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ABSTRACT

The deposition of carbon from carbonaceous gaseous environments is prevalent
in many chemical and petrochemical processes such as, hydrogen-, ammonia-, and
methanol-reforming systems, syngas production systems, and iron-ore reduction plants.
One of the major consequences of carbon deposition is the degradation of structural
materials by a phenomenon known as "metal dusting."  There are two major issues of
importance in metal dusting.  First is formation of coke and subsequent deposition of
coke on metallic structural components.  Second is the initiation and subsequent
propagation of metal dusting degradation of the structural alloy.  In the past, we
reported on the mechanism for metal dusting of Fe- and Ni-base alloys.  In this report,
we present metal dusting data on both Fe- and Ni-base alloys after exposure in high
and atmospheric pressure environments that simulate the gas chemistry in operating
hydrogen reformers.

We have also measured the progression of pits by measuring the depth as a
function of exposure time for a variety of Fe- and Ni-base structural alloys.  We have
clearly established the role of transport of iron in forming a non-protective spinel phase
in the initiation process and presence of carbon transfer channels in the oxide scale for
the continued propagation of pits, by nano-beam X-ray analysis using the advance
photon source (APS), Raman scattering, and SEM/EDX analysis.  In this report, we
have developed correlations between weight loss and pit progression rates and
evaluated the effects of carbon activity, system pressure, and alloy chemistry, on weight
loss and pit propagation.  To develop pit propagation data for the alloys without
incurring substantial time for the initiation of pits, especially for the Ni-base alloys that
exhibit incubation times of thousands of hours, a pre-pitting method has been
developed.  The pre-pitted alloys exhibited pit propagation rates similar to those of
materials tested without pre-pitting.  We have also developed a substantial body of
metal-dusting data on the performance of Fe- and Ni-base weldments.  During the
course of this project, we have developed new Ni-base and Cu-base alloys and tested
them in simulated metal dusting environments at 1 atm and at high pressures.  Results
clearly showed superior performance of both classes of alloys in resisting metal dusting.
We also developed an approach to mitigate metal dusting by performing an
intermediate oxidation step for extending the life of alloys in which metal dusting has
initiated and pits are in progression.  Finally, we have analyzed several components that
have failed in plants such as hydrogen plant, pilot plant reformer, and a gas boiler.

PROJECT DESCRIPTION

The current project, funded by the U.S. Department of Energy (DOE), Idaho
Operations Office, involves research and development of materials and processing
methods, in accordance with the Program Plan for the Industrial Materials for the Future
(IMF) subprogram.  Consistent with the mission of the DOE Energy Efficiency and
Renewable Energy (EERE) Industrial Technologies Program (OIT), the mission of the
IMF subprogram is to lead a national effort to research, design, engineer, and test new
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and improved materials, as well as more profitable uses of existing materials, for the
Industries of the Future (IOF).

Degradation of metallic structural components by metal dusting is a major
concern in several IOFs.  It is a major issue in plants for the production of hydrogen,
ammonia synthesis processes, methanol-reformer systems, and syngas (H2/CO
mixtures) systems that are pertinent to chemical and petrochemical industries.1-18  Metal
dusting is experienced at high temperatures in oxidizing-carburizing environments that
are prevalent in heat-treating industry.  The gases used in heat-treating operations mix
with oil residue on the work pieces to form gases that are kinetically favorable for metal
dusting attack.  Petroleum refineries experience metal dusting attack in processes that
involve hydro-dealkylation and catalyst re-generation.  In the steel sector, metal dusting
is an issue in iron-making blast furnaces in steel plants and in processes, such as
Nucor, that involve direct reduction of ores to form iron.  Metal dusting also occurs with
processes that handle carbon dioxide for cooling, the recycle-gas loop equipment of
coal gasification units, fired heaters handling hydrocarbons at elevated temperatures,
and metallic interconnects used in solid oxide fuel cells.  Currently, the industrial sectors
circumvent metal dusting attack by cooling the gas to temperatures low enough to avoid
the problem but pay a penalty in the form of lower efficiency, wastage of energy, and
decrease in product yield.

The current project is aimed at development of metallic alloys and surface
engineering of commercial alloys to mitigate metal dusting degradation.  The alloys
have an improved corrosion resistance and also possess adequate mechanical
properties at temperatures up to 816°C (1500°F).  The project involves exposure of
candidate alloys and surface-engineered materials to metal dusting environments that
simulate the temperatures, pressures, and gas chemistry prevalent in hydrogen and
ammonia reformers and in syngas systems.  The project also develops a database on
metal dusting degradation from the standpoint of incubation time, general corrosion,
pitting attack, pitting rate, and size for the candidate alloys as a function of the process
variables.

BACKGROUND

Carbon activity (aC) reflects the potential of carbon to deposit from carbon-
bearing gases.  When aC >1, carbon can deposit as a solid phase that is usually called
“coke.“  In many industries, metallic alloys are used as structural components at
elevated temperature in high carbon activity environment.  For example, in hydrogen
and syngas plants, methane and various other hydrocarbons are reformed or partially
oxidized to produce hydrogen and carbon monoxide.  When those carbon-bearing
gases are catalyzed at elevated temperature, carbon will deposit on the surface of
alloys that constitute vessels, gas-transfer pipes, and other equipment.  Interactions
between carbon and alloys lead to disintegration of the alloys into fine particles that can
be carried away by the flowing gas.  In the metal wastage process, pits form on the
surface of alloys accompanied by the formation of a fine powder of carbide or pure
metal and carbon dust.  This metal wastage process, called “metal dusting,” is a much
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more severe problem than regular carburization since the equipment or pipes will be
totally destroyed after alloys become fine powder.

Three possible steps can contribute to degradation of material by metal dusting
process.  The first step is deposition of carbon from a multicomponent gas phase onto
the surface of alloys.  In typical carbonaceous environments, three potential reactions
can lead to carbon deposition:

H2 + CO = C + H2O aC = K•PH2•PCO/PH2O (1)
2CO = C + CO2 aC = K• PCO

2/PCO2 (2)

CH4 = C + 2H2 aC = K•PCH4/PH2
2 (3)

The first reaction is the fastest and plays a major role in carbon deposition.  High
carbon activity is the driving force for the deposition.  In the second step, carbon atoms
dissolve and diffuse into the alloys.  The second step is driven by the concentration
gradient of carbon.  In the third step, graphite particles develop and lead to the
separation of metal grains and/or carbide particles.  Even though the third step leads to
catastrophic attack, the driving force for this step had not been clear for a long time.

For iron-base alloys, it was proposed that metal dusting occurs because of the
following: (a) carbon deposits on the metal surface and dissolves in the metal, (b) Fe3C
forms as carbon diffuses into the iron and the metal becomes oversaturated, and (c)
metastable Fe3C decomposes to Fe and graphite.5-8  According to this mechanism, the
final product is graphite and iron. However, there is no conclusive evidence that the iron
phase is present in every case of metal dusting.9,10  It is not clear what drives the
formation and decomposition of Fe3C under the same conditions of temperature,
pressure, and composition.  Clearly, graphite crystallizes from a supersaturated
solution.  Nevertheless, it is doubtful that its crystallization also causes Fe3C to
decompose.  The formation and decomposition of chemical bonds in the carbide phase
require a sizable free energy change.

Recently, in research conducted at Argonne under the sponsorship of DOE/OIT,
we proposed a new mechanism for metal dusting based on the crystallinity of carbon
obtained by X-ray diffraction and Raman spectroscopy.9,11-13  Metal dusting in iron-base
alloys is considered to be a process of catalytic crystallization of carbon with
participation by iron.  The difference in the free energy of poorly crystallized carbon and
well-crystallized graphite is a driving force for crystallization of carbon.9  However, this
process cannot occur at low temperature because the C-C bonds are too strong to allow
movement of carbon atoms.  Fe3C and iron act as catalysts in the carbon crystallizing
process in a manner that tends to improve the crystallinity of the carbon since Fe3C and
iron have a suitable lattice plane, which has diffraction parameters similar to those of
graphite.  This lattice plane works as a template for the crystallization of carbon.  At the
same time, fine iron or Fe3C particles are liberated from the pure metal or alloys.
Carbon filaments grow when carbon continues to diffuse through Fe3C and precipitate
at one preferred side of the particles.  Although the driving force is small, it results in
severe corrosion over the long term.  This mechanism successfully explains not only
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why the metal dusting products are carbon and Fe3C instead of iron, but also why
carbon filaments are accompanied in the metal dusting process.  The mechanism of
metal dusting for Ni-base alloys is similar to that for Fe-base alloys, although no Ni3C is
formed in the process.  The lattice of nickel metal can also work as a template to aid the
crystallization of carbon.  Since metal dusting process involves catalytic crystallization
instead of a regular chemical reaction, metal dusting should be defined as a metal
wastage process instead of regular corrosion, although the outcome of metal dusting is
similar to corrosion.  This metal wastage process is unique and is, generally, not
uniform but initiates as pits at several sites on the metal surface and eventually
propagates into the substrate.

According to the new mechanism of metal dusting, two methods could be used to
stop the driving force for carbon ingress and minimize metal dusting attack.  First is to
build a barrier to stop carbon diffusion into alloys.  A perfect oxide scale can act as a
protective layer on the alloy surface since the diffusion rate of carbon in oxide,
especially at low temperatures, is almost zero.  Therefore, alloys that can form a stable,
defect-free oxide layer in the metal dusting environment would be desirable.  The
current project focuses on the phase composition of oxide scales on the surface of
alloys, the effect of alloy composition on the metal dusting rate, and the effect of gas
and alloy composition on phases that form in the oxide scale.  Second, if carbon cannot
find a suitable lattice plane in alloys, then the alloys may not act as a catalyst to aid in
the crystallization of carbon and may not disintegrate in the catalytic carbon
crystallization.  Therefore, the approach in the current project is to use the mechanistic
knowledge developed thus far in developing new alloys and surface engineering
currently available alloys, so that they do not act as a catalyst to assist in the
crystallization of carbon.

ECONOMIC BENEFIT

The economic benefit to the industrial sector can be significant, if the
development of new alloys and surface engineering approaches proposed in this
program succeeds.  The following assumptions and calculations are made for the
benefits that can be realized in the chemical and petrochemical sectors.  Similar
calculations can be performed for the petroleum, steel, and heat treatment sectors, but
are not made in this report.

A typical hydrogen reformer recovers heat at ≈400°C rather than at 800°C and
generates excess steam.  This excess steam represents about 125 BTU/{standard
cubic foot of hydrogen (scfh)}, which could be saved if 800°C heat could be used
directly in hydrogen plants.  In the year 2000, about 3.8 billion scfh/d was produced in
the U.S.  This value translates into 475 billion BTU/d that could be saved if the metal
dusting issue were solved and the 800°C heat could be used directly.  This value is
equivalent to a saving of 475 million scf of natural gas per day.  Realistically, if half this
amount were saved, the savings for the U.S. hydrogen industry will be $1.4-3.8
million/day or $0.5-1.3 billion per year for the hydrogen industry alone.  Since several
additional hydrogen plants have been built since 2000, the savings would be even
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greater.  As the U.S. and the world moves toward a hydrogen economy, the production
of hydrogen is expected to increase exponentially over time, and any improvement in
the design and operation of the new plants will accelerate the economic benefit.

The gas-to-liquids (GTL) industry is in its infancy.  One operating plant produces
about 21,000 barrels of product per day (bpd) from 160 million standard cubic feet per
day (MMscfd) of natural gas.  GTL plants will operate with even lower steam/carbon
ratio, with a potential for more severe metal dusting attack than in current reformer
systems.  Some estimates suggest that several 100,000-bpd plants will be built in the
next ten years.  This translates into 4,800 MMscfd of natural gas usage in year 10.
Calculations show that a plant designed for high-temperature heat transfer can realize a
6% savings in natural gas.  This amounts to 9.6 MMscfd of natural gas per plant or 274
MMscfd at year 10.  The average over ten years would be a savings of natural gas of
about 137 MMscfd.  The cost of natural gas is variable in that some of it is now flared
and considered of no value.  There are known reserves of natural gas that will only
come to the market if GTL becomes viable.  Nonetheless, estimates indicate that
overcoming the metal dusting problem would reduce the cost of a typical 100,000-bpd
plant from $50 to $133 million per year.

Since the reformer industry is primarily based on conversion of fossil fuels
(carbon-containing fuels) such as natural gas, methanol, and other hydrocarbons, any
improvement in process efficiency, energy savings, and product yield can result in less
consumption of hydrocarbon-containing feedstock for a given output.  Since the
generation of greenhouse gas (CO2) emissions is directly related to the use of fossil fuel
feedstock, the development and application of new materials (from this project) would
lead to less consumption of C-containing feedstock for a given unit of product output,
and this will reduce greenhouse gas emission.

OBJECTIVES

The primary objective of the current project is to mitigate metal dusting
degradation of metallic structural alloys by (a) development of alternative structural
alloys with improved corrosion resistance and with adequate mechanical properties at
temperatures up to 816°C (1500°F) and (b) surface modification of currently available
commercial Fe- and Ni-base structural alloys.  The study conducted at Argonne in
recent years has clearly established the mechanisms for metal dusting in Fe- and Ni-
base alloys, and the results from this study form the basis for the ongoing project.  The
project involves laboratory testing of Fe- and Ni-base commercial alloys, weldments of
these alloys, and newly developed materials to establish their metal dusting rates as a
function of key process variables.  The project also includes establishment of
procedures for surface modification of candidate alloys to resist metal dusting.

The better performing alloys (based on the laboratory tests) are produced and
evaluated in simulated metal dusting environments.  In addition, a knowledge base on
materials/wastage information is developed from an analysis of pit size, distribution,
depth, and volume as a function of temperature, pressure, gas chemistry, and alloy
chemistry for application in chemical and petrochemical industries.
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STEERING GROUP AND MTI PROJECT MEETINGS

The organizations that are involved in the current project include the Materials
Technology Institute (MTI) of the Chemical Process Industries, Air Products and
Chemicals Inc., ConocoPhillips, Halder Topsoe, Air Liquide, DuPont Chemical
Company, Haynes International, Special Metals, Spectrum Metals, Krupp VDM, and
Sandvik Steel.  

A list of Steering Committee meetings, MTI meetings, and Project Assessment
meetings, in which the current project was discussed, is given below:

October, 18, 2004 Steering Committee meeting at Argonne National
Laboratory

October, 18, 2004 MTI meeting at Houston, TX

February 22, 2005 MTI meeting, Tampa, FL
April 3-7, 2005 NACE meeting, Houston, TX
May 31-June 3, 2005 Industrial Technology Program Materials Project and

Portfolio Review meeting, Chicago, IL
June 6-8, 2005 MTI meeting, Kansas City, MO
October 24, 2005 Steering Group and MTI meetings, Pittsburgh, PA

February 20-23, 2006 MTI meeting, Orlando, FL
June 5-8, 2006 MTI meeting, St. Louis, MO
October 23-26, 2006 MTI meeting, Dallas, TX

February 26 – March 1, 2007 MTI meeting, Galveston, TX
June 4-7, 2007 MTI meeting, Minneapolis, MN
October 22-25, 2007 MTI meeting, Hilton Head, SC

PROJECT TASKS

The project research focused on the following tasks:

• Procure materials, fabricate specimens, and perform metal dusting experiments
with off-the-shelf Ni-base alloys in simulated reformer effluent gas chemistry at
temperatures in the range 450-700°C at both atmospheric and at high
pressures..

• Use nano-beam X-ray analysis, Raman scattering, scanning electron microscopy
and other techniques to study the initiation of metal dusting and understand the
process of carbon diffusion through oxide scale.

• Develop surface engineered specimens of Ni-base alloys, such as alumina,
chromia, and/or silica surface layers, and evaluate their susceptibility to coking,
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carbon deposition, and metal dusting attack in simulated reformer effluent
chemistry at atmospheric and high pressures.

• Fabricate Fe- and Ni-base alloy weldments and evaluate their performance in
metal dusting environments.

• Develop a pre-pitting procedure to study pit growth kinetics after an incubation
period.

• Develop and fabricate alternative alloys with adequate mechanical strength and
prepare specimens for exposure in metal dusting experiments.

• Develop procedures that are feasible in plant operation to mitigate metal dusting
degradation.
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1.  GAS CHEMISTRY AND CARBON ACTIVITY

Gaseous environments that are prevalent in chemical process industries were
characterized by computer modeling of gas-phase reactions under both equilibrium and
nonequilibrium conditions.9,10,14,15  To evaluate the role of gas composition on the metal
dusting rate of alloys, specimens were exposed to gas mixtures (see Table 1.1) of
varying composition that encompassed the environments that are anticipated in
industrial processes.  In all, we have used 21 gas compositions in our experimental
program.  Figure 1.1 shows these compositions in terms of CO/CO2 and H2O/H2 ratios.

The carbon activities were calculated for different gas mixtures as a function of
temperature at atmospheric pressure (14.7 psia) and at plant system pressures.  The
carbon deposition process can be influenced by two possible reactions:

CO (g) + H2 (g) = C + H2O (g) (1)

2CO (g) = C + CO2 (g) (2)

Since the gas composition is maintained fairly constant during the passage
through the waste-heat boiler, either Reaction 1 or Reaction 2 may dictate the carbon
activity in the stream at different temperatures.  If Reaction 1 determines carbon activity,
it will be directly proportional to H2 and CO partial pressures and inversely proportional
to H2O partial pressure.  On the other hand, if Reaction 2 determines carbon activity,
then it will be directly proportional to the square of the CO partial pressure and inversely
proportional to CO2 partial pressure.  In addition, if gas phase equilibrium does prevail,
albeit at high temperatures and/or for long residence times, then the calculated carbon
activity value will be the same (i.e., irrespective of Reaction 1 or 2) since,
thermodynamically, the gas composition will adjust to give the most stable (lowest free
energy) composition.  Therefore, carbon activity was calculated as a function of
temperature from 496°C (925°F) to the maximum test temperature and for 1 atm to the
maximum test pressure for various gas mixtures based on Reaction 1, Reaction 2, and
thermodynamic equilibrium.

Carbon activities were calculated for several of the gas mixtures and their impact
on metal dusting was reported earlier.13  Carbon activity calculated using Reactions 1
and 2 decreases with increasing temperature but increases with an increase in system
pressure.  Carbon activities of gases 1 to 17 have been reported earlier.13  Figures 1.2
to 1.5 show the carbon activity as a function of temperature for gas mixtures 18, 19, and
21.  Gas compositions 2, 4-6, 8-11, 13-18, 20, and 21 have been used in several metal
dusting experiments and their compositions are listed in Sec. 2.7.
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Table 1.1  Chemical composition (in mole %) of gas mixtures used in
the metal dusting study.

Gas H2 CO CO2 H2O CH4 N2

1 43.8 7.2 5.7 39.2 4.1 -
2 52 18 5.6 23 1.1 -
2b 66.2 23 7.1 2.3 1.4 -
3 36.3 8.4 5.6 35 0.2 15
4 74.2 17.5 8.3 0 - -
5 72.2 17.6 8.3 2.0 - -
6 77.2 12.7 10.1 0 - -
7 25.3 70 4 0.01 - -
8 71.4 11.3 17.4 0 - -
9 71 11.7 17.3 0 - -
10 53.4 18.4 5.7 22.5 - -
11 79.5 18.2 - 2.3 - -
12 75.4 6.2 18.4 - - -
13 71.0 2.6 26.4 - - -
14 40 45 5 10 - -
15 20 65 5 10 - -
16 40 25 25 10 - -
17 20 74.5 5 0.5 - -
18 54.6 23.2 4 18.2 - -
19 47.4 15.5 6.2 30.9 - -
20 40.5 19.9 - - 0.5 39.6

20b 40.2 19.8 0.2 0.1 0.5 39.3
21 65.1 30 0.9 4 - -
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Figure 1.1. Chemical composition and carbon activity for gas mixtures used in
metal dusting study.  Carbon activity was calculated from the reaction
CO (g) + H2 (g) = C + H2O (g) at 593°C.  The number in the parenthesis
indicates the carbon activity of the gas mixture.
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Figure 1.2.  Carbon activity of Gas 18 as
function of temperature at 1 atm.

Figure 1.3  Carbon activity of Gas 18 as
function of temperature at 30 atm.
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Figure 1.4. Carbon activities of Gas 19 as
function of temperature at 25 atm.

