methods and present several schemes in more detail in Sec. 6. Nu-
merical results with several GL schemes are presented in Sec. 7, and a summary discussion
is given in Sec. 8.

2. General Linear Methods. Various types of GL methods were introduced in the
1960s either as extensions of Runge-Kutta methods [19] to multistep methods or vice versa
[3, 16]. The current representation of GL methods and their name were coined by Burrage
and Butcher [2] in the following way. Denote the solution at the current step (n − 1) by

an r-component vector y[n−1] =
[y(1)

[n−1] y(2)
[n−1] . . . y(r)

[n−1]

]T

, which contains the available

information in the form of numerical approximations to the ODE (1.1) solutions and their

derivatives at different time indices. The stage values (at step n) are denoted by Y(i) and
stage derivatives by F(i) = f

(
Y(i)

)
, i = 1, 2, . . . , s, and can be compactly represented as

Y =
[
Y(1) Y(2) . . . Y(s)

]T

, F =
[
F(1) F(2) . . . F(s)

]T

.

The r-value s-stage GL method is described by

Y(i) =
s∑

j=1

a(i,j)∆tF(j) +
r∑

j=1

u(i,j)y(j)
[n−1] , i = 1, 2, . . . , s ,y(i)

[n] =

s∑

j=1

b(i,j)∆tF(j) +

r∑

j=1

v(i,j)y(j)
[n−1] , i = 1, 2, . . . , r ,

(2.1)
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where A = [a(i,j)], B = [b(i,j)], U = [u(i,j)], and V = [v(i,j)] are the coefficients that
define each method, and ∆t is the time discretization step. The coefficients (A,U,B,V)
are grouped further into the GL matrix M:

[
Yy[n]

]
=

[
A U
B V

] [
hFy[n−1]

]
= M

[
hFy[n−1]

]
.

Expression (2.1) is the most generic representation of GL methods [21, p. 434] and en-
compasses both RK methods (r = 1, s > 1) and LM methods (r > 1, s = 1) as particular
cases. In this work we consider methods with both r > 1 and s > 1.

If method (2.1) is consistent (there exist vectors x1, x2 such that Vx1 = x1, Ux1 = 1,
and B1+Ux2 = x1 +x2) and stable (‖Vn‖ remains bounded for any n), then the method
(2.1) is convergent [8].

Preliminary work on the convergence of GL methods has been carried out in [4, 6,
15, 22, 42]. An in-depth description and survey material on GL methods can be found in
[7, 8, 9, 20].

The initial input vector y[0] can be generated through a “starting procedure,” S ={
Si : RN → RN

}
i=1...r

, represented by generalized RK methods [9, Chp. 53]:

Si =
c(i) A(i)

b
(i)
0

(
b(i)

)T ,
Y (i) = 1y(x0) + ∆tA(i)F (i)

Si = b
(i)
0 y(x0) + ∆t

(
b(i)

)T
F (i)

, (2.2)

where 1 is a vector of ones, (A, b, c) represents a classical RK scheme, and b0 is a switch
that defines the output of the method to be either the solution or its derivative. The final
solution is typically obtained by applying a “finishing procedure,” F : RN → RN , to the
last output vector. We denote by the GL process the GL method applied n times and
described by SMnF; that is, M is applied n times on the vector provided by S, and then
F is used to extract the final solution.

2.1. Order Conditions for GL Methods. Butcher [5] introduced an abstract rep-
resentation of derivatives occurring in the Taylor expansion of the exact solution of (1.1).
The derivatives are represented by rooted tree structures [5, 23], which are then used to
algebraically characterize the order conditions for GL methods. Let T denote the set of
rooted trees, and consider mappings of type Φ : T → R, which are called elementary weight
functions and associate a scalar to each element of T.

Let T ∈ T. Then r(T ) denotes the order of T and γ(T ) the density of T . It is also
useful to consider E(θ) : T → R, the “exact solution operator” of differential equation
(1.1), which represents the elementary weights for the exact solution at θ∆t. If θ = 1,
then E(1)(T ) = E(T ) = 1/γ(T ), and in general E(θ)(T ) = θr(t)/γ(T ). The order can be

analyzed algebraically by introducing a mapping ξi : T → R: ξi(φ) = b
(i)
0 , ξi(T ) = Φ(i)(T ),

where Φ(i)(T ), i = 1 . . . r results from (2.2) and φ represents the “empty tree.” Then for
the general linear method (A,U,B,V), one has

η(T ) = AηD(T ) + Uξ(T ) , ξ̂(T ) = BηD(T ) + Uξ(T ) , (2.3)

where η, ηD are mappings from T to scalars that correspond to the internal stages and
stage derivatives, and ξ̂ represents the output vector. The exact weights are obtained from
[Eξ](T ). The order of the GL method can be determined by a direct comparison between

ξ̂(T ) and [Eξ](T ). The algebraic procedure described above is presented in more detail in
[9], and a criterion for order p is given for a GL method described by M and S. By using
this general criterion, it is difficult to construct practical SSP GL and initializing methods
because of the strong requirements placed on the starting procedure.
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In this work we consider the GL methods started with the approximations of the exact
solution up to order p for each step and order q for each stage, indicated by S[p, q]. To this
end we use appropriate SSP starting procedures [18, 33, 44] and a modified criterion for
order conditions that considers the entire GL process: SMnF. This criterion is introduced
in [13]. In this approach the order analysis is focused on the outcome of the GL process and
has weaker constraints. Given a starting procedure S[p, q], an order p GL method with stage
order q results from the direct comparison of elementary wights of [SMnF](Tp) = [Enξ](Tp),
∀Tp, r(Tp) ≤ p and [ηi](Tq) = [E(θi)](Tq), ∀Tq, r(Tq) ≤ q, where θi is the time corresponding
to stage i. This criterion is a direct consequence of [13, Def. 3 and Prop. 1].

2.2. Linear Stability of GL Methods. The linear stability analysis of method (2.1)
is performed on a linear scalar test problem: y′(t) = ay(t), a ∈ C. Applying (2.1) to the
test problem yields a solution of form yn+1 = R(z) yn,

R(z) = V + zB (I − zA)
−1

U , (2.4)

where z = a∆t and R(z) is referred to as the stability matrix of the scheme.
Method (2.1) is linearly stable if the spectral radius of R(z) is contained by the complex

unit disk. The stability region is defined as the set S = {z ∈ C : |R(z)| ≤ 1}. The linear
stability region provides valuable insight for the method’s behavior with nonlinear systems.
A similar approach to that for LM methods is used to compute the stability region for GL
methods. Additional details can be found in [9].

2.3. Strong-Stability-Preserving Time Discretizations. Strong-stability-preserving
integrators are high-order time-stepping schemes that preserve the stability properties of
the spatial discretization used with explicit Euler time stepping. Spurious oscillations
(nonlinear instabilities) can occur in a numerical solution that obeys the classical linear
stability conditions (von Neumann analysis) [18]. In PDEs with hyperbolic components
an appropriate spatial discretization combined with an SSP time-stepping method yields
a numerical solution that does not exhibit nonlinear instabilities. A nonlinear example
shown in Fig. 7.3.a illustrates this behavior. In this section we review some background
material on SSP methods.

Definition 2.1 (Strong stability[34, 18, 41]). A sequence {y[n]} is said to be strongly
stable in a given norm or semi-norm || · || if ||y[n]|| ≤ ||y[n−1]|| for all n ≥ 1.

The favorable properties of SSP schemes derive from convexity arguments. In partic-
ular, if the PDE semi-discretization with forward Euler method is strongly stable for any
time step smaller than ∆tFE (i.e., ||y + ∆tf(y)|| ≤ ||y||, ∀∆t ≤ ∆tFE), then higher-order
methods can be constructed as convex combinations of forward Euler steps with various
step sizes [41]. For example an explicit s-stage Runge-Kutta method can be represented in
Euler steps (also known as the Shu-Osher representation):

y
(1)
[n−1] = y[n−1] , (2.5a)

y
(i)
[n−1] =

i−1∑

j=1

[
α(i,j)y

(j)
[n−1] + β(i,j)∆tF

(j)
[n−1]

]
; i = 2, 3, . . . , s, s + 1 , (2.5b)

y[n] = y
(s+1)
[n−1] . (2.5c)

SSP methods preserve the strong stability of the forward Euler scheme for bounded time
steps ∆t ≤ C · ∆tFE, where C is referred to as the CFL coefficient for the SSP property.

Theorem 2.2 (Strong stability preserving for Runge-Kutta methods [18, 41]). If the
forward Euler method is strongly stable under the CFL restriction ∆t ≤ ∆tFE, then the
Runge-Kutta method (2.5) with α(i,j) , β(i,j) ≥ 0 is SSP provided that ∆t ≤ C∆tFE, where
C = min

{
α(i,j)/β(i,j) : 1 ≤ i ≤ s, 1 ≤ j ≤ i − 1, β(i,j) 6= 0

}
.
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Methods with β(i,j) ≤ 0 are possible by using the adjoint operator of f (i.e., the
downwind-biased spatial discretization of f) [39, 18, 25]; however, they are not addressed
in this study.

The equivalence between the CFL coefficient and the radius of absolute monotonicity
for multistep, multistage, and GL methods is discussed in [43, 25, 28]. In order to compare

the efficiency of different methods, the scaled or effective CFL coefficient, Ĉ, is considered
as the CFL coefficient divided by the number of function evaluations for one time step.
Methods with high Ĉ allow large time steps and hence are more efficient.

Ketcheson [28] explores the limits for SSP GL methods with linear operators, which
also represent efficiency barriers for methods with nonlinear operators. Huang [26] explores
a type of hybrid method based on LM methods with one stage evaluation. In this work
we extend the SSP concept to general linear methods (2.1) applied to nonlinear problems,

and we search for the most efficient (i.e., highest Ĉ) GL schemes.

3. Multistep-Multistage Monotonic Methods. We consider the following ex-
plicit k-step s-stage multistep-multistage method to compute the numerical solution of
(1.1) with time step ∆t. The solution at step n, y[n] ≈ y(t[n]) = y(n∆t) is given by

y
(1)
[n−1] = y[n−1] , (3.1a)

y
(i)
[n−1] =

k∑

ℓ=2

s∑

j=1

(
α

(i,j)
[n−ℓ]y

(j)
[n−ℓ] + β

(i,j)
[n−ℓ]∆tF

(j)
[n−ℓ]

)
+ (3.1b)

+

i−1∑

j=1

(
α

(i,j)
[n−1]y

(j)
[n−1] + β

(i,j)
[n−1]∆tF

(j)
[n−1]

)
; i = 2, 3, . . . , s, s + 1 ,

y[n] = y
(s+1)
[n−1] , (3.1c)

where F
(i)
[n−ℓ] = f

(
y
(i)
[n−ℓ]

)
. We refer to y

(i)
[n−ℓ], i = 1 . . . s, ℓ = 0 . . . k as the stage i value

at step n − ℓ, and to F
(i)
[n−ℓ] as the corresponding stage derivative. The first sum in (3.1b)

represents linear combinations of stage values and derivatives evaluated at previous steps,
whereas the second sum describes the internal stages of the current step evaluation. Each

stage value y
(i)
[n−ℓ] is an approximation to y

(
t[n−ℓ] + c(i)∆t

)
. The abscissa, c = [c(1) =

0, c(2), . . . , c(s), c(s+1) = 1]T , can be shown to satisfy

c(1) = 0 , c(s+1) = 1 , (3.2a)

c(i) = 1 +
k∑

ℓ=2

s∑

j=1

(
α

(i,j)
[n−ℓ]

(
c(j) − ℓ

)
+ β

(i,j)
[n−ℓ]

)
+ (3.2b)

+

i−1∑

j=1

(
α

(i,j)
[n−1]

(
c(j) − 1

)
+ β

(i,j)
[n−1]

)
; i = 2, 3, . . . , s .

With a harmless abuse of notation to avoid the Kronecker products, method (3.1) can
be represented compactly by

Y[n−1] = e1 y[n−1] +

k∑

ℓ=1

(
Λ[n−ℓ]Y[n−ℓ] + Γ[n−ℓ]∆tF

(
Y[n−ℓ]

))
, (3.3)

where Y[n−ℓ] =
[
y
(1)
[n−ℓ] y

(2)
[n−ℓ] . . . y

(s+1)
[n−ℓ]

]T

, Λ[n−ℓ] =
[
α

(i,j)
[n−ℓ]

]
, Γ[n−ℓ] =

[
β

(i,j)
[n−ℓ]

]
, 1 ≤ i, j ≤

s + 1, and e1 = [1, 0, . . . , 0]T . Schemes of type (3.3) with k = 1 are equivalent to the ones
investigated by Shu and Osher [41], Gottlieb et al. [18], and Higueras [24, 25].
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Because of the quantities that are transferred from one step to the next in (3.1), the
concepts of method order and stage order are more difficult to define than for multistep or
multistage methods. We introduce the following definition.

Definition 3.1 (Consistency order for (3.1)). Consider method (3.1) with the follow-
ing properties satisfied:

{
y[m−k+ℓ] = y

(
t[m−k+ℓ]

)
+ O

(
∆tp+1

)

y
(i)
[m−k+ℓ] = y

(
t[m−k+ℓ] + c(i)∆t

)
+ O

(
∆tq+1

) , (3.4a)

1 ≤ ℓ ≤ k , 2 ≤ i ≤ s , n − k − 1 ≤ m ≤ n − 1.

The k-step s-stage multistep-multistage method (3.1) with (3.4a) is said to be (at least) of
order p and stage order q if the following expression holds for 2 ≤ i ≤ s , n = 1, 2, . . . :

{
y[n] = y

(
t[n]

)
+ O

(
∆tp+1

)
,

y
(i)
[n−1] = y

(
t[n−1] + c(i)∆t

)
+ O

(
∆tq+1

) . (3.4b)

Remark. Expression (3.4a) for m = 1 is equivalent to the concept of the starting
procedure for GL methods.

Theorem 3.2 (Strong stability preserving for MM methods). If the forward Eu-
ler method is strongly stable under the CFL restriction ∆t ≤ ∆tFE, then the general

linear method (3.1) with α
(i,j)
[n−ℓ], β

(i,j)
[n−ℓ] ≥ 0 is SSP provided that ∆t ≤ C∆tFE, where

C = min
{
α

(i,j)
[n−ℓ]/β

(i,j)
[n−ℓ] : 1 ≤ i ≤ s, 1 ≤ j ≤ i − 1, 1 ≤ ℓ ≤ k, β

(i,j)
[n−ℓ] 6= 0

}
.

Proof. By consistency one has that
∑

jℓ αi,j

[n−ℓ] = 1, i = 1 . . . s + 1. The rest of the

proof follows immediately from [18, 41].
We mentioned that GL and MM methods generalize both RK and LM methods. In

what follows we present two examples of classical explicit schemes represented as multistep-
multistage (3.1) methods. We consider two-step linear multistep (Adams-Bashforth) method
given by s = 1, k = 2 with p = 2 and Runge-Kutta methods with s = 2 (and k = 1) in
Butcher tableau representation:

y[n] = y[n−1] +
3

2
hF[n−1] −

1

2
hF[n−2] , (3.5)

0 0 0

1 1 0

1
2

1
2

. (3.6)

Their corresponding representation in form (3.1, 3.3) is given by the following coeffi-
cients:

for (3.5) α
(2,1)
[n−1] = 1 , β

(2,1)
[n−1] =

3

2
, β

(2,1)
[n−2] = −

1

2
,

for (3.6) α
(2,1)
[n−1] = β

(2,1)
[n−1] = 1 , α

(3,1)
[n−1] = α

(3,2)
[n−1] = β

(3,2)
[n−1] =

1

2
.

4. Representation of Multistep-Multistage Schemes as GL Methods. The
convergence theory for general linear methods has been developed for more than three
decades. In order to take advantage of this body of work, the multistep-multistage methods
(3.1) that provide direct access to the SSP conditions need to be transformed into GL
representation (2.1). We begin with (3.3) and consider

Y[n−1] =

k∑

ℓ=2

(
Λ[n−ℓ]Y[n−ℓ] + Γ[n−ℓ]∆tF

(
Y[n−ℓ]

))
+
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+ e1y[n−1] + Λ[n−1]Y[n−1] + ∆tΓ[n−1]F
(
Y[n−1]

)
.

The determinant of
(
I − Λ[n−1]

)
is one, and thus (3.1) can be expressed as

Y[n−1] =

k∑

ℓ=2

(
Λ[n−ℓ]Y[n−ℓ] + ∆tΓ[n−ℓ]F

(
Y[n−ℓ]

))
+ ey

(1)
[n−1] + ∆tAF

(
Y[n−1]

)
,

where

e =
(
I − Λ[n−1]

)−1
e1 ,

Λ[n−ℓ] =
(
I − Λ[n−1]

)−1
Λ[n−ℓ] , 2 ≤ ℓ ≤ k ,

Γ[n−ℓ] =
(
I − Λ[n−1]

)−1
Γ[n−ℓ] , 2 ≤ ℓ ≤ k , and

A =
(
I − Λ[n−1]

)−1
Γ[n−1] =

[
A bT

]T
.

It follows that method (3.1) can be expressed as a GL scheme of form (2.1):y[n] =
[
y[n],Y

T
[n−k+1],Y

T
[n−k+2], . . . ,Y

T
[n−1], ∆tf(Y[n−k+1])

T , ∆tf(Y[n−k+2])
T , . . . , ∆tf(Y[n−1])

T
]T

,y[n−1] =
[
y[n−1],Y

T
[n−k],Y

T
[n−k+1], . . . ,Y

T
[n−2], ∆tf(Y[n−k])

T , ∆tf(Y[n−k+1])
T , . . . , ∆tf(Y[n−2])

T
]T

,

M =





A Λ[n−k] Λ[n−k+1] . . . . . . Λ[n−2] Γ[n−k] Γ[n−k+1] . . . . . . Γ[n−2]

0 0 I

0 0 0
. . .

...
...

... I
0 0 0 . . . 0 I

A Λ̂[n−k] Λ̂[n−k+1] . . . . . . Λ̂[n−2] Γ̂[n−k] Γ̂[n−k+1] . . . . . . Γ̂[n−2]

0 0 0 0 0 0 I

0 0 0 0 0 0 0
. . .

...
...

...
...

...
... I

0 0 0 0 0 0 0 . . . 0 I
I 0 0 0 0 0 0 0 0 0 0





,

where Λ̂ and Γ̂ are the first s rows of Λ and Γ, respectively.
The order conditions and linear stability properties for the methods of type (3.1)

considered in this study are analyzed in the GL method framework described in Sec. 2.
We explore five types of methods that are differentiated by the amount of previous

information used and implicitly by the search space for optimality. The input/output
vector – and hence the method use of past information – are illustrated in Table 4.1. GL
methods of type one retain all available past information within s stages and k steps, type
two retain only the past stage values and step derivatives, and type three keep only the
past stage values. Type four use only the past step values – the least amount of information
and memory. Type five is a hybrid of RK and LM methods. By using these five method
types we implicitly restrict the amount of memory required by the GL schemes.

5. The Optimization Problem. The maximum coefficient C, formed by α, β ratios,
provides the optimal multistep-multistage method. For a given MM scheme with specific
s stages, k steps, and type, we search for an SSP GL method of order p and stage order q.

The most efficient SSP GL method is then given by the argument that maximizes
a polynomial constrained mathematical programming problem described below. For an



8 E. M. Constantinescu and A. Sandu

Table 4.1
The input/output vector components for different method types and a description of their use of past

information (k ≥ 1, s ≥ 1, 1 ≤ ℓ ≤ k). The retained stage values and derivatives are represented by
“�” and “⋆” symbols, respectively. Type one retains all available information within s stages and k steps,
whereas type four uses the least (i.e., only the past step values). Type five is a hybrid method that resembles
RK and LM methods.

Type 1 Type 2 Type 3 Type 4 Type 5

Assump. α
(i,j=2...s)
[n−ℓ] = 0 α

(i,j=2...s)
[n−ℓ] = 0

β
(i,j=2...s)
[n−ℓ] = 0 β

(i,j)
[n−ℓ] = 0 β

(i,j)
[n−ℓ] = 0 β

(i,j=2...s)
[n−ℓ] = 0

y[n−k+ℓ] =

y
(1)
[n−k+ℓ] � ⋆ � ⋆ � − � − � ⋆

y
(2)
[n−k+ℓ] � ⋆ � − � − − − − −

...
...

...
...

...
...

...
...

...
...

...

y
(s)
[n−k+ℓ] � ⋆ � − � − − − − −

order p, stage order q MM method, with s stages and k steps, consider the triplet of
indices Ω = {(i, j, ℓ) : 1 ≤ i ≤ s + 1, 1 ≤ j ≤ s, 1 ≤ ℓ ≤ k}. Then the optimization problem
becomes

C = max



min




α

(i,j)
[n−ℓ]

β
(i,j)
[n−ℓ]





(i,j,ℓ)∈Ω



 , Ω = Ω/{β
(i,j)
[n−ℓ] = 0} (5.1a)

subject to [SMn
F](Tp) = [Enξ](Tp), ∀Tp ∈ T, r(Tp) ≤ p , (5.1b)

[ηi](Tq) = [E(c(i))](Tq), ∀Tq ∈ T, r(Tq) ≤ q , (5.1c)

0 ≤ αi ≤ 1 , 0 ≤ βi ≤ Uβ . (5.1d)

The values of β do not have an upper bound; however, the maximizer is in the unit range
for practical methods, and hence β values can be constrained to have an upper bound close
to one without losing the global optimality of the solution. We set Uβ = 5. The order
conditions explained earlier [9, 13] are imposed in (5.1b) and (5.1c), and the SSP conditions
are established in (5.1a) and (5.1d).

The setup of the optimization problem is similar to the one described in [34]. GAMS
(General Algebraic Modeling System) [1] is used to preprocess the problem. BARON [36]
is then used to find the global maximizer with the default setting and extra parameters
ConTol = 10−12, EpsA = 10−10, and EpsR = 10−5. Within these limits, BARON guaran-
tees global optimality and provides a maximizer that satisfies the equality and inequality
constraints to at least 12 decimals – the maximum limit for BARON. More details regard-
ing the mathematical problem setup can be found in [34]. A limit of 48 hours is imposed on
the computational time. If the global solution is not found, the best (possibly suboptimal)
solution is returned.

To obtain practical method coefficients, a local search using NLPSolve in MapleTM is
used to increase the solution precision to 15 decimals. Because of the problem complexity,
there are instances in which the refinement approach fails to give a better solution in a
fixed number of iterations. In these cases we show the partial solution, which indicates a
local or global maximum with a precision of 12 decimals.

6. SSP GL Methods. In this section we present the SSP GL schemes obtained
through the procedure described in this paper: The GL methods are expressed as convex
combinations of forward Euler steps, then a global optimization strategy is used to find
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the most efficient SSP method. We explore methods of orders p = 2, 3, 4 with s, k = 2, 3, 4
stages and steps and stage order q = 1 . . . p. Furthermore, we present several optimal SSP
GL methods in more detail that are of orders 2, 3, and 4 with stage orders q = p and
q = p− 1. The complete results (q = 1 . . . p) are given in the Appendix. All methods have
positive values for β with a fixed upper bound. The initial solution as produced by the
SSP starting procedure S[p, q] provides the solution with an order of consistency at least
equal to the orders p and q of the GL method under consideration for the initial steps and
stages, respectively.

The proposed SSP GL schemes are denoted by GLpPqQsSkK, where P indicates the
method order, Q the stage order, S the number of stages, and K the number of steps of
the equivalent MM representation.

6.1. Second-Order Methods. The scaled CFL coefficient (Ĉ) for the GL methods of
order p = 2, q = 1 and q = 2 are summarized in Table 6.1. For each s and k configuration,
where global convergence is achieved, all method types lead to the same result. It follows
that methods of type four are a good representation for optimal second-order SSP GL
methods. For a few second order methods as well as for the other ones, global optimality
was not achieved for all s, k configurations due to restrictions on the computational time.
In these cases we provide the best solutions found.

The most efficient RK schemes with stage order one and s = 2, 3, 4 (Table 6.1, k = 1)

have Ĉ = 0.50, Ĉ = 0.67, and Ĉ = 0.75, respectively. The second order GL methods
presented in this work are more efficient than the existing SSP RK methods with the same
number of stages (see Table 6.1 for q = 1). To our knowledge there are no high-stage-order
explicit SSP RK schemes. In this sense, in addition to the higher CFL coefficient, the GL
methods with q = 2 summarized in Table 6.1 are superior to the classical SSP RK schemes.

Optimal LM schemes for up to 50 steps are presented in [28]. The optimal GL method

with k = 4 (s = 4) has Ĉ = 0.93 and is more efficient than the optimal LM scheme with

k = 4, which has Ĉ = 0.66. LM schemes with 15 steps are required to equal the efficiency
of the proposed GLp2q2s4k4.

We next consider the optimal GL method with three stages and steps, stage order two,
GLp2q2s3k3 (6.1), C = 2.57 (Ĉ = 0.86), which is described by the coefficients given below
and requires five memory registers.

α
(2,1)
[n−1] = 0.973398050642691 β

(2,1)
[n−1] = 0.379405979378177

α
(3,2)
[n−1] = 0.979404360713112 β

(3,2)
[n−1] = 0.381747087369108

α
(4,3)
[n−1] = 0.983666449265926 β

(4,3)
[n−1] = 0.383408341858481

α
(2,1)
[n−3] = 0.026601949357309

α
(3,1)
[n−3] = 0.020595639286888

α
(4,1)
[n−3] = 0.016333550734074

(6.1)

c = [0, 0.326202080663559, 0.660039549070913 , 1]T .

For this case we illustrate the complete method as well as the quantities (enclosed in “[]”)
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Table 6.1
The scaled CFL coefficient, bC, for the optimal SSP GL methods with p = 2, q = 1, and q = 2. The

exponent represents the number of memory registers required by each method. In most cases all method
types lead to the same result. The subscripts indicate the method type if the results differ. Sub-optimal
results are denoted by light font face.

q = 1 q = 2

k\s s = 2 s = 3 s = 4
1 0.503 0.673 0.753

2 0.714 0.824 0.874

3 0.815 0.885 0.915

4 0.866 0.916 0.936,0.6815
1

k\s s = 2 s = 3 s = 4
1 - - -

2 0.594 0.744 0.814

3 0.785 0.865 0.895
4,5,0.8421

1 ,0.895
2,3

4 0.856 0.906 0.936
4,5,0.8314

1 ,0.936
2,3

that need to be stored in memory after each step:

y
(1)
[n−1] = y[n−1] , [y[n−1], y[n−2], y[n−3]]

y
(2)
[n−1] = α

(2,1)
[n−1]y

(1)
[n−1] + β

(2,1)
[n−1]∆tF

(1)
[n−1] + α

(2,1)
[n−3]y

(1)
[n−3] , [y

(2)
[n−1], F

(2)
[n−1], y[n−1], y[n−2], y[n−3]]

y
(3)
[n−1] = α

(3,2)
[n−1]y

(2)
[n−1] + β

(3,2)
[n−1]∆tF

(2)
[n−1] + α

(3,1)
[n−3]y

(1)
[n−3] , [y

(3)
[n−1], F

(3)
[n−1], y[n−1], y[n−2], y[n−3]]

y
(4)
[n−1] = α

(4,3)
[n−1]y

(3)
[n−1] + β

(4,3)
[n−1]∆tF

(3)
[n−1] + α

(4,1)
[n−3]y

(1)
[n−3] , [y

(4)
[n−1], y[n−1], y[n−2]]

y[n] = y
(4)
[n−1] . [y[n], y[n−1], y[n−2]]

The most efficient LM method with three steps (k = 3) has Ĉ = 0.5. LM schemes require
at least nine steps (k = 9) [28] to equal the same efficiency as GLp2q2s3k3.

