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SUMMARY 

As part of the Global Nuclear Energy Partnership (GNEP), a fast reactor simulation program was 

launched in April 2007 to develop a suite of modern simulation tools specifically for the analysis and 

design of sodium cooled fast reactors. The general goal of the new suite of codes is to reduce the 

uncertainties and biases in the various areas of reactor design activities by enhanced prediction 

capabilities. Under this fast reactor simulation program, a high-fidelity deterministic neutron transport 

code named UNIC is being developed. The final objective is to produce an integrated, advanced 

neutronics code that allows the high fidelity description of a nuclear reactor and simplifies the multi-step 

design process by direct coupling with thermal-hydraulics and structural mechanics calculations. 

Currently there are three solvers for the neutron transport code incorporated in UNIC: PN2ND, SN2ND, 

and MOCFE. PN2ND is based on a second-order even-parity spherical harmonics discretization of the 

transport equation and its primary target area of use is the existing homogenization approaches that are 

prevalent in reactor physics. MOCFE is based upon the method of characteristics applied to an 

unstructured finite element mesh and its primary target area of use is the fine grained nature of the explicit 

geometrical problems which is the long term goal of this project. SN2ND is based on a second-order, 

even-parity discrete ordinates discretization of the transport equation and its primary target area is the 

modeling transition region between the PN2ND and MOCFE solvers. 

The major development goal in fiscal year 2008 for the MOCFE solver was to include a two-dimensional 

capability that is scalable to hundreds of processors. The short term goal of this solver is to solve two-

dimensional representations of reactor systems such that the energy and spatial self-shielding are 

accounted for and reliable cross sections can be generated for the homogeneous calculations. In this report 

we present good results for an OECD benchmark obtained using the new two-dimensional capability of 

the MOCFE solver. Additional work on the MOCFE solver is focused on studying the current 

parallelization algorithms that can be applied to both the two- and three-dimensional implementations 

such that they are scalable to thousands of processors. The initial research into this topic indicates that, as 

expected, the current parallelization scheme is not sufficiently scalable for the detailed reactor geometry 

that it is intended for. As a consequence, we are starting the investigative research to determine the 

alternatives that are applicable for massively parallel machines. 

The major development goal in fiscal year 2008 for the PN2ND and SN2ND solvers was to introduce 

parallelism by angle and energy. The motivation for this is two-fold: 1) reduce the memory burden by 

picking a simpler preconditioner with reduced matrix storage and 2) improve parallel performance by 

solving the angular subsystems of the within group equation simultaneously. The solver development in 

FY2007 focused on using PETSc to solve the within group equation where only spatial parallelization 

was utilized. Because most homogenous problems required relatively few spatial degrees of freedom (tens 

of thousands) the only way to improve the parallelism was to spread the angular moment subsystems 

across the parallel system. While the coding has been put into place for parallelization by space, angle, 

and group, we have not optimized any of the solvers and therefore do not give an assessment of the 

achievement of this work in this report. The immediate task to be completed is to implement and validate 

Tchebychev acceleration of the fission source iteration algorithm (inverse power method in this work) and 

optimize both the PN2ND and SN2ND solvers. We further intend to extend the applicability of the UNIC 

code by adding a first-order discrete ordinates solver termed SN1ST. 

Upon completion of this work, all memory usage problems are to be identified and studied in the solvers 

with the intent of making the new version of an exportable production code in either FY2008 or FY2009. 

This report covers the status of these tasks and discusses the work yet to be completed. 
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REACTOR CAMPAIGN  
INTERIM REPORT ON FUEL CYCLE NEUTRONICS 

CODE DEVELOPMENT IN FY2008 

1. Introduction 

As part of the Global Nuclear Energy Partnership (GNEP), a fast reactor simulation program was 

launched in April 2007 to develop a suite of modern simulation tools specifically for the analysis and 

design of sodium cooled fast reactors. The general goal of the new suite of codes is to reduce the 

uncertainties and biases in the various areas of reactor design activities by enhanced prediction 

capabilities. Under this fast reactor simulation program, a high-fidelity deterministic neutron transport 

code named UNIC is being developed [1]. The final objective is to produce an integrated, advanced 

neutronics code that allows the high fidelity description of a nuclear reactor and simplifies the multi-step 

design process by direct coupling with thermal-hydraulics and structural mechanics calculations. 

In FY2007, we formally introduced three solvers for the neutron transport code which where termed: 

PN2ND, SN2ND, and MOCFE. PN2ND is based on a second-order even-parity spherical harmonics 

discretization of the transport equation and its primary target area of use is the existing homogenization 

approaches that are prevalent in reactor physics [2]; however, we note that additional supporting 

algorithms are necessary to fully handle the wide range of homogenization methods. MOCFE is based 

upon the method of characteristics applied to an unstructured finite element mesh and its primary target 

area of use is the fine grained nature of the explicit geometrical problems which is the long term goal of 

this project [3]. SN2ND is based on a second-order, even-parity discrete ordinates discretization of the 

transport equation and its primary target area is the modeling transition region between the PN2ND and 

MOCFE solvers [2]. 

There were major development goals for all three solvers specified for FY2008. Even with current state of 

the art computer technology, we cannot realistically perform explicit geometry calculations with 

sufficient energy resolution to guarantee accuracy of the modeling. Consequently, the current 

development focus is to finalize the solvers that target the homogenization methodologies and begin 

developing the necessary design analysis codes for fuel cycle analysis, transient analysis and perturbation 

theory calculation using them.  

To support this work, the first goal is to develop a two-dimensional MOCFE capability which is scalable 

to hundreds of processors. The short term goal of this solver is to solve two-dimensional representations 

of reactor systems such that the energy and spatial self-shielding are accounted for and reliable cross 

sections can be generated for the homogeneous calculations. While not tasked for this year, this requires 

the development of a heterogeneous to homogeneous mesh mapping algorithm that will take the solution 

from the MOCFE solver and produce cross sections for the homogeneous problem. Additional work on 

the MOCFE solver is focused on studying the current parallelization algorithms that can be applied to 

both the two- and three-dimensional implementations such that they are scalable to thousands of 

processors.  

In addition to work on the MOCFE solver, research on improving the parallelism of the PN2ND and 

SN2ND solvers was undertaken. As discussed previously, these solvers rely heavily upon the PETSc 

toolkit for linear algebra in a parallel environment. The initial solver development focused on using 

PETSc to solve the within group equation where only spatial parallelization was utilized. The new 

development focus is to reduce the memory burden and improve parallelization by introducing 

parallelization by angle and energy. Tchebychev acceleration of the fission source iteration algorithm 

(inverse power method in this work) is also to be implemented and validated. 
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Upon completion of this work, all memory usage problems are to be identified and studied in the solvers 

with the intent of making the new version of an exportable production code in either FY2008 or FY2009. 

In this report we discuss the current status of these tasks and the work left to be completed. Given the 

presence of reliable and accurate solvers, the additional development focus for FY2008 is to produce a 

first version of kinetics analysis tool. This work along with some detailed benchmarking calculations and 

creation of a first-order discrete ordinates discretization of the transport equation, termed SN1ST, is 

scheduled to start in the second part of FY2008 and thus is not discussed in this report. 

2. Method of Characteristics Solver MOCFE Developments 

The method of characteristics (MOC) poses an advantage over the other methods incorporated in the 

UNIC code (PN2ND, SN2ND, and SN1ST) for solving the transport equation due to its ability to cheaply 

handle and solve fine mesh representations of the fuel pin geometry. This capability comes at the expense 

of a very low order spatial approximation of the source (flat) within each element. As one can expect, a 

flat source approximation strongly affects the ability of the method to handle large elements which are 

more than a neutron mean free path in size. In general, this makes the MOCFE solver disadvantageous 

when applied to large homogenized problems and thus the other solvers in UNIC are more appropriate. 

However, when the pin by pin description of the geometry is defined with ring wise depletion zones in 

each pin, the other solvers in UNIC are very expensive with regard to both memory and computational 

effort and thus the MOCFE solver is a much more desirable solver. 