Figure 1.5. Carbon activities of Gas 21 as
function of temperature at 1 atm.
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2.  EXPERIMENTAL PROGRAM

2.1 Description of Reactor Systems

Five experimental systems were used in the metal dusting experiments.13,14  Two
existing systems at ANL were modified to accommodate the requirements of the
program.  Each of the modified systems consisted of a horizontal, tubular, high-
temperature furnace capable of operation up to 900°C.  The reaction chamber, with gas
inlet/outlet fittings, was fabricated from quartz and positioned within the furnace
chamber.  The ends of the reaction chamber had specially designed flanges with O-ring
seals.  A chromel-alumel thermocouple, inserted from one end of the reaction chamber,
was used to monitor the specimen temperature.  Specimens were suspended from
quartz rods held on the top of a high-purity alumina boat.  The specimens and the boat
were positioned in the constant-temperature section of the reaction chamber.  High-
purity gases such as CO, CO2, CH4, and H2 were procured and piped into the reaction
chamber through flow meters to obtain the desired composition.  In some experiments,
H2 gas was bubbled through a water bath to saturate the H2 with water prior to entering
the reaction chamber.  Upon completion of the experiments, the specimens and the
carbon accumulated on the specimens and in the boat were removed for detailed
microstructural, X-ray, and Raman analysis.

While the two systems described above enabled study of the key variables in
metal dusting research, additional facilities were needed for long-term testing of metallic
alloys, surface-engineered materials, and coatings.  For this purpose, three new
systems were designed and assembled in a metal dusting research laboratory.  Figure
2.1 shows a schematic diagram for the three test facilities set up for metal dusting
experiments.  The three environmental exposure test fixtures were positioned
horizontally on a laboratory bench top in a staggered linear arrangement with a common
gas supply.  Each test fixture consisted of a quartz retort chamber (74-cm length, 5-cm
OD, 0.32-cm thick), which was centered in a 30-cm-diameter resistive heating furnace.
A Barber-Coleman Model 560 three-mode controller was used to control the furnace
temperature.  Type 316 stainless steel (SS) flange caps with an O-ring seal were used
to close the ends of the quartz retort tube.  The flange caps provided port fittings for the
gas flow, steam/vapor preheater, and ceramic thermowells used for measurements of
specimen temperature.  Figure 2.2 shows a schematic diagram for the furnace
assembly and gas flow arrangement used for the metal experiments.

The gas that flowed through the retort chamber had various ratios of H2, CH4,
CO, CO2, and steam/water vapor.  Laboratory-grade compressed gases were supplied
from AGA Gas Co. in industry standard 1A size (136 atm and 4.3 m3 internal volume)
cylinders.  Each gas was piped to the reaction chamber through a low-pressure
manifold line that is fed from a two-stage, gas-pressure-reducing regulator with a flash
arrestor and a solenoid shut-off valve.  The solenoid valves were controlled by a gas-
leak detection system manufactured by International Sensor Technology Co.  Overhead
sensors that are selective to H2, CH4, and CO gases were used to detect gas leaks.  In
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the event of a leak detected above a user-selected threshold by any of the sensed
gases, the detection system closed the solenoid valves for all gases.
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dusting experiments.
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Gases from the low-pressure manifold lines were supplied to respective Brooks
model 5850S digital mass flow control (DMFC) valves.  Figure 2.3 shows a schematic
diagram of the steam and gas flow scheme used.  The output from each mass flow
controller combined into a central manifold tube that connects to the steam/vapor
preheater assembly at the input cover flange for the retort tube.  The steam/vapor
preheater had a coaxial-design mixing chamber enabling the water vapor to be
entrained by the flowing gas mixture prior to passing the preheat element.  The gas
mixture flow rate was typically 200-400 cm3/min (STP), and the water flow rate was 1-5
cm3/h.  The preheat temperature was maintained with a Love Controls Model 16A
three-mode process controller.  Distilled water was supplied to the preheat mixing
chamber by a Watson-Marlow Model MPL micro-metering pump that was fed from a 20-
L polycarbonate carboy.  The micro-metering pump was based on peristaltic action, and
the flow rate was adjusted by varying the rotational speed of the roller cam and/or the
diameter of the flexible tubing.  The gas-steam mixture flowed past the alloy test
specimens to the exit port at the rear flange cap.  After the gas-steam mixture exited the
retort, it was passed through a chilled water pyrex condenser to collect water vapor for
future measurement, while the remaining gas mixture was vented to a room exhaust
vent handler.

Alloy test specimens were mounted on a quartz specimen tree (see Fig. 2.4) that
was centered in the heat zone of the retort chamber.  Metal-dusting experiments were
conducted under isothermal conditions at temperatures between 427 and 704°C (800
and 1300°F).  A chromel-alumel thermocouple controlled the furnace temperature.  The
test temperature and the precision of its control are important to the reproducibility and
usefulness of the results.  An indicating controller calibrated for the control
thermocouple maintained the furnace temperature.  Specimen temperature was
monitored with a second, sheathed chromel-alumel thermocouple inserted into the
reaction chamber in the vicinity of the specimens.  The outputs of the monitoring and
control thermocouples were calibrated over the temperature range of interest, so that if
the monitoring thermocouple became inoperative due to corrosion, the control
thermocouple was used during continuation of the test.  The multicomponent gas
environment for the metal dusting program consisted of CO, CO2, H2, CH4, and H2O.
The actual composition of the gas mixture had a wide enough range to establish carbon
activity of ≈0.5 to ≈100 at the temperatures and pressures of interest.  The exposure
time periods in different experiments ranged between 5 and 1000 h, depending on the
objective of the test.

Figure 2.5 shows a system that was built to conduct experiments at system
pressures up to 40.8 atm (600 psi).  The system consisted of a horizontal, tubular, high-
temperature furnace capable of operation up to 900°C.  The reaction chamber, with gas
inlet/outlet fittings, fabricated from alumina and/or quartz was positioned within a
pressure vessel made of a high-temperature heat-resistant alloy (16-mm ID, 50-mm
OD, 500-mm long).  A chromel-alumel thermocouple was inserted into the pressure
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Figure 2.3.  Schematic of steam and gas flow scheme used for metal dusting
experiments.
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Gas Flow
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Figure 2.4.  Schematic of quartz specimen holder and test coupon arrangement
used for metal dusting experiments.

vessel to monitor the specimen temperature.  Specimens were suspended from an
alumina rod and were positioned in the constant-temperature section of the tubular
furnace.  High-purity gases such as CO, CO2, CH4, and H2, were piped into the reaction
chamber through flow meters to obtain the desired composition.  To include steam in
the exposure environment, water was pumped from a water pump, converted to steam,
pressurized, and inserted along with the gas mixture.  The effluent from the reactor
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chamber was condensed to remove the water prior to exhaust.  Figure 2.6 shows a
magnified view of the high-pressure parts of the system described in Fig. 2.5.
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Figure 2.5.  Schematic of high-pressure, high-temperature system for metal dusting
experiments.
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Figure 2.6.  Magnified view of high-pressure region of the system shown in Fig. 2.5.
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2.2 Surface Profiler to Measure Depth of Metal Dusting Pits

In several recent steering committee meetings, extensive discussions were held
on the importance of key variables in understanding the metal dusting degradation of
metallic structural materials.  In addition, discussions on the posttest analysis of
specimens identified the necessity of understanding the pit nucleation and growth (in
particular, the pit geometry including diameter, depth, and shape), distribution, and
density as a function of process variables such as temperature, gas chemistry, system
pressure, and exposure time.

Later in 2005, we procured a surface profiler unit with a capability to measure the
depth of pits in a nondestructive fashion so that we could measure and correlate the pit
depth as a function of time after repeated exposures of a given specimen to the metal
dusting environment.  The surface profiler, procured from ADE Phase Shift, is equipped
with a MicroXAM surface measurement system comprising a non-contact optical
profiler.  The surface roughness (and pit depth) of the alloys was measured by using a
white light beam.  Figure 2.7 shows a schematic of the profilometer system.  Table 2.1
shows a listing of operational and performance specifications for the unit.  The
profilometer can measure pit depth up to 10 mm with a resolution of 0.92 µm.  The
measurement area is ≈0.8 x 0.6 mm2 for a single scanning.  However, the equipment
can theoretically measure the entire area of the sample by stitching each small piece
together with MapVue AE software.  Figure 2.8 shows pits on a metallic specimen and
typical size (diameter and depth) measurements made using the profiler.

Table 2.1  Specification for MicroXAM surface profiler

Objective magnification 50X 20X 10X 5X 2.5X
Numerical aperture 0.55 0.40 0.30 0.13 0.075

Measurement area (µm) 165x125 413x313 827x626 1654x1253 3308x2506

Spatial sapling (µm) 0.22x0.26 0.55x0.65 1.1x1.3 2.2x2.6 4.4x5.2

Optical resolution @ 550 nm (µm) 0.50 0.69 0.92 2.12 3.67

Working distance (mm) 3.4 4.7 7.4 9.3 10.3

Depth of focus @ 550 nm (µm) 1.16 2.19 3.89 20.72 62.25
Degress of maximum surface
slope (EX mode)

22.6 9.5 4.8 2.4 1.2

Performance
RMS repeatability (standard mode: 1nm Lateral surface sampling: 0.11 to 8.8 µm

RMS repeatability (standard mode: 1nm Field of view: .084 x .063 mm @ 100X

RMS repeatability (standard mode: 1nm Maximum slope:  40 to 3.2 degrees

Vertical scan range: 30, 100, or 5000 µm Reflectivity:  1 to 100%

Data acquisition time: up to 7.2 µm/s
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Figure 2.7.  Schematic of MicroXAM surface profiler.
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Figure 2.8.   Example of a profile map measured by MicroXAM surface profiler.

2.3 X-ray Micro-beam Studies

Understanding the chemical composition, chemical state, and the
crystallographic phase of each sub layer in the oxide scale is essential to establish the
underlying processes that lead to metal dusting initiation and propagation.  Also, a
detailed knowledge of the degradation pathway can help develop strategies to
slowdown or prevent the dusting corrosion.  Given the micron and submicron size of the
oxide scales and their sub layers, this is beyond the reach of many conventional
analysis techniques, such as regular XRF and XRD.  The size of a pit at an early stage
is <1 µm and the thickness of the sub layers in the oxide scale is <0.8 µm, therefore,
use of a submicron X-ray microprobe is mandatory for the success of proposed study.
The combination of high flux and small spot size available at Advanced Photon Source
(APS with 7GeV) undulator beamline enabled us to study spatially resolved
crystallographic phases and chemical states of the oxide scales in metal dusting
corrosion pits.  We used X-ray microbeam fluorescence spectroscopy and diffraction to
address the metal dusting corrosion.

 Experiments were performed at the 2ID-D beamline of the APS at Argonne
National Laboratory.  Using zone plate diffraction gratings, the X-ray nanoprobe in the
experimental station produces a monochromatic X-ray beam of size 200x300 nm with a
photon flux of 5x109 photons/s with an X-ray energy band width (dE/E) of 0.01%.  The
focal plane of the zone plate optics was adjusted so that the minimum spot size was
obtained at the surface of the specimen.  Figure 2.9 shows the scattering and data
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acquisition geometry for the synchrotron radiation experiments: the beam upon incident
on the region of interest on the specimen, the scattering intensity in a section of
reciprocal space is captured by a flat, two-dimensional detector (CCD camera).
Samples for the synchrotron radiation experiments were prepared in a similar manner
as for the cross-section analysis in scanning electron microscopy.  The beam energy
was 8.5 KeV.  The position of the oxide-metal interface was determined by monitoring
the Fe-fluorescence counts as the sample was translated across the beam.

Alloy

Incident beam

X-ray detector
CCD camera at 
90 degrees to 
diffracted beam

Oxide scale
2θ

Figure 2.9. Schematic showing the geometry of data acquisition system at the
synchrotron beamline.

2.4 Materials

The test program included a number of Fe- and Ni-base alloys, predominantly
those commercially available, selected on the basis of Steering Committee discussions.
Table 2.2 lists the nominal chemical compositions of the alloys selected for evaluation in
the program.  Heat analysis of all the alloys, provided by the alloy supplier, was
maintained at Argonne National Laboratory.  In addition, several surface-engineered
alloy specimens (including surface coatings) were evaluated in the program.  Only
wrought alloys were evaluated.

The Fe-base alloys included a low-Cr ferritic steel (T22), an intermediate-Cr
ferritic steel (T91), and several high-Cr ferritic and austenitic steels and other alloys.
The Cr content of the latter alloys ranged between 17.3 and 28.0 wt.%.  The Ni content
of the high-Cr alloys ranged between 9.3 and 36.6 wt.%, except for ferritic alloys, which
contained no/low nickel.  Several of the Fe-base alloys contained a third element such
as Al or Si, which has a high affinity for O.  For example, MA956 and APMT contains
4.5 and 4.9 wt.% Al, respectively.  Alloys 153MA, 253MA, and 353MA contain Si in a
range of 1.3-1.6 wt.%, whereas Alloy 38815 contains 5.8 wt.% Si.

Generally, the Ni-base alloys had a much more complex chemical composition
since they contained Cr (in a range of 15.4-28.8 wt.%) and several other elements, such
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as, Mo (Alloys 617 and 625), Al (601, 617, 602CA, 214, and 693), and Si (45TM and HR
160).  Further, several alloys contained Nb, W, and Co, which can also influence the
oxidation behavior of the alloys and their resistance to metal dusting attack.

In addition to commercial Fe- and Ni-base alloys, several alloys were selected for
fabricating weldments for evaluation in metal dusting environments.  Table 2.3 lists the
weldment alloys, filler metals, and supplier organizations.  Six Ni-base alloys and four
Fe-base alloys were used for the fabrication of weld specimens.  Weldments of Type
347 and 310 stainless steels were prepared by electron beam (e-beam) and gas
tungsten arc weld (GTAW) approaches.

Table 2.2  Chemical composition (in wt.%) of alloys selected for evaluation.

Material C Cr Ni Mn Si Mo Al Fe Other
Fe-base alloys
T22 0.20 2.3 – 0.6 0.5 1.0 - Bal –
T91 0.08 8.6 0.1 0.5 0.4 1.0 - Bal N 0.05, Nb 0.07, V 0.2
153MA 0.05 18.4 9.5 0.6 1.4 0.2 - Bal N 0.15,  Ce 0.04
253MA 0.09 20.9 10.9 0.6 1.6 0.3 - Bal N 0.19,  Ce 0.04
353MA 0.05 24.4 34.7 1.4 1.3 0.1 - Bal N 0.18, V 0.06
321L 0.02 17.4 9.3 1.8 0.5 - - Bal N 0.02, Ti 0.3
310 0.03 25.5 19.5 1.7 0.7 - - Bal -
800 0.08 20.1 31.7 1.0 0.2 0.3 0.4 Bal Ti 0.31
803 0.08 25.6 36.6 0.9 0.7 0.2 0.5 34.6 Ti 0.6
38815 0.01 13.9 15.3 0.6 5.8 1.0 0.13 Bal -
MA956 - 20.0 - - - - 4.5 Bal Ti 0.5, Y2O3 0.6
321 0.04 17.3 10.3 1.2 0.4 - - Bal Ti 0.4, N 0.01
APMT 0.04 21.7 - 0.1 0.6 2.8 4.9 Bal -
4C54 0.17 26.7 0.3 0.7 0.5 - - Bal N 0.19
330 0.05 19 35 1.5 1.3 - - Bal
430 0.08 16.5 - 0.5 0.5 - - Bal
EBrite 0.01 28 0.5 0.4 0.4 - - Bal
RA85H 0.20 18.5 14.5 0.8 3.5 - 1.0 Bal
Crofer 0.03 22 0.8 0.5 - - 0.5 Bal La 0.2, Ti 0.2, Cu 0.5

Ni-base alloys
600 0.04 15.4 Bal 0.2 0.1 - - 9.7 -
601 0.03 21.9 61.8 0.2 0.2 0.1 1.4 14.5 Ti 0.3, Nb 0.1
690 0.01 27.2 61.4 0.2 0.1 0.1 0.2 10.2 Ti 0.3
617 0.08 21.6 53.6 0.1 0.1 9.5 1.2 0.9 Co 12.5, Ti 0.3
625 0.05 21.5 Bal 0.3 0.3 9.0 0.2 2.5 Nb 3.7, Ti 0.2
602CA 0.19 25.1 62.6 0.1 0.1 - 2.3 9.3 Ti 0.13, Zr 0.19, Y 0.1
214 0.04 15.9 Bal 0.2 0.1 0.5 3.7 2.5 Zr 0.01, Y 0.006
230 0.11 21.7 60.4 0.5 0.4 1.4 0.3 1.2 W 14, La 0.015
45TM 0.08 27.4 46.4 0.4 2.7 - - 26.7 RE 0.07
HR 160 0.05 28.0 Bal 0.5 2.8 0.1 0.2 4.0 Co 30.0
693 0.02 28.8 Bal 0.2 - 0.1 3.3 5.8 Nb 0.7, Ti 0.4, Zr 0.03
333 0.05 25 45 1.5 1.0 3 - 18 Co 3, W 3
HR120 0.05 25 37 0.7 0.6 2.5 0.1 33 Co 3, W 2.5, N 0.2
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Table 2.3  List of weldment details.

Weldment
designation

Base
alloy

Filler metal/Welding
procedure

Supplier organization

Ni-base alloy weldments
W1 602CA S 6025/GTAW Krupp VDM
W2 230 230W/GTAW Haynes International
W3 HR160 HR160/GTAW Haynes International
W5 690 FM52/GTAW Special Metals
W6 693 53MD/GTAW Special Metals
W7 601 601/GTAW Special Metals

Fe-base alloy weldments
W4 803 617/GTAW Special Metals
W8 347 No filler, e-beam Argonne National Laboratory
W9 310 No filler, e-beam Argonne National Laboratory

W10 353MA 353MA/GTAW Outokumpu
W11 310 ER310/ GTAW Allegheny Ludlum
W12 347 347/GTAW Allegheny Ludlum

2.5 Specimen Preparation

The samples were flat coupons with approximate dimensions of 12 x 20 x 1 to 2
mm.  They were sheared slightly oversize, and their edges were milled to remove cut
edges and reduce the coupons to final size.  A standard surface finish was used for all
alloy specimens.  The finish involved a final wet grinding with 400-grit SiC paper.  The
surface-engineered specimens were used in the as-fabricated condition.  In the tests to
evaluate the effect of surface preparation on metal dusting, specimen surfaces were
prepared by electropolishing, mill annealing, shot peening, etc.  Stenciling or electric
engraving at the corner of the coupons identified all of the specimens. Prior to testing,
specimens were thoroughly degreased in clean acetone, rinsed in water, and dried.
The specimen dimensions were measured to ±0.02 mm, and the total exposed surface
area, including edges, was calculated.  The specimens were weighed to an accuracy of
0.1 mg.  All the weldments were tested in the as-welded condition.

2.6 Post-exposure Analysis of Specimens

Several analytical approaches and techniques were used to evaluate the tested
specimens.  These included specimen weight in as-exposed and cleaned conditions,
pitting size and density (pits per unit area of surface), pit depth (average depth over
significant number of pits), and substrate penetration as determined by metallographic
examination.  After the specimens were weighed in the as-exposed condition, deposits
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on the specimens were mechanically removed with a soft brush, and the deposit
material was analyzed for metal content, if warranted.  The brushed specimens were
cleaned ultrasonically to remove residual deposits and then washed in water and dried.
Subsequently, the specimens were weighed, and the weight gain/loss was noted.  The
cleaned specimens were examined for surface pits by optical microscopy.  This
procedure allowed determination of the number of pits present in different regions of the
specimen and the pit density.  In addition, the sizes of several pits were measured and
averaged to establish an average pit size.   Surface profiler measurements were made
to determine the pit size, including depth.  This non-destructive approach in
characterizing the pits enabled monitoring the pit growth as a function of exposure time.

At the end of a given run, several of the cleaned specimens (after weighing and
pit measurement) were cut and mounted on the cut faces for metallographic polishing
and examination in the as-polished condition (with chemical etching, if needed) by
optical and/or scanning electron microscopy.  Pit depth and substrate penetration
thickness were measured in all the exposed specimens.  The remaining good metal was
calculated as the difference between the original thickness and the thickness unaffected
by substrate penetration after exposure.

Raman spectra were excited with 60 mW of 476-nm radiation from a Kr-ion laser.
The scattered light was analyzed with a triple Jobin-Yvon grating spectrometer.  All of
our spectra were acquired in 300 sec at room temperature.