6.2. Third-Order Methods. The scaled CFL coefficient for the SSP GL methods
p = 3 and q = 1 are summarized in Table 6.2. The most efficient RK schemes with stage
order one and s = 3, 4 (Table 6.2, k = 1) have Ĉ = 0.33 and Ĉ = 0.50, respectively. The

proposed SSP GL methods with Ĉ ranging from 0.55 to 0.58 for s = 3 and 0.58 for s = 4
are more efficient than the aforementioned classical SSP RK methods. We also note that
the optimal GL methods with s = 2, q = 2 of type five have also been discovered by Spijker
[43].

Methods of order p = 3, q = 2 are summarized in Table 6.3 and methods with q = 3 in
Table 6.4. The most efficient third-order SSP LM scheme with k = 4 has Ĉ = 0.33; there
are no third-order LM methods with less than four steps. The maximum CFL coefficient
attained by an LM method is 0.58 (for k ≥ 6 [28]). The proposed SSP GL methods reach
this efficiency in four steps; furthermore, SSP GL schemes with less than four steps are
possible.

Not all GL methods are globally optimal; therefore it is possible to find more efficient
GL schemes. The most efficient third-order schemes found within the allocated time frame
are shown in Tables 6.2-6.4.

We select two methods, GLp3q2s3k2 and GLp3q3s2k3, and investigate their properties
in more detail. The optimal SSP GL method with stage order two, three stages, and two
steps, GLp3q2s3k2 (C.24), has C = 1.65 (Ĉ = 0.55), and requires six memory registers . The
optimal SSP GL method with stage order three, two stages, and three steps, GLp3q3s2k3
(C.42), has C = 1.10 (Ĉ = 0.55), and requires eight memory registers .

6.3. Fourth-Order Methods. The proposed fourth-order SSP GL methods with
q = 1, 2, 3, 4 are summarized in Tables 6.5-6.8. There are no classical SSP RK methods
with s ≤ 4 and positive β values [35]. Ruuth [33] studied fourth-order explicit SSP RK
methods that implicitly have stage order one. The optimal method with five stages has
Ĉ = 0.30. The most efficient GL method, although not optimal, has a Ĉ = 0.46.
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Table 6.2
The scaled CFL coefficient, bC, for the optimal (bold face) and suboptimal (light fonts) SSP GL methods

with p = 3, q = 1. The exponent represents the number of memory registers required by each method and
the subscript the type of the method.

k\s s = 2 s = 3 s = 4

1 - 0.333 0.503

2 0.376
1,2,5,0.125

3,4 0.556
1,2,5,0.426

3,4 0.586
1,0.587

2,5,0.535
3,0.535

4

3 0.568
1,2,5,0.206

3,4 0.588
1,2,5,0.426

3,4 0.586
1,0.587

2,5,0.535
3,0.535

4

4 0.5710
1,2,5,0.206

3,4 0.588
1,2,5,0.426

3,4,0.588
5 0.587

1,2,5,0.535
3,4

Table 6.3
The scaled CFL coefficient, bC, for the optimal (bold face) and suboptimal (light fonts) SSP GL methods

with p = 3, q = 2. The results for methods that are not refined to full double precision are underlined.
The exponent represents the number of memory registers required by each method and the subscript the
type of the method.

k\s s = 2 s = 3 s = 4
1 - - -

2 0.376
1,2,5,0.135

3,4 0.556
1,2,5,0.395

3,4 0.55−6
1,2,5,0.526

3,4

3 0.568
1,2,5,0.206

3,4 0.588
1,2,5,0.416

3,4 0.568
2,5,0.526

3,4

4 0.5710
1,2,5,0.206

3,4 0.588
2,5,0.416

3,4 0.568
2,5,0.526

3,4

Fourth-order SSP LM schemes have at least five steps. The five-step LM scheme has
Ĉ = 0.02, for six steps the Ĉ = 0.16. The proposed SSP GL methods attain Ĉ = 0.39
(for GLp4q4s3k4, see Table 6.8). The optimal LM methods need nine steps to achieve this
efficiency. More efficient SSP GL with lower stage orders summarized in Tables 6.5-6.7 are
possible.

We next present two methods. The optimal SSP GL method with stage order three,
three stages, and three steps, GLp4q3s3k3 (D.43), has C = 1.07 (Ĉ = 0.36) and requires
eight memory registers . As in the previous cases, the past information is evaluated only
at previous steps, and no previous stages are involved in the computation of the current
step; i.e., αi,j=2...s+1

[n−ℓ] = βi,j=2...s+1
[n−ℓ] = 0, ℓ ≥ 2. This is a desirable outcome because the

storage requirements become less; however, there are several instances in which previous
stages are also required (e.g., GL p4q4s2k4, type 1 (D.55)), and hence this aspect cannot
be generalized.

The optimal method with stage order four, three stages, and three steps, GLp4q4s3k3
(D.51), has C = 0.88 (Ĉ = 0.29) and requires seven memory registers . These two methods
are used in our numerical experiments.

7. Numerical Investigation. In this section we investigate numerically the linear
stability, monotonicity, and order of several SSP GL methods presented in more detail in
the previous sections. We begin with the linear stability analysis.

7.1. The Linear Stability of the Selected Methods. In this section we explore
the stability regions for the selected methods presented in Sec. 6 by using the procedure
described in Sec. 2.2.

In Figure 7.1 we show the linear stability regions for the following methods: GLp2q2s3k3,
GLp3q2s3k2, GLp3q3s2k3, GLp4q3s3k3, and GLp4q4s3k3. We remark that the stability
regions contain a segment of the imaginary axis, which is a desirable property when solving
PDEs via the method of lines with certain spatial discretizations [27]. A stability region
with similar properties can be found for the other methods not shown here.
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Table 6.4
The scaled CFL coefficient, bC, for the optimal (bold face) and suboptimal (light fonts) SSP GL methods

with p = 3, q = 3. The results for methods that are not refined to full double precision are underlined.
The exponent represents the number of memory registers required by each method and the subscript the
type of the method.

k\s s = 2 s = 3 s = 4
1 - - -

2 0.176
1,2,5 0.486

1,2,5 0.526
1,2,5

3 0.558
1,2,5 0.5818

1 ,0.558
2,5 0.4724

1 ,0.4718
2 , 0.528

5

4 0.5814
1 ,0.5710

2,5 0.5724
1 ,0.558

2,5 0.4619
2 , 0.528

5

Table 6.5
The scaled CFL coefficient, bC, for the optimal (bold face) and suboptimal (light fonts) SSP GL methods

with p = 4, q = 1. The results for methods that are not refined to full double precision are underlined.
The exponent represents the number of memory registers required by each method and the subscript the
type of the method.

k\s s = 2 s = 3 s = 4
1 - - -

2 - 0.296
1,2,5,0.116

3,4 0.408
1,2,5,0.285

3,4

3 0.258
1,2,5 0.397

1,2,5,0.116
3,4 0.389

1,0.467
2,5,0.285

3,4

4 0.3410
1,2,5 0.469

1,2,5,0.087
3,4 0.1322

2 ,0.277
3,0.285

4,0.489
5

7.2. Validation for Order Preservation. We illustrate the boundary/source order
reduction phenomenon and consider a classical initial value test problem with a nonlinear
source described in [38]:

∂y(t, x)

∂t
= −

∂y(t, x)

∂x
+ b(t, x) ,

0 ≤ x ≤ 1
0 ≤ t ≤ 1

,
y(t, 0) = b(t, 0)
y(0, x) = y0(x)

, (7.1)

with the initial condition y0(x) = 1 + x and (left) boundary and source term defined
by b(t, x) = (t − x)/(1 + t)2. The exact solution given by y(t, x) = (1 + x)/(1 + t) is
linear in space, allowing to use first-order upwind space discretization without introducing
discretization errors. For the time integration the SSP RK methods of orders 2, 3, and the
classical RK method (p = 4) are employed. All explicit RK methods have the stage order
equal to one. Sanz-Serna et al. [38] show that explicit RK methods with p ≥ 3 suffer
from order reduction on problems with nonhomogeneous boundary conditions or nonzero
source terms such as (7.1).

For problem (7.1) we distinguish two cases, one that illustrates the order reduction
phenomenon, and for validation purposes, one that does not. Specifically, if the spatial
and temporal grids are refined simultaneously, one notices that low stage-order methods
suffer from order reduction (p ≤ 2) [38]. If the space grid is maintained fixed – the ODE
problem is fixed – then the (classical) order of consistency is preserved.

Figure 7.2 shows the discretization error versus the time step without order reduction
(Fig. 7.2.a) and with order reduction (Fig. 7.2.b). In the former case, the order of the RK
methods is preserved, whereas in the later case, the order clearly drops to two for all RK
methods. A special boundary/source treatment can be used to alleviate this problem, but
with great effort and limited success [10, 37, 38]. This discussion also applies to implicit
RK methods with low stage orders such as DIRK [30].

We next consider two of the proposed SSP GL methods of orders three and four,
GLp3q3s2k3 (C.42) and GLp4q4s3k3 (D.51), to solve problem (7.1). They are initialized
with SSP methods of corresponding orders. We remark that the starting procedures typ-
ically use low stage-order methods, and therefore error can be accumulated in the first k
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Table 6.6
The scaled CFL coefficient, bC, for the optimal (bold face) and suboptimal (light fonts) SSP GL methods

with p = 4, q = 2. The results for methods that are not refined to full double precision are underlined.
The exponent represents the number of memory registers required by each method and the subscript the
type of the method.

k\s s = 2 s = 3 s = 4
1 - -

2 - 0.296
1,2,5,0.117

3,4 0.398
1,2,5,0.285

3,4

3 0.258
1,2,5 0.397

1,2,5,0.076
3,4 0.1617

1 , 0.468
2,0.278

3, 0.2810
4 ,0.4510

5

4 0.3410
1,2,5 0.4511

1 ,0.469
2,0.087

3,4,0.459
5 0.249

3,0.2811
4 ,0.4812

5

Table 6.7
The scaled CFL coefficient, bC, for the optimal (bold face) and suboptimal (light fonts) SSP GL methods

with p = 4, q = 3. The results for methods that are not refined to full double precision are underlined.
The exponent represents the number of memory registers required by each method and the subscript the
type of the method.

k\s s = 2 s = 3 s = 4
1 - - -
2 - 0.226

1,2,5 0.3510
1 ,0.378

2,0.386
5

3 0.228
1,2,5 0.368

1,2,5 0.458
5

4 0.329
1,2,5 0.439

1,2,5 0.4412
5

steps. This effect can be alleviated by using a smaller time step for method initialization.
In Figure 7.2 we show that GL methods retain their corresponding orders of consistency.
Moreover, the error constant is much smaller than for the classical methods with stage
order one that are under consideration here.

7.3. Monotonicity Validation. We now investigate the monotonicity preservation
for a nonlinear PDE. The inviscid Burgers’ equation is

∂y(t, x)

∂t
+

∂

∂x

(
1

2
y(t, x)2

)
= 0 , 0 ≤ x ≤ 1 , 0 ≤ t ≤ tFinal . (7.2)

The spatial discretization uses an m-point equidistant grid, ∆x = 1/m, xi = (i − 1/2)∆x,
i = 1 . . .m; with periodic boundary conditions. A third-order upwind-biased flux limited
scheme based on the work of Osher and Chakravarthy [11, 31, 32] is used to obtain the
spatial discretization operator. The algorithms can be found in [29, 12]. This method is
SSP with forward Euler steps and hence, with the proposed GL methods described in this
work.

The initial solution for (7.2) is represented by a step function that produces a shock
and a rarefaction (expansion) wave [29]. The GL methods are initialized by using the
appropriate starting procedures discussed earlier. Spurious oscillations can occur in the
solution if the time step used by the method violates the SSP condition. In this case the
SSP condition is satisfied if the CFL coefficient of the method C is smaller than the CFL
number of the problem: C ≤ problem CFL number = max(y)∆t/∆x.

In Figure 7.3.a we show the solution of the Burgers’ equation integrated with RK3
(s = 3, C = 1) and GLp4q3s3k3 (D.43) (C = 1.07) at t = 0.23. The problem CFL number
is 1.32. Spurious oscillations are generated by the RK scheme. The GL scheme has a larger
C than does RK3 and remains stable.

Next we investigate the SSP property when using the total variation (TV) semi-norm:

TV(y(t, x)) =
∑

|y(t, xi) − y(t, xi−1)| , i = 1 . . .m .
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Table 6.8
The scaled CFL coefficient, bC, for the optimal (bold face) and suboptimal (light fonts) SSP GL methods

with p = 4, q = 4. The results for methods that are not refined to full double precision are underlined.
The exponent represents the number of memory registers required by each method and the subscript the
type of the method.

k\s s = 2 s = 3 s = 4
1 - - -

2 - - 0.1414
1

3 - 0.3318
1 ,0.2910

2 ,0.297
5 0.2222

1 , 0.1316
2 ,0.2611

5

4 0.3213
1 ,0.279

2,5 0.3920
1 ,0.399

2, 0.399
5 0.0130

1 , 0.1018
2 ,0.3112

5
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Fig. 7.1. Linear stability regions for the selected SSP GL methods: (a) GLp2q2s3k3 (magenta), (b)
GLp3q2s3k2 (blue), GL p3q3s2k3 (red) and (c)GLp4q3s3k3 (green), GLp4q4s3k3 (black). The stability
region is represented by the bounded set enclosed by each curve.

The preservation of the strong stability requires the TV norm be nonincreasing from one
step to the next. It follows that the maximum total variation change

max
(
TV(y(t[i], x)) − TV(y(t[i−1], x)

)
≤ 0 , i = 1 . . . n , n = tFinal/∆t .

In Figure 7.3.b we show the maximum TV change for the solution of (7.2) by using the
forward Euler scheme and GL methods of orders two (6.1), three (C.24), and four (D.43) in
time. For this example, the upwind method in space was used to avoid the limiter artifacts.
The solution is evolved to time 0.5 by using increasing C values. The theoretical strong
stability bounds are verified in this numerical illustration.

8. Discussion. This paper brings an important contribution to the area of SSP nu-
merical methods. We design schemes with the SSP property based on a new class of
methods that represent a generalization of both RK and LM schemes.

The importance of the SSP property has been discussed in Sec. 2.3 and illustrated
numerically in Sec. 7.3. Methods with a larger CFL coefficient (C) are more efficient
because they allow larger time steps. We employ a global search procedure to identify the
best possible SSP GL methods.

The proposed GL methods can attain high stage orders, a property that alleviates
the order reduction phenomenon encountered in the classical explicit RK schemes due to
nonhomogeneous boundary/source terms.

The numerical scheme storage requirements are also important, especially in large-scale
applications. We explore methods that carry a decreasing amount of information from one
step to the next in order to reduce the memory requirements. We remark that in several
cases the most robust methods also produce low storage schemes.

We have explored schemes with positive values for the β coefficients. It is also possible
to consider negative ones; however, in this case the adjoint (downwind) discretization of f
is required, and this is not always easy to obtain. We do not address the issue of changing
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Fig. 7.2. Order analysis for the classical SSP RK methods of orders two and three (blue), the fourth
order RK method, and SSP GL methods GLp3q3 (C.42) and GLp4q4 (D.51) (red). The GL methods
preserve their corresponding orders, whereas the classical RK methods suffer from order reduction.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

y(
0.

22
)

 

 

y(0)
RK3
GL p4 q3

0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

CFL

M
ax

 T
V

 c
ha

ng
e

 

 

FE

GL p2 q2

GL p3 q2

GL p4 q3

a) CFL # = 1.32 × max(y) TV vs. CFL coefficient

Fig. 7.3. (a) Solution of the Burgers’ equation using the third-order RK method (s = 3, C = 1) and
fourth order GLp4q3s3k3 (D.43) (C = 1.07). In (b) we show the maximum change of the solution TV with
forward Euler (FE) C = 1 and GL methods of orders two (6.1) C = 2.57, three (C.24) C = 1.65, and four
(D.43) C = 1.07. The theoretical results are verified.

the time step, which currently requires restarting the problem. Better procedures need to
be identified for an efficient implementation.
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Appendix A. Estimating the MMs Memory Requirements.
Consider a square matrix T = {tij}, T ∈ R(s+1)×(s+1). The matrix incidence operator

Inc(•) is defined by:

Inc(T) = G (= gij) ,

{
gij = 1 if tij 6= 0
gij = 0 otherwise

.

The matrix coloring operator Col(•) is defined by:

Col(T) = Inc ((U Inc (T)) ⊙ (L Inc (T))) , L =





1 0 · · · · · · 0
1 1 0 · · · 0
...

...
. . .

. . .
...

1 1 · · · 1 0
1 1 · · · 1 1




, L = UT ,

where ⊙ denotes the element-wise matrix product. Operator Inc(T) fills a matrix with one
in positions where tij are not zero and the rest are left to be zero. Operator Col fills the
zero values on each column which are between values of one with one. An exemplification
is given below:

Col









x
... x

x 0 x
x 1 x
x 0 x
x 1 x
x 1 x
x 0 x

x
... x









=





x
... x

x 0 x
x 1 x
x 1 x
x 1 x
x 1 x
x 0 x

x
... x





.

Intuitively, the solution Yj needs to be stored in the memory as long as it is required (i.e.,
on column j between the first entry and the last one which are different than zero).

The memory requirements given by the maximum amount of intermediate solutions
stored in the memory for a k-step MM method (3.1) is given by

Mem.reg. =

k∑

ℓ=1

[
k∑

i=ℓ

∥∥Inc
(
Col

(
Λ[n−i]

))∥∥
∞

+

k∑

i=ℓ

∥∥Inc
(
Col

(
Γ[n−i]

))∥∥
∞

]
. (A.1)

The inner sums in (A.1) account for past information that needs to be retained in memory
to complete future steps.

Appendix B. Second-Order Methods.

B.1. GL method: p = 2 q = 1 s = 2 k = 1 Type = 1 . . . 5 C=1.00 (Ĉ=0.50).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 1.

α
(3,1)
[n−1] = 0.5

α
(3,2)
[n−1] = 0.5 β

(3,2)
[n−1] = 0.5

(B.1)

c = [0, 1. , 1]T .

Memory required = 3 registers.
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B.2. GL method: p = 2 q = 1 s = 2 k = 2 Type = 1 . . . 5 C=1.41 (Ĉ=0.71).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.707106781186548

α
(3,2)
[n−1] = 0.82842712474619 β

(3,2)
[n−1] = 0.585786437626905

α
(3,1)
[n−2] = 0.17157287525381

(B.2)

c = [0, 0.707106781186548 , 1]T .

Memory required = 4 registers.

B.3. GL method: p = 2 q = 1 s = 2 k = 3 Type = 1 . . . 5 C=1.62 (Ĉ=0.81).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.618033988749895

α
(3,2)
[n−1] = 0.927050983124842 β

(3,2)
[n−1] = 0.572949016875158

α
(3,1)
[n−3] = 0.072949016875158

(B.3)

c = [0, 0.618033988749895 , 1]T .

Memory required = 5 registers.

B.4. GL method: p = 2 q = 1 s = 2 k = 4 Type = 1 . . . 5 C=1.72 (Ĉ=0.86).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.58113883008419

α
(3,2)
[n−1] = 0.961012293408169 β

(3,2)
[n−1] = 0.558481559887747

α
(3,1)
[n−4] = 0.038987706591831

(B.4)

c = [0, 0.58113883008419 , 1]T .

Memory required = 6 registers.

B.5. GL method: p = 2 q = 1 s = 3 k = 1 Type = 1 . . . 5 C=2.00 (Ĉ=0.67).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.5

α
(3,2)
[n−1] = 1. β

(3,2)
[n−1] = 0.5

α
(4,1)
[n−1] = 0.333333333333333

α
(4,3)
[n−1] = 0.666666666666667 β

(4,3)
[n−1] = 0.333333333333333

(B.5)

c = [0, 0.5, 1. , 1]T .

Memory required = 3 registers. Constraints satisfied to at least 10−16 .

B.6. GL method: p = 2 q = 1 s = 3 k = 2 Type = 1 . . . 5 C=2.45 (Ĉ=0.82).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.408248290463863

α
(3,2)
[n−1] = 1. β

(3,2)
[n−1] = 0.408248290463863

α
(4,3)
[n−1] = 0.898979485566356 β

(4,3)
[n−1] = 0.367006838144548

α
(4,1)
[n−2] = 0.101020514433644

(B.6)

c = [0, 0.408248290463863, 0.816496580927726 , 1]T .

Memory required = 4 registers.
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B.7. GL method: p = 2 q = 1 s = 3 k = 3 Type = 1 . . . 5 C=2.64 (Ĉ=0.88).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.379152869605896

α
(3,2)
[n−1] = 1. β

(3,2)
[n−1] = 0.379152869605896

α
(4,3)
[n−1] = 0.956187913226531 β

(4,3)
[n−1] = 0.362541391182313

α
(4,1)
[n−3] = 0.043812086773469

(B.7)

c = [0, 0.379152869605896, 0.758305739211792 , 1]T .

Memory required = 5 registers.

B.8. GL method: p = 2 q = 1 s = 3 k = 4 Type = 1 . . . 5 C=2.73 (Ĉ=0.91).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.366025403784439

α
(3,2)
[n−1] = 1. β

(3,2)
[n−1] = 0.366025403784439

α
(4,3)
[n−1] = 0.97606774342517 β

(4,3)
[n−1] = 0.357265589908164

α
(4,1)
[n−4] = 0.02393225657483

(B.8)

c = [0, 0.366025403784439, 0.732050807568877 , 1]T .

Memory required = 6 registers.

B.9. GL method: p = 2 q = 1 s = 4 k = 1 Type = 1 . . . 5 C=3.00 (Ĉ=0.75).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.333333333333333

α
(3,2)
[n−1] = 1. β

(3,2)
[n−1] = 0.333333333333333

α
(4,3)
[n−1] = 1. β

(4,3)
[n−1] = 0.333333333333333

α
(5,1)
[n−1] = 0.25

α
(5,4)
[n−1] = 0.75 β

(5,4)
[n−1] = 0.25

(B.9)

c = [0, 0.333333333333333, 0.666666666666667, 1. , 1]T .

Memory required = 3 registers.

B.10. GL method: p = 2 q = 1 s = 4 k = 2 Type = 1 . . . 5 C=3.46 (Ĉ=0.87).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.288675134594813

α
(3,2)
[n−1] = 1. β

(3,2)
[n−1] = 0.288675134594813

α
(4,3)
[n−1] = 1. β

(4,3)
[n−1] = 0.288675134594813

α
(5,4)
[n−1] = 0.928203230275509 β

(5,4)
[n−1] = 0.267949192431123

α
(5,1)
[n−2] = 0.071796769724491

(B.10)

c = [0, 0.288675134594813, 0.577350269189626, 0.866025403784439 , 1]T .

Memory required = 4 registers.
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B.11. GL method: p = 2 q = 1 s = 4 k = 3 Type = 1 . . . 5 C=3.65 (Ĉ=0.91).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.274291885177432

α
(3,2)
[n−1] = 1. β

(3,2)
[n−1] = 0.274291885177432

α
(4,3)
[n−1] = 1. β

(4,3)
[n−1] = 0.274291885177432

α
(5,4)
[n−1] = 0.968626966596886 β

(5,4)
[n−1] = 0.265686516701557

α
(5,1)
[n−3] = 0.031373033403114

(B.11)

c = [0, 0.274291885177432, 0.548583770354864, 0.822875655532295 , 1]T .

Memory required = 5 registers.

B.12. GL method: p = 2 q = 1 s = 4 k = 4 Type = 1 C=2.73 (Ĉ=0.68).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.366025403784439

α
(3,1)
[n−1] = 0.745656947464986 β

(3,1)
[n−1] = 0.246415546904956

α
(3,2)
[n−1] = 0.000595854339732

α
(4,2)
[n−1] = 1. β

(4,2)
[n−1] = 0.366025403784439

α
(5,4)
[n−1] = 0.97606774342517 β

(5,4)
[n−1] = 0.357265589908164

α
(3,1)
[n−2] = 0.00136900328403

α
(3,2)
[n−2] = 0.164865034487776 β

(3,2)
[n−2] = 0.059353544048556

α
(3,1)
[n−3] = 0.001934987593074

α
(3,2)
[n−3] = 0.00172782295782

α
(3,1)
[n−4] = 0.002500971902117

α
(3,2)
[n−4] = 0.002293807266864

α
(3,4)
[n−4] = 0.0790555707036

α
(5,1)
[n−4] = 0.02393225657483

(B.12)

c = [0, 0.366025403784439, 0.000565984309044, 0.732050807568877 , 1]T .

Memory required = 15 registers. Constraints satisfied to at least 10−16 .

B.13. GL method: p = 2 q = 1 s = 4 k = 4 Type = 2 C=3.74 (Ĉ=0.93).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.267591879243998

α
(3,2)
[n−1] = 1. β

(3,2)
[n−1] = 0.267591879243998

α
(4,3)
[n−1] = 1. β

(4,3)
[n−1] = 0.267591879243998

α
(5,4)
[n−1] = 0.982712244856879 β

(5,4)
[n−1] = 0.26296581635734

α
(5,1)
[n−4] = 0.017287755143121

(B.13)

c = [0, 0.267591879243998, 0.535183758487996, 0.802775637731995 , 1]T .

Memory required = 6 registers. Constraints satisfied to at least 10−16 .
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B.14. GL method: p = 2 q = 1 s = 4 k = 4 Type = 3 C=3.74 (Ĉ=0.93).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.267591879243998

α
(3,2)
[n−1] = 1. β

(3,2)
[n−1] = 0.267591879243998

α
(4,3)
[n−1] = 1. β

(4,3)
[n−1] = 0.267591879243998

α
(5,4)
[n−1] = 0.982712244856879 β

(5,4)
[n−1] = 0.26296581635734

α
(5,1)
[n−4] = 0.017287755143121

(B.14)

c = [0, 0.267591879243998, 0.535183758487996, 0.802775637731995 , 1]T .

Memory required = 6 registers. Constraints satisfied to at least 10−16 .

B.15. GL method: p = 2 q = 1 s = 4 k = 4 Type = 4, 5 C=3.74 (Ĉ=0.93).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.267591879243998

α
(3,2)
[n−1] = 1. β

(3,2)
[n−1] = 0.267591879243998

α
(4,3)
[n−1] = 1. β

(4,3)
[n−1] = 0.267591879243998

α
(5,4)
[n−1] = 0.982712244856879 β

(5,4)
[n−1] = 0.26296581635734

α
(5,1)
[n−4] = 0.017287755143121

(B.15)

c = [0, 0.267591879243998, 0.535183758487996, 0.802775637731995 , 1]T .

Memory required = 6 registers.
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B.16. GL method: p = 2 q = 2 s = 2 k = 2 Type = 1 . . . 5 C=1.17 (Ĉ=0.59).