As it turns out, the ability of MOC (and by extension the collision probability method) to handle the fine 

granularity mesh sizes has led it to be widely applied in lattice cell calculations from which homogenized 

cross sections are typically obtained [2]. These homogenization processes assume that the flux solution 

derived from a lattice cell calculation is sufficiently representative of the flux solution in the full reactor 

system that the flux solution for a reactor can be constructed without solving the explicit geometrical 

representation of the entire core. The lattice cell calculations are typically two-dimensional calculations of 

a repeated geometry structure in the reactor such as a single fuel pin or an entire fuel assembly. Reflected 

boundary conditions are imposed upon the surface of the lattice cell and a critical buckling search is 

performed to approximate the conditions that exist for each assembly in the real reactor system (rather 

than the lattice cell). As one would expect, this approach becomes less reliable as the heterogeneity of the 

core increases and the gradient in the flux between adjacent assemblies (or fuel pins) becomes steeper.  

While explicit geometry three-dimensional calculations are still beyond the abilities of modern computing 

technology, it is becoming evident that explicit geometry two-dimensional planar calculations are not. 

Consequently, the development of a two-dimensional MOCFE solver that is massively parallel not only 

provides the ability to handle the existing homogenization approaches, but also the next logical step in 

homogenization treatments which is to utilize the flux solution for an entire radial plane of the reactor 

system as a means to generate homogeneous coefficients for the three-dimensional geometry. With such 

an approach, the issues that exist for current homogenization methods are likely to be reduced if not 

eliminated entirely. 

2.1 Derivation of the Two-Dimensional MOC 

To begin the two-dimensional method of characteristics formulation, we define the reference systems 

shown in Figure I. Similar to the three-dimensional derivation, we again need to define an area s⊥  on a 

plane external to the domain V , that is perpendicular to the direction of neutron travel Ω̂ . In two-

dimensions, we project Ω̂  onto the x-y plane to define Ω̂� . Given that we can respectively identify the 

incident and exiting surfaces of the domain V  as V
+∂  and V

−∂ , we can pick a plane P  external to the 
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domain V  and orthogonal to Ω̂ , which for two-dimensional geometries is a line in the x-y plane, and 

project the incident portion of the surface onto this plane to get V
+

⊥∂  as shown in Figure I. For two-

dimensional geometries we can write this as Eqs. (2.1). 

( ) ( ){ }
( )

| cos sin ,sin sin ,0 , ,0 0

Projection of  onto  in parallel to cos sin ,sin sin ,0

x y
V V n n

V V P

φ θ φ θ

φ θ φ θ

+

+ +

⊥

∂ = ∂ ⋅ >

∂ = ∂
 (2.1) 

z

y

x

W

q

f

^

W||

^

 
 

Angular Coordinate System 

V

¶V
+

¶V^

+

s^

l

( r, W|| )

W||
^

^

X

Y

s

 
Two-Dimensional Coordinate System  

Figure I. Two-Dimensional MOC Coordinate System 

This makes s⊥  a one-dimensional coordinate on the projected perimeter V
+

⊥∂ . The next step in the ray 

tracing procedure is to define �  as the distance between a point s  on V
+∂ and some position r V∈

�
 

within the volume along the direction Ω̂ . Once again, in two-dimensional geometry we can impose 

( ),r x y=
�

 and look for the distance �  along the projected direction Ω̂�  as shown in Figure I. If the 

problem domain is convex, then the position ( )ˆ, ,s⊥ Ω�  defines an alternate coordinate system to 

( )ˆ, ,x y Ω  and the within group neutron transport equation can be written as  

( ) ( ) ( ) ( ) ( )
4

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , , ,
/ sin

t ss s s s d S s
π

ϕ ϕ
θ

⊥ ⊥ ⊥ ⊥ ⊥

∂ 
′ ′ ′+ Σ Ω = Σ Ω ⋅Ω Ω Ω + Ω 

∂ 
∫� � � � �

�
 (2.2) 

where the group index has been suppressed. For every different value of Ω̂ , a different spatial coordinate 

system ( ),s⊥ �  can be defined, however,  since θ  is bounded to satisfy 0 / 2θ π< < , the construction of 

the coordinate system ( )ˆ, ,s⊥ Ω�  is invariant with respect to the value of θ . This last fact permits the use 

of a single reference system for all Ω̂  having the same φ  value. 

Under the assumption that the cross sections are constant, source and self scattering are constant and 

homogenous in angle within each 2-D mesh element (Vi) we obtain: 
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( ) ( ) ( )
4

1ˆ ˆ ˆ, , , ,
/ sin

i

i

t s i i i

i V

s s dr d r S Q
V π

ϕ ψ
θ

⊥ ⊥

∂ 
′ ′+ Σ Ω = Σ Ω Ω + = 

∂ 
∫ ∫

� � � �
� �

�
 (2.3) 

Similar to the formulation for three dimensional MOC, the right side of Eq. (2.3) is assumed to be known 

and an analytic solution to equation (2.3) can be written for each trajectory ( ),t s φ⊥  that crosses an 

element. To simplify the notation, we define ,i t
R  as the length of the intersection for a given trajectory 

( ),t s φ⊥  that intersects element 
i

V . If we view this as a local reference system for the variable �  inside 

of the element 
i

V , the point ( ),0,s φ⊥  becomes the incoming intersection point and ( ), ,is R φ⊥  becomes 

the outgoing intersection point for the trajectory ( ),t s φ⊥  that intersects element 
i

V . We can further 

define ( )ˆ,0,sϕ ⊥ Ω  as the incoming angular flux, ( ),
ˆ,

i in
sϕ ⊥ Ω , at the intersection point ( ),0,s φ⊥ , and 

( )ˆ, ,
i

s Rϕ ⊥ Ω  as the outgoing angular flux, ( ),
ˆ,

i out
sϕ ⊥ Ω , for the intersection point ( ), ,is R φ⊥ . With 

these definitions, we can write Eq. (2.3) such that we define the equation 

( ) ( ) ( )
( ), ,

, , , ,

,

1 exp / sin
ˆ ˆ, , exp / sin

t i i t

i out i in t i i t i

t i

R
s s R Q

θ
ϕ ϕ θ⊥ ⊥

− −Σ
Ω = Ω −Σ +

Σ
. (2.4) 

For two adjacent elements k and i that share the intersection point ( ), ,is R φ⊥  for the trajectory ( ),t s φ⊥ , 

we can write the continuity condition for the flux such that 

( ) ( ), ,
ˆ ˆ, ,

k in i out
s sϕ ϕ⊥ ⊥Ω = Ω . (2.5) 

We note that the same type of relationship exists for the other intersection point ( ),0,s φ⊥  but that the 

relative nature of the element indices must switch in Eq. (2.5). Given the nature of the solution process – 

each element is connected to the preceding element along the path of the trajectory to the incident domain 

boundary – these equations are termed the “propagation” equation. 

The propagation equation can be used for all trajectories emanating from the set of points ( ),s φ⊥  on the 

incident domain boundary thereby providing a means to propagate the incident angular flux through the 

domain to the exiting surface of the problem domain. The solution of this system of equations of course 

provides the neutron angular flux at all of the intersection points for all of the trajectories on all of the 

elements in the domain. We can project this representation of the angular flux such that the average 

reaction rate quantities can be constructed within each element. We start by noticing that 

( ) ( ),

0
4 4

1 1ˆ ˆ ˆ ˆ, , ,
i t

i

R

i i

i iV V

dr d r d ds d s
V V

π π

ψ ψ
+

⊥

⊥ ⊥

∂

Ω Ω = Ω Ω∫ ∫ ∫ ∫ ∫
� �

� �  (2.6) 

for every element in the domain. We can use the analytical solution from Eq. (2.4) to define 

( ) ( ) ( )( ),

, , , ,
0

ˆ ˆ ˆ, , , , sin
i tR

t i i i in i out i t id s s s R Qψ ϕ ϕ θ⊥ ⊥ ⊥Σ Ω = Ω − Ω +∫ � � . (2.7) 

We can approximate the integral over Ω̂  and the integral over s⊥  by the implicit sums to define 
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π
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ω ϕ
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⊥
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=
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∑ ∑ ∑

� �

� �  (2.8) 

The weights 
n

w  and 
m

w  for the angular space are typically obtained by utilizing a product cubature 

where two one-dimensional quadrature in θ  and φ  are combined. The perpendicular surface s⊥  is also 

broken into segments where again a cubature can be imposed such that the points form the starting points 

of trajectories and the weights sum to the area of the surface V
+∂ projected on to the perpendicular plane. 