2.7 Metal Dusting Experiments

Table 2.4 lists the experimental conditions used for the various metal dusting
runs.  The list includes the test temperature, system pressure, gas chemistry, exposure
time, alloys tested, and the purpose for conducting these experiments.  The specimens
from Runs 1-32 were extensively analyzed, and the results were discussed in an earlier
report and in several publications.9,11-19  Several conclusions were drawn from that
study:

• One of the major consequences of carbon deposition is the degradation of structural
materials by a phenomenon known as “metal dusting.”  There are two major issues
of importance in metal dusting.  First is the formation of carbon from the gas mixture
and subsequent deposition of carbon on metallic materials.  Second is the initiation
of metal dusting in the alloy and subsequent propagation of the degradation.  The
first is influenced by the aC in the gas mixture and the availability of the catalytic
surface for carbon-producing reactions to proceed.  There may be a threshold in aC
(>>1) for carbon deposition.  Metal dusting of the alloy in the reformer environments
is determined by a competition between the oxide scale development and access of
the virgin metal surface to the carbon deposit.

• A new metal dusting mechanism was proposed in this study.  Mechanisms for
degradation of both Fe- and Ni-base alloys are related to the catalytic crystallization
of carbon that deposits from the gaseous environment.  The only difference is that
iron carbide acts as a catalyst in Fe-base alloys, whereas nickel metal instead of
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nickel carbide (which is thermodynamically not stable) acts as a catalyst in Ni-base
alloys.  To achieve good crystallinity, carbon dissolves, diffuses through the alloy,
and precipitates at defects of iron carbide or nickel metal.  The accumulation of
carbon leads to separation of carbide or nickel grains into nano-size particles.  The
free energy difference between poorly and well crystalline carbon is the driving force
for both metal dusting and the growth of carbon nano-filaments.  We believe that the
proposed mechanism can explain more of the experimental observations made
regarding Fe- and Ni-base alloys subjected to metal dusting degradation.

• Tests were conducted on several alloys at 482, 593, and 704°C.  The metal dusting
rate at 593°C was the highest.  However, further study was needed to establish the
temperature dependence of metal-dusting rates in different alloys and to relate the
metal wastage rates to the carbon activity in the exposure environment, including
system pressure and temperature.

• The local nature of dusting (initiated by pits on the alloy surface) on structural alloys
showed that defects in the oxide scales play a large role in initiation.  Oxide scaling
may not occur if aC is >>1 and/or if the H2O content in the environment is very low.
Laboratory experiments have clearly indicated the effect of gas chemistry (in
particular, H2O content) in the scaling, carbon deposition, and dusting initiation.  The
environment in reformers is high enough in pO2 that a Cr-rich alloy can develop a
chromia scale (given enough exposure time) before carbon deposition.  The
presence of an oxide scale may not prevent metal dusting but can delay its initiation,
thereby slowing the overall attack.

• Raman spectra showed the existence of spinel, Cr2O3, and disordered chromium
oxide in the scale grown on high-chromium Fe-base alloys.  All three phases act, to
different degrees, as protective layers to prevent alloys from metal dusting corrosion.
The spinel phase is not as stable as Cr2O3 and could be reduced by the deposited
carbon, and metal dusting corrosion would initiate from these locations.

• The phase composition of the oxide scale is important in metal dusting corrosion.
Cr2O3 is a better phase than spinel to resist metal dusting since spinel can be
reduced.  If alloys can generate more Cr2O3 phase and less spinel phase on the
alloy surface, their ability to resist metal dusting will increase.  Therefore, alloys with
more Cr and less Fe content performed well in a carburizing atmosphere.  The
phase composition of the oxide scale changes with exposure time: spinel phase
content increases and chromium oxide phase content decreases.  Therefore, alloys
are easily attacked by metal dusting after long time exposure since spinel phase
content increases.

• Metal dusting degradation involves two steps, namely, incubation and propagation.
The incubation period is determined by the carbon activity in the gas phase, alloy
chemistry, system pressure, and probably the exposure temperature.  For the same
exposure conditions, the incubation period for the onset of metal dusting is
significantly greater for the Ni-base alloys than that for Fe-base alloys.
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• Higher carbon activity may lead to higher metal loss rate, since higher carbon
activity provides higher driving force to form highly disordered carbon on the metal
surface.

• High system pressure not only increases the carbon activity but also seems to
accelerate the carbon transport into the alloy and to reduce the incubation time for
onset of metal dusting.

• Both aluminum and silicon additions increased the ability of alloys to resist metal
dusting.  However, silicon addition failed to protect alloys from metal dusting at high
pressure, although it was beneficial at 1-atm pressure tests.  High Cr content in
alloys is necessary but not sufficient to resist metal dusting.  Iron content (especially
in Ni-base) in the alloy is detrimental and should be maintained as low as possible to
extend the life of the alloy.  Cobalt addition is not beneficial in resisting metal
dusting.

• MA956, APMT, and 4C54 are the best three Fe-base alloys to resist metal dusting.
Two of the three alloys contain Al (4.5% in MA956 and 4.9% in APMT).  Alloy 4C54
contains a high Cr level of 26.7%.

• Ni-base alloys performed better than Fe-base alloys when exposed to similar
atmospheres.  Among the Ni-base materials, Alloy 693 was the best, which can be
attributed to its high Cr and Al contents.  Alloy 602CA was good in most of the tests,
but it was attacked in high-carbon-activity Gas 17.

• Surface modification (by preoxidation and/or coatings) and alternative materials
were examined at ANL to alleviate the metal dusting problem.  The advantage of
oxide coatings is that they can minimize carbon-producing reactions (by reducing the
availability of catalytic surface) and can also act as a barrier to minimize carbon
ingress and pitting of the substrate alloy.  Test results showed a beneficial effect, but
long-term tests are needed to substantiate the results.

• We have examined in-situ development of oxide scales as a means to prevent or
minimize metal dusting attack.  Test results showed that the performance of pre-
oxidized samples was worse than the samples without pre-oxidation.  More spinel
phase was found on the surface of alloys that were pre-oxidized.  The spinel phase,
especially if it contained a high Fe content, was detrimental and led to an increase in
metal dusting corrosion.

During the course of the current project, we have developed a substantial body of
information on both Fe- and Ni-base alloys upon exposures to gas mixtures that
encompass a wide range of compositions and carbon activity.  Data were also
developed on the long-term performance of the alloys in environments that simulate the
reformer effluent at atmospheric and high pressures.  Since the initiation time for the Ni-
base alloys is fairly large, we have developed pre-pitting approaches to shorten the
initiation period and expedite the study of pit propagation and growth in these alloys.
Furthermore, we have developed methods to mitigate metal dusting by intermediate
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oxidation of the partially metal dusted alloys.  During the past three years, we have also
developed several Ni- and Cu-base alloys, the compositions of which were based on
our fundamental understanding of metal dusting initiation and propagation.  These
alloys were fabricated into coupons and tested in simulated metal dusting environments,
and their performance were compared with that of other commercial alloys.  Information
on various aspects of the project is presented in subsequent sections of this report.

Table 2.4.  Experimental conditions for laboratory runs.

Run
Number

Experimental
conditions Gas mixture # Objective

1 593°C, 1 atm, 48 h 6 Program start
2 593°C, 1 atm, 100 h 4 No water
3 593°C, 1 atm, 100 h 5 2 vol.% H2O
4 704°C, 1 atm, 100 h 4 Effect of temperature, H2O
5 704°C, 1 atm, 100 h 5 "
6 593°C, 1 atm, 5 h 5 Effect of time, H2O
7 593°C, 1 atm, 5 h 4 "
8 593°C, 1 atm, 72 h 4 Ceramics only (no catalysis)
9 593°C, 1 atm, 72 h 5 "
10 593°C, 1 atm, 90 h 4 New system validation
11 593°C, 1 atm, 115 h 4 Fe specimen only
12 593°C, 1 atm, 115 h Gas 4+H2O Fe specimen only
13 593°C, 1 atm, 100 h Gas 4+H2O Ni specimen only
14 593°C, 1 atm, 100 h 4 Ni specimen only
15 593°C, 1 atm, 1000 h 2 Fe-base alloys
16 593°C, 1 atm, 1000 h 2 Ni-base alloys
17 482°C, 1 atm, 100 h 2 Fe specimen only
18 482°C, 1 atm, 100 h 2 Ni specimen only
19 593°C, 1 atm, 1000 h Gas 2, low H2O Fe-base alloys
20 482°C, 1 atm, 1000 h 2 Fe-base alloys
21 482°C, 1 atm, 1000 h 2 Ni-base alloys
22 704°C, 1 atm, 98 h High CO Gas Fe, T91, 304
23 704°C, 1 atm, 98 h " Ni, Ni-base alloys
24 704°C, 1 atm, 102 h No water Ni, Ni-base alloys
25 593°C, 1 atm, 1000 h 2 Fe-base alloys, preoxidized at

750°C in air
26 593°C, 1 atm, 1000 h 2 Ni-base alloys, preoxidized at

750°C in air
27 593°C, 1 atm, 142 h 2 Pack diffusion coatings/Fe-base

alloys
28 593°C, 1 atm, 300 h 2b Fe-base, preoxidized in 75% CO-

25% CO2 at 900°C for 200 h
29 593°C, 1 atm, 300 h 2b Ni-base, preoxidized in 75% CO-

25% CO2 at 900°C for 200 h
30 593°C, 1 atm, 1040 h 2 Aluminized coating
31 593°C, 1 atm, 300 h 2b Fe-base, preoxidized in 98% H2-

2% H2O at 900°C for 200 h
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32 593°C, 1 atm, 300 h 2b Ni-base, preoxidized in 98% H2-
2% H2O at 900°C for 200 h

33 593°C, 1 atm, 163 h 4 Cu coated Fe, Ni, 800
34 593°C, 1 atm 4 Cu clad rod of Fe
35 593°C, 1 atm, 784 h 4 Cu clad Fe
36 593°C, 1 atm, 288 h 4 Glidcop alloy

37a 593°C, 1 atm, 120 h 4 Cu clad Fe
37b 593°C, 1 atm, 120 h 4 Cu clad Fe, reversed gas flow
37c 593°C, 1 atm, 552 h 4 Cu clad Fe, continuation of 37b

38HP 593°C, 40.8 atm, 90 h 8 Fe base
39HP 593°C, 40.8 atm, 100 h 8 Fe base

40 593°C, 1 atm, 119 h 9 Fe base
41HP 593°C, 27.2 atm, 100 h 8 Fe base
41R 593°C, 27.2 atm, 140 h 8 Fe base

42HP 593°C, 14.3 atm, 100 h 8 Fe base
43HP 593°C, 40.8 atm, 100 h 13 Fe base

44 593°C, 1 atm, 122 h 4 Fe and Ni base
45 593°C, 1 atm, 300 h 4 Fe and Ni base
46 593°C, 1 atm, 300 h 4 Fe and Ni base
47 593°C, 1 atm, 300 h 4 Fe and Ni base
48 593°C, 1 atm, 122 h 13 Fe and Ni base

49HP 593°C, 14.3 atm, 1131 h 10 Fe base
50HP 593°C, 14.3 atm, 100 h 10 Ni base
51HP 593°C, 40.8 atm, 113 h 10 Ni base
52HP 593°C, 40.8 atm, 680 h 10 Fe base

53 593°C, 1 atm, 8438 h 11 Fe base
54 593°C, 1 atm, 7,589 h 11 Ni base
55 593°C, 1 atm, 6678 h 17 Ni base
56 593°C, 1 atm, 8157 h 14 Ni base
57 593°C, 1 atm, 3447 h 15 Ni base
58 593°C, 1 atm 16 Ni base

59HP 593°C, 14.3 atm, 9700 h 10 Ni base
60 593°C, 1 atm, 246 h 10 Ni base
61 593°C, 1 atm, 13,842 h 21 Ni base
62 815°C, 1 atm, 5716 h 20 Heat treat alloys
63 593°C, 1 atm, 9109 h 21 Ni-base alloy weldments

64HP 593°C, 30 atm, 3500 h 18 Ni base – pre pit alloys
65 593°C, 1 atm, 1136 h 21 Fe-base weldments
66 593°C, 1 atm, 2136 h 20 Fe and Ni base
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3.  PRE-PITTING EXPERIMENT

Alloys are generally protected by thin oxide scales, which form when they are
exposed to metal dusting environments.  As defects develop in the oxide scale, locally,
pits start to form due to carbon ingress, and the pits continue to grow at several isolated
locations on the oxide surface.20-29  The metal dusting process involves two steps: onset
of initiation and propagation, the latter being more important since the metallic
components in service are expected to last years and the rate of attack plays a large
role in establishing the component service life.  However, even the not-so-resistant Ni-
base alloy can have an incubation time of the order of a few thousand hours; therefore,
it is desirable to expedite the initiation step for the Ni-base alloys and to conduct
propagation tests in the laboratory over long time periods in environments that simulate
process conditions.

For this reason, we initiated a program to develop pre-pitting approaches.  In
several instances, the pits seem to develop along the edges of specimens and
eventually grow over the surface.  Figure 3.1 shows pits that developed in Alloy 800 and
Type 321 stainless steel upon exposure to the metal dusting environment.  Most pits
appeared at the edge of Alloy 321, and the pits of Alloy 800 coalesced to larger areas at
the edge.  While carbon diffusion is retarded by the oxide scale on the flat surface, more
defects are expected at the sharp edge, as shown in Fig. 3.2.

Since the Fe-base alloys, generally, exhibit shorter initiation time than the Ni-
base alloys, we used Alloy 800 and Fe-9Cr-1Mo steel as surrogates to evaluate our
experimental approach for pre-pitting.  At least two methods are able to break the oxide
scale without a long incubation time and to initiate pitting.  First is a mechanical, and the
second is chemical.  We focus on the mechanical method in this report.  If this method
is successful, we can apply it to Ni-base alloys that have a long incubation time.

Surfaces of Alloy 800 and 9Cr-1Mo steel were scratched by an engraver with a
carbide-tipped point.  Figure 3.3 shows the sample before exposure in a metal dusting
experiment.  Both alloys were exposed to a flowing carburizing atmosphere consisting
of 72.2% H2-8.3% CO2-17.6% CO-1.96% H2O at 593°C.  After each exposure period,
the specimens were examined with a scanning electron microscope.  Any adhering
coke was removed with an ultrasonic bath and acetone.

800 321
Figure 3.1.  Metal dusting pits on the
edges of Alloy 800 and Type 321
stainless steel.
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Alloys

Oxide scale

Oxide scale

Defects at the edge

Figure 3.2.  Schematic of scale cracking
at the corner of the alloy.

Figure 3.3.  Alloy 800 scratched by an
engraver with carbide-tipped point.

Area 1 Area 2
Figure 3.4.  Metal dusting pits on Alloy 800 after 6-day exposure to a flowing
carburizing atmosphere consisting of 72.2% H2-8.3% CO2-17.6% CO-1.96% H2O
at 593°C.

Metal dusting pits appeared along the scratched area on the surface of Alloy 800.
At area 1 in Fig. 3.4, only one pit appeared at the non-scratched area.  The other 12 pits
appeared along the scratched lines.  In area 2 in Fig. 3.4, 38 pits appeared along the
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scratched lines, and only one pit appeared at the non-scratched area.  With 9Cr-1Mo
steel, metal dusting pits also appeared at the scratched areas.  Small pits (Fig. 3.5)
grew to large pits (Fig. 3.6) and finally coalesced to area wide degradation (Fig. 3.7).
These results indicate that pitting can be initiated by a mechanical scratching approach.
They also suggest that the alloy surface should not have scratch-like defects, since
those regions can act as pit-initiation sites when exposed in the metal dusting
environment.

10 X 50X
Figure 3.5.  Metal dusting pits on Alloy 9Cr-1Mo after 2-day exposure to a flowing
carburizing atmosphere consisting of 72.2% H2-8.3% CO2-17.6% CO-1.96% H2O at
593°C.

Figure 3.6.  Metal dusting pits on
Alloy 9Cr-1Mo after 4-day exposure
to a flowing carburizing atmosphere
consisting of 72.2% H2-8.3% CO2-
17.6% CO-1.96% H2O at 593°C.

Figure 3.7.  Metal dusting pits on
Alloy 9Cr-1Mo after 6-day exposure
to a flowing carburizing atmosphere
consisting of 72.2% H2-8.3% CO2-
17.6% CO-1.96% H2O at 593°C.
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To understand the effect of scratches on the metal dusting corrosion, we
scanned the scratched area with energy-dispersive X-ray (EDX) analysis.  However,
EDX could not locate small channels (Fig. 3.8) for carbon transfer.  One possible reason
is that the channel is not a straight line perpendicular to the alloy surface.  Electrons go
straight down to the oxide scale in the EDX experiment.  The composition difference
between the channels of carbon transfer and the oxide scale could not be distinguished
by EDX because the signals from the channels were masked by signals from the oxide
scale.  One possible method to locate these channels of carbon transfer is to measure
the electrical resistance on the surface.  Oxides such as chromium oxide and spinel are
insulators at room temperature, but Ni and Fe3C are good conductors.  If there is a
channel consisting of Ni metal or Fe3C, its electrical resistance will be much smaller
than that of oxide scale.

The procedure for detecting the low-resistance area on the surface of alloys is to
deposit metal (such as copper) particles by an electrochemical method.  Figure 3.9
shows a device in which copper is deposited on the alloys by immersing them in the
CuSO4 solution and applying a voltage across the electrodes. The areas with low
resistance will have deposits of copper particles because current can pass through
them.  Deposited copper particles thus act as an indicator to locate the carbon transfer
channels.  Such areas can be identified under a microscope and probably indicate
regions of active degradation via metal dusting.

Alloys

Oxide
scale

Channel for carbon transfer
(Fe3C or Ni)

Figure 3.8.  Model of possible carbon transferring channel.

+-

CuSO4 solution
Alloy

Cu

Figure 3.9.  Device for
electrochemical deposition of
copper.
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Figures 3.10 and 3.11 show alloy surfaces from copper indicator experiment.
Copper accumulated at the scratched regions in both Alloy 800 and 9Cr-1Mo, indicating
the susceptibility of these locations to metal dusting.  If there is a metal dusting pit, most
of the copper accumulates at the pit (Fig. 3.12).

Figure 3.10.  Left: SEM micrograph of Alloy 800 after exposure to a carburizing
atmosphere. The surface was scratched by an engraver prior to exposure.  Right:
Copper electrochemically deposited on the Alloy 800 surface.  The copper
enhancement (in scratched areas) indicates regions susceptible to metal dusting.

Figure 3.11.  Left: SEM micrograph of Alloy 9Cr-1Mo after exposure to a carburizing
atmosphere.  The surface was scratched by an engraver prior to exposure. Right: Copper was

electrochemically deposited on the Alloy 9Cr-1Mo surface.  The copper enhancement (in
scratched areas) indicates regions susceptible to metal dusting.
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Figure 3.12.  Left: SEM micrograph of Alloy 800 after exposure to a carburizing
atmosphere. The surface was scratched by an engraver prior to exposure.  A single
pit was observed along the scratch line.  Right: Copper electrochemically deposited
on the surface of Alloy 800.

Similar pre-pitting experiments were conducted with Ni-base alloys that were
scratched with a diamond tip.  The effect of temperature on the pit growth of Ni-based
alloys was studied.  We found that the temperature effect differed with alloy
composition.  The behavior of Alloy 601 was similar at 593 and 704ºC. SEM
photomicrographs show that the pit diameter in Alloy 601 after exposure to a carburizing
gas mixture at 593ºC for 500 h is close to that exposed at 704ºC (Fig. 3.13).  However,
the pit depths were different.  Figure 3.14 shows the pit depths, measured by the
surface profiler, in Alloy 601 exposed at the two temperatures.  The pit depths were
27.2 and 61.8 µm at 593 and 704°C, respectively, after 500-h exposure to a carburizing
gas consisting of 50% H2 and 50% CO.

    

Alloy 601 tested at 704ºC Alloy 601 tested at 593ºC

Figure 3.13.  SEM micrographs of Alloy 601 after 500-h exposure to a
carburizing gas consisting of 50% H2 and 50% CO at 704 and 593ºC.
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Figure 3.14.  Surface profile of Alloy 601 after 500-h exposure to a
carburizing gas consisting of 50% H2 and 50% CO at 593 and 704ºC.