α
(2,1)
[n−1] = 0.787653105058701 β

(2,1)
[n−1] = 0.67315802213041

α
(3,2)
[n−1] = 0.863763428512646 β

(3,2)
[n−1] = 0.738204772369711

α
(2,1)
[n−2] = 0.212346894941299

α
(3,1)
[n−2] = 0.136236571487354

(B.16)

c = [0, 0.460811127189111 , 1]T .

Memory required = 4 registers.

B.17. GL method: p = 2 q = 2 s = 2 k = 3 Type = 1 . . . 5 C=1.55 (Ĉ=0.78).

α
(2,1)
[n−1] = 0.940524133937331 β

(2,1)
[n−1] = 0.606705219299626

α
(3,2)
[n−1] = 0.957602198834784 β

(3,2)
[n−1] = 0.617721790523

α
(2,1)
[n−3] = 0.059475866062669

α
(3,1)
[n−3] = 0.042397801165216

(B.17)

c = [0, 0.487753487174287 , 1]T .

Memory required = 5 registers.

B.18. GL method: p = 2 q = 2 s = 2 k = 4 Type = 1 . . . 5 C=1.69 (Ĉ=0.85).

α
(2,1)
[n−1] = 0.972872959760419 β

(2,1)
[n−1] = 0.575489774919643

α
(3,2)
[n−1] = 0.979037566956393 β

(3,2)
[n−1] = 0.579136364509873

α
(2,1)
[n−4] = 0.027127040239581

α
(3,1)
[n−4] = 0.020962433043607

(B.18)

c = [0, 0.494108654200901 , 1]T .

Memory required = 6 registers.

B.19. GL method: p = 2 q = 2 s = 3 k = 2 Type = 1 . . . 5 C=2.22 (Ĉ=0.74).

α
(2,1)
[n−1] = 0.903457899976476 β

(2,1)
[n−1] = 0.407254346360104

α
(3,2)
[n−1] = 0.934512616202735 β

(3,2)
[n−1] = 0.421252971153194

α
(4,3)
[n−1] = 0.953787556819955 β

(4,3)
[n−1] = 0.429941592219433

α
(2,1)
[n−2] = 0.096542100023524

α
(3,1)
[n−2] = 0.065487383797265

α
(4,1)
[n−2] = 0.046212443180045

(B.19)

c = [0, 0.31071224633658, 0.646130101566155 , 1]T .

Memory required = 4 registers.
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B.20. GL method: p = 2 q = 2 s = 3 k = 3 Type = 1 . . . 5 C=2.57 (Ĉ=0.86).

α
(2,1)
[n−1] = 0.973398050642691 β

(2,1)
[n−1] = 0.379405979378177

α
(3,2)
[n−1] = 0.979404360713112 β

(3,2)
[n−1] = 0.381747087369108

α
(4,3)
[n−1] = 0.983666449265926 β

(4,3)
[n−1] = 0.383408341858481

α
(2,1)
[n−3] = 0.026601949357309

α
(3,1)
[n−3] = 0.020595639286888

α
(4,1)
[n−3] = 0.016333550734074

(B.20)

c = [0, 0.326202080663559, 0.660039549070913 , 1]T .

Memory required = 5 registers.

B.21. GL method: p = 2 q = 2 s = 3 k = 4 Type = 1 . . . 5 C=2.70 (Ĉ=0.90).

α
(2,1)
[n−1] = 0.987908210492953 β

(2,1)
[n−1] = 0.366163388254236

α
(3,2)
[n−1] = 0.989967987988099 β

(3,2)
[n−1] = 0.366926834795789

α
(4,3)
[n−1] = 0.991558237729324 β

(4,3)
[n−1] = 0.3675162531519

α
(2,1)
[n−4] = 0.012091789507047

α
(3,1)
[n−4] = 0.010032012011901

α
(4,1)
[n−4] = 0.008441762270676

(B.21)

c = [0, 0.329888019733095, 0.663409377916637 , 1]T .

Memory required = 6 registers.

B.22. GL method: p = 2 q = 2 s = 4 k = 2 Type = 1 . . . 5 C=3.24 (Ĉ=0.81).

α
(2,1)
[n−1] = 0.944413997701136 β

(2,1)
[n−1] = 0.291352841143652

α
(3,2)
[n−1] = 0.96009123171561 β

(3,2)
[n−1] = 0.296189286476429

α
(4,3)
[n−1] = 0.970334278276635 β

(4,3)
[n−1] = 0.299349278518886

α
(5,4)
[n−1] = 0.977275831041781 β

(5,4)
[n−1] = 0.301490755800033

α
(2,1)
[n−2] = 0.055586002298864

α
(3,1)
[n−2] = 0.03990876828439

α
(4,1)
[n−2] = 0.029665721723365

α
(5,1)
[n−2] = 0.022724168958219

(B.22)

c = [0, 0.235766838844788, 0.482638192896226, 0.73800393936822 , 1]T .

Memory required = 4 registers.
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B.23. GL method: p = 2 q = 2 s = 4 k = 3 Type = 1 C=3.35 (Ĉ=0.84).

α
(2,1)
[n−1] = 0.855938343399069 β

(2,1)
[n−1] = 0.255708153716292

α
(3,1)
[n−1] = 7.811447902e− 6 β

(3,1)
[n−1] = 2.331856127e− 6

α
(3,2)
[n−1] = 0.985644469968844 β

(3,2)
[n−1] = 0.294457339807358

α
(4,3)
[n−1] = 0.982082517111202 β

(4,3)
[n−1] = 0.293393219273592

α
(5,4)
[n−1] = 0.990275357957093 β

(5,4)
[n−1] = 0.295840799056116

α
(2,1)
[n−2] = 1.81206e− 10 β

(2,1)
[n−2] = 5.1148e− 11

α
(2,2)
[n−2] = 0.050322676713036 β

(2,2)
[n−2] = 0.01503367152613

α
(2,3)
[n−2] = 0.005311615479773 β

(2,3)
[n−2] = 0.00158682377755

α
(2,4)
[n−2] = 0.075238392770323 β

(2,4)
[n−2] = 0.022357802128965

α
(3,1)
[n−2] = 7.768043351e− 6

α
(3,3)
[n−2] = 4.2694349e− 8 β

(3,3)
[n−2] = 1.2754765e− 8

α
(3,4)
[n−2] = 6.37898925e− 7 β

(3,4)
[n−2] = 1.9056975e− 7

α
(4,4)
[n−2] = 0.000840474119206 β

(4,4)
[n−2] = 0.000251088278643

α
(2,1)
[n−3] = 9.048903452e− 6

α
(2,2)
[n−3] = 0.01317973201233 β

(2,2)
[n−3] = 4.94982485e− 7

α
(2,3)
[n−3] = 5.3143736e− 8

α
(2,4)
[n−3] = 1.37397076e− 7

α
(3,1)
[n−3] = 0.013924846623203

α
(3,2)
[n−3] = 2.257972855e− 6

α
(3,3)
[n−3] = 0.000411893286414

α
(3,4)
[n−3] = 2.72064156e− 7

α
(4,1)
[n−3] = 0.005014292030147

α
(4,2)
[n−3] = 0.000069984018889

α
(4,4)
[n−3] = 0.011992732720555

α
(5,1)
[n−3] = 0.009724642042907

(B.23)

c = [0, 0.208133581306892, 0.471113803497885, 0.73071442121157 , 1]T .

Memory required = 21 registers. Constraints satisfied to at least 10−15 .

B.24. GL method: p = 2 q = 2 s = 4 k = 3 Type = 2 C=3.57 (Ĉ=0.89).

α
(2,1)
[n−1] = 0.984930382023916 β

(2,1)
[n−1] = 0.275655980603807

α
(3,2)
[n−1] = 0.987718066273794 β

(3,2)
[n−1] = 0.276436179742283

α
(4,3)
[n−1] = 0.98982267939624 β

(4,3)
[n−1] = 0.277025205326881

α
(5,4)
[n−1] = 0.991445029035443 β

(5,4)
[n−1] = 0.277479258109533

α
(2,1)
[n−3] = 0.015069617976084

α
(3,1)
[n−3] = 0.012281933726206

α
(4,1)
[n−3] = 0.01017732060376

α
(5,1)
[n−3] = 0.008554970964557

(B.24)

c = [0, 0.245516744651638, 0.494373636555023, 0.746012801677118 , 1]T .



26 E. M. Constantinescu and A. Sandu

Memory required = 5 registers. Constraints satisfied to at least 10−16 .

B.25. GL method: p = 2 q = 2 s = 4 k = 3 Type = 3 C=3.57 (Ĉ=0.89).

α
(2,1)
[n−1] = 0.984930382023916 β

(2,1)
[n−1] = 0.275655980603807

α
(3,2)
[n−1] = 0.987718066273794 β

(3,2)
[n−1] = 0.276436179742283

α
(4,3)
[n−1] = 0.98982267939624 β

(4,3)
[n−1] = 0.277025205326881

α
(5,4)
[n−1] = 0.991445029035443 β

(5,4)
[n−1] = 0.277479258109533

α
(2,1)
[n−3] = 0.015069617976084

α
(3,1)
[n−3] = 0.012281933726206

α
(4,1)
[n−3] = 0.01017732060376

α
(5,1)
[n−3] = 0.008554970964557

(B.25)

c = [0, 0.245516744651638, 0.494373636555023, 0.746012801677118 , 1]T .

Memory required = 5 registers. Constraints satisfied to at least 10−16 .

B.26. GL method: p = 2 q = 2 s = 4 k = 3 Type = 4, 5 C=3.57 (Ĉ=0.89).

α
(2,1)
[n−1] = 0.984930382023916 β

(2,1)
[n−1] = 0.275655980603807

α
(3,2)
[n−1] = 0.987718066273794 β

(3,2)
[n−1] = 0.276436179742283

α
(4,3)
[n−1] = 0.98982267939624 β

(4,3)
[n−1] = 0.277025205326881

α
(5,4)
[n−1] = 0.991445029035443 β

(5,4)
[n−1] = 0.277479258109533

α
(2,1)
[n−3] = 0.015069617976084

α
(3,1)
[n−3] = 0.012281933726206

α
(4,1)
[n−3] = 0.01017732060376

α
(5,1)
[n−3] = 0.008554970964557

(B.26)

c = [0, 0.245516744651638, 0.494373636555023, 0.746012801677118 , 1]T .

Memory required = 5 registers. Constraints satisfied to at least 10−16 .
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B.27. GL method: p = 2 q = 2 s = 4 k = 4 Type = 1 C=3.32 (Ĉ=0.83).

α
(2,1)
[n−1] = 0.991672579124827 β

(2,1)
[n−1] = 0.298746372538696

α
(3,1)
[n−1] = 1.249521e− 9 β

(3,1)
[n−1] = 3.76424e− 10

α
(3,2)
[n−1] = 0.992823102510883 β

(3,2)
[n−1] = 0.299092926986166

α
(4,2)
[n−1] = 1.6976682e− 8 β

(4,2)
[n−1] = 5.114311e− 9

α
(4,3)
[n−1] = 0.843688945698175 β

(4,3)
[n−1] = 0.254165555632047

α
(5,4)
[n−1] = 0.994391285820227 β

(5,4)
[n−1] = 0.299565396660513

α
(3,4)
[n−2] = 0.000077719693848 β

(3,4)
[n−2] = 0.000023413450267

α
(4,4)
[n−2] = 0.156278773321424 β

(4,4)
[n−2] = 0.0470797696915

α
(2,1)
[n−4] = 0.008327420875173

α
(3,1)
[n−4] = 0.007099176545748

α
(4,1)
[n−4] = 6.1473208e− 8

α
(4,4)
[n−4] = 0.000032202530512

α
(5,1)
[n−4] = 0.005608714179773

(B.27)

c = [0, 0.273764109913178, 0.549596484150356, 0.721306347015272 , 1]T .

Memory required = 14 registers. Constraints satisfied to at least 10−16 .

B.28. GL method: p = 2 q = 2 s = 4 k = 4 Type = 2 C=3.70 (Ĉ=0.93).

α
(2,1)
[n−1] = 0.993175480950937 β

(2,1)
[n−1] = 0.268305499078752

α
(3,2)
[n−1] = 0.994103148781118 β

(3,2)
[n−1] = 0.268556107742508

α
(4,3)
[n−1] = 0.994858058714534 β

(4,3)
[n−1] = 0.268760046009541

α
(5,4)
[n−1] = 0.995479857356574 β

(5,4)
[n−1] = 0.268928024376082

α
(2,1)
[n−4] = 0.006824519049063

α
(3,1)
[n−4] = 0.005896851218882

α
(4,1)
[n−4] = 0.005141941285466

α
(5,1)
[n−4] = 0.004520142643426

(B.28)

c = [0, 0.247831941931562, 0.497236067928569, 0.748013531415408 , 1]T .

Memory required = 6 registers. Constraints satisfied to at least 10−16 .

B.29. GL method: p = 2 q = 2 s = 4 k = 4 Type = 3 C=3.70 (Ĉ=0.93).

α
(2,1)
[n−1] = 0.993175480950937 β

(2,1)
[n−1] = 0.268305499078752

α
(3,2)
[n−1] = 0.994103148781118 β

(3,2)
[n−1] = 0.268556107742508

α
(4,3)
[n−1] = 0.994858058714534 β

(4,3)
[n−1] = 0.268760046009541

α
(5,4)
[n−1] = 0.995479857356574 β

(5,4)
[n−1] = 0.268928024376082

α
(2,1)
[n−4] = 0.006824519049063

α
(3,1)
[n−4] = 0.005896851218882

α
(4,1)
[n−4] = 0.005141941285466

α
(5,1)
[n−4] = 0.004520142643426

(B.29)

c = [0, 0.247831941931562, 0.497236067928569, 0.748013531415408 , 1]T .
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Memory required = 6 registers. Constraints satisfied to at least 10−16 .

B.30. GL method: p = 2 q = 2 s = 4 k = 4 Type = 4, 5 C=3.70 (Ĉ=0.93).

α
(2,1)
[n−1] = 0.993175480950937 β

(2,1)
[n−1] = 0.268305499078752

α
(3,2)
[n−1] = 0.994103148781118 β

(3,2)
[n−1] = 0.268556107742508

α
(4,3)
[n−1] = 0.994858058714534 β

(4,3)
[n−1] = 0.268760046009541

α
(5,4)
[n−1] = 0.995479857356574 β

(5,4)
[n−1] = 0.268928024376082

α
(2,1)
[n−4] = 0.006824519049063

α
(3,1)
[n−4] = 0.005896851218882

α
(4,1)
[n−4] = 0.005141941285466

α
(5,1)
[n−4] = 0.004520142643426

(B.30)

c = [0, 0.247831941931562, 0.497236067928569, 0.748013531415408 , 1]T .

Memory required = 6 registers. Constraints satisfied to at least 10−16 .

Appendix C. Third-Order Methods.

C.1. GL method: p = 3 q = 1 s = 3 k = 1 C=1.00 (Ĉ=0.33).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 1.

α
(3,1)
[n−1] = 0.75

α
(3,2)
[n−1] = 0.25 β

(3,2)
[n−1] = 0.25

α
(4,1)
[n−1] = 0.333333333333333

α
(4,3)
[n−1] = 0.666666666666667 β

(4,3)
[n−1] = 0.666666666666667

(C.1)

c = [0, 1., 0.5 , 1]T .

Memory required = 3 registers.

C.2. GL method: p = 3 q = 1 s = 4 k = 1 C=2.00 (Ĉ=0.50).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.5

α
(3,2)
[n−1] = 1. β

(3,2)
[n−1] = 0.5

α
(4,1)
[n−1] = 0.666666666666667

α
(4,3)
[n−1] = 0.333333333333333 β

(4,3)
[n−1] = 0.166666666666667

α
(5,4)
[n−1] = 1. β

(5,4)
[n−1] = 0.5

(C.2)

c = [0, 0.5, 1., 0.5 , 1]T .

Memory required = 3 registers.

C.3. GL method: p = 3 q = 1 s = 2 k = 2 Type = 1, 2, 5 C=0.73 (Ĉ=0.37).

α
(2,1)
[n−1] = 0.666666666666667 β

(2,1)
[n−1] = 0.910683602522959

α
(3,2)
[n−1] = 0.588457268119896 β

(3,2)
[n−1] = 0.803847577293368

α
(2,1)
[n−2] = 0.333333333333333

α
(3,1)
[n−2] = 0.411542731880104 β

(3,1)
[n−2] = 0.267949192431123

(C.3)

c = [0, 0.577350269189626 , 1]T .

Memory required = 6 registers.



Strong-Stability-Preserving General Linear Methods 29

C.4. GL method: p = 3 q = 1 s = 2 k = 2 Type = 3, 4 C=0.25 (Ĉ=0.125).

α
(2,1)
[n−1] = 0.36 β

(2,1)
[n−1] = 1.44

α
(3,1)
[n−1] = 0.857954545454545 β

(3,1)
[n−1] = 0.318181818181818

α
(3,2)
[n−1] = 0.142045454545455 β

(3,2)
[n−1] = 0.568181818181818

α
(2,1)
[n−2] = 0.64

(C.4)

c = [0, 0.8 , 1]T .

Memory required = 5 registers.

C.5. GL method: p = 3 q = 1 s = 3 k = 2 Type = 1, 2, 5 C=1.65 (Ĉ=0.55).

α
(2,1)
[n−1] = 0.914069542881442 β

(2,1)
[n−1] = 0.553785352828654

α
(3,2)
[n−1] = 0.697581188556484 β

(3,2)
[n−1] = 0.422626754867698

α
(4,3)
[n−1] = 0.871649542671441 β

(4,3)
[n−1] = 0.528085366469592

α
(2,1)
[n−2] = 0.085930457118558

α
(3,1)
[n−2] = 0.302418811443516 β

(3,1)
[n−2] = 0.15286858772158

α
(4,1)
[n−2] = 0.128350457328559 β

(4,1)
[n−2] = 0.077760607878206

(C.5)

c = [0, 0.467854895710096, 0.599443305367181 , 1]T .

Memory required = 6 registers.

C.6. GL method: p = 3 q = 1 s = 3 k = 2 Type = 3, 4 C=1.26 (Ĉ=0.42).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.794832141723026

α
(3,2)
[n−1] = 0.717391537375191 β

(3,2)
[n−1] = 0.570205852105898

α
(4,1)
[n−1] = 0.608252323894128 β

(4,1)
[n−1] = 0.352583929138236

α
(4,2)
[n−1] = 3.16e− 13

α
(4,3)
[n−1] = 0.391747676105556 β

(4,3)
[n−1] = 0.311373644413998

α
(3,1)
[n−2] = 0.282608462624809

(C.6)

c = [0, 0.794832141723026, 0.857803241586987 , 1]T .

Memory required = 6 registers.

C.7. GL method: p = 3 q = 1 s = 4 k = 2 Type = 1 C=2.30 (Ĉ=0.58).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.434277881759702

α
(3,2)
[n−1] = 0.763780185304185 β

(3,2)
[n−1] = 0.331692841003934

α
(4,3)
[n−1] = 0.879746944421246 β

(4,3)
[n−1] = 0.382054639507829

α
(5,1)
[n−1] = 0.274781775384402 β

(5,1)
[n−1] = 0.119331647360108

α
(5,4)
[n−1] = 0.725218224615598 β

(5,4)
[n−1] = 0.314946234399593

α
(3,1)
[n−2] = 0.236219814695815 β

(3,1)
[n−2] = 0.102585040755768

α
(4,1)
[n−2] = 0.120253055578754 β

(4,1)
[n−2] = 0.052223242251873

(C.7)

c = [0, 0.434277881759702, 0.52975090806782, 0.780071568857994 , 1]T .

Memory required = 6 registers.
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C.8. GL method: p = 3 q = 1 s = 4 k = 2 Type = 2 C=2.30 (Ĉ=0.58).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.434277881759702

α
(3,2)
[n−1] = 0.763780185304185 β

(3,2)
[n−1] = 0.331692841003934

α
(4,3)
[n−1] = 0.879746944421246 β

(4,3)
[n−1] = 0.382054639507829

α
(5,1)
[n−1] = 0.274781775384205 β

(5,1)
[n−1] = 0.119331647360023

α
(5,2)
[n−1] = 1.98e− 13

α
(5,4)
[n−1] = 0.725218224615598 β

(5,4)
[n−1] = 0.314946234399593

α
(3,1)
[n−2] = 0.236219814695815 β

(3,1)
[n−2] = 0.102585040755768

α
(4,1)
[n−2] = 0.120253055578754 β

(4,1)
[n−2] = 0.052223242251873

(C.8)

c = [0, 0.434277881759702, 0.52975090806782, 0.780071568857994 , 1]T .

Memory required = 7 registers.

C.9. GL method: p = 3 q = 1 s = 4 k = 2 Type = 3 C=2.13 (Ĉ=0.53).

α
(2,1)
[n−1] = 0.875510441176183 β

(2,1)
[n−1] = 0.411545829848986

α
(3,2)
[n−1] = 0.909538972053833 β

(3,2)
[n−1] = 0.427541412905392

α
(4,3)
[n−1] = 1. β

(4,3)
[n−1] = 0.470063874162489

α
(5,1)
[n−1] = 0.503913412214287 β

(5,1)
[n−1] = 0.236871490787887

α
(5,4)
[n−1] = 0.496086587785713 β

(5,4)
[n−1] = 0.233192383374602

α
(2,1)
[n−2] = 0.124489558823817

α
(3,1)
[n−2] = 0.090461027946167

(C.9)

c = [0, 0.28705627102517, 0.598169250629065, 1.068233124791554 , 1]T .

Memory required = 5 registers.

C.10. GL method: p = 3 q = 1 s = 4 k = 2 Type = 4 C=2.13 (Ĉ=0.53).

α
(2,1)
[n−1] = 0.875510441176183 β

(2,1)
[n−1] = 0.411545829848986

α
(3,2)
[n−1] = 0.909538972053833 β

(3,2)
[n−1] = 0.427541412905392

α
(4,3)
[n−1] = 1. β

(4,3)
[n−1] = 0.470063874162489

α
(5,1)
[n−1] = 0.503913412214287 β

(5,1)
[n−1] = 0.236871490787887

α
(5,4)
[n−1] = 0.496086587785713 β

(5,4)
[n−1] = 0.233192383374602

α
(2,1)
[n−2] = 0.124489558823817

α
(3,1)
[n−2] = 0.090461027946167

(C.10)

c = [0, 0.28705627102517, 0.598169250629065, 1.068233124791554 , 1]T .

Memory required = 5 registers.
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C.11. GL method: p = 3 q = 1 s = 4 k = 2 Type = 5 C=2.30 (Ĉ=0.58).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.434277881759702

α
(3,2)
[n−1] = 0.763780185304185 β

(3,2)
[n−1] = 0.331692841003934

α
(4,3)
[n−1] = 0.879746944421246 β

(4,3)
[n−1] = 0.382054639507829

α
(5,2)
[n−1] = 0.274781775384402

α
(5,4)
[n−1] = 0.725218224615598 β

(5,4)
[n−1] = 0.314946234399593

α
(3,1)
[n−2] = 0.236219814695815 β

(3,1)
[n−2] = 0.102585040755768

α
(4,1)
[n−2] = 0.120253055578754 β

(4,1)
[n−2] = 0.052223242251873

(C.11)

c = [0, 0.434277881759702, 0.52975090806782, 0.780071568857994 , 1]T .

Memory required = 7 registers.

C.12. GL method: p = 3 q = 1 s = 2 k = 3 Type = 1, 2, 5 C=1.11 (Ĉ=0.56).

α
(2,1)
[n−1] = 0.813566151883148 β

(2,1)
[n−1] = 0.731058363135786

α
(3,2)
[n−1] = 0.84541580931068 β

(3,2)
[n−1] = 0.759677988437936

α
(2,1)
[n−3] = 0.186433848116852 β

(2,1)
[n−3] = 0.12746780925182

α
(3,1)
[n−3] = 0.15458419068932 β

(3,1)
[n−3] = 0.138907039274461

(C.12)

c = [0, 0.485658476153902 , 1]T .

Memory required = 8 registers.

C.13. GL method: p = 3 q = 1 s = 2 k = 3 Type = 3, 4 C=0.40 (Ĉ=0.20).

α
(2,1)
[n−1] = 0.691358024691358 β

(2,1)
[n−1] = 1.728395061728395

α
(3,1)
[n−1] = 0.852727272727273 β

(3,1)
[n−1] = 0.468181818181818

α
(3,2)
[n−1] = 0.147272727272727 β

(3,2)
[n−1] = 0.368181818181818

α
(2,1)
[n−3] = 0.308641975308642

(C.13)

c = [0, 1.111111111111111 , 1]T .

Memory required = 6 registers. Constraints satisfied to at least 10−16 .

C.14. GL method: p = 3 q = 1 s = 3 k = 3 Type = 1, 2, 5 C=1.74 (Ĉ=0.58).

α
(2,1)
[n−1] = 0.912055641093326 β

(2,1)
[n−1] = 0.52567727376127

α
(3,2)
[n−1] = 0.767834486917904 β

(3,2)
[n−1] = 0.442553196972755

α
(4,3)
[n−1] = 0.861921036260677 β

(4,3)
[n−1] = 0.496781424426977

α
(3,1)
[n−2] = 0.232165513082096 β

(3,1)
[n−2] = 0.133812158468844

α
(4,1)
[n−2] = 0.138078963739323 β

(4,1)
[n−2] = 0.079583931014622

α
(2,1)
[n−3] = 0.087944358906674 β

(2,1)
[n−3] = 0.050688081680328

(C.14)

c = [0, 0.400476637628252, 0.651699615935398 , 1]T .

Memory required = 8 registers.
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C.15. GL method: p = 3 q = 1 s = 3 k = 3 Type = 3, 4 C=1.26 (Ĉ=0.42).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.794832141723026

α
(3,2)
[n−1] = 0.717391537375191 β

(3,2)
[n−1] = 0.570205852105898

α
(4,1)
[n−1] = 0.535102463312664 β

(4,1)
[n−1] = 0.29444206878553

α
(4,2)
[n−1] = 0.07314986058178

α
(4,3)
[n−1] = 0.391747676105556 β

(4,3)
[n−1] = 0.311373644413998

α
(3,1)
[n−2] = 0.282608462624809

(C.15)

c = [0, 0.794832141723026, 0.857803241586987 , 1]T .

Memory required = 6 registers.

C.16. GL method: p = 3 q = 1 s = 2 k = 4 Type = 1, 2, 5 C=1.15 (Ĉ=0.57).

α
(2,1)
[n−1] = 0.830293291145724 β

(2,1)
[n−1] = 0.722308072017444

α
(3,2)
[n−1] = 0.857043922393461 β

(3,2)
[n−1] = 0.745579604002412

α
(2,1)
[n−3] = 0.124529881258729 β

(2,1)
[n−3] = 0.1083339338036

α
(3,1)
[n−3] = 0.142956077606539 β

(3,1)
[n−3] = 0.124363679557941

α
(2,1)
[n−4] = 0.045176827595547 β

(2,1)
[n−4] = 0.03930127773931

(C.16)

c = [0, 0.485353038256255 , 1]T .

Memory required = 10 registers.

C.17. GL method: p = 3 q = 1 s = 2 k = 4 Type = 3, 4 C=0.40 (Ĉ=0.20).