The grid points of this cubature ( ),, ,
n m j

sθ φ ⊥  define the trajectories for which the preceding equations are 

solved on. As the propagation equation is solved, it inherently provides contribution from each trajectory 

to Eq. (2.8). Given the presence of scattering, and in particular within group scattering, Eqs. (2.4), (2.5), 

and (2.8) can be solved in an iterative manner similar to that the three-dimensional MOCFE solver. As 

one would expect, the treatment of the boundary conditions, the construction of the Algebraic Collapsing 

Acceleration scheme for the within group scattering and the multi-group strategy itself are equivalent to 

the one used in the three-dimensional MOCFE solver and thus is not repeated here. 

 

2.2 Two-Dimensional Ray Tracing 

As mentioned in Section 2.1, the construction of the coordinate system ( ),s⊥ �  is invariant with respect to 

the value of the angle θ . As a consequence, the ray tracing process only needs to be performed for the 

unique values of φ . As such, we have implemented a product cubature approach for the two-dimensional 

MOCFE solver such that the Tchebychev quadrature is always used in the φ  space. This quadrature is 

ideal because the angles are equally spaced, the weights are equal, and, when combined with the 

Legendre quadrature, can exactly integrate the spherical harmonics used to represent the scattering kernel.  

Figure II shows the current element types that are included in the MOCFE solver. The first part of the ray 

tracing process is the definition of the starting points for each direction 
m

φ  derived from the projected 

incident surface ,mV
+

⊥∂ . In the current approach, all the vertices of the finite element lying on V
+∂  are 

individually projected on the segment representing ,mV
+

⊥∂ . The number of trajectories , j
s⊥  between two 

consecutive points on the segment ,mV
+

⊥∂  is chosen such that the weight , j
ω⊥  (equivalent to area) of 

,mV
+

⊥∂  assigned to any trajectory is less than a user defined input value. Once the coordinate of the points 

, j
s⊥  are fixed, their projection, with direction Ω̂�  on V

+∂ , locates the points 
j

s  that are the incoming 

point of the characteristics line in the domain. Given the incoming location of a trajectory for a finite 

element lying on the incident boundary of the domain, a line-segment intersection algorithm is used to 

find the outgoing point and the intersection length. For quadratic finite elements the curvilinear perimeter 

is approximated by a tessellation of the vertices as shown in Figure III. This approximation appears 



 Interim Report on Fuel Cycle Neutronics Code Development in FY2008 
6 March 31, 2008 

 

reasonable since the area of any given element within the domain is rarely intersected exactly by a 

trajectory crossing the domain and a volume rebalance must be imposed. Given the outgoing point and 

thus outgoing surface of the element is identified, a simple surface to surface element connectivity list 

provides the next element that the trajectory intersects. This process is repeated until the trajectory 

reaches the outgoing surface of the domain. 

 

 

 

 
Linear Triangle 

 
Quadratic Triangle 

 
Linear Quadrilateral 

 
Quadratic Quadrilateral 

Figure II. Two-dimensional Finite Elements Included in the MOCFE Solver 

 

Quadratic Triangle 

 

Quadratic Quadrilateral 

Figure III. Linear interpolation of the Quadratic Finite Elements. 
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2.3 The C5G7 2-Dimensional Benchmark 

The two-dimensional option of the MOCFE solver was tested on numerous benchmark problems to 

ensure reliability. One such benchmark problem which we used to assess the accuracy of the solver is the 

OECD C5G7 benchmark [4]. The five finite element meshes in Figure IV show the mesh layout used for 

each C5G7 pin-cell. To estimate the number of elements necessary for modeling the full geometry, a 

single UO2 pin-cell was solved using these meshes with a ray spacing of 0.001 cm, 32 azimuthal 

directions and 3 polar directions. Table 1 gives the eigenvalue results obtained with the MOCFE solver 

where the reference MCNP solution was 1.32557±0.00054. As can be seen, there is a relatively large 

change in the eigenvalue after the 84(b) mesh. This change corresponds with an introduction of more 

mesh segments in the radial plane (or more segments in the azimuthal angle) as seen in Figure IV. The 

flux solution in Figure V also indicates the importance of the mesh layout where the coarser azimuthal 

meshing constrains the distribution of the flux to have more symmetry than is physically present. 

 

 
52 Elements 

 
84(a) Elements 

 
84(b) Elements 

 
96 Elements 

 
192 Elements 

Figure IV. Finite Element Mesh Representations of a Single C5G7 Pin-cell. 

Table 1. MOC Eigenvalue Results for a Single UO2 Pin-cell 

Elements Eigenvalue 

52 1.32624 

84(a) 1.32620 

84(b) 1.32621 

96 1.32585 

192 1.32574 
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84(b) Elements 192 Elements 

Figure V. MOC Solution for the Seventh Energy Group Flux for a Single UO2 Pin-cell. 

Figure VI shows the C5G7 benchmark geometry where reflected boundary conditions are applied to the 

bottom and left and vacuum boundary conditions are applied to the top and right. As can be seen, half of 

the assemblies consist entirely of UO2 fuel with the other assemblies containing MOX fuel. The steep 

global flux gradient combined with the heterogeneity of the individual assemblies makes this benchmark 

rather difficult to solve. 

 

Figure VI. Two-Dimensional C5G7 Benchmark. 
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Table 2 gives the eigenvalue results for various combinations of mesh refinement, angular cubature, and 

trajectory spacing. The reference MCNP solution was given as 1.18655 ± 0.00010. The first set of data in  

Table 2 considers refinements of the spatial mesh and, as was the case in the single pin-cell problem, a 

significant drop in the eigenvalue is observed with the change in the meshing scheme for the radial plane. 

As a consequence, we chose to use the mesh derived from the 96 element pin-cell mesh for the remaining 

study of the variation of the parameters. As can be seen, variation of the number of polar and azimuthal 

directions results in a relatively small improvement in the eigenvalue and refinements in the trajectory 

spacing has no discernable impact on the eigenvalue. 

Table 2. Eigenvalue Results for the C5G7 Benchmark 

Number  

of 

Pin-cell 

Elements 

Total  

Number  

of 

 Elements 

Number  

of  

Polar  

Directions 

Number  

of  

Azimuthal  

Directions 

Maximum  

Trajectory  

Spacing  

(cm) 

Eigenvalue 

 

52 

84(a) 

84(b) 

96 

192 

65168 

102160 

102160 

120656 

231632 

3 32 0.01 

1.18687 

1.18681 

1.18682 

1.18641 

1.18630 

96 120656 
2 

3 

6 

32 0.01 

1.18649 

1.18641 

1.18649 

96 120656 3 
16 

32 

64 

0.01 

1.18616 

1.18641 

1.18653 

96 120656 3 32 
0.02 

0.01 

0.005 

1.18641 

1.18641 

1.18641 

 

Figure VII shows example scalar flux plots for all seven groups of the C5G7 benchmark. In conclusion, 

these solutions are in good agreement with the reference MCNP solution with the remaining error being 

attributable to further refinements in the various parameters. 
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Figure VII. Example MOC Scalar Flux Solutions for the C5G7 Benchmark 
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Figure VII. Example MOC Scalar Flux Solutions for the C5G7 Benchmark. 
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2.4 Parallel Performance of the MOCFE Solver 

Part of the FY2008 work was to investigate more robust parallel algorithms for the MOCFE solver. The 

current parallel algorithm can be considered to consist of two initialization steps and four steps that are 

performed repeatedly during the iteration process. 