Pits developed faster on Alloy 617 at 593ºC than at 704ºC.  Figure 3.15 shows
that only two small pits appeared on Alloy 617 when the sample was exposed to a
carburizing gas at 704ºC, whereas the pit density on the alloy   However, pit density on
Alloy 617 exposed to the same gas at 593ºC was as high as 250 pits/cm2.  The pits
were shallow at both 593 and 704ºC, but the pit propagation rate was higher at 704ºC
than at 593ºC.

The behavior of Alloy 602CA was different from that of Alloy 617.  Figure 3.16
shows deep pit (≈73 µm) that formed in Alloy 602CA after 500-h exposure to a
carburizing gas at 704ºC.  However, when this alloy was tested at 593ºC, no real pit
was observed, but some material grew out of the surface of Alloy 602CA (Fig. 3.17),
which may be the early stage of a pit growth.  Alloy 214 developed big and deep pits at
704ºC (Fig. 3.18), but the pit density was much higher at 593ºC than at 704ºC.

  
     Alloy 617 tested at 704ºC     Alloy 617 tested at 593ºC

Figure 3.15.  SEM photomicrographs of Alloy 617 after 500-h exposure to a
carburizing gas consisting of 50% H2 and 50% CO at 704 and 593ºC.
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Figure 3.16.  Profile map of Alloy 602CA exposed to a carburizing gas consisting of
50% H2-50% CO at 704ºC for 500 h.

Figure 3.17.  Profile map of Alloy 602CA exposed to a carburizing gas consisting of
50% H2-50% CO at 593ºC for 500 h.

  
Alloy 214 tested at 704ºC Alloy 214 tested at 593ºC

Figure 3.18.  SEM photomicrographs of Alloy 214 exposed to a carburizing gas
consisting of 50% H2-50% CO at 593 and 704ºC for 500 h.
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Figure 3.19 shows a macrophotograph of the surfaces of pre-pitted alloys.  To
examine the pit growth rate of these pre-pitted alloys in a metal dusting environment, pit
progression was measured for these alloys as a function of exposure time by monitoring
the size of the same pits at various exposure times.  Figures 3.20 and 3.21 show the pit
depth data obtained by surface profiler measurements.  For Alloys 601 and 617, the pit
growth rates of pre-pitted specimens were similar to the non-pre-pitted (virgin)
specimens. This result indicates that we can expedite the pit nucleation (without waiting
for the pit to develop, especially for alloys with long incubation times) and study the
growth kinetics by using pre-pitted specimens.

Alloy 601 Alloy 690
Alloy 617

Alloy 602CA Alloy 214 Alloy 230

Figure 3.19.  Pits, developed by a pre-pitting approach, on several nickel-base alloys.
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Figure 3.20.  Comparison of
Pit growth rate for virgin and
pre-pitted Alloy 601 after
exposure to Gas 21 (aC=104)
at 593°C, 1 atm.
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4.  PERFORMANCE OF NiCKEL-BASE ALLOYS

We reported earlier that Ni-base alloys exhibit better resistance to metal dusting
attack than Fe-base alloys, and indicated that differences in the lattice mismatch in
catalytic crystallization of carbon may be one reason.10,11  The misfit between the Ni and
graphite lattice (3.6%) is much greater than that between Fe3C and graphite (0.28%).12

The lattice of Fe3C almost perfectly matches the lattice of graphite, indicating that
carbon atoms move easier from Fe3C to graphite than it does in nickel.  Therefore, the
energy barrier for the precipitation of carbon on the surface of Ni is higher than that
needed for precipitation on the surface of Fe3C.  This condition leads to a lower carbon
precipitation rate, smaller crystallite size, and lower metal dusting rate in Ni.  The
observed crystallite size of coke on Ni was smaller than that on Fe.  This difference
suggests that Fe3C is better than Ni in serving as a template for the catalytic
crystallization of carbon and may explain why the metal dusting rate of Fe and Fe-base
alloys is higher than that of Ni and Ni-base alloys.  The other factor that can affect the
metal dusting rate is the chemical and mechanical integrity of the oxide layer that
develops on the surface of alloys.  In this report, we present results from a study of the
effect of alloy chemistry and phase composition of oxides present on the surface of Ni-
base alloys on metal dusting rate.  We also examined the metal dusting rate of several
Ni-base alloys to establish the materials that are most resistant to metal dusting
corrosion.

4.1 Weight Loss Data for Ni-Base Alloys at Carbon Activity of 31

Metal dusting attack, as measured by weight loss, was observed on Ni-base
alloys when tested for 9700 h in the same gas environment at 593°C and 14.3 atm (see
Fig. 4.1).  However, the weight loss rates for Alloys 693 and 602CA were very low.
Both alloys contain Al and have high Cr and low Fe content.  The weight loss rate for
Alloy 45TM was the highest among the Ni-base alloys used in the study, although the
Cr content in this alloy is fairly high.  The Fe content in Alloy 45TM is also the highest
among these alloys.  The weight loss rate of Alloy 601 was also high; the Fe content of
this alloy is the second highest among the alloys tested.  Results indicate that addition
of Fe to the Ni-base alloys leads to a substantial decrease in incubation time for the
onset of metal dusting.  When the Fe content in the alloy is >10 wt.%, the alloy is readily
attacked, as evidenced by numerous pits on the exposed surfaces of the alloy
specimens.

The weight loss rate for the Co-containing Alloy 617 is the second highest among
these alloys.  Addition of Mo to this alloy did not improve its resistance to metal dusting
corrosion.  The other Co-containing Alloy, HR160, also exhibited metal dusting
degradation, although it contained 28% Cr.  Therefore, addition of Co to alloys is also
not beneficial to metal dusting resistance.  The Cr content in Alloy 214 is the lowest
among these alloys, and its weight loss rate was also high, although it contained Al.
High Cr content in alloys seems essential but not entirely sufficient for preventing metal
dusting corrosion in Ni-base alloys.
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Figure 4.1.  Weight loss data for Ni-base alloys that were exposed in Gas 10 at 593°C
and 14.3 atm (210 psi).

Even though the weight loss data developed for various alloys are useful in the
evaluation and ranking of the alloys according to their susceptibility to metal dusting,
such data may only indicate the protective capacity of the surface oxide scale and,
furthermore, may represent only an average behavior for the alloy in a given exposure
environment and temperature.  Because corrosion damage of the alloy occurs by
nucleation of pits on the surface and their growth inward, it is essential that we develop
an understanding of the morphology of pits (size, distribution, depth, etc.) on the alloy
surface and of the maximum growth rate of the pits to evaluate the ultimate damage
leading to component failure under a given set of exposure (process) conditions.

4.2 Characterization of Pits on Ni-Base Alloys at Carbon Activity of 31

In Run 59HP, we exposed several Ni-base alloys to Gas 10 at 593°C and 14.3
atm for a total time of 9700 h.  During the course of the experiment, we retrieved the
specimens periodically and took SEM photomicrographs of various surface regions to
characterize and monitor the growth of pits as a function of exposure time.  Lacking the
capability to measure the pit depth during that period, we concentrated on measuring
changes in the diameter of several pits on the surface of each alloy.

No metal dusting attack was observed on Ni-base alloys in the relatively short
exposure time of 246 h at 1-atm pressure (Table 4.1).  However, pits appeared on
Alloys 601, 690, 617, and 214 when exposed in the same gas at 593°C and 14.3 atm.
Similar results were obtained when specimens were tested at 40.8 atm.  Table 4.2 gives
the pit characteristics after 9700 h.  The results show that the ratio of pit depth to pit
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diameter for Alloy HR160 is the smallest among the alloys tested.  This alloy corroded
by forming shallow pits. The ratio of pit depth to pit diameter for Alloy 693 was the
largest among these alloys, but the absolute value of pit diameter in this alloy was
substantially smaller than that in other alloys.

Table 4.1.  Surface Characteristics of alloys after 246-h exposure at 1, 14.3, and
40.8 atm and 593°C.

Alloy 1 atm 14.3 atm 40.8 atm
601 Clean surface Pits Pits
690 Clean surface Pits Pits
617 Clean surface Pits Pits
602CA Clean surface Clean surface Clean surface
214 Clean surface Pits Pits
45TM Clean surface Clean surface Clean surface
HR160 Clean surface Clean surface Clean surface

Table 4.2.  Maximum pit size and weight loss for alloys after 9700-h exposure in Run 59HP.

Alloy.
Weight loss

(mg/cm2)
Pit depth

(µm)
Pit diameter

(µm)
Ratio of pit depth to

pit diameter
601 19.5 110 450 0.244
690 6.5 147 440 0.334
617 35.1 201 887 0.227

602CA 2.1 96 374 0.256
214 25.6 -a -a -a

45TMb 59.1 141 600 0.235
HR160 7.3 13 210 0.062

693 0.1 37 99 0.374
aSpecimen uniformly corroded.
bExposed for only 3,300 h.

Figure 4.2 shows a comparison of the surfaces of several alloys after exposure at
593°C and pressures of 1 and 14.3 atm.  The carbon activity in the gas in the latter case
is 14 times higher than at 1 atm, which can decrease the incubation time for the
initiation of metal dusting pits on the alloy surface.

Figure 4.3 shows SEM photomicrographs of the pit morphology observed on
Alloy 601 for exposure times in the range of 6900 and 9300 h.  The figures show that
numerous pits form in Alloy 601 and undergo significant growth as a function of
exposure time.  Figure 4.4 shows the SEM photomicrographs of pit morphology for Alloy
690 for exposure times in the range of 2900 and 9300 h.  The compositional difference
between Alloys 601 and 690 is that the latter contains 27.2 wt.% Cr versus 21.9 wt.% in
601.  However, Alloy 601 contains 1.4 wt.% Al, which is supposed to be beneficial in
resisting metal dusting.  Nonetheless, the pit density in Alloy 601 was significantly larger
than in Alloy 690.  Figure 4.5 shows photomicrographs of pit morphology in Alloy 617.
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Figure 4.6 shows photomicrographs of pit development in Alloy 602CA, which contains
≈2.7 wt.% Al.  The alloy showed very few pits for the same exposure time as Alloys 601,
690, and 617, and the growth rate of the pits was also less than those of the other three
alloys.  Figure 4.7 shows the pit morphology in Alloy 45TM.  The pit density in this alloy
was large, as was the pit growth rate; as a result, the exposure of this alloy was
shortened to 3300 h.

Figure 4.8 shows the pit morphology in Alloy HR160.  This alloy contained 28
wt.% Cr, 30 wt.% Co, and 2.8 wt.% Si, but the pit density seemed large under exposure
conditions of Run 59HP.  Figure 4.9 shows the pit morphology in Alloy 214, which
contained only 15.9 wt.% Cr but had 3.7 wt.% Al.  The alloy had numerous pits on the
surface, and the pits seemed to coalesce, with the result that the attack was more
uniform than that resulting from local pit formation.  Alloy 693 was most resistant to
metal dusting among the alloys tested, and no pits of significant size were detected over
≈8000 h.  After 9300-h exposure, the alloy exhibited a number of small pits as shown in
Fig. 4.10.  The pit diameter ranged between 100 and 150 µm after 9300 h exposure.

100µm

100µm

100µm

1µm

Alloy 601 Alloy 601

Alloy 690 Alloy 690

Alloy 617 Alloy 617

Alloy 214 Alloy 214

Figure 4.2.  SEM photo-
micrographs of surfaces of several
Ni-base alloys after exposure to
metal dusting environment.  Left:
exposed at 14.3 atm and 593°C for
160 h; metal dusting pits were
observed.  Right: exposed at 1 atm
and 593°C for 240 h; surfaces of
alloys are smooth and no metal
dusting pits appear.
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6900 h 7300 h

7700 h 8100 h

8500 h 9300 h
Figure 4.3.  Pit morphology as a function of time for Alloy 601 exposed to Gas 10 at
593°C and 14.3 atm (210 psi).
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2900 h 4100 h

4500 h 4900 h

5300 h 6900 h
Figure 4.4.  Pit morphology as a function of time for Alloy 690 exposed to Gas 10 at
593°C and 14.3 atm (210 psi).
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7300 h 7700 h

8100 h 8500 h

8900 h 9300 h
(Figure 4.4 continued.)  Pit morphology as a function of time for Alloy 690 exposed to
Gas 10 at 593°C and 14.3 atm (210 psi).
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2900 h 4100 h

4500 h 4900 h

5300 h 6900 h
Figure 4.5.  Pit morphology as a function of time for Alloy 617 exposed to Gas 10 at
593°C and 14.3 atm (210 psi).
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7300 h 7700 h

8100 h 8500 h

8900 h 9300 h
(Figure 4.5 continued.)  Pit morphology as a function of time for Alloy 617 exposed to
Gas 10 at 593°C and 14.3 atm (210 psi).
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6900 h 7300 h

7700 h 8100 h

8900 h 9300 h
Figure 4.6.  Pit morphology as a function of time for Alloy 602CA exposed to Gas 10 at
593°C and 14.3 atm (210 psi).
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1240 h 1540 h

1720 h 2500 h

2900 h 3300 h
Figure 4.7.  Pit morphology as a function of time for Alloy 45TM exposed to Gas 10 at
593°C and 14.3 atm (210 psi).
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6900 h 7300 h

8100 h 8500 h

8900 h 9300 h
Figure 4.8.  Pit morphology as a function of time for Alloy HR160 exposed to Gas 10 at
593°C and 14.3 atm (210 psi).
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1240 h 1720 h

  
2500 h 3300 h

 
4100 h 4900 h

Figure 4.9.  Pit morphology as a function of time for Alloy 214 exposed to Gas 10 at
593°C and 14.3 atm (210 psi).
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(a) (b)

  
(c) (d)

Figure 4.10.  Pit morphology for Alloy 693 after 9300-h exposure to Gas 10 at 593°C
and 14.3 atm (210 psi).

4.3 Pit Diameter and Pit Density in Ni-Base Alloys

To determine the growth rate for the pits and the pit density (as a function of pit
size), a fixed area of surface of each specimen was examined as a function of exposure
time.  All the specimens were exposed to Gas 10 at 593°C and 14.3 atm (210 psi).  The
pit diameter and number of pits of different diameter ranges were measured by optical
and scanning electron microscopy.  Figures 4.11 to 4.17 show the distribution of
different size pits for seven alloys.  It is evident that the medium-size pits (over the
exposure time of 9700 h in the present test) are most common.  Furthermore, the larger
pits increase in numbers with exposure time, but the smaller pits decrease.  This
decrease indicates that the nucleation of new pits is not prevalent under the test
conditions used.  Also, the increased oxide thickness (with exposure time) seems
beneficial in preventing/minimizing carbon transport inwards and Fe transport outwards,
thereby reducing the formation of Fe-containing spinel phase.
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Figure 4.11.  Pit diameter and density for Alloy 601 as a function of exposure time in
Gas 10 at 593°C and 14.3 atm (210 psi).
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Figure 4.12.  Pit diameter and density for Alloy 690 as a function of exposure time
in Gas 10 at 593°C and 14.3 atm (210 psi).
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Figure 4.13.  Pit diameter and density for Alloy 617 as a function of exposure time in
Gas 10 at 593°C and 14.3 atm (210 psi).
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Figure 4.14.  Pit diameter and density for Alloy 602CA as a function of exposure
time in Gas 10 at 593°C and 14.3 atm (210 psi).
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Figure 4.15.  Pit diameter and density for Alloy 214 as a function of exposure time
in Gas 10 at 593°C and 14.3 atm (210 psi).
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Figure 4.16.  Pit diameter and density for Alloy 45TM as a function of exposure time
in Gas 10 at 593°C and 14.3 atm (210 psi).



71

Pit size (µm)

0

1

2

3

4

5

6

7

6500 6900 7300 7700 8100 8500 8900 9300
Time (h)

P
it 

nu
m

be
rs

0-40
40-80
80-130
130-170
170-210
210-250

Figure 4.17.  Pit diameter and density for Alloy HR160 as a function of exposure
time in Gas 10 at 593°C and 14.3 atm (210 psi).

At the end of the 9700 h exposure, we procured and installed a surface profiler
that could provide a 3-dimensional (3-D) view of the pits in various specimens and
measure the depth of pits at various locations on the specimens.  Most of the alloys
from Run 59HP exhibited discrete pitting except Alloy 214, which showed numerous pits
approaching uniform corrosion (indicated by a rough surface).  Both pitting and uniform
corrosion were observed on Alloy HR160.  Figure 4.18 shows a 3-D map of various
specimens after 9700-h exposure (in Gas 10) in Run 59HP.  Table 4.3 shows the pit
depths on these alloys. The pit diameter/depth ratios are different amount these alloys.
HR160 shows the largest pit diameter/depth ratio because of its more uniform corrosion.
The pit depth of Alloy 214 could not be measured because the surface of the alloy
exhibited essentially uniform corrosion.

601 690 617 602CA

214 45TM HR160 693

Figure 4.18.  3-D profile map of Ni-base alloys after 9700-h exposure in Gas 10 at
593°C and 14.3 atm (210 psi).
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Table 4.3.  Pit characteristics in alloys exposed to metal dusting environment

Alloy designation
Pit characteristics 601 690 617 602CA 45TM HR160 693

Pit diameter (µm) 357 447 894 382 947 189 120

Pit depth (µm) 141 145 200 95 175 21 43

Pit diameter to depth 2.5 3.1 4.5 4.0 5.4 9.0 2.8

4.4. Correlation between Pit Growth Rate and Weight Loss

We have measured the dimension of a single pit (for each alloy) as a function of
exposure time and correlated the pit size data with measured weight change for the
corresponding alloys.  Figure 4.19 shows the measured pit size and weight change for
all the alloys used in the present study.  The plots, for most of the alloys, indicate a good
correlation between the growths in size of an arbitrarily selected pit on the surface of the
alloy with the measured weight change.  The data also show an “S” shaped behavior for
both the pit growth and weight change, indicating an incubation time for the pit to
develop and grow.  Furthermore, the absolute increase in pit size as a function of
exposure time is different for different alloys.  For example, the pit size increases from
200 to 450 µm as the exposure time increases from 4,000 to 9,300 h for Alloy 601.  The
corresponding increases for Alloy 690 are 70 to 200 µm for a time increase from 2900 to
9300 h.  Similar information for other alloys can be obtained from the curves shown in
Fig. 4.19.

The behavior of Alloy 214 is somewhat different from that of others, because it
shows a poor correlation between the size increase of a single pit with its weight change.
The reason for this poor correlation is that this alloy contains a low (15.9 wt.%)
concentration of Cr and a high (3.7 wt.%) concentration of Al and develops a large
number of small pits.  The nucleation and growth of a large number of small pits with low
growth rates are reflected in the weight loss but not in the growth rate of an individual pit.
The alloy exhibited more uniform coverage of pits after ≈3000 h of exposure, and we
could not measure the size of an individual pit.  Alloy 45TM exhibited an extremely rapid
growth rate for the pit (380 to 600 µm during 1400 to 3400 h), and its exposure was
terminated after 3800 h.  The cause for this rapid increase in pit growth can be attributed
to the higher (26.7 wt.%) content of Fe in the alloy.
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Figure 4.19.  Correlation between weight
loss and variation in size of a single pit on
the surface of various alloys as a function
of exposure time at 593°C from Run 59HP.
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4.5 Effect of System Pressure on Metal Dusting Corrosion of Ni-base Alloys

To evaluate the role of system pressure in the initiation and propagation of metal
dusting pits on various Ni-base alloys, we conducted experiments at atmospheric
pressure with a gas composition adjusted to yield the same carbon activity of 31 as the
high-pressure Run 59HP [14.3 atm (210 psi)].  Specimens of various alloys were
exposed to Gas 11 (79.5% H2, 18.2% CO, and 2.3% H2O) at 1 atm for 7589 h.  The
specimens from the run at atmospheric pressure were also retrieved periodically,
cleaned, and weighed to determine the weight loss as a function of exposure time.

Figure 4.20 shows weight loss data obtained for various alloys exposed at
system pressures of 1 and 14.3 atm, but at the same carbon activity of ≈31 and the
same temperature of 593°C.  The results indicate that all the tested alloys showed a
sharp decrease in initiation time for metal dusting degradation at higher system
pressure.  All alloys exhibited negligible weight loss after testing for as long as 7600 h at
1 atm.  This indicates that testing at 1 atm system pressure does not initiate metal
dusting attack, especially in Ni-base alloys, in the time frame of experiments generally
conducted in a laboratory set up.  On the other hand, performing the tests at a higher
pressure (at the same carbon activity) decreases the initiation time for metal dusting
and the time for onset of pitting seems to be alloy dependent.