α
(2,1)
[n−1] = 0.691358024691358 β

(2,1)
[n−1] = 1.728395061728395

α
(3,1)
[n−1] = 0.852727272727273 β

(3,1)
[n−1] = 0.468181818181818

α
(3,2)
[n−1] = 0.147272727272727 β

(3,2)
[n−1] = 0.368181818181818

α
(2,1)
[n−3] = 0.308641975308642

(C.17)

c = [0, 1.111111111111111 , 1]T .

Memory required = 6 registers.

C.18. GL method: p = 3 q = 1 s = 3 k = 4 Type = 1, 2, 5 C=1.74 (Ĉ=0.58).

α
(2,1)
[n−1] = 0.912055641093326 β

(2,1)
[n−1] = 0.52567727376127

α
(3,2)
[n−1] = 0.767834486917904 β

(3,2)
[n−1] = 0.442553196972755

α
(4,3)
[n−1] = 0.861921036260677 β

(4,3)
[n−1] = 0.496781424426977

α
(3,1)
[n−2] = 0.232165513082096 β

(3,1)
[n−2] = 0.133812158468844

α
(4,1)
[n−2] = 0.138078963739323 β

(4,1)
[n−2] = 0.079583931014622

α
(2,1)
[n−3] = 0.087944358906674 β

(2,1)
[n−3] = 0.050688081680328

(C.18)

c = [0, 0.400476637628252, 0.651699615935398 , 1]T .

Memory required = 8 registers.
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C.19. GL method: p = 3 q = 1 s = 3 k = 4 Type = 3, 4 C=1.26 (Ĉ=0.42).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.794832141723026

α
(3,2)
[n−1] = 0.717391537375191 β

(3,2)
[n−1] = 0.570205852105898

α
(4,1)
[n−1] = 0.608252323894128 β

(4,1)
[n−1] = 0.352583929138236

α
(4,2)
[n−1] = 3.16e− 13

α
(4,3)
[n−1] = 0.391747676105556 β

(4,3)
[n−1] = 0.311373644413998

α
(3,1)
[n−2] = 0.282608462624809

(C.19)

c = [0, 0.794832141723026, 0.857803241586987 , 1]T .

Memory required = 6 registers.

C.20. GL method: p = 3 q = 1 s = 4 k = 4 Type = 1, 2, 5 C=2.30 (Ĉ=0.58).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.434277881759702

α
(3,2)
[n−1] = 0.763780185304185 β

(3,2)
[n−1] = 0.331692841003934

α
(4,3)
[n−1] = 0.879746944421246 β

(4,3)
[n−1] = 0.382054639507829

α
(5,2)
[n−1] = 0.274781775384402

α
(5,4)
[n−1] = 0.725218224615598 β

(5,4)
[n−1] = 0.314946234399593

α
(3,1)
[n−2] = 0.236219814695815 β

(3,1)
[n−2] = 0.102585040755768

α
(4,1)
[n−2] = 0.120253055578754 β

(4,1)
[n−2] = 0.052223242251873

(C.20)

c = [0, 0.434277881759702, 0.52975090806782, 0.780071568857994 , 1]T .

Memory required = 7 registers.

C.21. GL method: p = 3 q = 1 s = 4 k = 4 Type = 3, 4 C=2.13 (Ĉ=0.53).

α
(2,1)
[n−1] = 0.875510441176183 β

(2,1)
[n−1] = 0.411545829848986

α
(3,2)
[n−1] = 0.909538972053833 β

(3,2)
[n−1] = 0.427541412905392

α
(4,3)
[n−1] = 1. β

(4,3)
[n−1] = 0.470063874162489

α
(5,1)
[n−1] = 0.503913412214287 β

(5,1)
[n−1] = 0.236871490787887

α
(5,4)
[n−1] = 0.496086587785713 β

(5,4)
[n−1] = 0.233192383374602

α
(2,1)
[n−2] = 0.124489558823817

α
(3,1)
[n−2] = 0.090461027946167

(C.21)

c = [0, 0.28705627102517, 0.598169250629065, 1.068233124791554 , 1]T .

Memory required = 5 registers.

C.22. GL method: p = 3 q = 2 s = 2 k = 2 Type = 1, 2, 5 C=0.73 (Ĉ=0.37).

α
(2,1)
[n−1] = 0.666666666666667 β

(2,1)
[n−1] = 0.910683602522959

α
(3,2)
[n−1] = 0.588457268119896 β

(3,2)
[n−1] = 0.803847577293368

α
(2,1)
[n−2] = 0.333333333333333

α
(3,1)
[n−2] = 0.411542731880104 β

(3,1)
[n−2] = 0.267949192431123

(C.22)

c = [0, 0.577350269189626 , 1]T .

Memory required = 6 registers.
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C.23. GL method: p = 3 q = 2 s = 2 k = 2 Type = 3, 4 C=0.256 (Ĉ=0.128).

α
(2,1)
[n−1] = 0.36 β

(2,1)
[n−1] = 1.44

α
(3,1)
[n−1] = 0.857954545454545 β

(3,1)
[n−1] = 0.318181818181818

α
(3,2)
[n−1] = 0.142045454545455 β

(3,2)
[n−1] = 0.568181818181818

α
(2,1)
[n−2] = 0.64

(C.23)

c = [0, 0.8 , 1]T .

Memory required = 5 registers.

C.24. GL method: p = 3 q = 2 s = 3 k = 2 Type = 1, 2, 5 C=1.65 (Ĉ=0.55).

α
(2,1)
[n−1] = 0.857663370271785 β

(2,1)
[n−1] = 0.519611900224726

α
(3,2)
[n−1] = 0.770413480757674 β

(3,2)
[n−1] = 0.466751905900312

α
(4,3)
[n−1] = 0.841153332326449 β

(4,3)
[n−1] = 0.509609360199215

α
(2,1)
[n−2] = 0.142336629728215

α
(3,1)
[n−2] = 0.229586519242326 β

(3,1)
[n−2] = 0.129608154625262

α
(4,1)
[n−2] = 0.158846667673551 β

(4,1)
[n−2] = 0.096236614148583

(C.24)

c = [0, 0.377275270496511, 0.657431495630257 , 1]T .

Memory required = 6 registers.

C.25. GL method: p = 3 q = 2 s = 4 k = 2 Type = 1, 2, 5 C=2.22 (Ĉ=0.55).

α
(2,1)
[n−1] = 0.903336334312 β

(2,1)
[n−1] = 0.407571474674

α
(3,2)
[n−1] = 0.862687228127 β

(3,2)
[n−1] = 0.389231222519

α
(4,3)
[n−1] = 0.910695325772 β

(4,3)
[n−1] = 0.410891738554

α
(5,1)
[n−1] = 0.367650392408 β

(5,1)
[n−1] = 0.165878208267

α
(5,4)
[n−1] = 0.624299386317 β

(5,4)
[n−1] = 0.28167429102

α
(2,1)
[n−2] = 0.0966636656884

α
(3,1)
[n−2] = 0.137312771873 β

(3,1)
[n−2] = 0.0619534129187

α
(4,1)
[n−2] = 0.0893046742278 β

(4,1)
[n−2] = 0.0402928968844

α
(5,1)
[n−2] = 0.00805022127454 β

(5,1)
[n−2] = 0.00363213615095

(C.25)

c = [0, 0.310907808986, 0.582088059502, 0.891984836186 , 1]T .

Memory required = 6 registers. Constraints satisfied to at least 10−12 .
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C.26. GL method: p = 3 q = 2 s = 4 k = 2 Type = 3, 4 C=2.09 (Ĉ=0.52).

α
(2,1)
[n−1] = 0.895480266121 β

(2,1)
[n−1] = 0.42781485274

α
(3,2)
[n−1] = 0.929635930891 β

(3,2)
[n−1] = 0.444132689377

α
(4,1)
[n−1] = 0.162429071059

α
(4,3)
[n−1] = 0.834947640899 β

(4,3)
[n−1] = 0.39889544812

α
(5,1)
[n−1] = 0.455586072221 β

(5,1)
[n−1] = 0.217655816406

α
(5,4)
[n−1] = 0.544413927779 β

(5,4)
[n−1] = 0.260093240637

α
(2,1)
[n−2] = 0.104519733879

α
(3,1)
[n−2] = 0.0703640691085

α
(4,1)
[n−2] = 0.00262328804186

(C.26)

c = [0, 0.323295118861, 0.674315379043, 0.959290195032 , 1]T .

Memory required = 5 registers. Constraints satisfied to at least 10−12 .

C.27. GL method: p = 3 q = 2 s = 2 k = 3 Type = 1, 2, 5 C=1.11 (Ĉ=0.56).

α
(2,1)
[n−1] = 0.813566151883148 β

(2,1)
[n−1] = 0.731058363135786

α
(3,2)
[n−1] = 0.84541580931068 β

(3,2)
[n−1] = 0.759677988437936

α
(2,1)
[n−3] = 0.186433848116852 β

(2,1)
[n−3] = 0.12746780925182

α
(3,1)
[n−3] = 0.15458419068932 β

(3,1)
[n−3] = 0.138907039274461

(C.27)

c = [0, 0.485658476153902 , 1]T .

Memory required = 8 registers.

C.28. GL method: p = 3 q = 2 s = 2 k = 3 Type = 3, 4 C=0.40(Ĉ=0.20).

α
(2,1)
[n−1] = 0.691358024691358 β

(2,1)
[n−1] = 1.728395061728395

α
(3,1)
[n−1] = 0.852727272727273 β

(3,1)
[n−1] = 0.468181818181818

α
(3,2)
[n−1] = 0.147272727272727 β

(3,2)
[n−1] = 0.368181818181818

α
(2,1)
[n−3] = 0.308641975308642

(C.28)

c = [0, 1.111111111111111 , 1]T .

Memory required = 6 registers.

C.29. GL method: p = 3 q = 2 s = 3 k = 3 Type = 1, 2, 5 C=1.73 (Ĉ=0.58).

α
(2,1)
[n−1] = 0.900993966219 β

(2,1)
[n−1] = 0.520329197838

α
(3,2)
[n−1] = 0.777467315667 β

(3,2)
[n−1] = 0.448991846642

α
(4,3)
[n−1] = 0.858501272771 β

(4,3)
[n−1] = 0.495789422962

α
(2,1)
[n−2] = 0.00891825759416 β

(2,1)
[n−2] = 0.0051503450564

α
(3,1)
[n−2] = 0.222532684333 β

(3,1)
[n−2] = 0.128513905168

α
(4,1)
[n−2] = 0.141498727229 β

(4,1)
[n−2] = 0.0817163288487

α
(2,1)
[n−3] = 0.0900877761872 β

(2,1)
[n−3] = 0.0520262089164

(C.29)

c = [0, 0.388411941842, 0.656950657275 , 1]T .

Memory required = 8 registers. Constraints satisfied to at least 10−12 .
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C.30. GL method: p = 3 q = 2 s = 3 k = 3 Type = 3, 4 C=1.23(Ĉ=0.41).

α
(2,1)
[n−1] = 0.916090505879052 β

(2,1)
[n−1] = 0.747161698978633

α
(3,2)
[n−1] = 0.884025406446454 β

(3,2)
[n−1] = 0.7210094640016

α
(4,1)
[n−1] = 0.674316326246705 β

(4,1)
[n−1] = 0.370522936460541

α
(4,3)
[n−1] = 0.325683673753295 β

(4,3)
[n−1] = 0.265626993675275

α
(3,1)
[n−2] = 0.115974593552974

α
(2,1)
[n−3] = 0.083909494120948

α
(3,1)
[n−3] = 5.72e − 13

(C.30)

c = [0, 0.579342710736738, 1.117188545778317 , 1]T .

Memory required = 6 registers. Constraints satisfied to at least 10−16.

C.31. GL method: p = 3 q = 2 s = 4 k = 3 Type = 2, 5 C=2.24 (Ĉ=0.56).

α
(2,1)
[n−1] = 0.93029772701 β

(2,1)
[n−1] = 0.414584345573

α
(3,2)
[n−1] = 0.870748990899 β

(3,2)
[n−1] = 0.388046632889

α
(4,3)
[n−1] = 0.915509837034 β

(4,3)
[n−1] = 0.407994167494

α
(5,1)
[n−1] = 0.392563481054 β

(5,1)
[n−1] = 0.17494471841

α
(5,4)
[n−1] = 0.607436518946 β

(5,4)
[n−1] = 0.2707022326

α
(2,1)
[n−2] = 0.0221533478517 β

(2,1)
[n−2] = 0.00987257192476

α
(3,1)
[n−2] = 0.129251009101 β

(3,1)
[n−2] = 0.0576003181207

α
(4,1)
[n−2] = 0.0844901629657 β

(4,1)
[n−2] = 0.037652783516

α
(2,1)
[n−3] = 0.0475489251388 β

(2,1)
[n−3] = 0.0211900335119

(C.31)

c = [0, 0.32839575288, 0.602346212345, 0.912610670746 , 1]T .

Memory required = 8 registers. Constraints satisfied to at least 10−12.

C.32. GL method: p = 3 q = 2 s = 4 k = 3 Type = 3, 4 C=2.09 (Ĉ=0.52).

α
(2,1)
[n−1] = 0.900023951818 β

(2,1)
[n−1] = 0.429937068113

α
(3,2)
[n−1] = 0.929977148125 β

(3,2)
[n−1] = 0.44424556443

α
(4,1)
[n−1] = 0.17060890882

α
(4,3)
[n−1] = 0.82939109118 β

(4,3)
[n−1] = 0.396196093826

α
(5,1)
[n−1] = 0.455478879223 β

(5,1)
[n−1] = 0.217580047203

α
(5,4)
[n−1] = 0.544521120777 β

(5,4)
[n−1] = 0.260115093292

α
(2,1)
[n−2] = 0.0975431697507

α
(3,1)
[n−2] = 0.0700228518754

α
(2,1)
[n−3] = 0.00243287843095

(C.32)

c = [0, 0.3275281415, 0.678816399518, 0.959200368133 , 1]T .

Memory required = 6 registers. Constraints satisfied to at least 10−12.
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C.33. GL method: p = 3 q = 2 s = 2 k = 4 Type = 1, 2, 5 C=1.15 (Ĉ=0.57).

α
(2,1)
[n−1] = 0.830293291146301 β

(2,1)
[n−1] = 0.722308072018095

α
(3,2)
[n−1] = 0.857043922392536 β

(3,2)
[n−1] = 0.745579604001761

α
(3,1)
[n−2] = 1.329e− 12 β

(3,1)
[n−2] = 1.156e − 12

α
(2,1)
[n−3] = 0.124529881257743 β

(2,1)
[n−3] = 0.108333933802765

α
(3,1)
[n−3] = 0.142956077606136 β

(3,1)
[n−3] = 0.124363679557616

α
(2,1)
[n−4] = 0.045176827595956 β

(2,1)
[n−4] = 0.039301277739674

(C.33)

c = [0, 0.485353038257179 , 1]T .

Memory required = 10 registers.

C.34. GL method: p = 3 q = 2 s = 2 k = 4 Type = 3, 4 C=0.40 (Ĉ=0.20).

α
(2,1)
[n−1] = 0.691358024690956 β

(2,1)
[n−1] = 1.728395061727952

α
(3,1)
[n−1] = 0.852727272727248 β

(3,1)
[n−1] = 0.468181818181669

α
(3,2)
[n−1] = 0.147272727272752 β

(3,2)
[n−1] = 0.368181818182

α
(2,1)
[n−2] = 8.39e− 13

α
(2,1)
[n−3] = 0.308641975308205

(C.34)

c = [0, 1.111111111110702 , 1]T .

Memory required = 6 registers.

C.35. GL method: p = 3 q = 2 s = 3 k = 4 Type = 2, 5 C=1.73 (Ĉ=0.58).

α
(2,1)
[n−1] = 0.900993966219 β

(2,1)
[n−1] = 0.520329197837

α
(3,2)
[n−1] = 0.777467315668 β

(3,2)
[n−1] = 0.448991846642

α
(4,3)
[n−1] = 0.858501272772 β

(4,3)
[n−1] = 0.495789422961

α
(2,1)
[n−2] = 0.00891825759456 β

(2,1)
[n−2] = 0.00515034505698

α
(3,1)
[n−2] = 0.222532684332 β

(3,1)
[n−2] = 0.128513905167

α
(4,1)
[n−2] = 0.141498727228 β

(4,1)
[n−2] = 0.0817163288483

α
(2,1)
[n−3] = 0.0900877761867 β

(2,1)
[n−3] = 0.0520262089156

(C.35)

c = [0, 0.388411941842, 0.656950657275 , 1]T .

Memory required = 8 registers. Constraints satisfied to at least 10−12.

C.36. GL method: p = 3 q = 2 s = 3 k = 4 Type = 3, 4 C=1.23 (Ĉ=0.41).

α
(2,1)
[n−1] = 0.916090505879052 β

(2,1)
[n−1] = 0.747161698978633

α
(3,2)
[n−1] = 0.884025406446454 β

(3,2)
[n−1] = 0.7210094640016

α
(4,1)
[n−1] = 0.674316326246705 β

(4,1)
[n−1] = 0.370522936460541

α
(4,3)
[n−1] = 0.325683673753295 β

(4,3)
[n−1] = 0.265626993675275

α
(3,1)
[n−2] = 0.115974593552974

α
(2,1)
[n−3] = 0.083909494120948

α
(3,1)
[n−3] = 5.72e− 13

(C.36)

c = [0, 0.579342710736738, 1.117188545778317 , 1]T .

Memory required = 6 registers.
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C.37. GL method: p = 3 q = 2 s = 4 k = 4 Type = 2, 5 C=2.24 (Ĉ=0.56).

α
(2,1)
[n−1] = 0.93029772701 β

(2,1)
[n−1] = 0.414584345573

α
(3,2)
[n−1] = 0.870748990899 β

(3,2)
[n−1] = 0.388046632889

α
(4,3)
[n−1] = 0.915509837034 β

(4,3)
[n−1] = 0.407994167494

α
(5,1)
[n−1] = 0.392563481054 β

(5,1)
[n−1] = 0.17494471841

α
(5,4)
[n−1] = 0.607436518946 β

(5,4)
[n−1] = 0.2707022326

α
(2,1)
[n−2] = 0.0221533478517 β

(2,1)
[n−2] = 0.00987257192476

α
(3,1)
[n−2] = 0.129251009101 β

(3,1)
[n−2] = 0.0576003181207

α
(4,1)
[n−2] = 0.0844901629657 β

(4,1)
[n−2] = 0.037652783516

α
(2,1)
[n−3] = 0.0475489251388 β

(2,1)
[n−3] = 0.0211900335119

(C.37)

c = [0, 0.32839575288, 0.602346212345, 0.912610670746 , 1]T .

Memory required = 8 registers. Constraints satisfied to at least 10−12 .

C.38. GL method: p = 3 q = 2 s = 4 k = 4 Type = 3, 4 C=2.09 (Ĉ=0.52).

α
(2,1)
[n−1] = 0.900023951818828 β

(2,1)
[n−1] = 0.429937068112915

α
(3,2)
[n−1] = 0.929977148124541 β

(3,2)
[n−1] = 0.444245564430445

α
(4,1)
[n−1] = 0.170608908820354

α
(4,3)
[n−1] = 0.829391091179646 β

(4,3)
[n−1] = 0.39619609382632

α
(5,1)
[n−1] = 0.455478879223657 β

(5,1)
[n−1] = 0.217580047203227

α
(5,4)
[n−1] = 0.544521120776343 β

(5,4)
[n−1] = 0.260115093291723

α
(2,1)
[n−2] = 0.097543169749964

α
(3,1)
[n−2] = 0.070022851875459

α
(2,1)
[n−3] = 0.002432878431208

(C.38)

c = [0, 0.327528141500535, 0.678816399518184, 0.959200368133346 , 1]T .

Memory required = 6 registers. Constraints satisfied to at least 10−16.

C.39. GL method: p = 3 q = 3 s = 2 k = 2 Type = 1, 2, 5 C=0.34 (Ĉ=0.17).

α
(2,1)
[n−1] = 0.29797195746691 β

(2,1)
[n−1] = 0.868917761539344

α
(3,2)
[n−1] = 0.386200749574973 β

(3,2)
[n−1] = 1.126202256340744

α
(2,1)
[n−2] = 0.70202804253309 β

(2,1)
[n−2] = 0.259927536477292

α
(3,1)
[n−2] = 0.613799250425027 β

(3,1)
[n−2] = 0.322759850085005

(C.39)

c = [0, 0.426817255483546 , 1]T .

Memory required = 6 registers.
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C.40. GL method: p = 3 q = 3 s = 3 k = 2 Type = 1, 2, 5 C=1.44 (Ĉ=0.48).

α
(2,1)
[n−1] = 0.697169114587643 β

(2,1)
[n−1] = 0.484471495618137

α
(3,2)
[n−1] = 0.76354468478889 β

(3,2)
[n−1] = 0.530596705549337

α
(4,3)
[n−1] = 0.816170594740032 β

(4,3)
[n−1] = 0.567167105426239

α
(2,1)
[n−2] = 0.302830885412357 β

(2,1)
[n−2] = 0.109139040169882

α
(3,1)
[n−2] = 0.23645531521111 β

(3,1)
[n−2] = 0.109233120743169

α
(4,1)
[n−2] = 0.183829405259968 β

(4,1)
[n−2] = 0.106231031926622

(C.40)

c = [0, 0.290779650375662, 0.625397767570505 , 1]T .

Memory required = 6 registers.

C.41. GL method: p = 3 q = 3 s = 4 k = 2 Type = 1, 2, 5 C=2.08 (Ĉ=0.52).

α
(2,1)
[n−1] = 0.790124930934636 β

(2,1)
[n−1] = 0.380213743038368

α
(3,2)
[n−1] = 0.836747480813501 β

(3,2)
[n−1] = 0.40264884602704

α
(4,1)
[n−1] = 0.134452093060267 β

(4,1)
[n−1] = 0.064699304578729

α
(4,3)
[n−1] = 0.756502101816436 β

(4,3)
[n−1] = 0.364034198247333

α
(5,1)
[n−1] = 0.18261756535479 β

(5,1)
[n−1] = 0.087876872820562

α
(5,4)
[n−1] = 0.757899463976521 β

(5,4)
[n−1] = 0.364706618869016

α
(2,1)
[n−2] = 0.209875069065364 β

(2,1)
[n−2] = 0.074873122072702

α
(3,1)
[n−2] = 0.163252519186499 β

(3,1)
[n−2] = 0.072060064890957

α
(4,1)
[n−2] = 0.109045805123297 β

(4,1)
[n−2] = 0.052473617911939

α
(5,1)
[n−2] = 0.059482970668689 β

(5,1)
[n−2] = 0.028623629048423

(C.41)

c = [0, 0.245211796045705, 0.516636744338496, 0.762998098582377 , 1]T .

Memory required = 6 registers.

C.42. GL method: p = 3 q = 3 s = 2 k = 3 Type = 1, 2, 5 C=1.10 (Ĉ=0.55).

α
(2,1)
[n−1] = 0.803084592008657 β

(2,1)
[n−1] = 0.729588628543267

α
(3,2)
[n−1] = 0.846696784194569 β

(3,2)
[n−1] = 0.769209559888867

α
(2,1)
[n−3] = 0.196915407991343 β

(2,1)
[n−3] = 0.140265790357552

α
(3,1)
[n−3] = 0.153303215805431 β

(3,1)
[n−3] = 0.134349217930499

(C.42)

c = [0, 0.476023602918134 , 1]T .

Memory required = 8 registers.
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C.43. GL method: p = 3 q = 3 s = 3 k = 3 Type = 1 C=1.75 (Ĉ=0.58).

α
(2,1)
[n−1] = 0.850708871672451 β

(2,1)
[n−1] = 0.486546145338808

α
(3,1)
[n−1] = 1.995e− 12 β

(3,1)
[n−1] = 1.141e− 12

α
(3,2)
[n−1] = 0.850708871670933 β

(3,2)
[n−1] = 0.48654614533794

α
(4,1)
[n−1] = 4.34e − 13 β

(4,1)
[n−1] = 2.48e− 13

α
(4,2)
[n−1] = 1.691e− 12 β

(4,2)
[n−1] = 9.67e− 13

α
(4,3)
[n−1] = 0.850708871670945 β

(4,3)
[n−1] = 0.486546145337947

α
(2,1)
[n−2] = 2.34e − 13 β

(2,1)
[n−2] = 1.34e− 13

α
(3,1)
[n−2] = 0.030664864532776 β

(3,1)
[n−2] = 0.017538163915497

α
(4,1)
[n−2] = 0.118626263794421 β

(4,1)
[n−2] = 0.067845949780271

α
(4,2)
[n−2] = 0.030664864532509 β

(4,2)
[n−2] = 0.017538163915344

α
(2,1)
[n−3] = 4.38e − 13 β

(2,1)
[n−3] = 2.51e− 13

α
(2,2)
[n−3] = 0.118626263792881 β

(2,2)
[n−3] = 0.06784594977939

α
(2,3)
[n−3] = 0.030664864533996 β

(2,3)
[n−3] = 0.017538163916195

α
(3,3)
[n−3] = 0.118626263794296 β

(3,3)
[n−3] = 0.0678459497802

(C.43)

c = [0, 0.33333333333357, 0.666666666666802 , 1]T .

Memory required = 18 registers.

C.44. GL method: p = 3 q = 3 s = 3 k = 3 Type = 2, 5 C=1.66 (Ĉ=0.55).

α
(2,1)
[n−1] = 0.800613095939293 β

(2,1)
[n−1] = 0.481949168974602

α
(3,2)
[n−1] = 0.817996156671469 β

(3,2)
[n−1] = 0.492413339141939

α
(4,3)
[n−1] = 0.848867786578844 β

(4,3)
[n−1] = 0.510997292432505

α
(2,1)
[n−2] = 0.118959097351365 β

(2,1)
[n−2] = 0.071610417567797

α
(3,1)
[n−2] = 0.149382555907199 β

(3,1)
[n−2] = 0.089924582852733

α
(4,1)
[n−2] = 0.147781652180271 β

(4,1)
[n−2] = 0.088960878630664

α
(2,1)
[n−3] = 0.080427806709342 β

(2,1)
[n−3] = 0.048415539044538

α
(3,1)
[n−3] = 0.032621287421332 β

(3,1)
[n−3] = 0.019637203592264

α
(4,1)
[n−3] = 0.003350561240885 β

(4,1)
[n−3] = 0.002016954523768

(C.44)

c = [0, 0.322160414816887, 0.650875975988973 , 1]T .

Memory required = 8 registers.
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C.45. GL method: p = 3 q = 3 s = 4 k = 3 Type = 1 C=1.87 (Ĉ=0.47).