Initialization 

1. Given a list of trajectory starting points on the surface of the domain, find the intersections of all of 

the trajectories with all of the elements in the mesh for all angles in the cubature 

2. Setup the coefficient matrix for the diffusion synthetic acceleration of the scattering iteration 

Iterative Parallel Processes 

1. For reflected boundaries of the mesh, perform a reduction followed by a broadcast over the global 

communicator on the boundary incident flux 

2. Solve the propagation equation for the locally assigned trajectories to compute the contribution to the 

element averaged scalar flux and the contribution to the exiting boundary flux on reflected boundaries 

3. Perform a reduction followed by a broadcast over the global communicator of the element averaged 

scalar flux 

4. Solve the diffusion synthetic acceleration equation to update the scalar flux and perform a reduction 

followed by a broadcast over the global communicator of the correction. 

The remaining parallel and sequential operations can be considered minor and/or very scalable in the 

current scheme and thus not important.  

The current approach to distributing the trajectories (step 1 in Initialization) is done by first computing the 

total number of trajectories and approximately assigning an equal number of trajectories to each 

processor. As expected, a significant component of the computational effort is spent solving the 

propagation equation for each trajectory. The computational effort required for each trajectory is strongly 

dependent upon the number of intersections along each trajectory and thus the computational effort for 

each processor is strongly dependent upon the number of intersections that each processor finds along its 

share of trajectories. As such, the current approach to distributing the trajectories does not guarantee a 

perfect balance of the intersection information and we can observe a substantial computational load 

imbalance. One easy way to estimate the load imbalance is to consider the ratio of the maximum to 

minimum number of intersections in a given parallel job.  Table 3 shows the computed ratios for the 

Takeda 4 benchmark [5] while Table 4 shows the computed ratios for a benchmark derived from the 

recent ABTR work [6]. 

 Table 3. Computational Load Imbalance for the Takeda 4 Benchmark 

Angular directions  Number of 

Processors  18 72 

16 2.20 3.01 

32 2.88 3.92 

64 3.57 5.88 
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  Table 4. Computational Load Imbalance for the ABTR Benchmark 

Angular directions  Number of 

Processors  18 72 

16 1.40 1.56 

32 1.83 1.60 

64 2.22 1.92 

 

As can be seen, as the number of processors increases, the load becomes more unbalanced indicating that 

the current algorithm for dividing the computational work is insufficient. As it turns out, this problem has 

already been studied in the literature for MOC and is relatively easy to fix [7]. 

We have found that the steps 1, 3, and 4 of the iterative parallel processes are the primary bottlenecks of 

the MOCFE solver. From the preceding results of the two-dimensional OECD benchmark and several 

three-dimensional benchmarks including the Takeda 4 and ABTR benchmark we can trace the scalability 

limits of the current parallelization scheme to the flat source approximation currently implemented in 

each element. The flat source approximation inherently requires a large number of elements in order to 

guarantee solution accuracy which translates to large communication events in the global reduction and 

broadcast operations. These operations become progressively more expensive on most parallel machines 

as the vector becomes large and/or the number of processors increases. Consequently, the current parallel 

algorithm is impractical since we will invariably require large numbers of elements to solve the 

heterogeneous geometry problems that the MOCFE solver is targeting. Part of the remainder of FY2008 

is focused on researching alternative parallel algorithms. 

3. Development work for the PN2ND and SN2ND Solvers 

As mentioned previously, the primary focus for the PN2ND and SN2ND solvers was to implement 

additional parallelization by angle and space. The intent was to create a grid communication pattern as 

outlined in Figure VIII. In this approach we assume the set of processors used in the calculation can be 

divided into three communicator sets corresponding to space (S), angle (A), and energy (G). For 

discussion purposes, we will use the notation (s,a,g) to represent a point in the grid shown in Figure VIII. 

The idea behind the communicators is to define a point to point communication process which can be 

performed simultaneously. Using an example, we can more easily explain the communication pattern and 

thus indicate the impacts on performance. First, we assume that the spatial set of vertices is partitioned 

into S pieces or segments, the angular directions (or moments for the PN2ND solver) are partitioned into 

A segments and the energy groups are partitioned into G segments. We use the word segment because we 

assume each space-angle-energy segment is contiguous in some manner with respect to the physical 

ordering of the degrees of freedom in a comparable sequential approach. If we assume that we need to 

communicate the space-angle information from energy segment 1 to energy segment 2, then we can write 

this as (s,a,1)→(s,a,2). If we have to perform this operation for all segments of s and a, then we can write 

the series of relations: 

(1,1,1) (1,1, 2) (2,1,1) (2,1,2) ( ,1,1) ( ,1, 2)

(1, 2,1) (1, 2, 2) (2, 2,1) (2,2,2) ( , 2,1) ( , 2,2)

(1, ,1) (1, , 2) (2, ,1) (2, , 2) ( , ,1) ( , , 2)

S S

S S

A A A A S A S A

→ → →

→ → →

→ → →

�

�

� � � �

�

, 
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Figure VIII. Parallelization Strategy for the PN2ND and SN2ND Solvers 

where each communication event can be performed simultaneously; a total of S•A communication events. 

To handle this in a parallel computing environment, we define S•A communicators where each processor 

rank is defined according to its order in the energy segmentation g. A similar pattern exists when we want 

to transfer information in the other directions of the grid and we get an additional S•G+A•G 

communicators. Of course for each processor (s,a,g), only the three communicators relevant for the point 

to point communication are observable.  

The discrete ordinates methods are typically written with a scattering iteration approach to the within 

group equation where a synthetic diffusion equation is used to accelerate the scattering iteration. This 

synthetic equation typically uses a single angular degree of freedom and we have consequently defined 

another communicator over the entire space-angle segmentation. The concept behind this is that we can 

spread the synthetic equation over the space-angle set of processors rather than just host it on one of the 

existing angular segments. This basically will force a further segmentation of the spatial approximation 

over each angular segment. The major drawback of this approach is that the algorithmic efficiency of the 

Krylov subspace solver tends to degrade when the spatial domain is broken up too finely. In our current 

implementation of the SN2ND coding we do not utilize the synthetic communicator and instead host the 

synthetic equation on the first processor on the angular communicator. The disadvantages with this 

approach are that the memory load on the first processor is doubled and the work load is unbalanced since 

the remaining processors on the angular communicator must wait until the synthetic equation is solved. 

The motivation behind the current approach was the reduced burden of coding required to get the solver 

setup. 

As mentioned above, neither the PN2ND or SN2ND solvers use group segmentation at this point. The 

major reason for this is due to the scattering cross sections which couple the energy segments together. 
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Figure IX provides example stenciling of the scattering cross section for some typical reactor problems 

we intend to use UNIC on. In each case a maximum normalization was applied separately for each figure 

and the energy group structure is quite different between the thermal reactor composition and the fast 

reactor compositions. As can be seen, the stenciling for the fast reactor compositions can vary 

substantially, however, it is still strictly lower triangular. The large upscattering region makes the thermal 

reactor problem dramatically different from the fast systems eliminating the strict lower triangular 

structure. The primary issue for devising an effective parallelization strategy here the lower triangular is 

nature of this system. The historical approach to solving this system is to start at the highest energy group 

and sweep down through each group which is equivalent to a back substitution algorithm. This approach 

is exact for the strict lower triangular approach, but for those problems with significant upscattering, an 

additional iterative scheme (upscatter iterations) must be employed to achieve the correct answer. 

 
230 Group 

Sodium Fast Reactor Fuel Assembly 

 
230 Group 

ZPPR15 Critical Assembly Structural Material 

 
230 Group 

Lead Fast Reactor Fuel Assembly 

 
172 Group 

PWR Fuel Assembly 

Figure IX. Scattering Cross Section Stenciling 

With regard to parallelization, the back substitution approach would require the processors assigned to the 

lower portion of the energy domain to wait until the solution on the highest energy portion of the energy 
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domain is obtained and communicated before continuing. Such an approach is obviously not a true 

parallel algorithm. From the literature, the comparable methods that exhibit this type of connection use 

some form of multigrid acceleration which is typically combined with a block Jacobi decomposition of 

the full domain. Additional research will be necessary to study similar algorithms for the energy domain 

if group segmentation is to be utilized. For now, all of the necessary communicators were put into place 

for the PN2ND and SN2ND solvers and, when possible, all subroutines were setup to operate in an 

environment with group segmentation in play. 