Both Alloys 610 and 617 contain ≈22 wt.% Cr but the weight loss is higher by a
factor of two in Alloy 617 primarily due to the presence of 12.5 wt.% Co that behaves
similar to Fe from the oxidation standpoint.  Similarly, Alloy HR160 with an even higher
Co content of 30 wt.% showed more uniform shallow pits (more akin to uniform
corrosion) and the weight loss was less.  Alloys 690 and 45TM contain ≈27 wt.% Cr, but
the weight loss in 45TM is a factor of 10 higher than in Alloy 690, primarily due to 27
wt.% Fe in 45TM alloy.  The presence of Al in Alloys 602CA (2.7 wt.%) and 693 (3.3
wt.%) seems to sharply decrease the weight loss when tested in the same environment
as other Ni-base alloys.
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Figure 4.20.  Weight loss for Ni-base alloys at system pressures of 1 and 14.3 atm, at
carbon activity of ≈31, and temperature of 593°C.
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We also conducted another pair of experiments at a carbon activity ≈104.  Run
64HP was conducted in Gas 18 at 30 atm (441psi) and 593°C.  Experiments at 1 atm
pressure was conducted with a gas composition (Gas 21) adjusted to yield the same
carbon activity of 104 as the high-pressure Run 64HP (30 atm).  Specimens of various
alloys were exposed to Gas 21 at 1 atm for 13,842 h.

Figure 4.21 shows weight loss data for various alloys exposed at system
pressures of 1 and 30 atm, but at the same carbon activity of ≈104 and the same
temperature of 593°C.  The results are similar to the experiment at 14.3 atm with a
carbon activity ≈ 31.  All the tested alloys showed a sharp decrease in initiation time for
metal dusting degradation at higher system pressure.

Figure 4.22 shows a comparison of the weight loss rates at 593°C for several Ni-
base alloys exposed at 30 atm with a carbon activity ≈104 and for those exposed at
14.3 atm with a carbon activity ≈31.  The combination of higher system pressure and
higher carbon activity leads to a decrease in time for the initiation of metal dusting
attack.  Once the attack initiates, the specimens lose weight fairly rapidly under both
conditions.  The extent of the weight loss is alloy dependent influenced by the chemical
composition and the stability/integrity of the oxide scales that develop during exposure.
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Figure 4.21.  Weight loss for Ni-base alloys at system pressures of 1 and 30 atm, a carbon
activity of ≈104, and temperature of 593°C.
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Figure 4.22.  Weight loss for Ni-base alloys at system pressures of 14.3 (aC 31) and 30
atm (aC 104) and temperature of 593°C.
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4.6. Metal Dusting in Heat-Treat Environment

Metal dusting is experienced at high temperatures in oxidizing-carburizing
environments that are prevalent in heat-treat industry.  The environment prevalent in
heat-treat applications contain gases generated from oil residue on the work pieces that
are kinetically favorable for metal dusting attack.  We exposed 20 alloys at 1 atm and
815 and 593°C in Gas 20 (with carbon activity >>200 at 815 and 593°C, respectively),
which had a composition that simulated the environment in heat-treat industry.  Only
EBrite alloy was attacked at 815°C after 5716 h exposure, as shown in Figure 4.23.

Figures 4.24 and 4.25 show the macrophotographs of several commercial and
ANL-developed alloys, respectively, after 2136-h exposure at 1 atm, 593°C in Gas 20.
All the ANL-developed alloys and RA85H (which contains 3.5 wt.% Si) performed well
and no pitting was observed.  EBrite was attacked heavily and the pit density in Alloy
HR120 was high.  Corrosion attack initiated along the edges of specimens in Alloys 321
and Crofer.

Figure 4.23.  Macro-
photograph of alloys after
5716-h exposure to Gas
20 at 815°C.

Figure 4.24.  Macro-
photographs of several
alloys after 2136 h
exposure to Gas 20 at
593°C.
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Figure 4.25.  Macrophotograph of
ANL-developed alloys after 2136-h
exposure to Gas 20 at 593°C.

Figure 4.26 shows the weight loss data for several commercial alloys after
exposure in Gas 20 at 593°C.  The weight loss of Alloy HR120 is the highest among
these alloys because of its high pit density (see photograph in Fig. 4.24).  Alloys 321
and Crofer also corroded rapidly.  Figure 4.27, a magnified view of data in Fig. 4.26,
shows that almost all these commercial alloys lost weight except Alloys RA85H and
601.  Alloy 321 developed the deepest pits among these alloys (see Fig. 4.28).  Pit
sizes in Alloy HR120 and Crofer were also large, although the chromium content in
Alloy HR120 (25 wt.%) is high.  We did not measure the pit depth of Alloy 430 because
a pit has developed through the thickness (of 460 µm) within 960 h.  Although the pits
on Alloy 430 developed fast, its pit density was low. Therefore, the weight loss of this
specimen is low (see Fig. 4.27).
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Figure 4.28.  Pit depth for commercial alloys after exposure in Gas 20 at 593°C, 1 atm.

4.7. Effect of Alloy Composition on Metal Dusting

Figure 4.29 shows the weight loss data for several Ni-base alloys after exposure
in Gas 21 (65.1% H2, 30% CO, 0.94% H2O, 4% CO2) with a carbon activity of 104 at
593°C and 1 atm (Run 61).  The weight loss rate of Alloys 214, 600, and 45TM is high in
this gas environment.  Alloys 602CA, 601, 617, and 690 also lost weight.  Metal dusting
pits were observed on Alloy 625, although its weight loss was small.  However, Alloys
230, HR160, and 693 were not attacked by metal dusting even after 13842-h exposure
to the carburizing gas.  The chromium content is low in both Alloys 214 and 45TM.
Although Alloy 214 contains 3.7% wt.% Al, it was readily attacked indicating that the
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chromium content in the alloys has to be >20 wt.% to resist metal dusting corrosion. The
iron content in 45TM is the highest among these alloys and it also corroded at a high
rate.

Several of these alloys also exhibited significant pitting attack.  The growth rate
of pit depth in Alloy 45TM is the highest among the alloys although the Cr content in
Alloy 45TM is much higher than that in Alloy 601.  Its weight loss rate is also the fastest.
High iron content in this alloy may be responsible for its worse performance in metal
dusting environment.  Aluminum addition in Alloy 617 and 602CA seems to decrease
the pit growth rate.
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Figure 4.29.   (a) Weight loss data for several Ni-based alloys after exposure in Gas 21
(65.1% H2, 30% CO, 0.94% H2O, 4% CO2) with a carbon activity of 104 at 593°C and 1
atm. (b) Magnified view.
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The pit-depth data, from Fig. 4.30, were fitted by straight lines and the
correlations were used to calculate the through-wall penetration time as a function of
wall thickness for pipes of different alloys.  Figure 4.31 shows a plot of the penetration
time versus wall thickness.  The through-wall penetration time for Alloy 625 is the
longest among the seven Ni-base alloys that were tested.
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Figure 4.30.  Pit depth as a
function of time for several
Ni-base alloys exposed to a
gas mixture with a carbon
activity of 104 at 593°C and
1 atm (Run 61).
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4.8. Effect of Carbon Activity on Metal Dusting

A comparison of the effect of carbon activity on metal dusting degradation can be
made from the data developed in Runs 54 and 61, both of which were conducted at
593°C and 1 atm.  The gas chemistry in the two runs was adjusted to establish carbon
activity of 31 (Run 54 with Gas 11) and 104 (Run 61 with Gas 21).  In both runs, the
specimens from were retrieved periodically, cleaned, and weighed to determine the
weight loss as a function of exposure time.  Measurements of pit depths were also
made using the surface profiler.

A comparison of the effect of carbon activity on the weight loss at 593°C, 1 atm is
shown in Figure 4.32.  All the tested alloys showed a decrease in initiation time upon
exposure to the higher carbon activity environment.  Furthermore, for any given alloy
the weight loss rate was higher at the higher carbon activity.  At present, a direct
comparison of the weight loss rates at the two levels of carbon activity is not possible
since the weight loss at the lower carbon activity has not reached steady state value
during the 7400-h exposure.

Figure 4.33 shows a comparison of the maximum pit depths that were measured
in various specimens exposed in the two runs.   The data indicate that the specimens
exposed in Run 54 has smaller pit depths than those exposed in Run 61, even though
the exposure time and temperature were similar in both runs.  This is a reflection of the
effect of carbon activity (in the exposure environment) on the time to (incubation time)
initiate metal dusting.  For example, alloys such as 602CA and 45TM exhibited virtually
no pits after exposure in Run 54 whereas the same alloys had maximum pit depths of
261 and 268 µm, respectively, after exposure in Run 61.
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Figure 4.32.  Weight loss data for Ni-base alloys exposed at carbon activity of 31 and
104, 593°C, and 1 atm.
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5.   APPROACH TO MITIGATE METAL DUSTING CORROSION

In recent years, we studied the mechanism for metal dusting degradation in
simulated hydrogen reformer environments and established the causes for the initiation
of pits in both Fe- and Ni-base alloys.12,17  The information that we developed on the
performance of various alloys led us to model the process for the formation of a metal
dusting pit.  Two major factors can affect the formation of metal dusting pits.  First is the
rate of carbon diffusion into alloys.  If alloys do not develop a protective oxide layer to
resist carbon diffusion, the carbon that has diffused into and accumulated in alloys will
lead to metal dusting corrosion.  Second is the rate of the formation of oxide scale.  If
alloys can form a continuous oxide scale on their surface, carbon diffusion through the
oxide scale is slowed, and carbon accumulation in the alloy diminishes.  In general,
metal dusting environments contain both oxygen and carbon, and the process that
dominates is dictated by several factors, such as temperature, pressure, alloy
composition, and gas chemistry.

Generally, the hydrogen reformer environment contains sufficient steam to
establish oxygen partial pressures that are conducive to the formation of chromia and/or
spinel phases in the oxide scale that develops on Fe- and Ni-base alloys.  Therefore,
most areas of an alloy surface are protected from metal dusting corrosion.  The process
can continue only in those areas amenable to with carbon ingress.19  Figure 5.1 shows
an enlarged channel for transferring carbon.  The channel consists of Fe3C or Ni
particles.

At low oxygen partial pressure (pO2), oxygen cannot oxidize Fe3C and Ni.
Carbon diffuses through the channels into the alloys at a relatively high rate.  If oxygen
can also diffuse through these channels, an oxide scale may form underneath the
channel because Cr can form Cr2O3 at a much lower pO2 than the oxides of Fe and Ni.
The oxide scale underneath the channel will eventually stop or minimize the diffusion of
carbon into the alloys, and metal dusting will cease.  However, because the oxygen
atom is much larger than the carbon atom, and the diffusion rate of oxygen is not high
enough to form a continuous chromium oxide layer, carbon can continue to diffuse into
the alloys and lead to metal dusting corrosion.  The Fe3C and Ni particles act as filters
to allow carbon diffusion but prevent oxygen diffusion.  A self-healing mechanism may
not work in this situation, and a metal dusting pit will finally form.  Although chromium
can still react with oxygen at the pit area, a continuous oxide scale may not form.  Many
carbon transfer channels form deep roots into alloys (see Fig. 5.2), and the process of
metal dusting does not stop after the pits develop.  However, if we temporarily remove
CO and CO2 from the exposure atmosphere, the diffusion of carbon will cease, whereas
diffusion of oxygen can continue.  Therefore, a continuous oxide scale could develop
underneath the carbon transfer channel without interference from carbon, thereby
blocking the channel for further transport of carbon.  Results from the following
experiments show that this approach retards the growth of metal dusting pits.



88

Figure 5.1.  Schematic of a model for initiation of a metal dusting pit.

Oxide scale

Channels for carbon transfer (Fe3C or Ni)

Alloys

Metal dusting pit

Figure 5.2.  Schematic of carbon transfer channels in a pit.

5.1 Mitigation of Metal Dusting in Fe-base Alloys

To examine this intermediate oxidation (in the absence of carbonaceous gases)
approach to mitigate metal dusting attack, Alloy 800 specimens were selected for the
study.  The specimens were exposed for 5 days to a gas mixture consisting of 72.2%
H2-8.3% CO2-17.6% CO-1.96% H2O (Gas 5) at 593°C.  Metal dusting pits of 100-200
µm in diameter were observed (see Fig. 5.3).  The pit surface was rough due to the
deposited carbon particles in the pit.  Subsequently, the specimen was exposed at
593°C for 2 days to a gas mixture of H2-2% H2O, which has similar water content to Gas
5 but no carbon containing species.

Figure 5.3.  Left: Pit on Alloy 800 after 5-day exposure to a carburizing gas at 593ºC.
Right: The specimen after further exposure in H2-2% H2O at 593ºC for 2 days.



89

The pit surface became smooth after exposure to the H2-2% H2O environment,
because carbon particles in and around the pit were removed by oxidation.  The pit area
was slightly oxidized by the gas with oxygen partial pressure similar to that of Gas 5.
The sample was again exposed to Gas 5 for 4 days at 593°C.  The pit size remained
the same as before exposure (Fig. 5.4, left).  No further metal dusting attack occurred at
this pit, even when this specimen was exposed to Gas 5 for 6 days (Fig. 5.4, right) after
intermediate oxidation in the H2-2%H2O gas mixture.  Similar observations were made
on the effects of intermediate oxidation on other pits on the Alloy 800 surface.

Figure 5.4.  The specimen shown in Fig. 5.3 after exposure to 72.2% H2-8.3%
CO2-17.6% CO-1.96% H2O at 593ºC for (left) 4 days and (right) 6 days.

Figures 5.5 and 5.6 show a second metal dusting pit on Alloy 800 that exhibited
behavior similar to that of the pit in Fig. 5.3.  Figure 5.7 shows the behavior of a third pit
on the surface of the same specimen of Alloy 800.  In the case of the third pit, the oxide
was not protective enough to resist metal dusting, and a small pit could be observed
after 4 days exposure of the oxidized specimen [Fig. 5.7(c)].  These observations can
be explained by the model shown in Fig. 5.8.

(a) (b)
Figure 5.5.  (a) Another metal dusting pit on Alloy 800 after exposure to carburizing
atmosphere consisting of 72.2% H2-8.3% CO2-17.6% CO-1.96% H2O at 593ºC for 5
days.  (b) The specimen after further treatment by exposure to a gas consisting of H2-
2% H2O at 593ºC for 2 days.
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(a) (b)
Figure 5.6.  Specimen, shown in Fig. 5.4, after further exposure to the carburizing
atmosphere for (a) 4 days and  (b) 6 days.

(a) (b) (c)

Figure 5.7.  (a) Third pit on Alloy 800 after exposure to carburizing atmosphere
consisting of 72.2% H2-8.3% CO2-17.6% CO-1.96% H2O at 593°C for 5 days.  After the
alloy sample was oxidized at 593ºC for 2 days, the sample was re-exposed to the
carburizing atmosphere for (b) 2 days and (c) 4 days.

Figure 5.8.  Schematic of a model for the blocking action of oxide layer
after intermediate oxidation of metal dusted alloy.
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The beneficial effect of intermediate oxidation depends on the integrity of the
oxide that develops in the pit region and the protective capacity (from the standpoint of
stability, phases present, etc.) of the oxide against metal dusting initiation when
subsequently exposed to the process atmosphere.  A continuous protective oxide scale,
to stop the continued growth of the pit, could not form since carbon could transfer faster
than oxygen through the channels in the oxide scale.

When the carbonaceous gases CO and CO2 are removed during the
intermediate oxidation treatment, a continuous oxide scale could form underneath the
channels without the interference of carbon.  The newly formed oxide acts as a barrier
to further transport of carbon when the specimen is exposed to the metal dusting
environment.  The incubation time for Alloy 800 is ≈100 h in the gas chemistry and
temperature used in our study.  Therefore, after the 4-day exposure to a carburizing
atmosphere, carbon broke through the new oxide scale and a pit grew, as shown in Fig.
5.7(c).

Intermediate oxidation of the metal dusted specimens was developed as an
approach to slow the pit propagation rate therby, extend the useful life of a metallic
component.  Several experiments were conducted to evaluate the role of exposure
temperature and the gas chemistry on the stability and integrity of the scale that
develops after intermediate oxidation and its protective capacity against continued metal
dusting attack.  Table 5.1 lists the test time and temperature and gas chemistry along
with the pit characteristics on Alloy 800 that was used for developing the approach.
Earlier, we proposed that channels are present in the oxide scale for carbon to diffuse
through the scale and enable the growth of metal dusting pits.  If the pits are oxidized by
an intermediate exposure to an oxidizing environment, the channels may be blocked
and carbon diffusion can be eliminated or minimized.

Table 5.1.  Effect of intermediate oxidation on subsequent growth of pits in Alloy 800
Pit growth status after exposure (time given below) in Gas 5Oxidizing

atmosphere
Temperature

(°C) Time (h) 2 days 4 days 6 days 10 days
2%H2O-98%H2 593 48 No Yes Yes Yes
2%H2O-98%H2 593 24 yes Yes Yes Yes
2%H2O-98%H2 593 6 yes Yes Yes Yes
95%H2O-5%H2 593 24 yes Yes Yes Yes
95%H2O-5%H2 593 6 yes Yes Yes Yes

100%H2O 593 24 yes Yes Yes Yes
100%H2O 593 6 yes Yes Yes Yes

2%H2O-98%H2 760 24 No No No No
2%H2O-98%H2 760 6 No No No No
95%H2O-5%H2 760 24 No No No No
95%H2O-5%H2 760 6 No No No No

100%H2O 760 24 No No No Grew again
100%H2O 760 6 No Grew again Grew again Grew again

Alloy 800 specimens that were initially metal dusted (with pits) were oxidized in a
mixture of steam and hydrogen.  The oxygen pressure in the exposure environment, the
exposure temperature and time will dictate the oxide thickness.  At 593°C, the pits on
Alloy 800 were not sufficiently oxidized even after 48 h treatment.  Therefore, carbon
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transfer channels have not been totally blocked.  Pits started to grow in 4 days after
exposure to the carburizing gas.  However, when alloys were oxidized at 760°C, pits did
not grow even after 240-h exposure in Gas 5 (72.2% H2-8.3% CO2-17.6% CO-1.96%
H2O).  Generally, the incubation time for Alloy 800 is ≈100 h in Gas 5.  The observation
that the pits did not grow even after 240 h indicates that the channels were blocked and
carbon diffusion is slowed considerably.

When Alloy 800 was oxidized in 95% H2O-5% H2 mixture at 760°C, 6 h was
sufficient to stop the pit growth.  However, pure steam was not as good as the mixture
of steam and hydrogen.  Figure 5.9 shows that the pit in Alloy 800 did not grow even
after 10 days of subsequent exposure to metal dusting environment when the pit was
oxidized in 2% H2O-98 %H2 mixture at 760°C.  However, the pit started to grow in 4
days if the pit was oxidized in 100% steam at the same temperature (see Fig. 5.10).
Figure 5.11 shows that the major phase in the oxide scale on Alloy 800 was spinel, if
the alloy was oxidized in 100% steam at 760°C.   Spinel phase is susceptible to attack
by carbon, which leads to continued metal dusting.  However, the major phase was
Cr2O3, if the alloy was oxidized in 2% H2O-98% H2 mixture at 760°C (see Fig. 5.11).
Presence of Cr2O3 in the scale protected the alloy from continued metal dusting
corrosion.

These results indicate the potential of intermediate oxidation treatment to delay
the onset of metal dusting and continued wastage.  This approach may not be useful for
Alloy 800 because the incubation time of Alloy 800 is short.  However, if we apply this
method to some of the Fe- and Ni-base alloys with long incubation time, we may be
able to greatly extend the life of these alloys and process components for service in a
metal dusting environment.

   
 

      Just oxidized            after 10 days 
 
 

       As oxidized After 10-day exposure

Fig. 5.9.  (Left) metal dusting pit in Alloy 800 after 6-h exposure to 2% H2O-98% H2 at
760°C; (right) after subsequent 10-day exposure in Gas 5 at 593°C, indicating no
change in size and shape of pit.
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As oxidized After 4 days

After 6 days After 10 days

Figure 5.10.  Time progression of a metal dusting pit in Alloy 800 after 6-h exposure to
2% H2O-98% H2 at 760°C and after subsequent 4-, 6-, and 10-day exposure in Gas 5
at 593°C.
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5.2 Mitigation of Metal Dusting in Ni-base Alloys

Alloy 800 specimens that were initially metal dusted (i.e., exhibited pits) were
oxidized in a mixture of steam and hydrogen.  The best oxidation condition for Alloy
800, based on results obtained from several experiments, was temperature of 760ºC
and gas composition of 95% steam-5% hydrogen.  The oxidation treatment stopped the
growth of pits for as long as 240 h even though the incubation time for pitting in Alloy
800 is ≈100 h.