α
(2,1)
[n−1] = 0.806489248939 β

(2,1)
[n−1] = 0.430902086106

α
(3,1)
[n−1] = 0.367178647428 β

(3,1)
[n−1] = 0.196181220467

α
(3,2)
[n−1] = 0.49945641342 β

(3,2)
[n−1] = 0.266856391136

α
(4,2)
[n−1] = 0.404181701186 β

(4,2)
[n−1] = 0.215951717194

α
(4,3)
[n−1] = 0.452346592625 β

(4,3)
[n−1] = 0.241685912939

α
(5,2)
[n−1] = 0.112903876393 β

(5,2)
[n−1] = 0.0603238244417

α
(5,4)
[n−1] = 0.757367100556 β

(5,4)
[n−1] = 0.404656434052

α
(2,1)
[n−2] = 0.124984672012 β

(2,1)
[n−2] = 0.0667785168521

α
(4,1)
[n−2] = 0.122847493797 β

(4,1)
[n−2] = 0.0656366360985

α
(5,1)
[n−2] = 0.0691298047124 β

(5,1)
[n−2] = 0.0369356158211

α
(5,2)
[n−2] = 0.0605992183392 β

(5,2)
[n−2] = 0.0323777776742

α
(2,1)
[n−3] = 0.0321413234977 β

(2,1)
[n−3] = 0.0171729051113

α
(2,2)
[n−3] = 0.0162886565639 β

(2,2)
[n−3] = 0.00870292580155

α
(2,3)
[n−3] = 0.0200960989869 β

(2,3)
[n−3] = 0.0107372181184

α
(3,1)
[n−3] = 0.0113605573748 β

(3,1)
[n−3] = 0.0060698736884

α
(3,2)
[n−3] = 0.000325770548329 β

(3,2)
[n−3] = 0.000174057135977

α
(3,4)
[n−3] = 0.121678611229 β

(3,4)
[n−3] = 0.0650121095628

α
(4,2)
[n−3] = 0.00740070019677 β

(4,2)
[n−3] = 0.00395414713541

α
(4,3)
[n−3] = 0.0132235121954 β

(4,3)
[n−3] = 0.00706523862303

(C.45)

c = [0, 0.286951616233, 0.498640956746, 0.720454291198 , 1]T .

Memory required = 24 registers. Constraints satisfied to at least 10−12 .
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C.46. GL method: p = 3 q = 3 s = 4 k = 3 Type = 2 C=1.89 (Ĉ=0.47).

α
(2,1)
[n−1] = 0.716183390895388 β

(2,1)
[n−1] = 0.379151743770823

α
(3,1)
[n−1] = 0.278763070299793 β

(3,1)
[n−1] = 0.144700504222518

α
(3,2)
[n−1] = 0.553866242729025 β

(3,2)
[n−1] = 0.267063150136361

α
(4,1)
[n−1] = 0.002289562509499 β

(4,1)
[n−1] = 0.001201101022548

α
(4,2)
[n−1] = 0.000025564838025 β

(4,2)
[n−1] = 0.000013534177574

α
(4,3)
[n−1] = 0.845821655698974 β

(4,3)
[n−1] = 0.447782771265121

α
(5,1)
[n−1] = 0.194325796629045 β

(5,1)
[n−1] = 0.090653385624981

α
(5,2)
[n−1] = 0.003986745015481 β

(5,2)
[n−1] = 0.00208422036429

α
(5,3)
[n−1] = 0.000826349022721 β

(5,3)
[n−1] = 0.000343510660292

α
(5,4)
[n−1] = 0.732403051123872 β

(5,4)
[n−1] = 0.387738490765398

α
(2,1)
[n−2] = 0.144241659742229 β

(2,1)
[n−2] = 0.073062413205141

α
(2,2)
[n−2] = 2.065807166e− 6

α
(2,3)
[n−2] = 0.000036682395517

α
(2,4)
[n−2] = 0.114351076873661

α
(3,1)
[n−2] = 0.128250634298229 β

(3,1)
[n−2] = 0.067896644805203

α
(3,2)
[n−2] = 0.000051299106993

α
(3,3)
[n−2] = 0.00003852513081

α
(3,4)
[n−2] = 0.014819398968188

α
(4,1)
[n−2] = 0.148720689217172 β

(4,1)
[n−2] = 0.078733508791985

α
(4,2)
[n−2] = 5.52502e− 10

α
(4,3)
[n−2] = 4.08551e− 10

α
(4,4)
[n−2] = 1.248997491e− 6

α
(5,1)
[n−2] = 0.059730413214158 β

(5,1)
[n−2] = 0.030909587943944

α
(5,2)
[n−2] = 5.6092255e− 8

α
(5,3)
[n−2] = 2.77438891e− 7

α
(5,4)
[n−2] = 0.007222367590003

α
(2,1)
[n−3] = 0.024533077293894 β

(2,1)
[n−3] = 0.011531521117475

α
(2,2)
[n−3] = 1.261107e− 9

α
(2,3)
[n−3] = 1.0612516e− 8

α
(2,4)
[n−3] = 0.000652035118522

α
(3,1)
[n−3] = 0.021468467129242 β

(3,1)
[n−3] = 0.011365534419743

α
(3,2)
[n−3] = 1.e − 15

α
(3,4)
[n−3] = 0.002742362337719

α
(4,1)
[n−3] = 0.003139915396281 β

(4,1)
[n−3] = 0.001662289277892

α
(4,4)
[n−3] = 1.362381506e− 6

α
(5,1)
[n−3] = 0.001504943873574 β

(5,1)
[n−3] = 0.000796726249817

(C.46)

c = [0, 0.241228873153473, 0.446286677766848, 0.751875777234274 , 1]T .

Memory required = 18 registers.
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C.47. GL method: p = 3 q = 3 s = 4 k = 3 Type = 5 C=2.09 (Ĉ=0.52).

α
(2,1)
[n−1] = 0.799187202592 β

(2,1)
[n−1] = 0.382168426881

α
(3,2)
[n−1] = 0.83979031556 β

(3,2)
[n−1] = 0.401584688502

α
(4,1)
[n−1] = 0.143702513623 β

(4,1)
[n−1] = 0.0687180217504

α
(4,3)
[n−1] = 0.750583456999 β

(4,3)
[n−1] = 0.358926291705

α
(5,1)
[n−1] = 0.184673374028 β

(5,1)
[n−1] = 0.0883101388637

α
(5,4)
[n−1] = 0.757629101204 β

(5,4)
[n−1] = 0.362295493255

α
(2,1)
[n−2] = 0.174300976736 β

(2,1)
[n−2] = 0.0833500960315

α
(3,1)
[n−2] = 0.154343675483 β

(3,1)
[n−2] = 0.073806586826

α
(4,1)
[n−2] = 0.105714029377 β

(4,1)
[n−2] = 0.0505520661183

α
(5,1)
[n−2] = 0.0576975247686 β

(5,1)
[n−2] = 0.0275907474547

α
(2,1)
[n−3] = 0.0265118206714 β

(2,1)
[n−3] = 0.012677856661

α
(3,1)
[n−3] = 0.0058660089574 β

(3,1)
[n−3] = 0.00280510424597

(C.47)

c = [0, 0.250871761494, 0.522800361927, 0.764887653172 , 1]T .

Memory required = 8 registers. Constraints satisfied to at least 10−12 .

C.48. GL method: p = 3 q = 3 s = 2 k = 4 Type = 1 C=1.17 (Ĉ=0.58).

α
(2,1)
[n−1] = 0.850708871672578 β

(2,1)
[n−1] = 0.729819218007638

α
(3,2)
[n−1] = 0.850708871672578 β

(3,2)
[n−1] = 0.729819218007638

α
(2,1)
[n−3] = 0.030664864534382 β

(2,1)
[n−3] = 0.026307245874599

α
(3,1)
[n−3] = 0.118626263793039 β

(3,1)
[n−3] = 0.101768924669126

α
(3,2)
[n−3] = 0.030664864534382 β

(3,2)
[n−3] = 0.026307245874599

α
(2,2)
[n−4] = 0.118626263793039 β

(2,2)
[n−4] = 0.101768924669126

(C.48)

c = [0, 0.5 , 1]T .

Memory required = 14 registers.

C.49. GL method: p = 3 q = 3 s = 2 k = 4 Type = 2, 5 C=1.15 (Ĉ=0.57).

α
(2,1)
[n−1] = 0.834706516477006 β

(2,1)
[n−1] = 0.727282690414536

α
(3,2)
[n−1] = 0.850026328485734 β

(3,2)
[n−1] = 0.740630895890849

α
(3,1)
[n−2] = 0.010087116227039 β

(3,1)
[n−2] = 0.008788939445553

α
(2,1)
[n−3] = 0.116981426273196 β

(2,1)
[n−3] = 0.101926323503003

α
(3,1)
[n−3] = 0.139886555287227 β

(3,1)
[n−3] = 0.121883642063215

α
(2,1)
[n−4] = 0.048312057249798 β

(2,1)
[n−4] = 0.042094463482078

(C.49)

c = [0, 0.492404453103832 , 1]T .

Memory required = 10 registers.



44 E. M. Constantinescu and A. Sandu

C.50. GL method: p = 3 q = 3 s = 3 k = 4 Type = 1 C=1.71 (Ĉ=0.57).

α
(2,1)
[n−1] = 0.830055156319681 β

(2,1)
[n−1] = 0.486136958739001

α
(3,2)
[n−1] = 0.839657029132357 β

(3,2)
[n−1] = 0.491736512643712

α
(4,1)
[n−1] = 0.000012808984255 β

(4,1)
[n−1] = 4.599537749e− 6

α
(4,2)
[n−1] = 0.024867055186585 β

(4,2)
[n−1] = 0.014446373457554

α
(4,3)
[n−1] = 0.824506011823989 β

(4,3)
[n−1] = 0.481257393761451

α
(2,1)
[n−2] = 0.000299882391121 β

(2,1)
[n−2] = 0.000172167893816

α
(2,2)
[n−2] = 0.000024610802306 β

(2,2)
[n−2] = 0.000011835700954

α
(2,3)
[n−2] = 0.022501227421491 β

(2,3)
[n−2] = 0.01275486968223

α
(3,1)
[n−2] = 0.082812509905377 β

(3,1)
[n−2] = 0.048484182842183

α
(3,2)
[n−2] = 0.000130755737841 β

(3,2)
[n−2] = 0.000075257741832

α
(3,3)
[n−2] = 1.410150939e− 6

α
(4,1)
[n−2] = 0.120085083489407 β

(4,1)
[n−2] = 0.069486159422398

α
(4,2)
[n−2] = 0.029480320967774 β

(4,2)
[n−2] = 0.015196421966322

α
(4,3)
[n−2] = 0.000015524519656 β

(4,3)
[n−2] = 9.092163761e− 6

α
(2,1)
[n−3] = 0.000077680671655 β

(2,1)
[n−3] = 0.000044763175795

α
(2,2)
[n−3] = 0.131089214987494 β

(2,2)
[n−3] = 0.076774792317521

α
(2,3)
[n−3] = 0.013545540805826 β

(2,3)
[n−3] = 0.007548576756984

α
(3,1)
[n−3] = 0.0000256974081 β

(3,1)
[n−3] = 0.000015050156311

α
(3,2)
[n−3] = 0.034731747280299 β

(3,2)
[n−3] = 0.020341282027246

α
(3,3)
[n−3] = 0.042638846747172 β

(3,3)
[n−3] = 0.024742530543243

α
(4,1)
[n−3] = 1.7761857e− 7 β

(4,1)
[n−3] = 3.4438e− 11

α
(4,2)
[n−3] = 0.00004022890987 β

(4,2)
[n−3] = 0.000023105699801

α
(4,3)
[n−3] = 0.000989966260536 β

(4,3)
[n−3] = 0.000579739433566

α
(2,1)
[n−4] = 1.321961348e− 6 β

(2,1)
[n−4] = 2.8693e− 11

α
(2,3)
[n−4] = 0.002405364639077 β

(2,3)
[n−4] = 0.001408745558044

α
(3,3)
[n−4] = 2.003637915e− 6 β

(3,3)
[n−4] = 1.173467133e− 6

α
(4,1)
[n−4] = 2.335991243e− 6 β

(4,1)
[n−4] = 9.7731602e− 7

α
(4,2)
[n−4] = 1.16798361e− 7 β

(4,2)
[n−4] = 1.4833156e− 8

α
(4,3)
[n−4] = 3.69449753e− 7 β

(4,3)
[n−4] = 1.4283e− 11

(C.50)

c = [0, 0.335042537671545, 0.669189725772055 , 1]T .

Memory required = 24 registers. Constraints satisfied to at least 10−16 .
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C.51. GL method: p = 3 q = 3 s = 3 k = 4 Type = 2, 5 C=1.66 (Ĉ=0.55).

α
(2,1)
[n−1] = 0.800613095939293 β

(2,1)
[n−1] = 0.481949168974602

α
(3,2)
[n−1] = 0.817996156671469 β

(3,2)
[n−1] = 0.492413339141939

α
(4,3)
[n−1] = 0.848867786578844 β

(4,3)
[n−1] = 0.510997292432505

α
(2,1)
[n−2] = 0.118959097351365 β

(2,1)
[n−2] = 0.071610417567797

α
(3,1)
[n−2] = 0.149382555907199 β

(3,1)
[n−2] = 0.089924582852733

α
(4,1)
[n−2] = 0.147781652180271 β

(4,1)
[n−2] = 0.088960878630664

α
(2,1)
[n−3] = 0.080427806709342 β

(2,1)
[n−3] = 0.048415539044538

α
(3,1)
[n−3] = 0.032621287421332 β

(3,1)
[n−3] = 0.019637203592264

α
(4,1)
[n−3] = 0.003350561240885 β

(4,1)
[n−3] = 0.002016954523768

(C.51)

c = [0, 0.322160414816887, 0.650875975988973 , 1]T .

Memory required = 8 registers.
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C.52. GL method: p = 3 q = 3 s = 4 k = 4 Type = 2 C=1.84 (Ĉ=0.46).

α
(2,1)
[n−1] = 0.767063924168 β

(2,1)
[n−1] = 0.415949971073

α
(3,1)
[n−1] = 0.182606085018 β

(3,1)
[n−1] = 0.0990204250101

α
(3,2)
[n−1] = 0.541738939337 β

(3,2)
[n−1] = 0.29376469033

α
(4,1)
[n−1] = 0.00276647524347 β

(4,1)
[n−1] = 0.00150015567314

α
(4,2)
[n−1] = 0.159836692277 β

(4,2)
[n−1] = 0.0866734380728

α
(4,3)
[n−1] = 0.683484978376 β

(4,3)
[n−1] = 0.370628246261

α
(5,1)
[n−1] = 0.144093076668 β

(5,1)
[n−1] = 0.0781362663311

α
(5,4)
[n−1] = 0.757124916486 β

(5,4)
[n−1] = 0.406016867753

α
(2,1)
[n−2] = 0.174857248386 β

(2,1)
[n−2] = 0.0948185217903

α
(2,2)
[n−2] = 0.0197884516029

α
(2,4)
[n−2] = 0.0000127980458556

α
(3,1)
[n−2] = 0.0421756328922 β

(3,1)
[n−2] = 0.0228702624759

α
(3,3)
[n−2] = 0.0000237824472388

α
(3,4)
[n−2] = 0.233451827964

α
(4,1)
[n−2] = 0.146012447466 β

(4,1)
[n−2] = 0.0791770690632

α
(5,1)
[n−2] = 0.0712610098801 β

(5,1)
[n−2] = 0.0386421705733

α
(5,4)
[n−2] = 0.0275209969661

α
(2,1)
[n−3] = 0.0281092843539 β

(2,1)
[n−3] = 0.0152426097037

α
(2,4)
[n−3] = 0.00873054276985

α
(3,2)
[n−3] = 3.0790271966e− 6

α
(4,1)
[n−3] = 0.0078494557558 β

(4,1)
[n−3] = 0.0042564651938

α
(2,1)
[n−4] = 0.0000873899896805 β

(2,1)
[n−4] = 0.0000473883108493

α
(2,3)
[n−4] = 0.00135036068361

α
(3,1)
[n−4] = 6.533146237e− 7 β

(3,1)
[n−4] = 3.542679955e− 7

α
(4,1)
[n−4] = 0.0000499508813517 β

(4,1)
[n−4] = 0.0000270864878385

(C.52)

c = [0, 0.265697922663, 0.455317410398, 0.734072136634 , 1]T .

Memory required = 19 registers. Constraints satisfied to at least 10−12.
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C.53. GL method: p = 3 q = 3 s = 4 k = 4 Type = 5 C=2.09 (Ĉ=0.52).

α
(2,1)
[n−1] = 0.799187202592 β

(2,1)
[n−1] = 0.382168426881

α
(3,2)
[n−1] = 0.83979031556 β

(3,2)
[n−1] = 0.401584688502

α
(4,1)
[n−1] = 0.143702513622 β

(4,1)
[n−1] = 0.0687180217499

α
(4,3)
[n−1] = 0.750583457 β

(4,3)
[n−1] = 0.358926291706

α
(5,1)
[n−1] = 0.184673374027 β

(5,1)
[n−1] = 0.0883101388634

α
(5,4)
[n−1] = 0.757629101204 β

(5,4)
[n−1] = 0.362295493256

α
(2,1)
[n−2] = 0.174300976737 β

(2,1)
[n−2] = 0.0833500960317

α
(3,1)
[n−2] = 0.154343675483 β

(3,1)
[n−2] = 0.073806586826

α
(4,1)
[n−2] = 0.105714029377 β

(4,1)
[n−2] = 0.0505520661185

α
(5,1)
[n−2] = 0.0576975247688 β

(5,1)
[n−2] = 0.0275907474548

α
(2,1)
[n−3] = 0.0265118206715 β

(2,1)
[n−3] = 0.012677856661

α
(3,1)
[n−3] = 0.00586600895749 β

(3,1)
[n−3] = 0.00280510424602

(C.53)

c = [0, 0.250871761494, 0.522800361926, 0.764887653172 , 1]T .

Memory required = 8 registers. Constraints satisfied to at least 10−12.

Appendix D. Fourth-Order Methods.

D.1. GL method: p = 4 q = 1 s = 3 k = 2 Type = 1, 2, 5 C=0.86 (Ĉ=0.29).

α
(2,1)
[n−1] = 0.710585666356288 β

(2,1)
[n−1] = 0.827386761974117

α
(3,2)
[n−1] = 0.576382094711026 β

(3,2)
[n−1] = 0.67112374704685

α
(4,1)
[n−1] = 0.558634946112731 β

(4,1)
[n−1] = 0.454757038349818

α
(4,3)
[n−1] = 0.327149051884168 β

(4,3)
[n−1] = 0.38092352201434

α
(2,1)
[n−2] = 0.289414333643712

α
(3,1)
[n−2] = 0.423617905288974 β

(3,1)
[n−2] = 0.293818741600078

α
(4,1)
[n−2] = 0.114216002003101

(D.1)

c = [0, 0.537972428330405, 0.851402258495809 , 1]T .

Memory required = 6 registers.

D.2. GL method: p = 4 q = 1 s = 3 k = 2 Type = 3, 4 C=0.33 (Ĉ=0.11).

α
(2,1)
[n−1] = 0.433248000385632 β

(2,1)
[n−1] = 1.319581329286352

α
(3,1)
[n−1] = 0.904292085518362 β

(3,1)
[n−1] = 0.338689511741774

α
(3,2)
[n−1] = 0.095707914481638 β

(3,2)
[n−1] = 0.2915059663392

α
(4,1)
[n−1] = 0.776039035297064 β

(4,1)
[n−1] = 0.246841808704222

α
(4,2)
[n−1] = 6.93e− 13

α
(4,3)
[n−1] = 0.20579444423795 β

(4,3)
[n−1] = 0.626806138862542

α
(2,1)
[n−2] = 0.566751999614368

α
(4,1)
[n−2] = 0.018166520464293

(D.2)

c = [0, 0.752829329671984, 0.702247203184489 , 1]T .

Memory required = 6 registers.
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D.3. GL method: p = 4 q = 1 s = 4 k = 2 Type = 1, 2, 5 C=1.59 (Ĉ=0.40).

α
(2,1)
[n−1] = 0.868626357435619 β

(2,1)
[n−1] = 0.545395466165137

α
(3,2)
[n−1] = 0.623883714136454 β

(3,2)
[n−1] = 0.391725793480205

α
(4,1)
[n−1] = 0.043008189202826

α
(4,3)
[n−1] = 0.896416492510519 β

(4,3)
[n−1] = 0.562844411323459

α
(5,1)
[n−1] = 0.401268332565663 β

(5,1)
[n−1] = 0.251949445723764

α
(5,2)
[n−1] = 0.146657825552015 β

(5,2)
[n−1] = 0.092083912086026

α
(5,4)
[n−1] = 0.404779697066511 β

(5,4)
[n−1] = 0.254154170761662

α
(2,1)
[n−2] = 0.131373642564381

α
(3,1)
[n−2] = 0.376116285863546 β

(3,1)
[n−2] = 0.236156910626618

α
(4,1)
[n−2] = 0.060575318286655

α
(5,1)
[n−2] = 0.047294144815812

(D.3)

c = [0, 0.414021823600756, 0.510067891284865, 0.959502363084619 , 1]T .

Memory required = 8 registers.

D.4. GL method: p = 4 q = 1 s = 4 k = 2 Type = 3, 4 C=1.13 (Ĉ=0.28).

α
(2,1)
[n−1] = 0.902352862413481 β

(2,1)
[n−1] = 0.799270795186291

α
(3,1)
[n−1] = 0.250987197762629

α
(3,2)
[n−1] = 0.561926497968642 β

(3,2)
[n−1] = 0.497733711030044

α
(4,1)
[n−1] = 0.791972295165213 β

(4,1)
[n−1] = 0.377289295430417

α
(4,3)
[n−1] = 0.208027704834787 β

(4,3)
[n−1] = 0.184263247771347

α
(5,1)
[n−1] = 0.415200938456997 β

(5,1)
[n−1] = 0.067856012987658

α
(5,4)
[n−1] = 0.584799061543003 β

(5,4)
[n−1] = 0.517993381983081

α
(2,1)
[n−2] = 0.097647137586519

α
(3,1)
[n−2] = 0.187086304268729

(D.4)

c = [0, 0.701623657599772, 0.704908331568304, 0.708193005536837 , 1]T .

Memory required = 5 registers.

D.5. GL method: p = 4 q = 1 s = 2 k = 3 Type = 1, 2, 5 C=0.50 (Ĉ=0.25).

α
(2,1)
[n−1] = 0.590336292559735 β

(2,1)
[n−1] = 1.189694929472862

α
(3,1)
[n−1] = 0.067866090324549 β

(3,1)
[n−1] = 0.136769405099879

α
(3,2)
[n−1] = 0.360895624304504 β

(3,2)
[n−1] = 0.727306959974116

α
(3,1)
[n−2] = 0.343978736165836 β

(3,1)
[n−2] = 0.69321463616701

α
(2,1)
[n−3] = 0.409663707440265 β

(2,1)
[n−3] = 0.297988700033142

α
(3,1)
[n−3] = 0.227259549205112

(D.5)

c = [0, 0.668356214625473 , 1]T .

Memory required = 8 registers.
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D.6. GL method: p = 4 q = 1 s = 3 k = 3 Type = 1, 2, 5 C=1.16 (Ĉ=0.39).

α
(2,1)
[n−1] = 0.909692413517 β

(2,1)
[n−1] = 0.78163958672

α
(3,2)
[n−1] = 0.508797707226 β

(3,2)
[n−1] = 0.437176812394

α
(4,1)
[n−1] = 0.215448948486 β

(4,1)
[n−1] = 0.185121283361

α
(4,3)
[n−1] = 0.607708706167 β

(4,3)
[n−1] = 0.522164607374

α
(3,1)
[n−2] = 0.477594566477 β

(3,1)
[n−2] = 0.410365980868

α
(4,1)
[n−2] = 0.135690151048 β

(4,1)
[n−2] = 0.116589730783

α
(2,1)
[n−3] = 0.0903075864825

α
(3,1)
[n−3] = 0.0136077262975

α
(4,1)
[n−3] = 0.041152194299

(D.6)

c = [0, 0.601024413755, 0.648532617895 , 1]T .

Memory required = 7 registers. Constraints satisfied to at least 10−12.

D.7. GL method: p = 4 q = 1 s = 3 k = 3 Type = 3, 4 C=0.22 (Ĉ=0.07).

α
(2,1)
[n−1] = 0.618033988749895 β

(2,1)
[n−1] = 1.

α
(3,1)
[n−1] = 0.917905843198209 β

(3,1)
[n−1] = 0.27814300037777

α
(3,2)
[n−1] = 0.082094156801791 β

(3,2)
[n−1] = 0.371647510128269

α
(4,1)
[n−1] = 0.852530829669221 β

(4,1)
[n−1] = 0.24878408698241

α
(4,3)
[n−1] = 0.144744029088284 β

(4,3)
[n−1] = 0.655269024158137

α
(2,1)
[n−2] = 0.381966011250105

α
(4,1)
[n−3] = 0.002725141242495

(D.7)

c = [0, 0.618033988749895, 0.700527489687309 , 1]T .

Memory required = 6 registers.

D.8. GL method: p = 4 q = 1 s = 4 k = 3 Type = 1 C=1.52 (Ĉ=0.38).

α
(2,1)
[n−1] = 0.86536960781889 β

(2,1)
[n−1] = 0.569951956026472

α
(3,2)
[n−1] = 0.948249593039858 β

(3,2)
[n−1] = 0.62453858498285

α
(4,1)
[n−1] = 0.11373389381976 β

(4,1)
[n−1] = 0.074907709565235

α
(4,3)
[n−1] = 0.118696661326331 β

(4,3)
[n−1] = 0.07817630026003

α
(5,3)
[n−1] = 0.440970072725588 β

(5,3)
[n−1] = 0.29043284306292

α
(5,4)
[n−1] = 0.535193825052278 β

(5,4)
[n−1] = 0.352490733076074

α
(2,1)
[n−2] = 0.050587404923692

α
(3,1)
[n−2] = 0.006773092723146 β

(3,1)
[n−2] = 0.004460911743405

α
(4,1)
[n−2] = 0.76756944485391 β

(4,1)
[n−2] = 0.50553856124353

α
(2,1)
[n−3] = 0.084042987257418 β

(2,1)
[n−3] = 0.055352608347782

α
(3,1)
[n−3] = 0.044977314236997

α
(5,1)
[n−3] = 0.023836102222133

(D.8)

c = [0, 0.406631184935727, 0.917859631161735, 0.e − 16 , 1]T .

Memory required = 9 registers.
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D.9. GL method: p = 4 q = 1 s = 4 k = 3 Type = 2, 5 C=1.84 (Ĉ=0.46).

α
(2,1)
[n−1] = 0.818373480723468 β

(2,1)
[n−1] = 0.443929239019362

α
(3,2)
[n−1] = 0.778461511725841 β

(3,2)
[n−1] = 0.422278867346495

α
(4,3)
[n−1] = 0.861761566148843 β

(4,3)
[n−1] = 0.467465240856038

α
(5,1)
[n−1] = 0.440706418670348 β

(5,1)
[n−1] = 0.239062567005864

α
(5,4)
[n−1] = 0.548348337299571 β

(5,4)
[n−1] = 0.29745326043524

α
(2,1)
[n−2] = 0.181626519276532 β

(2,1)
[n−2] = 0.04392542218422

α
(3,1)
[n−2] = 0.221538488274159 β

(3,1)
[n−2] = 0.120174241748529

α
(4,1)
[n−2] = 0.137563125565758 β

(4,1)
[n−2] = 0.074621545159975

α
(4,1)
[n−3] = 0.000675308285399

α
(5,1)
[n−3] = 0.010945244030081

(D.9)

c = [0, 0.30622814192705, 0.559301443118392, 0.88515753145047 , 1]T .