3.1 Development Progress of the PN2ND Solver 

The spherical harmonics approximation is one of the oldest approximations used to solve the transport 

equation [2]. The general approach is to expand the angular flux in terms of orthonormal spherical 

harmonic trial functions as done in Eqs. 3.1 and 3.2. Figure X graphically displays some selected angular 

trial functions from Eq. 3.1. 

, , ,

0,2, , 1

ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( )
l

T

g l m g l m g

l N m l

r Y r Y rψ ψ ψ+ + +

+
= − =−

Ω = Ω = Ω∑ ∑
…

� � �
,  (3.1) 

, , ,

1,3, ,

ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( )
l

T

g l m g l m g

l N m l

r Y r Y rψ ψ ψ− − −

−
= =−

Ω = Ω = Ω∑ ∑
…

� � �
,  (3.2) 

 

Y0,0 

 

 

Y2,0 

 

Y4,-3 

 

Y22,17 

Figure X. Example Angular Trial Functions Utilized in PN2ND 

While these trial functions are not coupled for the scattering, collision, or fission source terms 

(orthonormal) in the transport equation, they are coupled via the streaming operator. Figure XI shows the 

connection of the angular terms for a standard even-parity spherical harmonics formulation. As can be 

seen, the angular connections are symmetric and relatively sparse with approximately the same amount of 

non-zero data focused on the coupling within a given L order of spherical harmonic data and between two 

consecutive L orders of spherical harmonic data. It is important to note that there is no coupling between 

spherical harmonic terms that are more than two L orders apart (P15 is not directly connected to P11) in the 

streaming operator. This coupling behavior is generally advantageous in a parallel algorithm since the 

connected portion of the angular flux on any given processor is relatively small compared with the total 

angular flux. However, this requires the assumption that a relatively high order angular approximation is 

going to be utilized, P11 or higher, which was never the targeted development goal of the PN2ND solver. 

Furthermore, when vacuum boundary conditions are applied to a boundary surface, the angular stencils 

shown in Figure XI become fully coupled. This greatly complicates any type of Krylov solver operations 

that are to be performed since it requires that all of the angular moment data be present on any given 

processor to correctly compute the action of the coefficient matrix. The reflected boundary conditions are 

not as much of a problem as the vacuum boundary conditions, but they do increase the non-zero filling of 

the existing stencil shown in Figure XI. 



Interim Report on Fuel Cycle Neutronics Code Development in FY2008  
March 31, 2008 17 

 

 

 

P15 

 

P29 

Figure XI. Example Three-Dimensional Angular Stencils for PN2ND 

Figure XII gives a typical spatial stencil that is observable for a single processor in a parallel computation. 

The mesh consists of ~1400 spatial vertices and 300 quadratic finite elements. As can be seen, the stencil 

does not exhibit the typical banded matrix structure that one would expect, primarily because we do not 

currently apply a bandwidth optimization algorithm in PN2ND or SN2ND. Given that we are already 

using an efficient sparse matrix vector multiplication routine, we do not intend to study the optimized 

bandwidth approaches until a full algorithmic performance can be made of the existing solvers. 

 

Figure XII. Example Spatial Stencil (Not Bandwidth Optimized) 

As mentioned previously, the current UNIC code focuses on solving the within group transport equation 

which inherently requires that the space-angle system be solved simultaneously. To handle this, the space 

and angular variables in the PN2ND solver are tensored together to form a single vector. To visualize this, 
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we included an example P5 coefficient matrix stenciling in Figure XIII. Note that for each non-zero 

angular moment coupling derived from Figure XI, the spatial matrix stencil of Figure XII is present. 

 Y0,0 Y2,0 Y2,1 Y2,2 Y2,-1 Y2,-2 Y4,0 Y4,1 Y4,2 Y4,3 Y4,4 Y4,-1 Y4,-2 Y4,-3 Y4,-4 

Y0,0          

Y2,0     

Y2,1   

Y2,2   

Y2,-1  

Y2,-2   

Y4,0      

Y4,1    

Y4,2    

Y4,3     

Y4,4         

Y4,-1    

Y4,-2    

Y4,-3     

Y4,-4         

Figure XIII. P5 Space-Angle Stencil 

In the previous version of the PN2ND solver, we found that the large memory requirements derived from 

the storage outlined in Figure XIII prevented the method from being useful on most of the parallel 

machines. As a consequence of this, we choose to change the preconditioner in the PN2ND solver to 

block Jacobi where either incomplete Cholesky or SSOR is used in each angular block. For Figure XIII, 

this preconditioner would define 15 angular blocks that can be solved simultaneously. As one would 

expect, block Jacobi is a much poorer preconditioner than the previous one, SSOR or incomplete 

Cholesky on the entire space-angle system, and thus the number of iterations will increase for the new 

preconditioner. 

Our goal of course was to be able to overcome the reduction in the effectiveness of the preconditioner by 

relying upon the fact that more processors would be available in the parallel environment. As it turns out, 

homogenous problems typically require relatively few spatial elements and thus few spatial vertices. Both 

previous versions of PN2ND and SN2ND solvers could not be scaled to more than 20-50 processors on 

small benchmarks such as the Takeda [1], ZPPR15, and the 30 degree ABTR benchmark [1]. In general, 

the segmenting of the spatial domain is limited by the ratio of the number of spatial vertices lying on the 

surface of the local processor’s mesh to the total number of spatial vertices in the local processor’s mesh 

(i.e. surface area to volume ratio). For three-dimensional meshes with quadratic elements, using less than 

1000 spatial vertices leads to a substantial degradation in the parallel performance of the Krylov solver. 

While the new preconditioner does require more iterations to be performed, the ability to scale by angle 
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and space can yield a net improvement in the performance given even modest scalability with respect to 

angle. As an example, the Takeda 1 benchmark [5] only requires ~30000 spatial degrees of freedom and 

120 angular degrees of freedom (P15). The old PN2ND solver can only scale to ~30 processors (1000 per 

processor) and, because of memory limitations, can only apply a P7 approximation in angle. Contrary to 

this, the new version can solve beyond P15 on the same 30 processors, and, further, it can theoretically 

scale to 3600 processors given its ability to solve the angular blocks simultaneously. Note that all of this 

has yet to actually be tested out. 

In addition to the above work on improving the parallel scalability of the PN2ND solver, the introduction 

of a block Jacobi preconditioner required a modification of the reflected boundary condition treatment in 

the PN2ND solver. While the previous version did work, it was prone to problems because of the ad hoc 

scaling factors that were introduced as discussed in Appendix A. In the new solver, the ambiguities in the 

solution scheme are removed and thus the reliability of the PN2ND solver has improved. 

3.2 Benchmark Problems Solved Using the New PN2ND Solver 

While the new version of the PN2ND solver was completed in February, the iterative algorithm and block 

Jacobi preconditioner have not yet been optimized. Since we still have to implement the Tchebychev 

acceleration and we need to optimize the various components (the remaining work to be performed in 

FY2008), we have not performed a wide range of benchmark problems with the new solver. The only 

new benchmark problem that was attempted using the new PN2ND solver is a homogenized drawer 

representation of the ZPPR15 critical assembly shown in Figure XIV. 

 

 

 
Group 100 

 

 

 
Group 175 

Figure XIV Geometrical Layout and Example Flux Solutions of the ZPPR15 Benchmark. 
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The primary difficulty of this benchmark is that it utilizes a P3 scattering kernel and a 230 group cross 

section library. Both the new and old PN2ND solvers were used on the new COSMEA cluster which has 

128 processors and 4 GB of memory per processor. As it turns out, the old PN2ND solver could only be 

applied for P1 and P3 angular approximations with a P5 approximation requiring too much memory. 