We applied the same method to several Ni-base alloys, which exhibit much
longer incubation times than that of Alloy 800.  If metal dusting corrosion can be
mitigated by intermediate oxidation of the alloy surface by a relatively short exposure
time, extension of component life is possible by alleviating the metal dusting problem by
periodic oxidizing.

Several Ni-base alloys were pre-pitted by exposing them to 50% CO-50% H2 at
593ºC.   After pits were formed on these alloys, they were subsequently exposed to
Gas 21 (65.1% H2, 30% CO, 0.94% H2O, 4% CO2) at 593°C and 1 atm.  The growth of
pits on these alloys was evaluated by periodic measurements of the pit depth and size
using the profiler.  The pre-pitted specimens (after exposure to Gas 21 at 593°C for
1442 h) were cut into two parts.  Figure 5.12 shows a photograph after the specimens
were cut.  One part was exposed to 95% steam-5% hydrogen at 760°C for 24 h to
oxidize the surface of the alloys, and then subsequently exposed to Gas 21 at 593°C.
The other part (without intermediate oxidation) was used for continued exposure in Gas
21 at 593°C.

Alloy 22 Alloy 24 Alloy 28
         601                               617                           230

Figure 5.12.  Macro-
photographs of Alloy
601, 617, and 230.  The
specimens were cut into
two parts after 1442-h
exposure to a metal
dusting environment
(Gas 21) at 593ºC.
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Figure 5.13 shows that pit sizes of Alloy 601 increase with time when specimens
were exposed to Gas 21 at 593ºC.  However, the pit sizes did not increase after the
specimen was slightly oxidized by 95% steam-5% hydrogen mixture at 760ºC for 24
hours.  Figures 5.14 and 5.15 show a similar trend for Alloys 617 and 230.

Initial 792h 1442h 1771h

Area1

Area2

Initial 792h 1442h oxidized 329h after oxid.

Figure 5.13.  Pit morphology on Alloy 601.  The Area 1 photographs show the pits
without intermediate oxidation; Area 2 specimen was exposed to metal dusting
environment for 1442 h and given an intermediate oxidation treatment and
subsequently continued exposure for 329 h.

Initial 792h 1442h 1771h

Initial 792h 1442h oxidized 329h after oxid.

Area 1

Area 2

1.5 mm

1.5 mm

Figure 5.14.  Pit morphology on Alloy 617.  The Area 1 photographs show the pits
without intermediate oxidation; Area 2 specimen was exposed to metal dusting
environment for 1442 h and given an intermediate oxidation treatment and
subsequently continued exposure for 329 h.
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Initial 792h 1442h 1771h

Initial 792h 1442h 329h after oxid.

Area 1

Area 2

Figure 5.15.  Pit morphology on Alloy 230.  The Area 1 photographs show the pits
without intermediate oxidation; Area 2 specimen was exposed to metal dusting
environment for 1442 h and given an intermediate oxidation treatment and
subsequently continued exposure for 329 h.

Figures 5.16 and 5.17 show the pit size as a function of exposure time for Alloys
617 and 602CA with and without intermediate oxidation.  The specimens were exposed
in a metal dusting environment with a carbon activity of 104 at 593°C and 1 atm.  The
results indicate that the pit growth can be arrested by intermediate oxidation that was
conducted in 95% H2O-5% H2 at 760°C for 24 h.  Without the oxidation step, the pits
continued to grow in all the alloys tested. In the case of Alloys 617, the pit size was
large prior to intermediate oxidation whereas the pit size was small for Alloy 602CA.
The benefit of intermediate oxidation was observed irrespective of the pit size.
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Figure 5.17.  A comparison of
pit-depth data for Alloy 602CA
with and without intermediate
oxidation.

This result indicates that carbon transfer channels at metal dusting pits in all four
alloys were blocked after their surfaces were slightly oxidized.  For the continuation of
metal dusting corrosion, new channels have to develop for carbon to diffuse through the
scale.  This process can take as much or longer than the incubation period observed
during the exposure of the virgin alloy.  Figures 5.18 to 5.21 show the behavior of Alloys
214, 690, 230, and 601, with and without intermediate oxidation, when exposed to metal
dusting environment at 593°C.  In this case, the growth of the pit on Alloy 214 was only
temporarily stopped for ≈600 h, beyond which it began to grow.  However, the growth of
the pits on Alloy 690 and 230 was stopped for 1900 h and 2700 h, respectively.  The
results indicate that the intermediate oxidation step need to be optimized based on the
behavior of the alloy and also the time and environment need to be assessed to
establish the threshold conditions for developing a protective oxide in the pitted region
of the alloy.  The pit on Alloy 601 started to grow within 600 h after the first oxidation.
However, the growth of the pit was stopped for another 600 h when the surface was
oxidized again.  Therefore, the effect of intermediate oxidation is repeatable.
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Figure 5.18.  A comparison of pit-
depth data for Alloy 214 with and
without intermediate oxidation.
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Figure 5.19.  A comparison of pit-
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6.   X-RAY NANO-BEAM STUDIES

Oxide scale is essential to protect the structural alloys from carbon-induced
degradation and associated corrosion at elevated temperatures.  We have shown in our
studies that the oxide scale that develops in metal dusting environments can contain
several phases, the protective capacity of which can be quite different.17,18  The
thermodynamic stability of different phases over long periods can influence the
protectiveness of the oxide scale and on the overall performance of the alloy.  It is
necessary to understand the relationship between the phase composition of oxide scale
and the capability of the scale to resist against further degradation.  X-ray diffraction
(XRD) is the best tool to determine the phase composition in oxide scale.  However,
some alloys develop oxide scales with several sub-layers.  Regular X-ray beam cannot
be focused on each sub-layer in the cross section of the alloys because the sublayers,
in general, are only a few micrometers in thickness.  Some alloys show pitting corrosion
with micron-size pits that cannot be analyzed by regular XRD either.  The 2ID-D
beamline of the advanced photon source (APS) at Argonne National Laboratory
produces a monochromatic X-ray beam of size ≈200 nm.  The nano-size X-ray beam
provides an excellent approach to study the local structure and chemistry of oxide
scales and sublayers on alloys.  Not only the phase composition but also the oxidation
state of each ion in the oxide scale can be determined at sub-micrometer range using
this nano-beam X-ray.  Recently, we used this approach to study the oxide scale on
alloys that were exposed to metal dusting environment.  The results reveal important
information which can aid in the development of new alloys with potential to extend the
service life of metallic components used in metal dusting environment.

Figure 6.1 shows the photomicrograph of the cross section of a failed tube of
Alloy 800H from a hydrogen reformer.  The specimen was scanned by X-ray nanobeam
in both the pit and non-pit areas as indicated in Fig. 6.1.  The thickness of oxide scale in
the pit region is thinner than that in the non-pit area (see Fig. 6.2).  Spinel was identified
as the major phase in the oxide scale.  The spinel structure is named after the mineral
MgAl2O4 and the general composition is AB2O4.  It is essentially cubic, with the O ions
forming a face-centered-cubic (fcc) lattice. The cations occupy 1/8 of the tetrahedral
sites and 1/2 of the octahedral sites and there are 32 O ions in the unit cell.  There are
two types of cubic building units inside the fcc O-ion lattice, filling all 8 octants as shown
in Fig. 6.3.  The spinel structure is very flexible with respect to incorporation of cations
and there are over 100 known compounds.  In particular, the A and B cations can mix in
several ways leading to compounds such as (A8)(B16)O32, or A8(B8A8)O32 = A(AB)O4, or
(A8/3B16/3)(A16/3B32/3)O32 and so on, with the atoms in the parentheses occupying the
respective site at random.

Fe-Cr-O spinel can form a solid solution of Fe1+xCr2-xO4 (0 ≤ x ≤2).  The oxidation
of iron in Fe1+xCr2-xO4 has to change with x to keep charge balance in the lattice.  Iron is
+2 in FeCr2O4, the end member of Fe1+xCr2-xO4 (x = 0), and iron is +2.67 in Fe3O4,
another end member of Fe1+xCr2-xO4 (x = 2).  X-ray near edge absorption spectra
(XNEAS) of iron, nickel, and chromium were obtained in the study.  Figure 6.4 shows
that the absorption coefficient changes dramatically at the interface between the oxide
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scale and the alloy.  The pre-edge a-feature of iron in Figure 6.5 is associated with
transitions into d/d-p-hybridized final states; and has been shown to increase in strength
with increasing Fe-valence (or d-hole population).  Only a1 feature was observed for
Fe2+.  The a2 feature appears when the compound contains Fe3+.  The oxidation state
of iron in Fe3O4 is the highest in the solid solution of Fe1+xCr2-xO4 spinel.  The intensity
of the pre-edge a-feature of iron in oxide scale is between Fe1.2Cr1.8O4 and Fe1.8Cr1.2O4.
The oxidation states of iron in Fe1.2Cr1.8O4 and Fe1.8Cr1.2O4 are 2.17 and 2.44,
respectively.  Therefore, iron in oxide scale is in a mixed valence between +2 and +3.
Since the Fe3+ in spinel could be reduced in a metal dusting environment, the protective
capacity of the oxide scale is destroyed.  This result clearly explains the cause for
easier pitting and significant attack of Alloy 800 in metal dusting environment.

Table 6.1.  The spinel compositions of interest in metal dusting.

A B Formula Mineral

Mg Al MgAl2O4 Spinel
Fe+2 Fe+3 Fe+2O.Fe+3

2O3=Fe3O4 Magnetite

Fe+2 Cr FeCr2O4 Chromite

X-ray nanobeam
scanning lines Figure 6.1.  Photomicrograph of

the cross section of an Alloy
800H specimen showing the
regions that were scanned using
X-ray nanobeam.
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Pit area non-pit area

metal

Oxide scale

metal

Oxide scale

Figure 6.2.  Scanning electron photomicrographs of cross section of Alloy 800H at
the pit and non-pit areas.

Figure 6.3.  Structure of
spinel.

Figure 6.4.  X-ray near edge
absorption spectra (XNEAS) of
iron.  The X-ray nanobeam
scanned across the oxide scale to
the metal.
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Alloy 321 was also examined using the APS X-ray nanobeam.  The sample was
exposed for 1130 h in a simulated environment of a reformer outlet with a gas
composition of 53.4%H2-5.7%CO2-18.4%CO-22.5%H2O at 14.3 atm (210 psi) and
593°C.  The carbon activity of the gas was ≈31 based on Reaction 1 at 14.3 atm and
593°C.  Figure 6.6 shows the cross section of the Alloy 321 at the edge of a pit.  EDX
analysis was performed prior to analysis by X-ray beam.  The thickness of the oxide
scale at non-pit area is only a few micrometers.  However, the thickness of the oxide
scale at the pit area is ≈50 µm.  Two layers were observed in the oxide scale in the pit
area.  The EDX analysis indicates more oxygen and iron in the outer layer than in the
inner layer, but chromium and nickel concentrations in the outer layer are much less
than in the inner layer (see Fig. 6.7).  X-ray nanobeam was scanned across the cross
section at the pit area from surface into the substrate region of Alloy 321.  X-ray
fluorescence analysis shows result similar to that observed by EDX.  There is more iron
in the outer layer of the oxide and more chromium in the inner layer (see Fig. 6.8).  Only
spinel phase was observed in both layers of the oxide scale, and Cr2O3 was not
detected in the pit area (seeFig. 6.9).  This result is consistent with previously reported
Raman scattering results.

Figure 6.6. Scanning electron
photomicrograph of cross section
of Alloy 321 that was used for the
X-ray nanobeam analysis.
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SEM Oxygen Chromium

30 µm

Iron Ni
Figure 6.7.  EDX analysis of cross section of Alloy 321 at the edge of a pit.
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Figure 6.9.  X-ray
diffraction pattern at
the pit area of Alloy
321 exposed in a
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environment for
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Although both inner and outer layers in the scale consist of spinel phase, the
intensities of diffraction peaks are different as shown in Fig. 6.10a and b.  This may be
due to the difference in the concentration of iron in spinel at outer and inner layers.  The
CCD image of X-ray diffraction patterns show that the diffraction spots at outer layer are
bright but isolated, but the spots at inner layer form even lines (see Fig. 6.11).  This
indicates the grain size of spinel at outer layer is larger than that at inner layer.
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Spinel
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Figure 6.10.  X-ray diffraction patterns at the outer and inner layers in the pit region of
Alloy 321 after 1130-h exposure in a metal dusting environment.

 

15 um 30 um
      15 µm – outer layer              30 µm – inner layer

Figure 6.11.  CCD images of X-ray nano-beam diffraction of oxide scale on Alloy 321 in
the pit region.

The major phase in the oxide scale at non-pit area is chromium oxide (see Fig.
6.12).  This result is consistent with the results of Raman scattering.  Chromium oxide is
stable and can protect the alloy from metal dusting corrosion.  Similar to Alloy 800H, the
intensity of the pre-edge of iron in oxide scale in Alloy 312 is between Fe1.2Cr1.8O4 and
Fe1.8Cr1.2O4 (see Fig. 6.13).  The oxidation states of iron in Fe1.2Cr1.8O4 and Fe1.8Cr1.2O4
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are 2.17 and 2.44, respectively.  Therefore, iron in oxide scales is in a mixed valence
between +2 and +3 and the spinel is not perfect FeCr2O4, but a solid solution of
Fe1+xCr2-xO4 with x > 0.  Since the Fe3+ in spinel could be reduced in metal dusting
environment,1,19 the protective capacity of the oxide scale is easy to be destroyed.
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Figure 6.14 shows that the excitation energy from 1S to 4P increases, when the
X-ray nanobeam was scanned from inner to outer layer.  The 1S electrons require more
energy to excite to orbits with higher energy when the oxidation state of iron increases.
Therefore, the XNEAS results indicate that the oxidation state of iron in outer layer is
higher than in the inner layer, although both layers consisted of only spinel phase.  Iron
diffuses out from substrate alloy and accumulates in oxide scale.  Spinel with a higher
iron content forms in oxide scale after long time exposure at high temperature.  The
unstable spinel phase reacts with deposited carbon (from the gas environment) leading
to breakdown in the protective capacity of the scale.
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Figure 6.14. . X-ray near edge
absorption spectra of iron.  The X-
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across the oxide scale to the
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and 45 µm are at the inner layer of
the oxide scale; and the positions
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Chromium has four valence states 0, +2, +3, and +6.  Generally, Cr+6 is not
stable in a reducing environment.  X-ray nanobeam was scanned across the oxide scale
of ≈50 µm in thickness.  Figure 6.15 shows the chemical shifts of chromium in oxide
scale at 15 and 45 µm are very close to Cr+3 (similar to Cr in NiCr2O4 standard).
Therefore, chromium is present in +3 valence state in both layers of oxide scale in the
pit region of Alloy 321.  The positions at 55 and 75 µm correspond to the scans in the
substrate alloy in which the chromium has a neutral valence of 0.
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EDX line scanning results indicate that there is Ni in oxide scale (see Fig. 6.16).
The EDX spot analysis results in Table 6.2 also show that the nickel content in oxide
scale of Alloy 321 is close or even slightly higher than that in alloy.  However, EDX
cannot analyze the valence of the nickel in oxide scale.  Nanobeam X-ray near edge
absorption spectra show that the chemical shift of nickel in most locations of the oxide
scale is close to zero valence nickel (see Fig. 6.17).  This indicates that nickel is present
as metal particles in the oxide scale.  These particles seem to act as channels for the
transport of carbon into the alloy.
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Table 6.2.  EDX spot analysis at various locations near the surface of Alloy 321 after
exposure in a metal dusting environment.

Spot position Nickel (at.%) Chromium (at.%) Iron (at.%) Oxygen (at.%)

Alloy 11.0 18.4 64.2 7.6

Inner layer of oxide scale 11.7 16.4 34.5 37.5

Outer layer of oxide scale 1.2 1.5 44.0 53.3
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Figure 6.17. . X-ray near edge
absorption spectra of nickel.  The
X-ray nanobeam was scanned
across the oxide scale to the
metal. The positions of 5 µm and
15 µm are at the outer layer of the
oxide scale.

Nickel 2+ was observed at the outer layer of the oxide scale at the position close
to surface.  Although pure NiCr2O4 is not stale in the reducing environment, small
amount of Ni2+ may enter the site of Fe2+ in FeCr2O4 to form  (Fe,Ni)Cr2O4 solid solution.
The maximum concentration of Ni2+ in the solid solution could be calculated from
thermochemical data.  Using ΔH and ΔS values of -5.309 kJ/mole and 16.7J/mole K,30
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respectively, for the formation of NiCr2O4 from NiO and Cr2O3 phases and the oxygen
partial pressure of 4 x 10-24 atm in Gas 10 at 14.3 atm and 593°C, the calculated value
for the maximum concentration of Ni2+ in spinel phase is 15.2%.  The oxygen partial
pressure at the oxide/substrate interface, based on Cr/Cr2O3 equilibrium for an alloy
with 18 wt.% Cr, is 2.5 x 10-36 atm which is much less than in the bulk gas.  Therefore,
the calculated value for the minimum concentration of Ni2+ (corresponding to the pO2
established by Cr-Cr2O3 equilibrium) is only 1.2 x 10-5%.  These results indicate that the
concentration of Ni2+ in spinel should be high at the gas side of the oxide scale, and it
should be low at the alloy side of the oxide scale.

In the early stage of oxide scale formation, nickel could be oxidized to +2 at the
gas-oxide surface and dope into the solid solution of (Fe,Ni)Cr2O4.  The Ni2+ in the solid
solution could be as high as 15.2%.  When cations continue to diffuse out, the nickel
contained spinel gets buried inside.  The pO2 in the inner layer of oxide scale decreases
with the increase in thickness of the oxide scale (schematically shown in Fig. 6.18), and
Ni2+ will be reduced to nickel metal when the pO2 drops below the critical value.  Such a
process leads to the formation of nickel particles in oxide scale.

The X-ray nanobeam analysis results indicate that the oxide scale in the pit
region is actually a mixture of oxide and metal particles.  These metal particles can lead
to preferential channels for the inward diffusion of carbon.  The evidence for these
channels is also confirmed by the preferential deposition of copper in the pit region (due
to increased electrical conductivity) that was discussed in Section 3 of this report.
However, the nickel oxidation and reduction process will occur if iron is present in alloys
because pure NiCr2O4 spinel will not form in the reducing environment.  Only when
FeCr2O4 forms, Ni2+ can dope into iron-containing spinel to form (Fe,Ni)Cr2O4 solid
solution.  In the absence of iron, nickel will not be subjected to the oxidation-reduction
process.  Therefore, the spinel phases in oxide scale cause problems by forming
unstable iron-rich phase and  act as a solvent for the formation of Ni2+, and the Ni2+ will
be reduced to nickel metal (over long time) enabling formation of carbon transfer
channels.

D
ec

re
as

in
g

pO
2

Alloy

Critical pO2

Ni2+ in oxide scale

Ni in oxide scale

Figure 6.18.  Oxygen partial pressure variation from oxide surface to substrate alloy.
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7.   DEVELOPMENT OF NEW ALLOYS TO RESIST METAL DUSTING

7.1 Development of Ni-base Alloys

Although the weight loss rate of Alloy 600 is much faster than that of Alloy 601,
the growth rate of pit depth of Alloy 600 is slower than that of Alloy 601. This is due to
the high pit density on Alloy 600.  Figure 7.1 shows that pits covered most surface area
of Alloy 600, but only a few pits were observed on Alloy 601.  The content of chromium
in Alloy 601 (21.9 wt.%) is higher than that in Alloy 600 (15.4 wt.%).  However, The iron
content in Alloy 601 (14.5 wt.%) is also higher than that in Alloy 600 (9.7 wt.%).  The
high chromium content in Alloy 601 decreases the pit density on surface of Alloy 601,
but pit depth growth rate was not suppressed by increasing chromium content in the
alloy.  It may be more important to decrease the iron content of the alloy for decreasing
the pit growth rate.

Figure 7.1.  Alloy 600 (left) and
Alloy 601 (Right) after 12,858-h
exposure at 593°C, 1 atm in a gas
mixture with a carbon activity of
104.