Memory required = 7 registers.

D.10. GL method: p = 4 q = 1 s = 4 k = 3 Type = 3, 4 C=1.13 (Ĉ=0.28).

α
(2,1)
[n−1] = 0.902352862413481 β

(2,1)
[n−1] = 0.799270795186291

α
(3,1)
[n−1] = 0.250987197762629

α
(3,2)
[n−1] = 0.561926497968642 β

(3,2)
[n−1] = 0.497733711030044

α
(4,1)
[n−1] = 0.791972295165213 β

(4,1)
[n−1] = 0.377289295430417

α
(4,3)
[n−1] = 0.208027704834787 β

(4,3)
[n−1] = 0.184263247771347

α
(5,1)
[n−1] = 0.415200938456997 β

(5,1)
[n−1] = 0.067856012987658

α
(5,4)
[n−1] = 0.584799061543003 β

(5,4)
[n−1] = 0.517993381983081

α
(2,1)
[n−2] = 0.097647137586519

α
(3,1)
[n−2] = 0.187086304268729

(D.10)

c = [0, 0.701623657599772, 0.704908331568304, 0.708193005536837 , 1]T .

Memory required = 5 registers.

D.11. GL method: p = 4 q = 1 s = 2 k = 4 Type = 1, 2, 5 C=0.68 (Ĉ=0.34).

α
(2,1)
[n−1] = 0.786504872001359 β

(2,1)
[n−1] = 1.153423323647521

α
(3,2)
[n−1] = 0.458522400127318 β

(3,2)
[n−1] = 0.672431220134611

α
(3,1)
[n−2] = 0.456111449095887 β

(3,1)
[n−2] = 0.668895517749515

α
(3,1)
[n−3] = 0.012516746945481 β

(3,1)
[n−3] = 0.018356031064848

α
(2,1)
[n−4] = 0.213495127998641 β

(2,1)
[n−4] = 0.228597011394211

α
(3,1)
[n−4] = 0.072849403831314

(D.11)

c = [0, 0.741534951045807 , 1]T .

Memory required = 10 registers.
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D.12. GL method: p = 4 q = 1 s = 3 k = 4 Type = 1, 2, 5 C=1.37 (Ĉ=0.46).

α
(2,1)
[n−1] = 0.871302710868 β

(2,1)
[n−1] = 0.638101638675

α
(3,2)
[n−1] = 0.579367669898 β

(3,2)
[n−1] = 0.424301973294

α
(4,3)
[n−1] = 0.813753694362 β

(4,3)
[n−1] = 0.595955411791

α
(2,1)
[n−2] = 0.0444371512818 β

(2,1)
[n−2] = 0.0325437057606

α
(3,1)
[n−2] = 0.420632330102 β

(3,1)
[n−2] = 0.308051582727

α
(4,1)
[n−2] = 0.176097024978 β

(4,1)
[n−2] = 0.128965282448

α
(2,1)
[n−3] = 0.0635485663222 β

(2,1)
[n−3] = 0.0465400185261

α
(2,1)
[n−4] = 0.0207115715276

α
(4,1)
[n−4] = 0.0101492806594

(D.12)

c = [0, 0.483516364453, 0.59185497535 , 1]T .

Memory required = 9 registers. Constraints satisfied to at least 10−12.

D.13. GL method: p = 4 q = 1 s = 3 k = 4 Type = 3, 4 C=0.23 (Ĉ=0.08).

α
(2,1)
[n−1] = 0.618033988749895 β

(2,1)
[n−1] = 1.

α
(3,1)
[n−1] = 0.917179114442679 β

(3,1)
[n−1] = 0.27867924287106

α
(3,2)
[n−1] = 0.082820885557321 β

(3,2)
[n−1] = 0.364750343630035

α
(4,1)
[n−1] = 0.848746674147337 β

(4,1)
[n−1] = 0.234236015738615

α
(4,3)
[n−1] = 0.150582640410676 β

(4,3)
[n−1] = 0.663178973092452

α
(2,1)
[n−2] = 0.381966011250105

α
(4,1)
[n−4] = 0.000670685441987

(D.13)

c = [0, 0.618033988749895, 0.694615708753885 , 1]T .

Memory required = 7 registers.
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D.14. GL method: p = 4 q = 1 s = 4 k = 4 Type = 2 C=0.53 (Ĉ=0.13).

α
(2,1)
[n−1] = 0.70447749340176 β

(2,1)
[n−1] = 0.999986946621649

α
(3,1)
[n−1] = 0.814395202586362 β

(3,1)
[n−1] = 0.999999998854265

α
(3,2)
[n−1] = 5.362382407e− 6 β

(3,2)
[n−1] = 0.00001010679519

α
(4,1)
[n−1] = 0.530080033726142 β

(4,1)
[n−1] = 0.999867036696595

α
(4,2)
[n−1] = 0.102978245486315 β

(4,2)
[n−1] = 0.194243154829741

α
(5,1)
[n−1] = 0.04547374547522 β

(5,1)
[n−1] = 0.0857735088055

α
(5,2)
[n−1] = 0.262541986053797 β

(5,2)
[n−1] = 0.495221607287552

α
(5,4)
[n−1] = 0.170178046437466 β

(5,4)
[n−1] = 0.194927073215268

α
(2,1)
[n−2] = 6.19324111e− 7 β

(2,1)
[n−2] = 5.419984e− 9

α
(3,1)
[n−2] = 0.098374482145243 β

(3,1)
[n−2] = 0.185557284870964

α
(3,2)
[n−2] = 2.54793e− 9

α
(3,3)
[n−2] = 0.000010826197188

α
(3,4)
[n−2] = 2.228244e− 9

α
(4,1)
[n−2] = 0.133496357513395 β

(4,1)
[n−2] = 0.251808402331672

α
(5,1)
[n−2] = 0.318409121911655 β

(5,1)
[n−2] = 0.600600099926795

α
(2,1)
[n−3] = 0.130772115033098 β

(2,1)
[n−3] = 0.246661688545918

α
(3,1)
[n−3] = 4.375364e− 9

α
(3,2)
[n−3] = 3.692007e− 9

α
(3,3)
[n−3] = 0.087214089892263

α
(3,4)
[n−3] = 3.374507e− 9

α
(4,1)
[n−3] = 8.63413173e− 6 β

(4,1)
[n−3] = 3.89822232e− 7

α
(5,1)
[n−3] = 0.074951560190501 β

(5,1)
[n−3] = 0.141377188426704

α
(2,1)
[n−4] = 0.164749772241031 β

(2,1)
[n−4] = 0.109745074413096

α
(3,1)
[n−4] = 5.506861e− 9

α
(3,2)
[n−4] = 4.828224e− 9

α
(3,3)
[n−4] = 5.730488e− 9

α
(3,4)
[n−4] = 4.512911e− 9

α
(4,1)
[n−4] = 0.233436729142418 β

(4,1)
[n−4] = 0.204841678250359

α
(5,1)
[n−4] = 0.12844553993136 β

(5,1)
[n−4] = 0.028516780196143

(D.14)

c = [0, 0.600599548887248, 0.999980248145542, 0.878785536510769 , 1]T .

Memory required = 22 registers.
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D.15. GL method: p = 4 q = 1 s = 4 k = 4 Type = 3 C=1.07 (Ĉ=0.27).

α
(2,1)
[n−1] = 1. β

(2,1)
[n−1] = 0.705543119389663

α
(3,1)
[n−1] = 0.174283336323363

α
(3,2)
[n−1] = 0.56497921729612 β

(3,2)
[n−1] = 0.529126720196695

α
(4,1)
[n−1] = 0.547650444670988

α
(4,3)
[n−1] = 0.452349555329012 β

(4,3)
[n−1] = 0.423644320474579

α
(5,1)
[n−1] = 0.441929593734771 β

(5,1)
[n−1] = 0.078683155196619

α
(5,2)
[n−1] = 0.309964339552884 β

(5,2)
[n−1] = 0.29029459729594

α
(5,4)
[n−1] = 0.248106066712345 β

(5,4)
[n−1] = 0.232361731761893

α
(3,1)
[n−2] = 0.260737446380517

(D.15)

c = [0, 0.705543119389663, 0.667006473177613, 0.725364402018045 , 1]T .

Memory required = 7 registers.

D.16. GL method: p = 4 q = 1 s = 4 k = 4 Type = 4 C=1.13 (Ĉ=0.28).

α
(2,1)
[n−1] = 0.902352862413481 β

(2,1)
[n−1] = 0.799270795186291

α
(3,1)
[n−1] = 0.25098719776263

α
(3,2)
[n−1] = 0.561926497968642 β

(3,2)
[n−1] = 0.497733711030043

α
(4,1)
[n−1] = 0.791972295165213 β

(4,1)
[n−1] = 0.377289295430417

α
(4,3)
[n−1] = 0.208027704834787 β

(4,3)
[n−1] = 0.184263247771347

α
(5,1)
[n−1] = 0.415200938456997 β

(5,1)
[n−1] = 0.067856012987658

α
(5,4)
[n−1] = 0.584799061543003 β

(5,4)
[n−1] = 0.517993381983081

α
(2,1)
[n−2] = 0.097647137586519

α
(3,1)
[n−2] = 0.187086304268728

(D.16)

c = [0, 0.701623657599771, 0.704908331568304, 0.708193005536837 , 1]T .

Memory required = 5 registers.

D.17. GL method: p = 4 q = 1 s = 4 k = 4 Type = 5 C=1.93 (Ĉ=0.48).

α
(2,1)
[n−1] = 0.825624315674002 β

(2,1)
[n−1] = 0.427183952346214

α
(3,2)
[n−1] = 0.800816992511064 β

(3,2)
[n−1] = 0.414348465121952

α
(4,3)
[n−1] = 0.87318523965723 β

(4,3)
[n−1] = 0.451792316100383

α
(5,1)
[n−1] = 0.400811434777592 β

(5,1)
[n−1] = 0.207382715847064

α
(5,4)
[n−1] = 0.581250952687807 β

(5,4)
[n−1] = 0.300743418720024

α
(2,1)
[n−2] = 0.126850909817903 β

(2,1)
[n−2] = 0.065633572056908

α
(3,1)
[n−2] = 0.199183007488936 β

(3,1)
[n−2] = 0.103058719037202

α
(4,1)
[n−2] = 0.12681476034277 β

(4,1)
[n−2] = 0.06561486805877

α
(5,1)
[n−2] = 0.014711725267829 β

(5,1)
[n−2] = 0.007611952344951

α
(2,1)
[n−3] = 0.047524774508095 β

(2,1)
[n−3] = 0.024589659756032

α
(5,1)
[n−4] = 0.003225887266772

(D.17)

c = [0, 0.295506725325061, 0.554870983711826, 0.875097576707638 , 1]T .
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Memory required = 9 registers.

D.18. GL method: p = 4 q = 2 s = 3 k = 2 Type = 1, 2, 5 C=0.86 (Ĉ=0.29).

α
(2,1)
[n−1] = 0.433248000382431 β

(2,1)
[n−1] = 1.319581329291678

α
(3,1)
[n−1] = 0.904292085518331 β

(3,1)
[n−1] = 0.338689511742568

α
(3,2)
[n−1] = 0.095707914481669 β

(3,2)
[n−1] = 0.291505966337928

α
(4,1)
[n−1] = 0.762250877962644 β

(4,1)
[n−1] = 0.204846011915765

α
(4,2)
[n−1] = 0.031825091683531

α
(4,3)
[n−1] = 0.205794444238923 β

(4,3)
[n−1] = 0.626806138862569

α
(2,1)
[n−2] = 0.566751999617569

α
(4,1)
[n−2] = 0.000129586114902

(D.18)

c = [0, 0.752829329674109, 0.702247203184238 , 1]T .

Memory required = 6 registers.

D.19. GL method: p = 4 q = 2 s = 3 k = 2 Type = 3, 4 C=0.33 (Ĉ=0.11).

α
(2,1)
[n−1] = 0.433248000382431 β

(2,1)
[n−1] = 1.319581329291678

α
(3,1)
[n−1] = 0.904292085518331 β

(3,1)
[n−1] = 0.338689511742568

α
(3,2)
[n−1] = 0.095707914481669 β

(3,2)
[n−1] = 0.291505966337928

α
(4,1)
[n−1] = 0.762250877962644 β

(4,1)
[n−1] = 0.204846011915765

α
(4,2)
[n−1] = 0.031825091683531

α
(4,3)
[n−1] = 0.205794444238923 β

(4,3)
[n−1] = 0.626806138862569

α
(2,1)
[n−2] = 0.566751999617569

α
(4,1)
[n−2] = 0.000129586114902

(D.19)

c = [0, 0.752829329674109, 0.702247203184238 , 1]T .

Memory required = 6 registers.

D.20. GL method: p = 4 q = 2 s = 4 k = 2 Type = 1, 2, 5 C=1.57 (Ĉ=0.39).

α
(2,1)
[n−1] = 0.839608903593 β

(2,1)
[n−1] = 0.533345483413

α
(3,2)
[n−1] = 0.695764749599 β

(3,2)
[n−1] = 0.44197123819

α
(4,1)
[n−1] = 0.26624374486

α
(4,3)
[n−1] = 0.73375625514 β

(4,3)
[n−1] = 0.466104614816

α
(5,1)
[n−1] = 0.383767603533 β

(5,1)
[n−1] = 0.243781023699

α
(5,2)
[n−1] = 0.120715940786 β

(5,2)
[n−1] = 0.0766824905245

α
(5,4)
[n−1] = 0.444779701896 β

(5,4)
[n−1] = 0.282537791232

α
(2,1)
[n−2] = 0.160391096407 β

(2,1)
[n−2] = 0.00773380024685

α
(3,1)
[n−2] = 0.304235250401 β

(3,1)
[n−2] = 0.193259618856

α
(5,1)
[n−2] = 0.0507367537855

(D.20)

c = [0, 0.380688187253, 0.595865027924, 0.903324306274 , 1]T .

Memory required = 8 registers.
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D.21. GL method: p = 4 q = 2 s = 4 k = 2 Type = 3, 4 C=1.12 (Ĉ=0.28).

α
(2,1)
[n−1] = 0.777120758398449 β

(2,1)
[n−1] = 0.694980122347976

α
(3,1)
[n−1] = 0.253428871989059

α
(3,2)
[n−1] = 0.691827663127247 β

(3,2)
[n−1] = 0.618702394406208

α
(4,1)
[n−1] = 0.810581569162929 β

(4,1)
[n−1] = 0.334185641883803

α
(4,3)
[n−1] = 0.189418430837071 β

(4,3)
[n−1] = 0.169397153293663

α
(5,1)
[n−1] = 0.395544532737588 β

(5,1)
[n−1] = 0.053075326738771

α
(5,4)
[n−1] = 0.604455467262412 β

(5,4)
[n−1] = 0.540565324052953

α
(2,1)
[n−2] = 0.222879241601551

α
(3,1)
[n−2] = 0.054743464883694

(D.21)

c = [0, 0.472100880746426, 0.890571378609628, 0.672273428262109 , 1]T .

Memory required = 5 registers.

D.22. GL method: p = 4 q = 2 s = 2 k = 3 Type = 1, 2, 5 C=0.50 (Ĉ=0.25).

α
(2,1)
[n−1] = 0.590336292559735 β

(2,1)
[n−1] = 1.189694929472862

α
(3,1)
[n−1] = 0.067866090324549 β

(3,1)
[n−1] = 0.136769405099879

α
(3,2)
[n−1] = 0.360895624304504 β

(3,2)
[n−1] = 0.727306959974116

α
(3,1)
[n−2] = 0.343978736165836 β

(3,1)
[n−2] = 0.69321463616701

α
(2,1)
[n−3] = 0.409663707440265 β

(2,1)
[n−3] = 0.297988700033142

α
(3,1)
[n−3] = 0.227259549205112

(D.22)

c = [0, 0.668356214625473 , 1]T .

Memory required = 8 registers. Constraints satisfied to at least 10−15 .

D.23. GL method: p = 4 q = 2 s = 3 k = 3 Type = 1, 2, 5 C=1.16 (Ĉ=0.39).

α
(2,1)
[n−1] = 0.909692413517355 β

(2,1)
[n−1] = 0.781639586721155

α
(3,2)
[n−1] = 0.508797707225299 β

(3,2)
[n−1] = 0.437176812393705

α
(4,1)
[n−1] = 0.215448948485184 β

(4,1)
[n−1] = 0.185121283360305

α
(4,3)
[n−1] = 0.607708706167731 β

(4,3)
[n−1] = 0.522164607374436

α
(3,1)
[n−2] = 0.477594566477117 β

(3,1)
[n−2] = 0.410365980868236

α
(4,1)
[n−2] = 0.135690151047939 β

(4,1)
[n−2] = 0.116589730782908

α
(2,1)
[n−3] = 0.090307586482645

α
(3,1)
[n−3] = 0.013607726297584

α
(4,1)
[n−3] = 0.041152194299147

(D.23)

c = [0, 0.601024413755864, 0.648532617895069 , 1]T .

Memory required = 7 registers.
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D.24. GL method: p = 4 q = 2 s = 3 k = 3 Type = 3, 4 C=0.22 (Ĉ=0.07).

α
(2,1)
[n−1] = 0.618033988749895 β

(2,1)
[n−1] = 1.

α
(3,1)
[n−1] = 0.917905843198209 β

(3,1)
[n−1] = 0.27814300037777

α
(3,2)
[n−1] = 0.082094156801791 β

(3,2)
[n−1] = 0.371647510128269

α
(4,1)
[n−1] = 0.852530829669221 β

(4,1)
[n−1] = 0.24878408698241

α
(4,3)
[n−1] = 0.144744029088284 β

(4,3)
[n−1] = 0.655269024158137

α
(2,1)
[n−2] = 0.381966011250105

α
(4,1)
[n−3] = 0.002725141242495

(D.24)

c = [0, 0.618033988749895, 0.700527489687309 , 1]T .

Memory required = 6 registers.

D.25. GL method: p = 4 q = 2 s = 4 k = 3 Type = 1 C=0.64 (Ĉ=0.16).

α
(2,1)
[n−1] = 0.42079527317 β

(2,1)
[n−1] = 0.653597526974

α
(3,1)
[n−1] = 0.242715418347 β

(3,1)
[n−1] = 0.376996148257

α
(3,2)
[n−1] = 0.618343837882 β

(3,2)
[n−1] = 0.730468076643

α
(4,2)
[n−1] = 0.410715808839 β

(4,2)
[n−1] = 0.637941664421

α
(4,3)
[n−1] = 0.212462451417 β

(4,3)
[n−1] = 0.330005923723

α
(5,1)
[n−1] = 0.0000620770207751 β

(5,1)
[n−1] = 0.0000964207296219

α
(5,2)
[n−1] = 0.388244298088 β

(5,2)
[n−1] = 0.603037936193

α
(5,3)
[n−1] = 0.169138417842 β

(5,3)
[n−1] = 0.262713149758

α
(2,1)
[n−2] = 0.519830447394 β

(2,1)
[n−2] = 0.158823209839

α
(5,1)
[n−2] = 0.288134611849 β

(5,1)
[n−2] = 0.447543215781

α
(2,1)
[n−3] = 0.059374279436 β

(2,1)
[n−3] = 0.0922227141786

α
(3,1)
[n−3] = 0.138940743771

α
(4,1)
[n−3] = 0.217401528969 β

(4,1)
[n−3] = 0.337677513875

α
(4,2)
[n−3] = 0.0432218759695

α
(4,3)
[n−3] = 0.0281442229996

α
(4,4)
[n−3] = 0.0880541118063

α
(5,1)
[n−3] = 0.1544205952 β

(5,1)
[n−3] = 0.0121462287554

(D.25)

c = [0, 0.266064444725, 0.994102047234, 1. , 1]T .

Memory required = 17 registers. Constraints satisfied to at least 10−12 .
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D.26. GL method: p = 4 q = 2 s = 4 k = 3 Type = 2 C=1.83 (Ĉ=0.46).

α
(2,1)
[n−1] = 0.832002975498 β

(2,1)
[n−1] = 0.454376424843

α
(3,1)
[n−1] = 0.0215022053107 β

(3,1)
[n−1] = 0.0117428608587

α
(3,2)
[n−1] = 0.757087507714 β

(3,2)
[n−1] = 0.413463323064

α
(4,1)
[n−1] = 0.0215833112002 β

(4,1)
[n−1] = 0.0117871546956

α
(4,3)
[n−1] = 0.837629025228 β

(4,3)
[n−1] = 0.457448943136

α
(5,1)
[n−1] = 0.438473888034 β

(5,1)
[n−1] = 0.237943279761

α
(5,4)
[n−1] = 0.55023142267 β

(5,4)
[n−1] = 0.300494342006

α
(2,1)
[n−2] = 0.160103996739 β

(2,1)
[n−2] = 0.037108257609

α
(3,1)
[n−2] = 0.221410286975 β

(3,1)
[n−2] = 0.120917373594

α
(4,1)
[n−2] = 0.140787663571 β

(4,1)
[n−2] = 0.076887459684

α
(2,1)
[n−3] = 0.00789302776287 β

(2,1)
[n−3] = 0.00385317334742

α
(5,1)
[n−3] = 0.0112946892956

(D.26)

c = [0, 0.319447803534, 0.566563211963, 0.879905684911 , 1]T .

Memory required = 8 registers. Constraints satisfied to at least 10−12 .

D.27. GL method: p = 4 q = 2 s = 4 k = 3 Type = 3 C=1.08 (Ĉ=0.27).

α
(2,1)
[n−1] = 0.76921841917 β

(2,1)
[n−1] = 0.711178896424

α
(3,1)
[n−1] = 0.480752750195 β

(3,1)
[n−1] = 0.0327724365567

α
(3,2)
[n−1] = 0.519247249805 β

(3,2)
[n−1] = 0.480068699455

α
(4,1)
[n−1] = 0.747914770053 β

(4,1)
[n−1] = 0.28315667787

α
(4,3)
[n−1] = 0.252085229947 β

(4,3)
[n−1] = 0.233064746203

α
(5,1)
[n−1] = 0.443496427054 β

(5,1)
[n−1] = 0.119155287586

α
(5,3)
[n−1] = 0.00212417799953 β

(5,3)
[n−1] = 0.00196390326579

α
(5,4)
[n−1] = 0.543750166033 β

(5,4)
[n−1] = 0.502722807167

α
(2,1)
[n−2] = 0.23078158083

α
(5,1)
[n−2] = 0.010614128501

α
(5,1)
[n−3] = 0.0000151004124546

(D.27)

c = [0, 0.480397315594, 0.762286120948, 0.708382496157 , 1]T .

Memory required = 8 registers. Constraints satisfied to at least 10−12 .
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D.28. GL method: p = 4 q = 2 s = 4 k = 3 Type = 4 C=1.11 (Ĉ=0.28).

α
(2,1)
[n−1] = 0.776726246021219 β

(2,1)
[n−1] = 0.695792276839584

α
(3,1)
[n−1] = 0.382541530071597

α
(3,2)
[n−1] = 0.603056765559831 β

(3,2)
[n−1] = 0.543489045711909

α
(4,1)
[n−1] = 0.773673372769279 β

(4,1)
[n−1] = 0.306095662379629

α
(4,3)
[n−1] = 0.226326627230721 β

(4,3)
[n−1] = 0.203970918954256

α
(5,1)
[n−1] = 0.416836089886701 β

(5,1)
[n−1] = 0.08908291291369

α
(5,2)
[n−1] = 0.004977964460378 β

(5,2)
[n−1] = 0.000083077942647

α
(5,3)
[n−1] = 0.001259766367512 β

(5,3)
[n−1] = 0.001046924205242

α
(5,4)
[n−1] = 0.571513341135288 β

(5,4)
[n−1] = 0.515061364243044

α
(2,1)
[n−2] = 0.223273753860209

α
(3,1)
[n−2] = 0.014401704368572

α
(5,1)
[n−2] = 0.005368485114076

α
(2,1)
[n−3] = 1.18573e− 10

α
(5,1)
[n−3] = 0.000044353036044

(D.28)

c = [0, 0.47251852274223, 0.814042833335376, 0.694306150224021 , 1]T .

Memory required = 10 registers.

D.29. GL method: p = 4 q = 2 s = 4 k = 3 Type = 5 C=1.82 (Ĉ=0.45).

α
(2,1)
[n−1] = 0.860342010734 β

(2,1)
[n−1] = 0.473905387098

α
(3,1)
[n−1] = 0.0294240518668 β

(3,1)
[n−1] = 0.0162077598396

α
(3,2)
[n−1] = 0.753912590859 β

(3,2)
[n−1] = 0.41528047422

α
(4,1)
[n−1] = 0.0544381437995 β

(4,1)
[n−1] = 0.0299863650598

α
(4,3)
[n−1] = 0.808792518381 β

(4,3)
[n−1] = 0.44551018865

α
(5,1)
[n−1] = 0.435354263562 β

(5,1)
[n−1] = 0.239807806923

α
(5,2)
[n−1] = 0.0254025765771 β

(5,2)
[n−1] = 0.0139925956606

α
(5,4)
[n−1] = 0.527277957037 β

(5,4)
[n−1] = 0.29044247662

α
(2,1)
[n−2] = 0.084614000943 β

(2,1)
[n−2] = 0.0330697442984

α
(3,1)
[n−2] = 0.216663357275 β

(3,1)
[n−2] = 0.119345482283

α
(4,1)
[n−2] = 0.136769337819 β

(4,1)
[n−2] = 0.0753371626326

α
(2,1)
[n−3] = 0.0550439883229 β

(2,1)
[n−3] = 0.0303200846502

α
(5,1)
[n−3] = 0.0119652028231

(D.29)

c = [0, 0.342593238458, 0.592455715084, 0.893238128355 , 1]T .

Memory required = 10 registers. Constraints satisfied to at least 10−12 .
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D.30. GL method: p = 4 q = 2 s = 2 k = 4 Type = 1, 2, 5 C=0.68 (Ĉ=0.34).

α
(2,1)
[n−1] = 0.786504872001359 β

(2,1)
[n−1] = 1.153423323647521

α
(3,2)
[n−1] = 0.458522400127318 β

(3,2)
[n−1] = 0.672431220134611

α
(3,1)
[n−2] = 0.456111449095887 β

(3,1)
[n−2] = 0.668895517749515

α
(3,1)
[n−3] = 0.012516746945481 β

(3,1)
[n−3] = 0.018356031064848

α
(2,1)
[n−4] = 0.213495127998641 β

(2,1)
[n−4] = 0.228597011394211

α
(3,1)
[n−4] = 0.072849403831314

(D.30)

c = [0, 0.741534951045807 , 1]T .

Memory required = 10 registers.

D.31. GL method: p = 4 q = 2 s = 3 k = 4 Type = 1 C=1.35 (Ĉ=0.45).