Further, the old PN2ND solver could not be combined with an anisotropic scattering kernel higher than P1 

due to a yet unknown bug and thus the results are omitted here. Contrary to this, the new PN2ND solver 

had no significant memory issues and appears to be able to go up to at least P9 on COSMEA. However, 

given the lack of an optimized iterative algorithm, the computational time is high and only P1 through P5 

angular approximations were attempted where a P3 anisotropic scattering kernel was utilized in the P3 and 

P5 calculations. Table 5 gives the PN2ND solver eigenvalue solutions for a mesh with 76,000 spatial 

vertices along with the VIM solution of the plate-by-plate geometry model. We note that a substantial 

amount of the “accuracy” of the PN2ND solver relies upon the slab geometry cell calculations performed 

in SDX to generate the homogeneous coefficients. We also attempted to get comparative solutions to this 

benchmark using the VARIANT nodal transport option in DIF3D [8,9], but some memory issues with 

anisotropic scattering could not be overcome in that code. 

 

Table 5. PN2ND Solver Results for the ZPPR15 

Input Settings Eigenvalue 

P1-P1 0.99258 

P3-P3  0.99640 

P5-P3 0.99651 

Monte Carlo (VIM) 0.99616±0.00010 
 

It is obvious from this benchmark is that a P5 angular approximation is sufficient to converge angularly 

which is not typical of most of the other benchmark problems we have performed with this solver. This is 

primarily due to the size of the ZPPR15 and the presence of depleted uranium blankets both of which 

reduce the importance of leakage out of the system. 

 

3.3 Development Progress of the SN2ND Solver 

While the preceding PN2ND solver developments allows us to apply it to a wider range of problems, the 

primary focus of introducing the parallelization by angle was the discrete ordinates methods. The 

motivation for this approach requires a close inspection of the system of equations. Eq. (3.3) gives the 

compact form of the within group flux equation for the SN2ND solver. 

( )A N Sψ + +− =  (3.3) 

In Eq. (3.3), ψ +
 represents the even parity discrete ordinates flux, A is a sparse symmetric, positive 

definite coefficient matrix resulting from discretization of the streaming operator, the collision operator, 

and the boundary conditions, while N is an unsymmetric, dense coefficient matrix resulting from the 

within group scattering operator. We typically choose to solve this set of equations using a scattering 

iteration which introduces the iterative indices i as shown in Eq. (3.4). 

1i i
A S Nψ ψ+ + +

+ = +  (3.4) 

To fully understand the relation between the discrete ordinates flux moments and the spherical harmonic 

based scattering kernel, we need a few auxiliary relationships. First, we define a set of directions on the 

surface of the sphere, ˆ
n

Ω , and assign weights, 
n

w , to these directions such that we can write 
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, , ,
ˆ ˆ ˆ ˆ( ) ( ) ( , ) ( ) ( , )l m l m l m n n n

n

r Y r d Y r wϕ ψ ψ+ + += Ω Ω Ω = Ω Ω∑∫
� � �

, (3.5) 

where , ( )l m rϕ + �
 represents the even-parity spherical harmonics projection of the angular flux to the 

spherical harmonic function ,
ˆ( )l mY Ω . Figure VIII shows some example angular cubatures that satisfy Eq. 

(3.5), where the directions are defined as the set of black points on the surface of the sphere and the 

coloring indicates the variation of the weight assignment. 

    
Carlson Level- 

Symmetric S16 

Square Legendre- 

Tchebychev S16 

Lebedev-Laikov S15 Thurgood S15 

Figure XV. Example Angular Cubature for the Discrete Ordinates Method 

Using this approach we find that the coefficient matrix A is generally block diagonal as outlined in Figure 

XVI for a level-symmetric S2 angular cubature in three-dimensional geometries. This block diagonal 

nature is only altered when reflected boundary conditions are applied. To handle reflected boundary 

conditions the set of the angular directions is partitioned into “dependent” and “independent” directions, 

where the set of dependent directions can be written as functions of the independent directions. The 

imposition of these constraints in Figure XVI eliminates the strict block diagonal nature for all angular 

directions of those vertices that lie upon the reflected boundary condition. 

 
1Ω̂  2Ω̂  3Ω̂  4Ω̂  

1Ω̂     

2Ω̂     

3Ω̂     

4Ω̂     

Figure XVI. P5 Space-Angle Stencil 

As discussed previously, we have chosen not to use a space-angle connectivity assignment because of the 

problems it causes in the parallel framework. Instead, we choose to augment Eq. (3.4) into the set of 

equations given by Eq. (3.6), where the matrix refΤ  is described in Appendix B.  

1
2

1 1
2 2

1
2

1

ref ii

T

ref ref ref ref i ii i

T

i ref i

A S N A S

ψ ψ

ψ ψ ψ

ψ ψ

+ +

+

+ + + + +

+ +

+ +
+ +

= Τ

Τ Τ = Τ + Τ → =

= Τ

�

� �� �

�

 (3.6) 
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The first relation in Eq. (3.6) constricts the full angular space to the space only containing independent 

directions by utilizing the relations between the independent and dependent set of directions defined as 

refΤ . The second relation compacts the space of the coefficient matrix which we feed into the parallel 

Krylov solver. The third relation is used to define the solution for the dependent directions using the 

relations that define them in terms of the independent directions. Given the extremely sparse nature of the 

refΤ  matrix, and the ease of computing the coefficient matrix A, this approach is more numerically more 

robust when compared with the previous approach used in the SN2ND solver. We also note that this 

method does not require the ad hoc factors that appear in the PN2ND solver given that Eq. (3.6) imposes 

a direct partitioning of the independent and dependent angular degrees of freedom. The only complicated 

part of this method is the communication costs of updating the within group scattering contribution and 

properly treating the reflected boundary conditions. 

To begin, we assume a problem where we have fully segmented the angular space such that each 

processor is responsible for a single angular direction. To construct a volumetric source for a given 

direction ˆ( , )
n

S r
+ Ω
�

 we take the source derived from the even parity flux , ( )l mS r
+ �

 and project it to the 

discrete ordinates space using 

, ,

,

ˆ ˆ( , ) ( ) ( )
n l m n l m

l m

S r Y S r
+ +Ω = Ω∑
� �

. (3.7) 

With this we can expand the within group scattering operation N in Eq. (3.6) as 

( ) { } ( )1

,

T

s K L K L s

K L

s

N N I V V U F U F M I

N N A M

σ σ−

+ − + +

+ +

⊗ ⊗ ⊗ ⊗
 

= + 
 

=

∑ � �
. (3.8) 

where σ ±
�  are derived from the within group scattering cross sections, M +  is equivalent to the operation 

in Eq. (3.5), and N+  is equivalent to the operation defined in Eq. (3.7). The matrix 
s

A  represents the 

within group scattering operation which has a space-angle stencil identical to that seen in the PN system in 

Figure XIII. The subtle part of Eq. (3.8) is that it is fundamentally a series of non-square matrix because 

the number of spherical harmonics used in the scattering kernel is typically far less than the number of 

angular directions used in the cubature. Consequently, communicating the spherical harmonics based flux 

versus the discrete ordinates flux can translate to a huge difference in the size of the data that is to be 

communicated. 

The most efficient approach with regard to communication is to assume each processor must be provided 

the source in the spherical harmonic space. Further, we assume that the scattering operations that must be 

performed in 
s

A  can be distributed on the existing angular communicator. We then ask each processor to 

perform its operations on the local column space of M +  to obtain the contribution to all of the spherical 

harmonic moments 

, ,

n

l m n nMϕ ψ
+

+ += . (3.9) 

Then, we communicate the flux moments on the angular communicator such that the locally owned 

moments of the spherical harmonic flux are obtained (scatter-gather). We can then perform the scattering 

kernel operations in 
s

A  for only the locally owned column space of 
s

A  (i.e. the locally owned spherical 

harmonic moments) to obtain 
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,

, ,

l m

l m s l ms A ϕ+ += . (3.10) 

Now we perform a global reduction operation on the subset of processors such that all processors on the 

angle communicator receive the fully updated set of moments s
+

. With this information, we can locally 

construct the directional source for the locally owned angular moment of the flux by applying the local 

column space of N+ . 

n
N N sψ + +

+= . (3.11) 

This approach poses the minimal requirements for communication and the maximal possible 

parallelization of the scattering kernel operations given that we are segmenting the angular space. The 

reflected boundary conditions complicate this procedure somewhat; however, given that we have 

fundamentally transmitted the moments of the source given by Eq. (3.10) to all processors in the angle 

communicator, we only have issues during the Krylov solver operation involved to update 1
2i

ψ +

+
�  in Eq. 