Figure 7.2 shows that the pit depth on Alloy 45TM is the deepest although its
chromium content is the highest in these alloys.  The maximum pit depth decreases with
decreasing iron content. Therefore, the metal dusting rate is not necessarily determined
by chromium content (beyond a certain amount) of the alloy, as can be seen from data
in Figure 7.3.  However, it is a function of iron content (see Fig. 7.4).  The less iron
content in alloys, the slower the metal dusting corrosion.
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Figure 7.5 shows the thermodynamic stability of several oxide and spinel phases
as a function of temperature.  Chromium oxide is the most stable phase and cannot be
reduced in the metal dusting environment identified as Gas 21.  Nickel oxide and nickel
spinel (NiCr2O4) are unstable and would not form in metal dusting environment.
Therefore, nickel by itself would not cause problem for the protectiveness of the oxide
layer.  On the other hand, iron can form spinel in metal dusting environment. If only the
spinel phase FeCr2O4 formed in the oxide scale, it should be stable in metal dusting
environment, based on the thermochemical analysis.  However, iron spinel can form
solid solution of Fe1+xCr2-xO4 (0 ≤ x ≤ 2).  Unfortunately, the oxygen partial pressure of
metal dusting environment is within the range of the stability of Fe1+xCr2-xO4 solid
solution.  If the iron content in spinel is larger than a certain value, the spinel could be
reduced.  The XNEAS results have indicated that the spinel in oxide scale is not perfect
FeCr2O4, but is generally iron-rich spinel.  Therefore, presence of iron in the alloy can
lead to formation of an unstable spinel phase in oxide scale and eventually degrade its
protective capacity.
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According to above analysis, metal dusting would be greatly retarded if alloys
can develop an oxide scale that consists of only chromium oxide.  In the absence of iron
in the alloy, the scale would not contain an iron-containing spinel and NiCr2O4 would not
form in the reducing environment of the metal dusting.  Therefore, several alloys were
designed with minimal iron content, whose compositions are listed Table 7.1.  Alloys
ANL-1 to -3 and ANL-7 have chromium content similar to that of commercial Alloy 601,
and ANL-4 and -5 have chromium content similar to the commercial Alloy 602CA.
These newly-developed alloys formed only stable chromium oxide scale (see Fig. 7.6)
after exposure in metal dusting environment.  Raman scattering peaks at ≈550 and 680
cm-1 correspond to chromium oxide and spinel, respectively.  Spinel phase was
observed on Alloy 601 but not in ANL-developed alloys, after exposure in metal dusting
environment.

Table 7.1.  Composition (in wt.%) of alloys selected for metal dusting experiments.

Elemental composition (in wt.%)Alloy
designation

Ni Cr Al Fe Ti Zr C Y Cu

AGZ1 74.5 22.0 2.3 0.7 0.3 0.2 0.1 - -

AGZ2 75.2 22.0 2.3 <0.1 0.3 0.2 0.1 - -

AGZ3 73.5 22.0 3.3 0.7 0.3 0.2 0.1 - -

AGZ4 71.4 25.0 2.3 0.7 0.3 0.2 0.2 0.1 -

AGZ5 71.1 25.0 3.3 <0.1 0.3 0.2 0.2 0.1 -

AGZ6 67.2 29.0 3.3 <0.1 0.3 0.1 - 0.1 -

AGZ7 65.2 22.0 2.3 <0.1 0.3 0.2 0.1 - 10

Several commercial and ANL-developed nickel-base alloys were exposed for
12,858 h at 593°C, 1 atm in Gas 21 with a composition of 65.1% H2, 30% CO, 0.94%
H2O, and 4% CO2 (carbon activity ≈30).  Figure 7.6 shows that Alloys 600 and 601
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developed deep pits, whereas the surfaces of all ANL-developed alloys exhibited
virtually no attack.  Metal dusting pits on Alloy 601 were observed within 1000-h
exposure.  Although the composition of ANL-1 is similar to that of Alloy 601, the low
concentration of iron in ANL alloy extended the time for initiation of metal dusting in the
ANL alloy.

601 Fe 14.5%600 601 Fe 14.5%600

Figure 7.6.  Macrophotographs of Alloys 600, 601 and ANL-developed Alloys 1-7 after
12,858-h exposure to the same metal dusting environment (Gas 21) at 593°C and 1
atm.

0

1000

2000

3000

4000

400 450 500 550 600 650 700 750

In
te

ns
ity

Raman shift (cm-1)

ANL-1
ANL-2
ANL-3
ANL-4
ANL-5

ANL-6

ANL-7

601

Cr
2
O

3
Spinel

Figure 7.7.   Raman spectra
for Alloy 601 and ANL-
developed alloys after
12,858-h exposure at 593°C
to Gas 21 consisting of
65.1% H2, 30% CO, 0.94%
H2O, and 4% CO2.

7.2 Development of Cu-base Alloys

There are three steps in metal dusting degradation of metallic materials: (1)
carbon deposition on alloy surface, (2) carbon transport into alloy, (3) alloy becomes
powder by interaction with carbon.  If any of the three steps can be
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controlled/minimized, the metal dusting corrosion can be slowed.  Usually, three
reactions are responsible for the first step of carbon deposition.

CO + H2 = C + H2O
2CO = C + CO2

CH4 = C + 2H2

Since the activation energy for all three reactions is high, a catalyst is generally
needed to accelerate the reaction.  Unfortunately, Fe, Co, and Ni (that are present in the
metallic structural components) and some of their oxides can act as catalysts to initiate
carbon deposition.  Copper and copper-base alloys have several advantages: (1)
copper does not catalyze the coking reactions and therefore coke deposition is almost
completely avoided, (2) copper has very little solubility for carbon and therefore the
dissolution of carbon and eventual transport of carbon can be minimized, and (3) copper
can be applied as a clad or a coating onto the structural material to minimize direct
contact of the metallic component from the metal dusting environment.  As a result, we
examined copper as a means to minimize the metal dusting attack.  In addition, we also
developed several cooper-base alloys with emphasis on both the metal dusting
resistance and improvement (compared to that of pure copper) in elevated temperature
mechanical properties to use them as monolithic structural materials in high
hydrocarbon-containing environments.

7.2.1 Metal Dusting Tests on Copper and Copper-base Alloys

We tested pure copper specimens in different forms by exposing them in a metal
dusting environment at various temperatures.  Copper was found to be noncatalytic, as
evidenced by absence of coke deposit in these experiments.  The results are consistent
with reports from other researchers.(31-33)  The solubility and diffusion rate of carbon in
copper are low.  However, the strength of copper at elevated temperature is too low for
its use as a structural material.  Therefore, we also evaluated copper as a coating or a
cladding on several Fe-, Co- and Ni-base alloys in resisting metal dusting corrosion in
these alloys.  In addition, we also developed several copper-base alloys with potential
for higher strength and capability for use at elevated temperatures.

Copper was coated on alloys by electrolysis plating method and a minimum
coating thickness of 25 µm seemed necessary based on preliminary screening studies.
Alloys were also clad with copper by cold pressing copper onto the structural alloy.  In
addition, we prepared four copper-base alloys (see Table 7.2) that contained various
amounts of nickel and aluminum.

Experiments were conducted in gas mixtures with several compositions and
system pressures.  Some of the specimens were exposed for >10,000 h.  Results listed
in Table 7.3 shows that copper, copper alloys, and copper-clad specimens do not
degrade by metal dusting.  However, uncoated and un-clad alloys are attacked in the
same environment.  Figure 7.8 shows photographs of the bare and Cu-coated Alloy 800
specimens after testing.  Heavy deposit of carbon was noted on the uncoated specimen
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Table 7.2.  Composition of copper-base alloys evaluated in the study.

Alloy designation Cu (w%) Ni (w%) Al (w%) Others (w%)
Cu-Ni-Al2 90 8 2 ---
Cu-Ni-Al4 88 8 4 ---
Cu-Ni-Al12 48 40 12 ---
Cu-Ni-Al20 40 40 20 ---
Glidcop* 98.9 --- --- Al2O3 1.1%

*Commercial dispersion-strengthened alloy

whereas, no carbon was seen on the coated specimen, indicating lack of coke-
catalyzing reactions on the coated surface.  Figure 7.9 show SEM photomicrographs of
Cu-coated and bare specimens of Alloys 800 after testing.  Pits were observed only on
the uncoated alloy surface.  Figure 7.10 shows macrophotographs of Cu-clad and bare
iron specimens after testing in a metal dusting environment.  The Cu-clad specimen had
no carbon deposit and did not lose weight, whereas the bare sample exhibited
significant carbon deposit and substantial weight loss.  Iron was consumed at a rate of
0.55 mg/cm2•h.  Figure 7.11 shows SEM images of the difference in iron surface before
and after exposure in the metal dusting environment.

Table 7.3.  Metal dusting results on copper and copper-base alloys
Run

Number
Materials Gas

Mixture
Time
(h)

Pressure
(atm)

Results

33 Cu-coated Fe and alloys 4 163 1 Clean surface
35 Cu-clad Fe plate 4 784 1 Clean surface
36 Glidcop 4 144 1 Clean surface
37 Cu-coated iron andalloys 4 792 1 Clean surface
41 Cu 8 100 27 Clean surface
42 Cu 8 100 14 Clean surface
43 Cu 13 100 41 Clean surface
45 Glidcop 4 300 1 Clean surface
49 Cu 10 1131 14 Clean surface
50 Cu 10 100 14 Clean surface
51 Cu 10 113 41 Clean surface
52 Cu 10 680 41 Clean surface
53 Cu 11 8348 1 Clean surface
54 Cu 11 7589 1 Clean surface

Cu-Ni-Al2 14 3381 1 No weight loss
Cu-Ni-Al4 14 3381 1 No weight loss

Cu-Ni-Al12 14 3381 1 No weight loss

56

Cu-Ni-Al20 14 3381 1 No weight loss
59 Cu-Ni-Al4 10 5200 14 No weight loss
60 Cu 10 246 1 Clean surface
61 Cu 21 13,842 1 Clean surface
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a b
Figure 7.8.  Alloy 800 tested in a metal
dusting environment at 593°C for 600 h.
(a) Cu coated and (b) bare.

Figure 7.9.  SEM image of a pit on
Alloy 800 tested in a metal dusting
environment at 593°C for 100 h.

a

b

a

b

Figure 7.10.  Iron specimens tested in a metal dusting environment for 600 h at 593°C.
(a) 0.8-mm thick Cu-clad iron and (b) bare iron coupon.

a ba b

Figure 7.11.  SEM photomicrographs of bare iron specimen (a) before and (b) after
exposure in a metal dusting environment for 100 h at 593°C.
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Although the Cu-coated specimens performed better than the uncoated alloy, the
coated layer degraded after 792-h exposure (see Fig. 7.12).  The carbon-containing
gases seem to diffuse through the micropores that are generally present in the
electrodeposited coatings and eventually react with the underlying substrate alloy
constituents to initiate metal dusting attack.  However, the Cu-clad iron specimen did
not lose weight even after 1576 h exposure, due to lack of porosity in the clad copper
layer and larger thickness of the clad layer.  Figure 7.13 shows a comparison of the
weight change data for several commercial alloys and copper after testing at 593°C and
1 atm.  Results show that copper was not attacked by metal dusting for over 7,000 h.
However, other Fe-base alloys lost weight severely during the same period.  Figure 7.14
shows the change in weight loss for copper after exposure in gas mixtures with carbon
activities of 31 and 104 at 593°C.  The weight loss seems to accelerate at the higher
carbon activity, but still relatively small when compared with those of commercial alloys
(see Fig. 7.13).

Figure 7.12.  Cu-coated Alloy 800 specimen
after 792-h exposure in a metal dusting
environment at 593°C.
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Copper alloys also showed good resistance to metal dusting. No weight loss was
observed for these alloys after 3000-h exposure to carburizing gas.  In fact, the
specimens gained small weight primarily due the internal oxidation of Al in the alloy.
Meanwhile, Ni-base Alloy 214 severely lost weight (see Fig. 7.15).  The copper alloys
also showed excellent oxidation resistance as shown for the Cu40-Ni40-Al20 alloy at
800ºC (Fig. 7.16).  Only Al2O3 phase was observed in the oxide scale (see the XRD
spectra in Fig. 7.17) and as expected, no spinel phase is present.
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7.2.2 Tensile Properties of Copper-base Alloys

Uniaxial tensile tests were conducted on two of the alloys at a strain rate of
1.8x10-4 s-1 in air at room temperature, 400, 600, and 800°C.  The alloys tested
contained 2 and 4 wt.% Al.  Tensile properties such as 0.2% yield strength, ultimate
tensile strength, uniform strain, and total strain were obtained and the values for various
test conditions are listed in Table 7.4.  The last column in the table also gives the
fracture location in various specimens.  It is evident that the fracture was not always in
the center of the gage section but sometimes it is at the top of the gage section or at the
shoulder.  The screening study indicates the potential for Cu-base alloys but substantial
additional effort is needed to quantify the data and commercialize the alloys.  Figures
7.18 and 7.19 show the strength and strain data for various specimens tested at several
temperatures.  Figures 7.20 and 7.21 show the SEM photomicrographs of the fracture
surfaces of the two alloys after testing at various temperatures.   Figures 7.22 and 7.23
show SEM photomicrographs of cross sections of specimens near the vicinity of fracture
surfaces.

Table 7.4.  Tensile data for Cu-base alloys at several temperatures

Alloy

Test
temperature

(°C)

0.2% yield
strength

(ksi)

Ultimate
tensile

strength (ksi)
Uniform

strain (%)

Total
strain
(%) Comments

Cu90-Ni8-Al2 25 88.3 99.0 5.7 9.1 ok
Cu90-Ni8-Al2 400 40.0 51.6 6.4 8.1 shoulder fracture
Cu90-Ni8-Al2 600 8.7 12.6 4.3 18.9 top fracture
Cu90-Ni8-Al2 800 2.3 3.4 20.5 96.1 mid fracture, grip area deform

Cu88-Ni8-Al4 25 111.9 129.3 6.0 8.8 ok
Cu88-Ni8-Al4 400 44.7 51.0 3.9 3.9 shoulder fracture
Cu88-Ni8-Al4 600 4.9 6.2 3.7 78.4 top fracture
Cu88-Ni8-Al4 800 1.9 2.7 14.6 77.6 mid fracture, grip area deform
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Figure 7.18.  Strength data for Cu-Ni-Al alloys in air at a strain rate of 1.8 x 10-4 s-1.
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Figure 7.19.  Stain data for Cu-Ni-Al alloys in air at a strain rate of 1.8 x 10-4 s-1.
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Room temperature 400°C

600°C 800°C
Figure 7.20.  SEM photomicrographs of cross sections of fracture surfaces of 90Cu-8Ni-
2Al alloy after tensile testing at various temperatures.

Room temperature 400°C

600°C 800°C
Figure 7.21.  SEM photomicrographs of cross sections of fracture surfaces of 88Cu-8Ni-
4Al alloy after tensile testing at various temperatures.
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Room temperature 400°C

600°C 800°C
Figure 7.22.  SEM photomicrographs of cross sections of 88Cu-8Ni-4Al alloy after
tensile testing at various temperatures.

Room temperature 400°C

600°C 800°C

Figure 7.23.  SEM photomicrographs of cross sections of 90Cu-8Ni-2Al alloy after
tensile testing at various temperatures.
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8.  PERFORMANCE OF WELDMENTS IN METAL DUSTING ENVIRONMENTS

8.1 Weldments of Ni-base alloys

Table 8.1 lists the weldment specimens selected for the study.  The chemical
compositions of weld materials are similar to those of corresponding base alloys.
However, the solidification structure in the weld zone (being different from those of base
alloys) can behave differently when exposed in metal dusting environments.  The
metallurgical structures of the specimens in as-welded condition were determined by
etching the specimens in a 5% HNO3-methanol solution at 5V for 30 seconds.

Table 8.1.  Weldments of Ni- and Fe-base alloys used in the study

Weldment
designation

Base
alloy

Filler metal/Welding
procedure

Supplier organization

Ni-base alloy weldments
W1 602CA S 6025/GTAW Krupp VDM
W2 230 230W/GTAW Haynes International
W3 HR160 HR160/GTAW Haynes International
W5 690 FM52/GTAW Special Metals
W6 693 53MD/GTAW Special Metals
W7 601 601/GTAW Special Metals

Fe-base alloy weldments
W4 803 617/GTAW Special Metals
W8 347 No filler, e-beam Argonne National Laboratory
W9 310 No filler, e-beam Argonne National Laboratory

W10 353MA 353MA/GTAW Outokumpu
W11 310 ER310/ GTAW Allegheny Ludlum
W12 347 347/GTAW Allegheny Ludlum

Dendrites could be observed in almost all the etched specimens (see Figs. 8.1-
8.6).  The weldment specimens have three distinct parts namely, base metal, Weld
metal, and a heat-affected zone, the thickness of which can be alloy dependent.  The
process of welding an alloy can create metallurgical structures in the weld zone with
several differences when compared with the base metal.  For example, the grains can
be oriented differently, preferential segregation of alloying elements, microporosity, and
generally a non-homogeneous structure can result.  Figure 8.1 shows that the boundary
between weld and base metal of W3 is not as uniform as in other weld specimens.  Only
W5 shows less dendrites and the grain size of the weld area of W5 is larger than that of
the base alloy.
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Figure 8.1.  SEM photomicrographs of cross sections of weldment W1.
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Figure 8.2.  SEM photomicrographs of cross sections of weldment W2.
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Figure 8.3.  SEM photomicrographs of cross sections of weldment W3.
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Figure 8.4.  SEM photomicrographs of cross sections of weldment W5.
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Figure 8.5.  SEM photomicrographs of cross sections of weldment W6.
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Figure 8.6.  SEM photomicrographs of cross sections of weldment W7.



127

Weldments listed in Table 8.1 were exposed at 593°C and 1 atm in Gas 21 at a
carbon activity of ≈104.  Figure 8.7 shows a macrophotograph of the weldments and
corresponding base metals after 3114-h exposure.  Figure 8.8 shows the 3D-profile
map of W3 across the weld area.  Pits had coalesced along the boundary of the weld
and base alloy.  Weldment W7 showed pits predominantly in the weld area (see Fig.
8.9), although the composition of both the base and filler metals is the same.  Figure
8.10 shows a photomicrograph of weldment W7, indicating pit development in the weld
zone.  Weldment exposures and analysis of the size, depth, and distribution of pits were
performed as and when the specimens are retrieved from the exposure runs.

Figure 8.7.  Macrophotograph of weldment and corresponding base metal
specimens after 3114-h exposure at 593°C and 1 atm in a gas mixture with a
carbon activity of 104.

Figure 8.8.  3D-profile map of W3 weldment.  Metal dusting pits had coalesced
into a belt in the boundary between the weld and base alloy.



128

Figure 8.9.  Macrophotograph of weldment W7.  (left) pits in the weld area, (right top)
profile of metal dusting pits in weld area, and (right bottom) depth of a metal dusting pit.

Figure 8.10.  Photomicrograph of
weldment W7 showing pits in the
weld zone.

Weldments W5 and W6 were not attacked by metal dusting even after 9108-h
exposure in high carbon activity gas.  Only a few pits were observed in the weld area of
W1.  Pits in W7 were concentrated in the weld and heat-affected zones of the
specimen.  Pits on W2 and W3 were almost uniformly distributed in both weld and base
metal regions.