α
(2,1)
[n−1] = 0.897136723739 β

(2,1)
[n−1] = 0.662825401834

α
(3,1)
[n−1] = 0.000633980680859 β

(3,1)
[n−1] = 0.000468399618951

α
(3,2)
[n−1] = 0.589018950983 β

(3,2)
[n−1] = 0.43518085097

α
(4,1)
[n−1] = 0.0625920059467 β

(4,1)
[n−1] = 0.0462444245068

α
(4,2)
[n−1] = 0.0142823625566 β

(4,2)
[n−1] = 0.0105521404377

α
(4,3)
[n−1] = 0.742176269111 β

(4,3)
[n−1] = 0.548337026886

α
(2,1)
[n−2] = 0.0012358463062 β

(2,1)
[n−2] = 0.000913071890648

α
(3,1)
[n−2] = 0.410344831345 β

(3,1)
[n−2] = 0.30317227077

α
(4,1)
[n−2] = 0.170579988522 β

(4,1)
[n−2] = 0.126028448558

α
(2,1)
[n−3] = 0.0831876879651 β

(2,1)
[n−3] = 0.0614609916684

α
(2,1)
[n−4] = 0.0184397419903

α
(3,1)
[n−4] = 2.2369905762e− 6

α
(4,1)
[n−4] = 0.0103693738636

(D.31)

c = [0, 0.502269017186, 0.624315948656 , 1]T .

Memory required = 11 registers. Constraints satisfied to at least 10−12 .

D.32. GL method: p = 4 q = 2 s = 3 k = 4 Type = 2 C=1.37 (Ĉ=0.46).

α
(2,1)
[n−1] = 0.871302710868421 β

(2,1)
[n−1] = 0.638101638675122

α
(3,2)
[n−1] = 0.579367669898248 β

(3,2)
[n−1] = 0.424301973293514

α
(4,3)
[n−1] = 0.813753694362253 β

(4,3)
[n−1] = 0.595955411791326

α
(2,1)
[n−2] = 0.044437151281769 β

(2,1)
[n−2] = 0.032543705760642

α
(3,1)
[n−2] = 0.420632330101752 β

(3,1)
[n−2] = 0.308051582727367

α
(4,1)
[n−2] = 0.176097024978359 β

(4,1)
[n−2] = 0.128965282447599

α
(2,1)
[n−3] = 0.063548566322169 β

(2,1)
[n−3] = 0.046540018526069

α
(2,1)
[n−4] = 0.020711571527641

α
(4,1)
[n−4] = 0.010149280659388

(D.32)

c = [0, 0.483516364452802, 0.591854975349822 , 1]T .

Memory required = 9 registers. Constraints satisfied to at least 10−12 .
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D.33. GL method: p = 4 q = 2 s = 3 k = 4 Type = 3, 4 C=0.23 (Ĉ=0.08).

α
(2,1)
[n−1] = 0.618033988749895 β

(2,1)
[n−1] = 1.

α
(3,1)
[n−1] = 0.917179114442679 β

(3,1)
[n−1] = 0.27867924287106

α
(3,2)
[n−1] = 0.082820885557321 β

(3,2)
[n−1] = 0.364750343630035

α
(4,1)
[n−1] = 0.848746674147337 β

(4,1)
[n−1] = 0.234236015738615

α
(4,3)
[n−1] = 0.150582640410676 β

(4,3)
[n−1] = 0.663178973092452

α
(2,1)
[n−2] = 0.381966011250105

α
(4,1)
[n−4] = 0.000670685441987

(D.33)

c = [0, 0.618033988749895, 0.694615708753885 , 1]T .

Memory required = 7 registers.

D.34. GL method: p = 4 q = 2 s = 3 k = 4 Type = 5 C=1.36 (Ĉ=0.45).

α
(2,1)
[n−1] = 0.877195250264 β

(2,1)
[n−1] = 0.643311191656

α
(3,2)
[n−1] = 0.583053403999 β

(3,2)
[n−1] = 0.42759554388

α
(4,1)
[n−1] = 0.0190150484447 β

(4,1)
[n−1] = 0.0139451205084

α
(4,3)
[n−1] = 0.796864731264 β

(4,3)
[n−1] = 0.584398968991

α
(2,1)
[n−2] = 0.0344895177197 β

(2,1)
[n−2] = 0.0252936763363

α
(3,1)
[n−2] = 0.416946596001 β

(3,1)
[n−2] = 0.305777318618

α
(4,1)
[n−2] = 0.173928039076 β

(4,1)
[n−2] = 0.127554103886

α
(2,1)
[n−3] = 0.0682135435428 β

(2,1)
[n−3] = 0.0500259616891

α
(2,1)
[n−4] = 0.0201016884734

α
(4,1)
[n−4] = 0.0101921812149

(D.34)

c = [0, 0.487409159456, 0.600611836059 , 1]T .

Memory required = 9 registers. Constraints satisfied to at least 10−12 .

D.35. GL method: p = 4 q = 2 s = 4 k = 4 Type = 3 C=0.95 (Ĉ=0.24).

α
(2,1)
[n−1] = 0.816138041974 β

(2,1)
[n−1] = 0.61265323362

α
(3,1)
[n−1] = 0.503926218906

α
(3,2)
[n−1] = 0.495882549852 β

(3,2)
[n−1] = 0.521382311126

α
(4,1)
[n−1] = 0.738335971851 β

(4,1)
[n−1] = 0.273462196619

α
(4,2)
[n−1] = 0.000707057190835 β

(4,2)
[n−1] = 0.000743416182654

α
(4,3)
[n−1] = 0.260597281708 β

(4,3)
[n−1] = 0.239642214291

α
(5,1)
[n−1] = 0.495022411717 β

(5,1)
[n−1] = 0.114491556715

α
(5,4)
[n−1] = 0.50474750613 β

(5,4)
[n−1] = 0.530703129924

α
(2,1)
[n−2] = 0.183861958026

α
(3,1)
[n−2] = 0.000191231242889

α
(4,1)
[n−4] = 0.000359689249352

α
(5,1)
[n−4] = 0.000230082153098

(D.35)

c = [0, 0.428791275594, 0.733821190978, 0.704303746928 , 1]T .
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Memory required = 9 registers. Constraints satisfied to at least 10−12 .

D.36. GL method: p = 4 q = 2 s = 4 k = 4 Type = 4 C=1.11 (Ĉ=0.28).

α
(2,1)
[n−1] = 0.775125381668785 β

(2,1)
[n−1] = 0.699084557888144

α
(3,1)
[n−1] = 0.418223106722879 β

(3,1)
[n−1] = 1.67045e− 10

α
(3,2)
[n−1] = 0.57841012907814 β

(3,2)
[n−1] = 0.521667331411682

α
(4,1)
[n−1] = 0.761512759859034 β

(4,1)
[n−1] = 0.296439498518323

α
(4,2)
[n−1] = 2.01803e− 10 β

(4,2)
[n−1] = 3.89e − 13

α
(4,3)
[n−1] = 0.238487239853727 β

(4,3)
[n−1] = 0.215091326613722

α
(5,1)
[n−1] = 0.414887298914943 β

(5,1)
[n−1] = 0.093783829822089

α
(5,2)
[n−1] = 0.012178959234816 β

(5,2)
[n−1] = 7.862443e− 9

α
(5,3)
[n−1] = 0.000801707450728 β

(5,3)
[n−1] = 0.000722674923273

α
(5,4)
[n−1] = 0.566401010628516 β

(5,4)
[n−1] = 0.508046164888477

α
(2,1)
[n−2] = 0.224874504755957

α
(3,1)
[n−2] = 0.003366764186469

α
(4,1)
[n−2] = 2.95e − 13

α
(5,1)
[n−2] = 0.005704649847814

α
(2,1)
[n−3] = 1.13575162e− 7

α
(3,1)
[n−3] = 1.2432e− 11

α
(4,1)
[n−3] = 8.5142e− 11

α
(5,1)
[n−3] = 0.000026344283087

α
(2,1)
[n−4] = 9.7e − 14

α
(3,1)
[n−4] = 7.9e − 14

α
(5,1)
[n−4] = 2.9640096e− 8

(D.36)

c = [0, 0.474209825981574, 0.79258833402328, 0.700553029179029 , 1]T .

Memory required = 11 registers.
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D.37. GL method: p = 4 q = 2 s = 4 k = 4 Type = 5 C=1.90 (Ĉ=0.48).

α
(2,1)
[n−1] = 0.835509912835 β

(2,1)
[n−1] = 0.439681419035

α
(3,1)
[n−1] = 0.00659848595648 β

(3,1)
[n−1] = 0.00347240843496

α
(3,2)
[n−1] = 0.790014721117 β

(3,2)
[n−1] = 0.415739883277

α
(4,1)
[n−1] = 0.0169330479279 β

(4,1)
[n−1] = 0.00891090150713

α
(4,3)
[n−1] = 0.854217984414 β

(4,3)
[n−1] = 0.449526414686

α
(5,1)
[n−1] = 0.426281442879 β

(5,1)
[n−1] = 0.218597124861

α
(5,3)
[n−1] = 0.0000957241480042 β

(5,3)
[n−1] = 0.0000503741829795

α
(5,4)
[n−1] = 0.566114593553 β

(5,4)
[n−1] = 0.29791396129

α
(2,1)
[n−2] = 0.111200088754 β

(2,1)
[n−2] = 0.0585182917272

α
(3,1)
[n−2] = 0.203386792927 β

(3,1)
[n−2] = 0.107030918907

α
(4,1)
[n−2] = 0.128848967658 β

(4,1)
[n−2] = 0.0678058944255

α
(5,1)
[n−2] = 0.0000218771805919 β

(5,1)
[n−2] = 0.000011512717754

α
(2,1)
[n−3] = 0.0532899984104 β

(2,1)
[n−3] = 0.0280434998574

α
(5,1)
[n−3] = 0.00444153062803 β

(5,1)
[n−3] = 0.00233732533776

α
(5,1)
[n−4] = 0.00304483161156 β

(5,1)
[n−4] = 0.00013052351042

(D.37)

c = [0, 0.308463125044, 0.566546827399, 0.881348731937 , 1]T .

Memory required = 12 registers. Constraints satisfied to at least 10−12 .

D.38. GL method: p = 4 q = 3 s = 3 k = 2 Type = 1, 2, 5 C=0.66 (Ĉ=0.22).

α
(2,1)
[n−1] = 0.471516669747217 β

(2,1)
[n−1] = 0.710060396756223

α
(3,2)
[n−1] = 0.565650187789953 β

(3,2)
[n−1] = 0.851816749092

α
(4,1)
[n−1] = 0.637464179004628 β

(4,1)
[n−1] = 0.421088982880511

α
(4,3)
[n−1] = 0.28074626063444 β

(4,3)
[n−1] = 0.422777844356569

α
(2,1)
[n−2] = 0.528483330252783 β

(2,1)
[n−2] = 0.193791052677626

α
(3,1)
[n−2] = 0.434349812210047 β

(3,1)
[n−2] = 0.21767138415775

α
(4,1)
[n−2] = 0.081789560360932

(D.38)

c = [0, 0.375368119181066, 0.847465368144834 , 1]T .

Memory required = 6 registers.
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D.39. GL method: p = 4 q = 3 s = 4 k = 2 Type = 1 C=1.41 (Ĉ=0.35).

α
(2,1)
[n−1] = 0.728292862066 β

(2,1)
[n−1] = 0.45062326794

α
(3,1)
[n−1] = 0.0342190249899 β

(3,1)
[n−1] = 0.024185048396

α
(3,2)
[n−1] = 0.722977952894 β

(3,2)
[n−1] = 0.510980566663

α
(4,1)
[n−1] = 0.19319832688 β

(4,1)
[n−1] = 0.0634787372152

α
(4,2)
[n−1] = 0.0343542509294 β

(4,2)
[n−1] = 0.0242806223024

α
(4,3)
[n−1] = 0.653429974423 β

(4,3)
[n−1] = 0.461826003502

α
(5,1)
[n−1] = 0.432283571262 β

(5,1)
[n−1] = 0.305525920007

α
(5,2)
[n−1] = 0.0635674069464 β

(5,2)
[n−1] = 0.0449276627216

α
(5,3)
[n−1] = 0.000382641068558 β

(5,3)
[n−1] = 0.00027043998957

α
(5,4)
[n−1] = 0.436211582593 β

(5,4)
[n−1] = 0.308302128393

α
(2,1)
[n−2] = 0.271707137934 β

(2,1)
[n−2] = 0.097618005043

α
(3,1)
[n−2] = 0.242803022116 β

(3,1)
[n−2] = 0.109357990804

α
(4,1)
[n−2] = 0.119017447768 β

(4,1)
[n−2] = 0.0625085159159

α
(5,1)
[n−2] = 0.0675547981294

(D.39)

c = [0, 0.276534135049, 0.60164866661, 0.895711827067 , 1]T .

Memory required = 10 registers. Constraints satisfied to at least 10−12 .

D.40. GL method: p = 4 q = 3 s = 4 k = 2 Type = 2 C=1.50 (Ĉ=0.37).

α
(2,1)
[n−1] = 0.707574981233 β

(2,1)
[n−1] = 0.473255997373

α
(3,2)
[n−1] = 0.771927736811 β

(3,2)
[n−1] = 0.516297835104

α
(4,1)
[n−1] = 0.353229319636 β

(4,1)
[n−1] = 0.0654006223058

α
(4,2)
[n−1] = 0.00613913732122 β

(4,2)
[n−1] = 0.00410611402752

α
(4,3)
[n−1] = 0.619667246925 β

(4,3)
[n−1] = 0.414459596171

α
(5,1)
[n−1] = 0.442171599943 β

(5,1)
[n−1] = 0.290821540316

α
(5,3)
[n−1] = 0.00447776563354 β

(5,3)
[n−1] = 0.00299491855578

α
(5,4)
[n−1] = 0.497131392796 β

(5,4)
[n−1] = 0.332502447603

α
(2,1)
[n−2] = 0.292425018767 β

(2,1)
[n−2] = 0.105282148603

α
(3,1)
[n−2] = 0.228072263189 β

(3,1)
[n−2] = 0.10487687865

α
(4,1)
[n−2] = 0.0209642961178 β

(4,1)
[n−2] = 0.0140218056483

α
(5,1)
[n−2] = 0.0562192416278

(D.40)

c = [0, 0.286113127209, 0.613961109324, 0.859231920146 , 1]T .

Memory required = 8 registers. Constraints satisfied to at least 10−12 .
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D.41. GL method: p = 4 q = 3 s = 4 k = 2 Type = 5 C=1.51 (Ĉ=0.38).

α
(2,1)
[n−1] = 0.709714442042 β

(2,1)
[n−1] = 0.470937869696

α
(3,2)
[n−1] = 0.773644759046 β

(3,2)
[n−1] = 0.513359448735

α
(4,1)
[n−1] = 0.347167461188 β

(4,1)
[n−1] = 0.064333598998

α
(4,3)
[n−1] = 0.629941203565 β

(4,3)
[n−1] = 0.418003567163

α
(5,1)
[n−1] = 0.441588723225 β

(5,1)
[n−1] = 0.293020460452

α
(5,4)
[n−1] = 0.5014504605 β

(5,4)
[n−1] = 0.332742294135

α
(2,1)
[n−2] = 0.290285557958 β

(2,1)
[n−2] = 0.10448977435

α
(3,1)
[n−2] = 0.226355240954 β

(3,1)
[n−2] = 0.103987554023

α
(4,1)
[n−2] = 0.0228913352472 β

(4,1)
[n−2] = 0.0151897664993

α
(5,1)
[n−2] = 0.0569608162752

(D.41)

c = [0, 0.285142086087, 0.611590442289, 0.859901616718 , 1]T .

Memory required = 6 registers. Constraints satisfied to at least 10−12 .

D.42. GL method: p = 4 q = 3 s = 2 k = 3 Type = 1 C=0.50 (Ĉ=0.25).

α
(2,1)
[n−1] = 0.590336292559735 β

(2,1)
[n−1] = 1.189694929472862

α
(3,1)
[n−1] = 0.067866090324549 β

(3,1)
[n−1] = 0.136769405099879

α
(3,2)
[n−1] = 0.360895624304504 β

(3,2)
[n−1] = 0.727306959974116

α
(3,1)
[n−2] = 0.343978736165836 β

(3,1)
[n−2] = 0.69321463616701

α
(2,1)
[n−3] = 0.409663707440265 β

(2,1)
[n−3] = 0.297988700033142

α
(3,1)
[n−3] = 0.227259549205112

(D.42)

c = [0, 0.668356214625473 , 1]T .

Memory required = 8 registers.

D.43. GL method: p = 4 q = 3 s = 3 k = 3 Type = 1, 2, 5 C=1.07 (Ĉ=0.36).

α
(2,1)
[n−1] = 0.79779687008967 β

(2,1)
[n−1] = 0.742235840146894

α
(3,2)
[n−1] = 0.685074051305928 β

(3,2)
[n−1] = 0.637363385465199

α
(4,1)
[n−1] = 0.39703332125451 β

(4,1)
[n−1] = 0.369382698548981

α
(4,3)
[n−1] = 0.409097066488626 β

(4,3)
[n−1] = 0.380606287428385

α
(3,1)
[n−2] = 0.267934431946272 β

(3,1)
[n−2] = 0.249274653304665

α
(4,1)
[n−2] = 0.149202105282063 β

(4,1)
[n−2] = 0.138811211371724

α
(2,1)
[n−3] = 0.20220312991033 β

(2,1)
[n−3] = 0.144131507391754

α
(3,1)
[n−3] = 0.0469915167478

α
(4,1)
[n−3] = 0.044667506974801

(D.43)

c = [0, 0.481961087717987, 0.854899608262766 , 1]T .

Memory required = 8 registers.
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D.44. GL method: p = 4 q = 3 s = 4 k = 3 Type = 2 C=1.05 (Ĉ=0.26).

α
(2,1)
[n−1] = 0.469442883402 β

(2,1)
[n−1] = 0.448142301048

α
(3,1)
[n−1] = 0.108008845311 β

(3,1)
[n−1] = 0.103108033336

α
(3,2)
[n−1] = 0.443010058012 β

(3,2)
[n−1] = 0.422908843237

α
(4,2)
[n−1] = 0.11101314782 β

(4,2)
[n−1] = 0.105976018105

α
(4,3)
[n−1] = 0.555634857223 β

(4,3)
[n−1] = 0.530423385384

α
(5,1)
[n−1] = 0.0386494917866 β

(5,1)
[n−1] = 0.0368958030807

α
(5,3)
[n−1] = 0.361977110437 β

(5,3)
[n−1] = 0.3455526986

α
(5,4)
[n−1] = 0.324254716943 β

(5,4)
[n−1] = 0.309541927494

α
(2,1)
[n−2] = 0.408785542869 β

(2,1)
[n−2] = 0.390237237146

α
(3,1)
[n−2] = 0.365789798702 β

(3,1)
[n−2] = 0.34919238929

α
(4,1)
[n−2] = 0.289314714443 β

(4,1)
[n−2] = 0.244758576802

α
(5,1)
[n−2] = 0.23126006952 β

(5,1)
[n−2] = 0.220766835241

α
(2,1)
[n−3] = 0.121771573729 β

(2,1)
[n−3] = 0.0183993681647

α
(3,1)
[n−3] = 0.0831912979744 β

(3,1)
[n−3] = 0.000739044106207

α
(4,1)
[n−3] = 0.0440372805142

α
(5,1)
[n−3] = 0.0438586113129 β

(5,1)
[n−3] = 0.0000310736940723

(D.44)

c = [0, 0.204450216031, 0.434349417383, 0.767805043386 , 1]T .

Memory required = 10 registers. Constraints satisfied to at least 10−12.

D.45. GL method: p = 4 q = 3 s = 2 k = 4 Type = 1, 2, 5 C=0.68 (Ĉ=0.34).

α
(2,1)
[n−1] = 0.786504872001359 β

(2,1)
[n−1] = 1.153423323647521

α
(3,2)
[n−1] = 0.458522400127318 β

(3,2)
[n−1] = 0.672431220134611

α
(3,1)
[n−2] = 0.456111449095887 β

(3,1)
[n−2] = 0.668895517749515

α
(3,1)
[n−3] = 0.012516746945481 β

(3,1)
[n−3] = 0.018356031064848

α
(2,1)
[n−4] = 0.213495127998641 β

(2,1)
[n−4] = 0.228597011394211

α
(3,1)
[n−4] = 0.072849403831314

(D.45)

c = [0, 0.741534951045807 , 1]T .

Memory required = 10 registers.
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D.46. GL method: p = 4 q = 3 s = 3 k = 4 Type = 1, 2, 5 C=1.30 (Ĉ=0.43).

α
(2,1)
[n−1] = 0.835886271444 β

(2,1)
[n−1] = 0.641436571109

α
(3,2)
[n−1] = 0.704291638559 β

(3,2)
[n−1] = 0.540454400474

α
(4,1)
[n−1] = 0.212030550333 β

(4,1)
[n−1] = 0.16270652339

α
(4,3)
[n−1] = 0.599726243153 β

(4,3)
[n−1] = 0.460213737387

α
(3,1)
[n−2] = 0.283921406015 β

(3,1)
[n−2] = 0.217873626305

α
(4,1)
[n−2] = 0.179279524047 β

(4,1)
[n−2] = 0.137574269495

α
(2,1)
[n−3] = 0.159936300727 β

(2,1)
[n−3] = 0.122730801831

α
(2,1)
[n−4] = 0.00417742782898

α
(3,1)
[n−4] = 0.0117869554268

α
(4,1)
[n−4] = 0.0089636824668

(D.46)

c = [0, 0.431762487999, 0.743132464626 , 1]T .

Memory required = 9 registers. Constraints satisfied to at least 10−12 .

D.47. GL method: p = 4 q = 3 s = 4 k = 4 Type = 5 C=1.74 (Ĉ=0.44).

α
(2,1)
[n−1] = 0.71144701701 β

(2,1)
[n−1] = 0.408785307856

α
(3,1)
[n−1] = 0.0431950079885 β

(3,1)
[n−1] = 0.0248191140257

α
(3,2)
[n−1] = 0.753034510178 β

(3,2)
[n−1] = 0.432680771314

α
(4,1)
[n−1] = 0.0180567914685 β

(4,1)
[n−1] = 0.010375124054

α
(4,2)
[n−1] = 0.0452783745799 β

(4,2)
[n−1] = 0.0260161808951

α
(4,3)
[n−1] = 0.778983472917 β

(4,3)
[n−1] = 0.44759060222

α
(5,1)
[n−1] = 0.330864417291 β

(5,1)
[n−1] = 0.190109044591

α
(5,2)
[n−1] = 0.0203648175892 β

(5,2)
[n−1] = 0.0117012764529

α
(5,4)
[n−1] = 0.587686567162 β

(5,4)
[n−1] = 0.337674666611

α
(2,1)
[n−2] = 0.25322952288 β

(2,1)
[n−2] = 0.145501359896

α
(3,1)
[n−2] = 0.182786524963 β

(3,1)
[n−2] = 0.103153697887

α
(4,1)
[n−2] = 0.153593372824 β

(4,1)
[n−2] = 0.0882521293834

α
(5,1)
[n−2] = 0.0577692157967 β

(5,1)
[n−2] = 0.0331932049744

α
(2,1)
[n−3] = 0.0303059892976 β

(2,1)
[n−3] = 0.0174133039688

α
(3,1)
[n−3] = 0.0193054425885 β

(3,1)
[n−3] = 0.0110925776666

α
(4,1)
[n−3] = 0.00325895266616 β

(4,1)
[n−3] = 0.00187253855463

α
(2,1)
[n−4] = 0.00501747081171

α
(3,1)
[n−4] = 0.00167851428237

α
(4,1)
[n−4] = 0.000829035543943 β

(4,1)
[n−4] = 7.3606768318e− 6

α
(5,1)
[n−4] = 0.0033149821611

(D.47)

c = [0, 0.24280605781, 0.528154548718, 0.833933079228 , 1]T .

Memory required = 12 registers. Constraints satisfied to at least 10−12.



Strong-Stability-Preserving General Linear Methods 67

D.48. GL method: p = 4 q = 4 s = 4 k = 2 Type = 1 C=0.55 (Ĉ=0.14).

α
(2,1)
[n−1] = 0.243613473588 β

(2,1)
[n−1] = 0.441826685958

α
(3,2)
[n−1] = 0.276164943657 β

(3,2)
[n−1] = 0.500863273434

α
(4,1)
[n−1] = 0.00316691191491 β

(4,1)
[n−1] = 0.00574363221985

α
(4,3)
[n−1] = 0.38735163767 β

(4,3)
[n−1] = 0.491599496688

α
(5,1)
[n−1] = 0.0105681884259 β

(5,1)
[n−1] = 0.0191668695497

α
(5,3)
[n−1] = 0.0325761928425 β

(5,3)
[n−1] = 0.0590814256403

α
(5,4)
[n−1] = 0.345527844774 β

(5,4)
[n−1] = 0.626662476071

α
(2,1)
[n−2] = 0.517878734668 β

(2,1)
[n−2] = 0.00671822986609

α
(2,2)
[n−2] = 0.101329655739 β

(2,2)
[n−2] = 0.183775327879

α
(2,3)
[n−2] = 0.137178136005 β

(2,3)
[n−2] = 0.247729768503

α
(3,1)
[n−2] = 0.180282673601 β

(3,1)
[n−2] = 0.000738637776388

α
(3,3)
[n−2] = 0.500122732181 β

(3,3)
[n−2] = 0.281360920597

α
(3,4)
[n−2] = 0.0434296505607 β

(3,4)
[n−2] = 0.0748777651739

α
(4,1)
[n−2] = 0.369165152593 β

(4,1)
[n−2] = 0.047101034155

α
(4,3)
[n−2] = 0.0990490939606 β

(4,3)
[n−2] = 0.179639214068

α
(4,4)
[n−2] = 0.141267203861 β

(4,4)
[n−2] = 0.256207588182

α
(5,1)
[n−2] = 0.33206155398

α
(5,3)
[n−2] = 0.16640157952 β

(5,3)
[n−2] = 0.301792250383

α
(5,4)
[n−2] = 0.112864640457 β

(5,4)
[n−2] = 0.204695616054

(D.48)

c = [0, 0.204837255787, 0.440432295856, 0.681278400531 , 1]T .

Memory required = 14 registers. Constraints satisfied to at least 10−12 .
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D.49. GL method: p = 4 q = 4 s = 3 k = 3 Type = 1 C=0.99 (Ĉ=0.33).

α
(2,1)
[n−1] = 0.558485866473 β

(2,1)
[n−1] = 0.564404033404

α
(3,1)
[n−1] = 0.010467204724 β

(3,1)
[n−1] = 0.0105781236721

α
(3,2)
[n−1] = 0.601126314715 β

(3,2)
[n−1] = 0.607496334246

α
(4,2)
[n−1] = 0.0143746609977 β

(4,2)
[n−1] = 0.0145269865057

α
(4,3)
[n−1] = 0.62885795354 β

(4,3)
[n−1] = 0.635521839894

α
(2,1)
[n−2] = 0.175069070656 β

(2,1)
[n−2] = 0.176924243806

α
(2,3)
[n−2] = 0.00308940765494 β

(2,3)
[n−2] = 0.00312214551156

α
(3,1)
[n−2] = 0.277692852596 β

(3,1)
[n−2] = 0.280635510156

α
(4,1)
[n−2] = 0.148969446907 β

(4,1)
[n−2] = 0.150548047383

α
(4,2)
[n−2] = 0.154377845717 β

(4,2)
[n−2] = 0.156013757951

α
(2,1)
[n−3] = 0.106823330174 β

(2,1)
[n−3] = 0.00347127664727

α
(2,2)
[n−3] = 6.05941753e− 8 β

(2,2)
[n−3] = 6.12362141e− 8

α
(2,3)
[n−3] = 0.156532264449 β

(2,3)
[n−3] = 0.158191006642

α
(3,1)
[n−3] = 0.0767559985601 β

(3,1)
[n−3] = 0.00185560965644

α
(3,3)
[n−3] = 0.0339576294046 β

(3,3)
[n−3] = 0.034317471849

α
(4,1)
[n−3] = 0.0534200928381

(D.49)

c = [0, 0.303378498258, 0.639859863802 , 1]T .