(3.6). The communication costs of this operation are associated with the non-zero connection in the refΤ  

matrix. For three-dimensional problems and angular cubatures that meet the symmetry conditions of the 

domain it is easy to show that we will see a maximum of four and an average of one non-zeros per row. 

When the cubature doesn’t meet the symmetry of the domain we have observed up to 10-20 non-zeros per 

row when the angular cubature contains hundreds of directions. To properly solve for 1
2i

ψ +

+
�  we have to 

communicate the angular flux moments that are connected, which means that we must communicate a 

subset of the angular flux for those vertices that lie on reflected surfaces. At worst we could simply 

communicate the angular flux for those vertices that lie on the reflected surface. Because this constrains 

the number of spatial degrees of freedom we can simply employ a broadcast operation of all moments of 

the angular flux for these vertices on the angular communicator. 

The implementation of this procedure is obviously quite complicated, and for the short term we have 

chosen to simply broadcast the angular flux for all spatial vertices on the angle communicator and 

duplicate the scattering source operations. In future work we intend to fully implement the preceding 

minimal communication approach as time permits. It is important to note that even though our approach 

is more expensive than the optimal one, we are still imposing less communication than that utilized in the 

previous version of the SN2ND solver and we should therefore see some improvement. 

Another issue is how to distribute the synthetic equation used to accelerate the scattering iteration defined 

by Eq. (3.6). As mentioned earlier, we have chosen to host this equation on the first processor of the 

angular communicator which causes a load imbalance during the solve process. Before we take the 

approach where we distribute this equation over the entire angle communicator, we want to investigate 

how much parallelism we have achieved with the existing approach and the minimal communication 

approach. In short, we believe the solution of the synthetic equation will prove to be a type of multigrid 

acceleration scheme and, to avoid the degradation of the Krylov solver, we will likely always prefer to 

host the synthetic equation on the first processor or some subset of the processors in the angular 

communicator. 

At present, the new SN2ND solver with parallelism by angle has been implemented in UNIC and is 

undergoing final debugging and validation. When the new version is validated, we will implement the 

Tchebychev acceleration scheme and begin the optimization and benchmarking study that is scheduled to 

be performed for the remainder of FY2008. We will also consider implementing the minimal 

communication approach outlined above which will is independent of the Tchebychev and iterative 

optimization study. 
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4. Conclusions and Future Work 

A two-dimensional geometry capability was added to the MOCFE solver. As seen, the solver works 

sufficiently well to produce very good solutions to a complicated and difficult benchmark problem. As 

expected, the current parallel algorithm used in the MOCFE solver is not scalable for either the two- or 

three-dimensional geometry options of the MOCFE solver. Our goal for this year is to do further research 

on the MOC method to develop a scalable algorithm.  

The PN2ND and SN2ND solvers were updated to treat parallelization by angle and energy. Although the 

ability of either solver has not been thoroughly tested out at this point, it is clear that the memory burden 

in the PN2ND solver was greatly reduced. The goal for the remainder of the fiscal year is to implement 

Tchebychev acceleration in both solvers and optimize the iterative routine. A series of reactor type 

benchmark problems will be created to test out the new solvers and validate the capabilities on the 

existing parallel computing resources. In parallel with this work, we will be developing a kinetics 

capability to work with the UNIC solver. This process will require the development of an efficient 

parallel cross section storage format and the inclusion of an efficient fixed source iteration algorithm for 

the solvers in UNIC. Our goal is to setup the kinetics capability and solve some simple benchmark 

problems by the end of the fiscal year. 

We also hope to create another solver in UNIC termed SN1ST. This solver is based upon the first order 

discrete ordinates method and is similar to SN2ND. However, unlike standard sweeping discrete ordinates 

methods for which scalability is still an open area of research, this solver will rely upon the proven 

capabilities of the GMRES solver in PETSc. As was the case with PN2ND and SN2ND, SN1ST will be 

able to scale to thousands of processors, but it will utilize less memory than either the PN2ND and 

SN2ND solvers. The primary motivation for creating this solver is the inability of the PN2ND and 

SN2ND solvers to handle problems with voids or pure scatter regions in them. 
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Appendix A 
 

PN2ND Reflected Boundary Condition Treatment  
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A-1. PN2ND Reflected Boundary Condition Treatment  

To correctly impose the reflected boundary conditions on a second-order spherical harmonics 

discretization of the transport equation, we must define a set of functions in the space of Ω̂  which 

satisfies the symmetry requirements of the reflected boundary conditions. When we combine this 

approach with the finite element discretization of the spatial domain we find that we are required to 

impose these constraints at every spatial vertex that lies on the surface of the reflected boundary 

condition(s). For those vertices that lie on apexes of multiple reflected boundary conditions we must 

impose all of the symmetry conditions which can at worst reduce the system of angular trial functions to 

an isotropic flux representation. To demonstrate the approach used in PN2ND, we use a simplified 

derivation starting with the system of equations 

A Sψ + += , (A.1) 

where ψ +
 is the even-parity flux, A  is the spherical harmonic coefficient matrix for the within group 

even-parity flux and S
+

 is the fixed source, fission source, and in scatter contribution for the current 

group. In this system of equations we assume that all vacuum (or void) boundary conditions are 

accounted for and all that is left is the imposition of the reflected boundary conditions. For a reflected 

boundary surface, the reflected boundary condition imposes symmetry conditions on the set of angular 

trial functions and we can view this as a truncation of the existing set of trial functions that we represent 

as: 

( ) ( ),
ˆ ˆ

ref ref ref
Y Yψ τ ψ+ +

+ +Ω = Ω , (A.2) 

where 
ref

τ  is a non-square matrix with respect to the number of angular trial functions in the vector 

( )ˆY+ Ω . As an example, Eq. (A.3) shows the matrix for a P3 implementation three-dimensional boundary 

surface with a (1,0,0) outward normal. 

0, 0 2, 0 2, 1 2, 2 2, 1 2, 2

(1,0,0)

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

Y Y Y Y Y Y

τ

− −

 
 =
 
 
 
 

 (A.3) 

We can implement Eq. (A.2) into Eq. (A.1) to obtain 

T

ref ref ref ref

ref ref ref

A S

A S

ψ

ψ

+ +

+ +

Τ Τ Τ = Τ

=
 (A.4) 

where refΤ  is a non square Boolean type matrix. For those vertices that are not along the reflected 

boundary condition, the corresponding angular component of refΤ  is an identity matrix. For those 

vertices that are on the reflected boundary condition, the angular truncation matrix in Eq. (A.3) is used. 

We note that not only is the angular flux truncated to satisfy Eq. (A.2), but the set of trial functions that 
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were used to weight the system of equations is also truncated, thus the presence of refΤ  on both sides of 

the coefficient matrix in Eq. (A.4).  

The primary problem with this approach is that we must define a space-angle connectivity list to handle 

the reduced set of trial functions that occurs. This causes problems with the parallelism of the solver and 

is fundamentally undesirable given that the source operation is substantially complicated. As a 

consequence, we formulated an alternative approach which obviates the need to truncate the system. To 

start we first define 
ref

τ  in Eq. (A.3) to be square as shown in Eq. (A.5). 