Memory required = 18 registers. Constraints satisfied to at least 10−12 .

D.50. GL method: p = 4 q = 4 s = 3 k = 3 Type = 2 C=0.88 (Ĉ=0.29).

α
(2,1)
[n−1] = 0.501452936754243 β

(2,1)
[n−1] = 0.570650194054014

α
(3,2)
[n−1] = 0.571621756632008 β

(3,2)
[n−1] = 0.650501856582838

α
(4,1)
[n−1] = 0.104408345813825 β

(4,1)
[n−1] = 0.118816021270292

α
(4,3)
[n−1] = 0.555337610607862 β

(4,3)
[n−1] = 0.631970603881752

α
(2,1)
[n−2] = 0.461766417377203 β

(2,1)
[n−2] = 0.260645867579302

α
(3,1)
[n−2] = 0.365441633624766 β

(3,1)
[n−2] = 0.317551581848429

α
(4,1)
[n−2] = 0.267081022184486 β

(4,1)
[n−2] = 0.303936473329177

α
(2,1)
[n−3] = 0.036780645868554

α
(3,1)
[n−3] = 0.062936609742983

α
(3,3)
[n−3] = 2.44e − 13

α
(4,1)
[n−3] = 0.073173021393827

(D.50)

c = [0, 0.295968352519006, 0.645920534894601 , 1]T .

Memory required = 10 registers.
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D.51. GL method: p = 4 q = 4 s = 3 k = 3 Type = 5 C=0.88 (Ĉ=0.29).

α
(2,1)
[n−1] = 0.501452936754328 β

(2,1)
[n−1] = 0.570650194053946

α
(3,2)
[n−1] = 0.571621756632096 β

(3,2)
[n−1] = 0.65050185658275

α
(4,1)
[n−1] = 0.104408345813576 β

(4,1)
[n−1] = 0.118816021270125

α
(4,3)
[n−1] = 0.555337610608053 β

(4,3)
[n−1] = 0.631970603881811

α
(2,1)
[n−2] = 0.461766417377124 β

(2,1)
[n−2] = 0.260645867579256

α
(3,1)
[n−2] = 0.365441633624919 β

(3,1)
[n−2] = 0.31755158184828

α
(4,1)
[n−2] = 0.267081022184514 β

(4,1)
[n−2] = 0.303936473329277

α
(2,1)
[n−3] = 0.036780645868547

α
(3,1)
[n−3] = 0.062936609742985

α
(4,1)
[n−3] = 0.073173021393856

(D.51)

c = [0, 0.295968352518983, 0.645920534894549 , 1]T .

Memory required = 7 registers.
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D.52. GL method: p = 4 q = 4 s = 4 k = 3 Type = 1 C=0.90 (Ĉ=0.22).

α
(2,1)
[n−1] = 0.203721923288 β

(2,1)
[n−1] = 0.226898349062

α
(3,1)
[n−1] = 0.0253532507733 β

(3,1)
[n−1] = 0.0282375634933

α
(3,2)
[n−1] = 0.487152149204 β

(3,2)
[n−1] = 0.542573016259

α
(4,1)
[n−1] = 0.000553693312693 β

(4,1)
[n−1] = 0.000616684235595

α
(4,2)
[n−1] = 0.0662994336367 β

(4,2)
[n−1] = 0.0738419890855

α
(4,3)
[n−1] = 0.537227462095 β

(4,3)
[n−1] = 0.598345147409

α
(5,2)
[n−1] = 0.0141836889002 β

(5,2)
[n−1] = 0.0157972963495

α
(5,3)
[n−1] = 0.181316863939 β

(5,3)
[n−1] = 0.201944378008

α
(5,4)
[n−1] = 0.265914870791 β

(5,4)
[n−1] = 0.296166677595

α
(2,2)
[n−2] = 0.000229853856376 β

(2,2)
[n−2] = 0.000256003181669

α
(2,4)
[n−2] = 0.303986233865 β

(2,4)
[n−2] = 0.338569229509

α
(3,3)
[n−2] = 0.0411965137582 β

(3,3)
[n−2] = 0.0458832353828

α
(3,4)
[n−2] = 0.0473185195426 β

(3,4)
[n−2] = 0.0527017111904

α
(4,2)
[n−2] = 0.101423029939 β

(4,2)
[n−2] = 0.112961421523

α
(4,3)
[n−2] = 0.037303435081 β

(4,3)
[n−2] = 0.0415472605875

α
(5,1)
[n−2] = 0.0467437506711 β

(5,1)
[n−2] = 0.052061553735

α
(5,3)
[n−2] = 0.000763961037701 β

(5,3)
[n−2] = 0.000850873069546

α
(5,4)
[n−2] = 0.332380562537 β

(5,4)
[n−2] = 0.370193839145

α
(2,1)
[n−3] = 0.167793228389 β

(2,1)
[n−3] = 0.0346655048843

α
(2,4)
[n−3] = 0.324268760601 β

(2,4)
[n−3] = 0.360119381779

α
(3,1)
[n−3] = 0.0955117848933 β

(3,1)
[n−3] = 0.00702762958058

α
(3,3)
[n−3] = 0.0249806963623

α
(3,4)
[n−3] = 0.278487085466 β

(3,4)
[n−3] = 0.310169170345

α
(4,1)
[n−3] = 0.0778794474819 β

(4,1)
[n−3] = 0.0000494732482175

α
(4,4)
[n−3] = 0.179313498454 β

(4,4)
[n−3] = 0.199713099636

α
(5,1)
[n−3] = 0.0752950403998 β

(5,1)
[n−3] = 0.00872129273396

α
(5,2)
[n−3] = 0.00010885019015 β

(5,2)
[n−3] = 0.000102550671255

α
(5,3)
[n−3] = 0.0832924115339 β

(5,3)
[n−3] = 0.0927681732109

(D.52)

c = [0, 0.215396130528, 0.521228062084, 0.864582411549 , 1]T .

Memory required = 22 registers. Constraints satisfied to at least 10−12 .
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D.53. GL method: p = 4 q = 4 s = 4 k = 3 Type = 2 C=0.52 (Ĉ=0.13).

α
(2,1)
[n−1] = 0.919970708278 β

(2,1)
[n−1] = 0.126933049049

α
(3,1)
[n−1] = 0.749559519433 β

(3,1)
[n−1] = 0.00542940247011

α
(3,2)
[n−1] = 0.140643462356 β

(3,2)
[n−1] = 0.271402192828

α
(4,1)
[n−1] = 0.0170053211233 β

(4,1)
[n−1] = 0.0328154708744

α
(4,2)
[n−1] = 0.0737456411674 β

(4,2)
[n−1] = 0.142308276468

α
(4,3)
[n−1] = 0.277345863595 β

(4,3)
[n−1] = 0.535199249867

α
(5,1)
[n−1] = 0.000962435135558 β

(5,1)
[n−1] = 0.00185722821289

α
(5,3)
[n−1] = 0.0271729675393

α
(5,4)
[n−1] = 0.451766004173 β

(5,4)
[n−1] = 0.871780899901

α
(2,1)
[n−2] = 0.00412693896361 β

(2,1)
[n−2] = 0.00796382757947

α
(2,4)
[n−2] = 0.0743420472469

α
(3,1)
[n−2] = 0.0185126738803 β

(3,1)
[n−2] = 0.0357242363217

α
(3,2)
[n−2] = 0.00291332804787

α
(3,3)
[n−2] = 0.00119279074468

α
(3,4)
[n−2] = 0.0703289313101

α
(4,1)
[n−2] = 0.116866917385 β

(4,1)
[n−2] = 0.225520170765

α
(4,2)
[n−2] = 0.00456774420832

α
(4,3)
[n−2] = 0.0241519347947

α
(4,4)
[n−2] = 0.413562332341

α
(5,1)
[n−2] = 0.323314145358 β

(5,1)
[n−2] = 0.556660321723

α
(2,1)
[n−3] = 0.00156030551167

α
(3,1)
[n−3] = 0.00222075171409

α
(3,3)
[n−3] = 0.00451840427194

α
(3,4)
[n−3] = 0.0101101382422

α
(4,1)
[n−3] = 0.00613670125183

α
(4,2)
[n−3] = 0.0492190810346

α
(4,4)
[n−3] = 0.0173984630992

α
(5,1)
[n−3] = 0.196784447795 β

(5,1)
[n−3] = 0.0279388362353

(D.53)

c = [0, 0.0947706735495, 0.245782138577, 0.557738126541 , 1]T .

Memory required = 16 registers. Constraints satisfied to at least 10−12 .
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D.54. GL method: p = 4 q = 4 s = 4 k = 3 Type = 5 C=1.06 (Ĉ=0.26).

α
(2,1)
[n−1] = 0.805993465257 β

(2,1)
[n−1] = 0.272324040944

α
(3,1)
[n−1] = 0.218919288091

α
(3,2)
[n−1] = 0.500931122322 β

(3,2)
[n−1] = 0.47420396037

α
(4,1)
[n−1] = 0.094165561054 β

(4,1)
[n−1] = 0.0891413609427

α
(4,2)
[n−1] = 0.0111878936442 β

(4,2)
[n−1] = 0.0105909639826

α
(4,3)
[n−1] = 0.558243556885 β

(4,3)
[n−1] = 0.528458492056

α
(5,1)
[n−1] = 0.213755685753 β

(5,1)
[n−1] = 0.202350758855

α
(5,2)
[n−1] = 0.0339066010031 β

(5,2)
[n−1] = 0.0320975155304

α
(5,3)
[n−1] = 0.0377312038145

α
(5,4)
[n−1] = 0.497019754999 β

(5,4)
[n−1] = 0.47050128391

α
(2,1)
[n−2] = 0.14078772741 β

(2,1)
[n−2] = 0.133276003295

α
(3,1)
[n−2] = 0.217266610876 β

(3,1)
[n−2] = 0.205674358695

α
(4,1)
[n−2] = 0.277209429502 β

(4,1)
[n−2] = 0.262418930396

α
(5,1)
[n−2] = 0.171299517486 β

(5,1)
[n−2] = 0.162159837913

α
(2,1)
[n−3] = 0.0532188073335 β

(2,1)
[n−3] = 0.014321723665

α
(3,1)
[n−3] = 0.0628829787108 β

(3,1)
[n−3] = 0.0117212756821

α
(4,1)
[n−3] = 0.0591935589149 β

(4,1)
[n−3] = 0.00206290149284

α
(5,1)
[n−3] = 0.0462872369451 β

(5,1)
[n−3] = 0.00576080376947

(D.54)

c = [0, 0.172696425827, 0.43507604086, 0.741886607348 , 1]T .

Memory required = 11 registers. Constraints satisfied to at least 10−12 .

D.55. GL method: p = 4 q = 4 s = 2 k = 4 Type = 1 C=0.63 (Ĉ=0.32).

α
(2,1)
[n−1] = 0.561962508110014 β

(2,1)
[n−1] = 0.885556471623722

α
(3,2)
[n−1] = 0.606350282377085 β

(3,2)
[n−1] = 0.95550398626376

α
(2,1)
[n−3] = 0.196047280673757 β

(2,1)
[n−3] = 0.308936869701084

α
(2,2)
[n−3] = 0.130701532945317 β

(2,2)
[n−3] = 0.205963185587121

α
(3,1)
[n−3] = 0.037824486955768 β

(3,1)
[n−3] = 0.05960490019553

α
(3,2)
[n−3] = 0.275276318106266 β

(3,2)
[n−3] = 0.43378823580884

α
(2,1)
[n−4] = 0.111288678270912

α
(3,1)
[n−4] = 0.080548912560881

(D.55)

c = [0, 0.475202569102261 , 1]T .

Memory required = 13 registers.
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D.56. GL method: p = 4 q = 4 s = 2 k = 4 Type = 2, 5 C=0.53 (Ĉ=0.27).

α
(2,1)
[n−1] = 0.494784496138297 β

(2,1)
[n−1] = 0.925789673926733

α
(3,2)
[n−1] = 0.51626958023655 β

(3,2)
[n−1] = 0.965990345445047

α
(2,1)
[n−2] = 0.074458037785542 β

(2,1)
[n−2] = 0.139318194205167

α
(3,1)
[n−2] = 0.185129593159287 β

(3,1)
[n−2] = 0.346395384299227

α
(2,1)
[n−3] = 0.275088810763842 β

(2,1)
[n−3] = 0.514717786037431

α
(3,1)
[n−3] = 0.179900512042334 β

(3,1)
[n−3] = 0.336611267496894

α
(2,1)
[n−4] = 0.15566865531232

α
(3,1)
[n−4] = 0.11870031456183

(D.56)

c = [0, 0.488184028919146 , 1]T .

Memory required = 9 registers.

D.57. GL method: p = 4 q = 4 s = 3 k = 4 Type = 1 C=1.17 (Ĉ=0.39).

α
(2,1)
[n−1] = 0.677569426662 β

(2,1)
[n−1] = 0.580495585717

α
(3,1)
[n−1] = 0.0874634873289 β

(3,1)
[n−1] = 0.074932791103

α
(3,2)
[n−1] = 0.634346296247 β

(3,2)
[n−1] = 0.543464935544

α
(4,1)
[n−1] = 0.0761255966253 β

(4,1)
[n−1] = 0.0652192543851

α
(4,3)
[n−1] = 0.649568576842 β

(4,3)
[n−1] = 0.556506354389

α
(2,1)
[n−2] = 0.0967614037695 β

(2,1)
[n−2] = 0.0828986160617

α
(3,2)
[n−2] = 0.0229046710371 β

(3,2)
[n−2] = 0.0196231705655

α
(4,1)
[n−2] = 0.214019738283 β

(4,1)
[n−2] = 0.183357613908

α
(4,2)
[n−2] = 0.000338014915993 β

(4,2)
[n−2] = 0.000289588282646

α
(4,3)
[n−2] = 0.0399202220533 β

(4,3)
[n−2] = 0.0342009420303

α
(2,1)
[n−3] = 0.000521771313239 β

(2,1)
[n−3] = 0.000447018316014

α
(2,2)
[n−3] = 0.190413256837 β

(2,2)
[n−3] = 0.163133179725

α
(2,3)
[n−3] = 0.0118499957699 β

(2,3)
[n−3] = 0.0101522736483

α
(3,1)
[n−3] = 0.00011791788807 β

(3,1)
[n−3] = 0.000101024058655

α
(3,3)
[n−3] = 0.237435471319 β

(3,3)
[n−3] = 0.203418627774

α
(4,1)
[n−3] = 0.00129162023979 β

(4,1)
[n−3] = 0.00110657272616

α
(2,1)
[n−4] = 0.0228841456478

α
(3,1)
[n−4] = 0.0177321561801 β

(3,1)
[n−4] = 0.00129831857154

α
(4,1)
[n−4] = 0.0187362310405 β

(4,1)
[n−4] = 0.00736685749887

(D.57)

c = [0, 0.338608553456, 0.674279657098 , 1]T .

Memory required = 20 registers. Constraints satisfied to at least 10−12 .
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D.58. GL method: p = 4 q = 4 s = 3 k = 4 Type = 2 C=1.18 (Ĉ=0.39).

α
(2,1)
[n−1] = 0.615679449445 β

(2,1)
[n−1] = 0.522377451328

α
(3,2)
[n−1] = 0.676845724682 β

(3,2)
[n−1] = 0.574274397043

α
(4,3)
[n−1] = 0.731692379463 β

(4,3)
[n−1] = 0.62080941744

α
(2,1)
[n−2] = 0.255778869577 β

(2,1)
[n−2] = 0.217017336073

α
(3,1)
[n−2] = 0.255076016792 β

(3,1)
[n−2] = 0.216420995807

α
(4,1)
[n−2] = 0.250717429504 β

(4,1)
[n−2] = 0.212722922531

α
(2,1)
[n−3] = 0.106261604185 β

(2,1)
[n−3] = 0.0901583868333

α
(3,1)
[n−3] = 0.0522263893997 β

(3,1)
[n−3] = 0.0443118382647

α
(4,1)
[n−3] = 0.00597412448671 β

(4,1)
[n−3] = 0.00506878689243

α
(2,1)
[n−4] = 0.0222800767919

α
(3,1)
[n−4] = 0.0158518691264

α
(4,1)
[n−4] = 0.0116160665463

(D.58)

c = [0, 0.294410865911, 0.627193564036 , 1]T .

Memory required = 9 registers. Constraints satisfied to at least 10−12 .

D.59. GL method: p = 4 q = 4 s = 3 k = 4 Type = 5 C=1.18 (Ĉ=0.39).

α
(2,1)
[n−1] = 0.615679449446 β

(2,1)
[n−1] = 0.522377451327

α
(3,2)
[n−1] = 0.676845724683 β

(3,2)
[n−1] = 0.574274397043

α
(4,3)
[n−1] = 0.731692379464 β

(4,3)
[n−1] = 0.620809417439

α
(2,1)
[n−2] = 0.255778869578 β

(2,1)
[n−2] = 0.217017336073

α
(3,1)
[n−2] = 0.255076016791 β

(3,1)
[n−2] = 0.216420995806

α
(4,1)
[n−2] = 0.250717429504 β

(4,1)
[n−2] = 0.21272292253

α
(2,1)
[n−3] = 0.106261604185 β

(2,1)
[n−3] = 0.0901583868321

α
(3,1)
[n−3] = 0.0522263893994 β

(3,1)
[n−3] = 0.0443118382645

α
(4,1)
[n−3] = 0.00597412448597 β

(4,1)
[n−3] = 0.00506878689144

α
(2,1)
[n−4] = 0.0222800767915

α
(3,1)
[n−4] = 0.0158518691263

α
(4,1)
[n−4] = 0.011616066546

(D.59)

c = [0, 0.294410865911, 0.627193564036 , 1]T .

Memory required = 9 registers. Constraints satisfied to at least 10−11 .
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D.60. GL method: p = 4 q = 4 s = 4 k = 4 Type = 1 C=0.05 (Ĉ=0.01).

α
(2,1)
[n−1] = 0.0472119578739 β

(2,1)
[n−1] = 0.966119411646

α
(3,2)
[n−1] = 0.0159126572177 β

(3,2)
[n−1] = 0.325627822297

α
(4,1)
[n−1] = 0.0466240154706 β

(4,1)
[n−1] = 0.954088083263

α
(4,2)
[n−1] = 0.110947016847 β

(4,2)
[n−1] = 0.122559175733

α
(4,3)
[n−1] = 0.015718487303 β

(4,3)
[n−1] = 0.321654436482

α
(5,1)
[n−1] = 0.0292911638772 β

(5,1)
[n−1] = 0.599398188206

α
(5,2)
[n−1] = 0.204797678934 β

(5,2)
[n−1] = 0.512387829207

α
(5,3)
[n−1] = 0.311111501857 β

(5,3)
[n−1] = 2.071743703e− 6

α
(5,4)
[n−1] = 1.0670391749e− 6 β

(5,4)
[n−1] = 0.0000218352999175

α
(2,3)
[n−2] = 0.00333044294406 β

(2,3)
[n−2] = 0.0681523436546

α
(2,4)
[n−2] = 0.029002843058 β

(2,4)
[n−2] = 0.593498150322

α
(3,1)
[n−2] = 0.0158055690836 β

(3,1)
[n−2] = 0.32343642991

α
(3,3)
[n−2] = 0.0246397966927 β

(3,3)
[n−2] = 0.504215180981

α
(3,4)
[n−2] = 0.00547493419747 β

(3,4)
[n−2] = 0.0265228167966

α
(4,4)
[n−2] = 0.0141841274631 β

(4,4)
[n−2] = 0.290256144766

α
(5,1)
[n−2] = 0.00386245751371 β

(5,1)
[n−2] = 0.0790391957609

α
(2,1)
[n−3] = 0.0488676216468 β

(2,1)
[n−3] = 1.

α
(2,2)
[n−3] = 0.0844559005696

α
(2,3)
[n−3] = 0.00681441831429 β

(2,3)
[n−3] = 0.0674470871421

α
(3,1)
[n−3] = 0.0286279783139 β

(3,1)
[n−3] = 0.585827125387

α
(3,4)
[n−3] = 0.0473297975793 β

(3,4)
[n−3] = 0.968530818245

α
(4,1)
[n−3] = 0.0478014958744 β

(4,1)
[n−3] = 0.978183391446

α
(5,1)
[n−3] = 0.0273504316182 β

(5,1)
[n−3] = 0.559684115915

α
(2,1)
[n−4] = 0.447273803312 β

(2,1)
[n−4] = 0.00780265202616

α
(2,2)
[n−4] = 0.00916491920908 β

(2,2)
[n−4] = 0.103717864462

α
(2,4)
[n−4] = 0.323878093072 β

(2,4)
[n−4] = 0.116456145233

α
(3,1)
[n−4] = 0.817203291383 β

(3,1)
[n−4] = 0.398058665598

α
(3,4)
[n−4] = 0.0450059755325 β

(3,4)
[n−4] = 0.000046176750434

α
(4,1)
[n−4] = 0.618694497154 β

(4,1)
[n−4] = 0.0118305244406

α
(4,2)
[n−4] = 0.0321404254066 β

(4,2)
[n−4] = 0.332263746358

α
(4,4)
[n−4] = 0.113889934482 β

(4,4)
[n−4] = 0.11482557107

α
(5,1)
[n−4] = 0.413241589083 β

(5,1)
[n−4] = 0.0760337681664

α
(5,4)
[n−4] = 0.0103441100784 β

(5,4)
[n−4] = 0.211676151403

(D.60)

c = [0, 0.671030459623, 0.462418003927, 0.946162845808 , 1]T .

Memory required = 30 registers. Constraints satisfied to at least 10−11 .
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D.61. GL method: p = 4 q = 4 s = 4 k = 4 Type = 2 C=0.39 (Ĉ=0.10).

α
(2,1)
[n−1] = 0.86584372014 β

(2,1)
[n−1] = 0.448421022432

α
(3,1)
[n−1] = 0.190028833563 β

(3,1)
[n−1] = 0.490406125673

α
(3,2)
[n−1] = 0.116772714292 β

(3,2)
[n−1] = 0.301354554079

α
(4,1)
[n−1] = 0.1465621822 β

(4,1)
[n−1] = 0.378232032451

α
(4,2)
[n−1] = 0.669073544088 β

(4,2)
[n−1] = 0.0303700377342

α
(4,3)
[n−1] = 0.00213932793915 β

(4,3)
[n−1] = 0.00552094914498

α
(5,1)
[n−1] = 0.0533594824547 β

(5,1)
[n−1] = 0.137704455518

α
(5,2)
[n−1] = 0.00695398726415 β

(5,2)
[n−1] = 0.0179461079051

α
(5,3)
[n−1] = 0.0562601129212 β

(5,3)
[n−1] = 0.145190092947

α
(5,4)
[n−1] = 0.33330934942 β

(5,4)
[n−1] = 0.860169183987

α
(2,3)
[n−2] = 0.000905102927132

α
(3,1)
[n−2] = 0.0596044596853 β

(3,1)
[n−2] = 0.153820826025

α
(3,4)
[n−2] = 0.585949640159

α
(4,4)
[n−2] = 0.0212071283664

α
(5,1)
[n−2] = 0.103410327053 β

(5,1)
[n−2] = 0.266870331695

α
(2,1)
[n−3] = 0.0710576468845 β

(2,1)
[n−3] = 0.183377988775

α
(2,2)
[n−3] = 0.000341657254459

α
(3,1)
[n−3] = 0.013817090628 β

(3,1)
[n−3] = 0.0356576723433

α
(4,1)
[n−3] = 0.087908037972 β

(4,1)
[n−3] = 0.226863679101

α
(5,1)
[n−3] = 0.233691886771 β

(5,1)
[n−3] = 0.603087071808

α
(2,1)
[n−4] = 0.0618518727939 β

(2,1)
[n−4] = 0.0025274828571

α
(3,4)
[n−4] = 0.0338272616729

α
(4,1)
[n−4] = 0.0731097794343 β

(4,1)
[n−4] = 0.000424683049095

α
(5,1)
[n−4] = 0.213014854116 β

(5,1)
[n−4] = 0.0011235120857

(D.61)

c = [0, 0.305637672404, 0.514952039199, 0.439985397641 , 1]T .

Memory required = 18 registers. Constraints satisfied to at least 10−11 .
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D.62. GL method: p = 4 q = 4 s = 4 k = 4 Type = 5 C=1.26 (Ĉ=0.31).

α
(2,1)
[n−1] = 0.616905819644 β

(2,1)
[n−1] = 0.49071273842

α
(3,1)
[n−1] = 0.0300609194765 β

(3,1)
[n−1] = 0.0239117149587

α
(3,2)
[n−1] = 0.660718456506 β

(3,2)
[n−1] = 0.525563145608

α
(4,1)
[n−1] = 0.0143507174929 β

(4,1)
[n−1] = 0.0114151620149

α
(4,2)
[n−1] = 0.103169853282 β

(4,2)
[n−1] = 0.0820656243047

α
(4,3)
[n−1] = 0.630953202339 β

(4,3)
[n−1] = 0.501886615226

α
(5,1)
[n−1] = 0.0145706097898 β

(5,1)
[n−1] = 0.0115900735618

α
(5,3)
[n−1] = 0.648583155498 β

(5,3)
[n−1] = 0.515910218696

α
(5,4)
[n−1] = 0.0989666670188 β

(5,4)
[n−1] = 0.0787222338299

α
(2,1)
[n−2] = 0.280783819678 β

(2,1)
[n−2] = 0.223347215524

α
(3,1)
[n−2] = 0.250896769275 β

(3,1)
[n−2] = 0.199573803312

α
(4,1)
[n−2] = 0.231102196469 β

(4,1)
[n−2] = 0.183828370673

α
(5,1)
[n−2] = 0.22774094775 β

(5,1)
[n−2] = 0.1811546926

α
(2,1)
[n−3] = 0.0803376549173 β

(2,1)
[n−3] = 0.0639039370149

α
(3,1)
[n−3] = 0.0453943439118 β

(3,1)
[n−3] = 0.0361085632529

α
(4,1)
[n−3] = 0.0106990487738 β

(4,1)
[n−3] = 0.00851047170427

α
(5,1)
[n−3] = 0.000239559510014 β

(5,1)
[n−3] = 0.000190555672244

α
(2,1)
[n−4] = 0.0219727057601 β

(2,1)
[n−4] = 0.0037222107035

α
(3,1)
[n−4] = 0.0129295108313

α
(4,1)
[n−4] = 0.00972498164364

α
(5,1)
[n−4] = 0.00989906043319 β

(5,1)
[n−4] = 0.000860875063544

(D.62)

c = [0, 0.274308854869, 0.585924160734, 0.904022134829 , 1]T .

Memory required = 12 registers. Constraints satisfied to at least 10−12 .
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