0, 0 2, 0 2, 1 2, 2 2, 1 2, 2

(1,0,0)

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

Y Y Y Y Y Y

τ

− −

 
 
 

=  
 
 
 
 
 

 (A.5) 

We then define the angular matrix refπ  as 

T

ref ref refI τ τ π− = . (A.6) 

We can add this onto both sides of a modified Eq. (A.4) to get 

( ) ( )

( )

T

ref ref ref ref ref ref ref

ref ref ref ref ref

A f S f

A S f

ψ ψ

ψ ψ

+ + +

+ + +

Τ Τ + ⋅Π = Τ + ⋅Π

= Τ + ⋅Π
, (A.7) 

The matrix refΠ  only contains refπ  for those vertices that lie on the reflected boundary conditions. The 

number f  is an arbitrary scaling factor that has two purposes:  

• Prevent the coefficient matrix in Eq. (A.7) from being singular 

• Produce the best possible condition number 

As can be seen, this introduces an iterative procedure similar to a scattering iteration in a discrete 

ordinates method. The problem with the old version of PN2ND was that this iterative procedure was not 

incorporated because the definition of refΠ  was not explicitly maintained and thus the solution could be 

perturbed by the magnitude of ( )ref ref
f ψ +⋅Π . This error was typically << 20 pcm for most benchmark 

problems, and only appeared for problems with non-Cartesian boundary conditions like the 1/6 symmetry 

ABTR benchmark and the Takeda 4 benchmark. In the new version, we implemented a matrix free 

approach to the A  matrix such that we can implement the iterative solution of Eq. (A.7). 
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A-2. Reflected Boundary Condition Performance Issues 

In general, we have found that this equation requires at most two iterations for a wide range of problems 

given a reasonable selection of f . The magnitude of the scaling factor should be linked to the magnitude 

of the diagonal term of A  for the targeted spatial vertex. However, variation of the cross sections for a 

smaller test problem indicated nearly consistent computational performance with a fixed scaling factor of 

10
-3

. This is likely due to the fact that the additive term is decoupled from the remainder of the system and 

we are in effect defining the relative magnitude of this additive term to the existing system for which 10
-3

 

is not an unreasonable constant. 

We also performed an additional study on the impact of the scaling factor on computational time for the 

Takeda 4 benchmark [5]. In the new PN2ND solver, we can separate reflected boundary conditions that 

are pure Cartesian boundary conditions from those that are non-Cartesian and thus apply different scaling 

factors to both. Figure XVII shows the computational performance of PN2ND solving the Takeda 4 

benchmark.  
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Figure XVII Timing Impact of the Scaling Factor 

As can be seen, there is a 15% variation in the computational performance of the PN2ND solver 

depending upon the magnitude of the scaling factor. Such changes are expected since we are 

fundamentally changing the spectral radius of the coefficient matrix by introducing this factor. With 

additional calculations we were able to see that using a scaling factor > 0.1 led either to massively 

increased computational times or failure to converge within the specified iteration limits (i.e. the jobs 

were killed). This is also expected given the way the scaling factor impacts Eq. (A.7). Decreasing the 

scaling factor below 10
-3

 appears to increase the time, which we believe to be attributable to the poor 
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condition number of the coefficient matrix in Eq. (A.7). As a consequence, the settings of 10
-3

 for the 

generally orientated boundary condition combined with 10
-6

 on the Cartesian appear to be the best. While 

we have not currently linked the scaling factor to a group dependent quantity, we may later implement 

such an approach if we find that the current settings are found to be unreliable. Regardless of this, it is 

important to note that the eigenvalue using the new version is identical for all values of the scaling factor 

which was not the case for the old version of PN2ND. Consequently, the only concern of this scaling 

factor in the new version is its impact on the computational performance. 
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Appendix B 
 

SN2ND Reflected Boundary Condition Treatment  
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B-1. SN2ND Reflected Boundary Condition Treatment 

Unlike the spherical harmonics method, imposition of a reflected boundary condition in a second-order 

discrete ordinates discretization of the transport equation inherently requires that the cubature obeys all of 

the symmetry. All cubature that do not obey the symmetry will fundamentally make an approximation of 

some form to the reflected boundary condition operator which we have incorporated in the SN2ND solver 

via a least squares approximation. Similar to the PN2ND solver, for the finite element method, we impose 

these constraints on those spatial vertices that lie on the boundary of the reflected boundary condition. For 

those vertices that lie on apexes of multiple reflected boundary conditions we must impose all of the 

symmetry conditions which can at worst reduce the system of angular trial functions to a single free 

angular direction. To demonstrate the approach used in SN2ND, we use a simplified derivation starting 

with the system of equations 

n n n
A Sψ + += , (B.1) 

where 
n

ψ +
 is the even-parity flux for a given direction, 

n
A  is the coefficient matrix for the within group 

even-parity flux for that direction and 
n

S
+

 is the fixed source, fission source, and in scatter contribution 

for the current group and direction. In this system of equations we assume that all vacuum (or void) 

boundary conditions are accounted for and all that is left is the imposition of the reflected boundary 

conditions. For a reflected boundary surface, the reflected boundary condition imposes symmetry 

conditions on the set of angular directions and we can view this as a truncation of the existing set of trial 

functions that we represent as: 

,1 1

,2 2

,

ref

ref

ref ref ref

ref N N

ψ ψ

ψ ψ
τ ψ τ ψ

ψ ψ

+ +

+ +
+ +

+ +

   
   
   = → =
   
   

     

� �
 (B.2) 

where 
ref

τ  is a square matrix with respect to the number of angular directions in the cubature. As an 

example, Eq. (B.3) shows the matrix for the four angular directions of the S2 cubature (direction 

correspondence is provided above the 
ref

τ  matrix definition) on a three-dimensional boundary surface 

with a (1,0,0) outward normal. 

(1,0,0)

1

3

1 1 0 0

0 0 1 1
T

a a a a
a

a a a a

a a a a

µ

η

ζ

τ

− −
=

− −

 
 =  

 (B.3) 

It is important to note that the selection of the first and fourth directions is completely arbitrary and that 

we could have just as easily selected the second and third directions. We can implement Eq. (B.2) into Eq. 

(B.1) to obtain 
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, ,

T

ref g ref ref g ref g

ref g ref g ref

A S

A S

ψ

ψ

+ +

+ +

Τ Τ Τ = Τ

=
 (B.4) 

where refΤ  is a non square Boolean type matrix. For those vertices that are not along the reflected 

boundary condition, the corresponding angular component of refΤ  is an identity matrix. For those 

vertices that are on the reflected boundary condition, the angular truncation matrix in Eq. (B.3) is used. 

We note that not only is the angular flux truncated to satisfy Eq. (B.2), but the set of trial functions that 

were used to weight the system of equations is also truncated, thus the presence of refΤ  on both sides of 

the coefficient matrix in Eq. (B.4).  

As was the case with the PN2ND solver, implementing this approach requires the definition of a space-

angle connectivity list to handle the reduced set of trial functions that occurs. This causes problems with 

the parallelism of the solver and is fundamentally undesirable given that the source operation is 

substantially complicated. As a consequence, we formulated an alternative approach which obviates the 

need to truncate the system. To start we first define 
ref

τ  in Eq. (B.3) to be square as shown in Eq. (B.5). 

(1,0,0)

1

3

1 1 0 0

0 0 0 0

0 0 0 0

0 0 1 1

T

a a a a

a a a a
a

a a a a

µ

η

ζ

τ

− −

− −
=

 
 
 

=  
 
 

 (B.5) 

We then define the angular matrix refπ  as 

T

ref ref refI τ τ π− = . (B.6) 

We can add this onto both sides of a modified Eq. (B.4) and obtain a form similar to that of the PN2ND 

solver in Appendix A to get 

( ) ( )

( )

T

ref ref ref ref ref ref ref

ref ref ref ref ref

A f S f

A S f

ψ ψ

ψ ψ

+ + +

+ + +

Τ Τ + ⋅Π = Τ + ⋅Π

= Τ + ⋅Π
, (B.7) 

The matrix refΠ  only contains refπ  for those vertices that lie on the reflected boundary conditions. The 

number f  is an arbitrary scaling factor that has two purposes:  

• Prevent the coefficient matrix in Eq. (B.7) from being singular 

• Produce the best possible condition number 

Because the SN2ND solver will always explicitly separate the set of directions into independent (non-zero 

rows), and dependent (zeroed rows), we can set the scaling factor to zero in Eq. (B.7) since the “zeroed” 

angular directions are no longer connected. This allows us to implement  
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ref ref refA Sψ + += Τ , (B.8) 

in a matrix free approach where only operations of 
T

ref g ref refA ψ +Τ Τ  occur. During the solution operation 

we simply apply refΤ  to the discrete ordinate source for each within group equation and thereby correctly 

define the source for the reduced system as seen in Eq. (B.8). We note that this operation must be 

imbedded in the scattering source iteration that is generally applied in discrete ordinates methods. 
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