Figure 8.11 shows weight loss data for the weldments and the corresponding
base alloys.  Weight loss and pitting were observed on weldments W2, W3, and W7.
Weight loss rate for W3 was highest among the weldments and its base alloy (HR160)
was also subjected to metal dusting, although the weight loss rate of HR160 is less than
that of Alloy 601.
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Weight loss and pitting were observed on weldments W1, W2, W3, and W7.
Although the onset of metal dusting starts early in W3, the weight loss for W7 exceeded
that of W3 after 9109-h exposure in the metal dusting environment.  The weight loss
rates of W1 and W2 in steady growth state are faster than that of W3.  The surface
treatment of the W3 specimen, performed by the supplier, seems to result in a shorter
initiation time and faster growth at the beginning.  However, after the surface material
was removed by the pitting process, metal dusting corrosion reaches a steady growth
rate and the weight loss rate slowed.
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Figure 8.11.  Weight loss data
for weldment specimens and
corresponding base alloys
exposed at 593°C and 1 atm
in a gas mixture with a carbon
activity of 104.
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Figure 8.12.  Expanded view of data in Figure 8.11.
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Pits in the weld area of W7 grew much faster than in other weldment specimens
(see Fig. 8.13).  Its base alloy 601 is attacked easier by metal dusting.  The base alloy
of W3 was uniformly corroded, but the pits on W3 had coalesced along the boundary of
weld and base alloy.  SEM cross section image shows that the boundary between weld
and base metal of W3 is not as uniform as other weld specimens, which may lead to
severe attack on this area.  W1 also developed deep pits at the weld area.  The pits on
W2 were shallow, but a lot of pits were almost uniformly distributed on both weld and
base alloy.  Figure 8.14 shows a comparison of the pit growth rate for Alloy 601 in
polished condition and W7 (a weldment of Alloy 601).  The pitting rate is faster in the
weldment when compared to that in the base alloy.
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Fig. 8.13.  Pit depth as a
function of time for weldment
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8.2 Weldments of Fe-base alloys

Table 8.1 also lists the Fe-base alloy weldments used in the study.  Figures 8.15-
8.20 show the microstructures of various weldments after etching to delineate the
dendritic structures and heat-affected zones.
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Figure 8.15.  SEM photomicrographs of cross sections of weldment W4.
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Figure 8.16.  SEM photomicrographs of cross sections of weldment W8.
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Figure 8.17.  SEM photomicrographs of cross sections of weldment W9.
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Figure 8.18.  SEM photomicrographs of cross sections of weldment W10.
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Figure 8.19.  SEM photomicrographs of cross sections of weldment W11.
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Figure 8.20.  SEM photomicrographs of cross sections of weldment W12.

The base alloy of W4 is Alloy 803 with 25.6 wt.% Cr and the filler metal is Ni-
base Alloy 617.  Many pits were observed on the base alloy (see Fig. 8.21).  However,
only a few pits were observed in the weld area.  Although the pit diameter in the weld
region is small, the depth of the pit is much larger in the weld region compared to that in
the base alloy region (see Fig. 8.22).  W8 was welded by electron beam without filler
metal.  Both weld and base metal regions of W8 were almost uniformly corroded.

 The low Cr content in Alloy 347 made the alloy susceptible to metal dusting
corrosion.  W12 was also made of Alloy 347.  The weld area was severely attacked by
metal dusting.  Pits as deep as 205 µm were also observed in the heat-affected zone.
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Both W9 and W11 were made of Alloy 310 with 25 wt.%Cr.  W9 was welded by electron
beam without filler metal, but W11 was joined using GTAW method, with 0.125” dia.
2%-thoriated tungsten electrode using filler metal ER310.  The resistance to metal
dusting of Alloy 310 is better than that of Alloy 347.  Both W9 and W11 did not lose
weight after 1136-h exposure to Gas 21 at 593°C.  However, the surface on W11 along
the heat-affected zone becomes dark with several small metal dusting pits (see Fig.
8.23).  Although the surface of W9 in the heat-affectted zone is rough, no pit was
observed during the exposure period.  Therefore, electron beam welding may be a
better method for welding materials that are used in metal dusting environment.  Some
dark spots have been observed on W10, which is made of Alloy 353MA.  However, no
weight loss was observed after 1136-h test.

W4 W8 W9

W10 W11 W12

W4 W8 W9

W4 W8 W9

W10 W11 W12W10 W11 W12
Figure 8.21.  Photographs of Fe-base weldments after 1136-h exposure to Gas 21 at
593°C, 1 atm.
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Figure 8.22.  Metal dusting pit on weldment W4 after 1136-h exposure to Gas 21 at
593°C, 1 atm. (left) pit in weld area and (right) pit in base alloy.
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Figure 8.23.  SEM images of heat-affected zones of W9 and W11 weldments.
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9.  FAILURE ANALYSIS IN INDUSTRY-SUPPLIED COMPONENTS

Metal dusting degradation of structural metallic materials has been observed in
plants in the production of syngas, a step used in the manufacture of hydrogen,
ammonia, methanol, and various liquid hydrocarbons.  The failures are generally
observed in the temperature range of 400-700°C in complex gas environments with high
carbon activity (>>1).  Further, these systems operate at elevated pressures, which also
exacerbate metal dusting degradation, since carbon activity increases with an increase
in system pressure.  During the course of this project, we examined several failed
components from a hydrogen-production plant and from a reformer plant.

9.1   Ni-base Alloys Tested in a Reformer Plant

Alloys 602CA and 693 were exposed in a reformer plant of Haldor Topsoe at
659°C and 25 atm.  Two sets of samples were analyzed.  One had been exposed to
metal dusting environment for 1.5 years.  The other had been exposed for 3 years.
Figure 9.1 shows the macrophotograph of Alloy 693 that had been exposed for 1.5
years.  Pit depths and pit diameters were determined by measuring the profile along
lines that pass across the pit regions.  The surface was automatically leveled using
software to maintain the surface leveled during the scan.  Generally, depths of four or
five pits on the surface were measured.  Their 3D mappings are shown in Figs. 9.2 and
9.3.  Figure 9.4 shows the macrophotograph of the specimen that had been exposed for
3 years.  To insert the specimen to surface profiler, it was cut into three pieces as
shown in Fig. 9.4.  Depths of eight pits were measured in this specimen.  Their 3D
mappings are shown in Figs. 9.5-9.8.  Table 9.1 lists the pit depth and pit diameter data
for specimens that were exposed for both time periods.  The maximum pit depth is 72.5
µm for the specimen that was exposed for 1.5 years.  The maximum pit depth increased
to 341 µm for the specimen that was exposed for 3 years, and the depth/diameter ratio
increased as the exposure time increased from 1.5 to 3 years.  The pits in the bent
region are not as deep as those at the flat region of the specimens.

Figure 9.1.  Macrophotograph of
Alloy 693 specimen, after 1.5-y
exposure in metal dusting
environment.
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Figure 9.2.  Profile mapping of pits 1 and 2 on Alloy 693 after exposure to metal dusting
environment for 1.5 years.
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Figure 9.3.  Profile mapping of pits 3 and 4 on Alloy 693 after exposure to metal dusting
environment for 1.5 years.
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Figure 9.4.  Macrophotographs of Alloy 693 specimen after exposure for 3 years.
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Figure 9.5.  Profile mapping of pits 1 and 2 on Alloy 693 that had been exposed to metal
dusting environment for 3 years.
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Figure 9.6.  Profile mapping of pits 3 and 4 on Alloy 693 that had been exposed to metal
dusting environment for 3 years.
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Figure 9.7.  Profile mapping of pits 5 and 6 on Alloy 693 that had been exposed to metal
dusting environment for 3 years.
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Figure 9.8.  Profile mapping of pits 7 and 8 on Alloy 693 that had been exposed to metal
dusting environment for 3 years.

Table 9.1.  Pit depths and diameters in Alloy 693 after 1.5- and 3-y exposures in a metal
dusting environment at 659°C and 25 atm.

Pit Depth (µm) Diameter (µm) Depth/Diameter
Data for specimens exposed for 1.5 y

1 62 432 0.14
2 48 406 0.12
3 38 377 0.10
4 73 593 0.12
5 38 547 0.07

Data for specimens exposed for 3 y
1 332 1540 0.22
2 272 832 0.33
3 331 1540 0.21
4 254 1010 0.25
5 276 783 0.35
6 237 724 0.33
7 341 1840 0.19
8 316 971 0.33

Figure 9.9 shows the macrophotograph of Alloy 602CA that had been exposed
for 1.5 years to metal dusting environment at 659°C and 25 atm.  The depth and
diameter of four pits were measured in this specimen.  Their 3D mappings are shown in
Figure 9.10-9.12.  Figure 9.13 shows macrophotographs of the sample that had been
exposed for 3 years. To insert the specimen to surface profiler, we have to cut it to three
pieces as shown in Fig. 9.13.  Eight pits were measured in this specimen.  Their 3D
mappings are shown in Figs. 9.14-9.16.  Table 9.2 shows the pit depth and pit diameter
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data for specimens that were exposed for both periods.  The maximum pit depth is 307
µm for the specimen that was exposed for 1.5 years.  The maximum pit depth increased
to 645 µm for the specimen exposed for 3 years.  The pits at the bent region are not as
deep as in the flat region, similar to the observation in Alloy 693.
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Figure 9.9.  Macrophotograph of Alloy
602CA specimen, after 1.5-y exposure
in metal dusting environment.
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Figure 9.10.  Profile mapping of pits 1 and 2 on Alloy 602CA that had been exposed to
metal dusting environment for 1.5 years.
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Figure 9.11.  Profile mapping of pit 3
on Alloy 602CA that had been
exposed to metal dusting environment
for 1.5 years.
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Figure 9.12.  Profile mapping of pit 4 on Alloy 602CA that had been exposed to metal
dusting environment for 1.5 years.
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Figure 9.13.  Photos of Alloy 602CA after exposure for three years. The two photos
were taken from different angles.
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Figure 9.14.  Profile mapping of pits 1 and 2 on Alloy 602CA that had been exposed to
metal dusting environment for 3 years.
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Figure 9.15.  Profile mapping
of pit 3 on Alloy 602CA that
had been exposed to metal
dusting environment for 3
years.

1030 um

241
 um

X-range 3320 um

Z-range 381.3 um

Y-ra
nge

 751
0 um

684 um
168

 um

X-range 3320 um

Z-range 381.3 um

Y-ra
nge

 751
0 um



144

830 um

186
 um

X-range 3320 um

Z-range 381.3 um

Y-ra
nge

 751
0 um

3380 um

48
7 u

m

X-range 4970 um

Z-range 574.5 um

Y-
ran

ge
 60

70
 um

3250 um

48
5 u

m

X-range 4970 um

Z-range 574.5 um

Y-
ra

ng
e 6

07
0 u

m

Figure 9.16.  Profile mapping of pits 4-8 on Alloy 602CA that had been exposed to metal
dusting environment for 3 years.

Figure 9.17 shows the pit depth data as a function of pit diameter for Alloys 693
and 602CA after 1.5- and 3-y exposure in a metal dusting environment at 659°C and 25
atm.  If the pit diameters can be correlated with the pit depth as a function of key
variables such as exposure time, carbon activity, system pressure, etc. then one may
be able to assess the pit depth progression from the pit diameter measurements (in a
non-destructive manner) and may be able to predict the remaining life of the component
in service.  All the data lines should pass through the origin since prior to initiation both
pit depth and diameter will be zero.  The data indicate that the pit depth increases at a
faster rate when the pit diameter is small and stabilizes to a linear relationship when the
pit diameter reaches ≈600-700 µm.  The pit depth corresponding to this diameter is
≈150 and 250 µm for Alloys 602CA and 693, respectively, after 3-y exposure in the
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Table 9.2.  Pit depths and diameters in Alloy 602CA after 1.5- and 3-y exposures in a
metal dusting environment at 659°C and 25 atm.

Pit Depth (um) Diameter (um) Depth/Diameter
Data for specimens exposed for 1.5 y

1 208 1120 0.19
2 199 1140 0.18
3 205 1060 0.19
4 31 219 0.14

Data for specimens exposed for 3 y
1 591 3980 0.15
2 356 2120 0.17
3 635 5110 0.12
4 241 1030 0.23
5 168 684 0.25
6 186 830 0.22
7 487 3380 0.14
8 485 3250 0.15
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Figure 9.17.  Relationship
between pit diameter and pit
depth for Alloys 693 and
602CA, after 1.5- and 3-y
exposures in a metal dusting
environment.

metal dusting environment.  The results indicate that for 3-y exposure, the maximum pit
diameters measured in Alloys 693 and 602CA are 1840 and 5110 µm, respectively, and
the maximum pit depths measured for the two alloys are 341 and 635 µm.  The data
further indicate that for a given exposure time, the pits in Alloy 693 are smaller in
diameter but deeper whereas the pits in Alloy 602CA are larger in diameter but
shallower.
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9.2.   Analysis of Failed Components From a Hydrogen Plant

A pipe and a plate, that had metal dusted in a hydrogen-reformer plant, were
analyzed in detail to establish the causes for failure and to compare the observations
from the plant-exposed components with the laboratory-generated data.  The pipe and
the plate were made of Alloy 800HT.  Figure 9.18 shows several large holes in the pipe
and one large hole (≈10 cm in diameter) in the plate.  Specimens were cut from the two
components and analyzed using SEM and Raman scattering.  Figure 9.19 shows SEM
photomicrographs of cross sections of thick and thin parts of the Alloy 800HT pipe, that
was subjected to metal dusting attack.

Figure 9.18.  Macrophotographs of a pipe and a plate obtained from a hydrogen-
reformer plant after failure by metal dusting attack.

(a) Thick part of Alloy 800 pipe        (b) Thin part of Alloy 800 pipe

Figure 9.19.  SEM photomicrographs of cross sections of (a) thick and (b) thin parts of
an Alloy 800HT pipe, subjected to metal dusting attack.

The pipe had a tightly adhering coke layer on the surface, which could not be
easily removed by either ultrasonic cleaning or acetone washing with a cotton tip.  A ≈9
µm oxide scale was observed on the surface of the thick part of the pipe.  However, no
such oxide scale was observed on the surface of the thinner part of the pipe, which was
attacked severely by metal dusting.  Therefore, the alloy in the thin part was directly
exposed to high carbon activity gas without the protection of an oxide scale.  Although
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metal dusting pits appeared on the surface of the thick part of the pipe, its corrosion rate
was much lower than that of the thinner section because it was protected by the oxide
scale.

Figure 9.20 shows EDX mapping of the cross section of the pipe sections.  The
oxygen content in the scale on the surface of the thick part is obviously higher than that
inside the alloy and in coke.  However, the thin part did not have a continuous oxide
scale on the surface.  Therefore, carbon could readily diffuse into the alloy.  EDX line
scan results show that the Fe/Cr ratio in the 9-µm-thick oxide scale is higher than that in
the alloy (see Fig. 9.21).  A solid solution Fe(Cr1-xFex)2O4 can form in the range 0≤ x ≤1.
As shown in Fig. 9.22, FeCr2O4 is stable in the metal dusting environment, but
Fe1.8Cr1.2O4 can react with high carbon activity gases, and the carbon deposition rate in
Fe2.4Cr0.6O4 is much larger than that of Fe1.8Cr1.2O4.  Therefore, spinel with higher iron
content is susceptible to attack by high carbon activity gases.  The average Fe/Cr ratio
for the oxide scale on the surface of Alloy 800 is 2.18, which is much higher than the 0.5
for FeCr2O4. Therefore, this oxide scale seems to be not protective in the metal dusting
environment.

Figure 9.20.  EDX map of cross sections of the pipe from a hydrogen-reformer plant.



148

 

Figure 9.21.  EDX linescan of the cross section of the thick part of the pipe.  9 µm oxide
scale region indicated by arrows.  Alloy is to the right of the scale.
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Figure 9.22.  Weight change data for spinels with various Fe/Cr ratios, during exposure
in Gas 2 (66.2% H2-7.1% CO2-23% CO-1.4% CH4-2.3% H2O) at 593°C.
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Raman spectra show spinel as the primary phase in the oxide scale (see peaks
in Fig. 9.23).  There is almost no Cr2O3 phase in the scale.  Previous study has shown
that Cr2O3 is the desirable phase than spinel to resist metal dusting corrosion.16,17

Figure 9.24 shows the carbon signal that was observed through the oxide scale on the
Alloy 800 surface, indicating that carbon can penetrate even through the oxide scale.
The results obtained from the SEM analysis of the cross section and Raman spectra of
the plate surface are similar to those observed on the pipe.  There was almost no oxide
scale on the surface of the thin part of the plate.  An oxide scale was observed on the
surface of the thick part of the plate, but it contained a high Fe/Cr-ratio spinel and no
Cr2O3.
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Figure 9.23.  Spectra from the cross
section of thick part of the pipe for
Raman shift of 400-750 cm-1.
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Figure 9.24.  Spectra from the cross
section of thick part of the pipe for
Raman shift of 1200-1700 cm-1.

The compositions of phases present in oxide scales in Ni-base alloys are
generally different from those present in the Fe-base alloys.  Figure 9.25 shows the
EDX mapping of the cross section of Alloy 45TM after 3700-h exposure to Gas 10 at
14.3 atm (210 psi) and 593ºC.   This alloy is not as good as other Ni-base alloys at
resisting metal dusting corrosion.  However, the Fe content in the oxide scale on the
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surface of Alloy 45TM is much lower (Fe/Cr = 0.2) than that in the oxide scale on the
surface of Alloy 800 (Fe/Cr = 2.15). Therefore, the corrosion resistance of even a
higher-iron containing Ni-base alloy (Alloy 45TM) is somewhat better than Alloy 800.

Figure 9.25.  EDX line scanning of the cross section of Alloy 45TM after 3700-h
exposure to Gas 10 at 593°C and 14.3 atm (210 psi).  Oxide scale indicated by 0.8 µm
and arrows.

9.3 Analysis of a Metal Dusted Sample From a Gas Boiler

A tube in a gas boiler that had been exposed for 21 months to a gas consisting of
52.31% H2, 0.08% N2, 10.9% CO, 5.01% CO2, 29.08% H2O and 2.63 CH4 at 17.7 atm
(260 psi), failed due to metal dusting attack.  The tube was made of Alloy RA333 (in
wt.%: 25Cr, 45Ni, 18Fe, 3Mo, 3Co, 3W, 1Si, 1.5Mn, and 0.05C).  The incoming gas
temperature was 920ºC and the temperature of the gas leaving the boiler was 340ºC.
About two third of the length of the tube was attacked by metal dusting.  The worst
attack occurred in the vicinity of the outlet where temperature was low.  Figure 9.26
shows a ring that was obtained from the worst area of the tube.  Numerous pits were
present on both outside and inside surfaces of the tube.  The pit diameter was larger on
the inner surface of tube.
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Figure 9.26.  Macrophotograph of
Alloy RA333 tube after 21-month
exposure in a metal dusting
environment.

 Oxide scale (≈6 µm in thickness) was observed in the non-pit area of the tube
(see Fig. 9.27).  Figure 9.28 shows cracking of the oxide scale into two layers.  EDX
mapping indicates that the oxide scale consists of Cr, Mn, and oxygen.  EDX linescan
further shows that Mn content in the outer layer of the oxide scale is high and its content
in the inner layer is low (Fig. 9.29).  This result indicates that the outside oxide scale
may primarily consist of Mn(1+x)Cr(2-x)O4 spinel and the inner layer predominantly consist
of Cr2O3.  The area indicated by the circle in Figure 9.28 shows that the particle in the
region consists primarily of Ni and Fe.  Chromium was depleted from the particle.  The
EDX analysis of the RA333 further validates the presence of carbon channels in the
oxide scale and that the channels consist of metallic Fe and Ni particles.

Pit Oxide scale

 Figure 9.27.  SEM cross section
image of Alloy RA333 tube after
21-month exposure in a metal
dusting environment.
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 Figure 9.28.  Energy dispersive X-ray mapping of the cross section of the non-pit area
of Alloy RA333 after 21-month exposure in a metal dusting environment.

Figure 9.29 shows the EDX mapping of the pit area in the Alloy RA333. The
chromium distribution near the surface area is not uniform. The area with iron and nickel
has less chromium. This indicates that chromium was depleted leaving iron and nickel
which act as channels for carbon diffusion into the alloy.
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 Figure 9.29.  EDX linescan through
the oxide scale developed on surface
of Alloy RA333 after 21-month
exposure in a metal dusting
environment.
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OSEM Cr

Mn Ni Fe

 Figure 9.30.  Energy dispersive X-ray mapping of the cross section of the pit area of
Alloy RA333 after 21-month exposure in a metal dusting environment.
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 10.  SUMMARY

The deposition of carbon from carbonaceous gaseous environments is a problem
in many chemical and petrochemical processes, such as reforming systems and syngas
production systems, iron ore reduction plants, heat treatment, and others.  One of the
major consequences of carbon deposition is the degradation of structural materials by a
phenomenon known as “metal dusting.”  In recent years, an extensive program has
been conducted at Argonne National Laboratory to establish the mechanisms for metal
dusting degradation in metallic materials exposed to carbon-bearing gaseous
environments, to identify the key parameters that influence the onset of metal dusting
and propagation of degradation, to establish the metal wastage under a variety of
exposure conditions, to characterize the morphology of degradation using a wide variety
of analytical techniques, and to assess the effect of alloy chemistry, carbon activity, and
system pressure on the extent of metal dusting.

We have conducted extensive studies on the coke deposit and metal-dusted
alloys using Raman scattering, XRD, and SEM/EDX analysis to develop a fundamental
understanding of the metal dusting process and the key variables that influence the
initiation and propagation of the degradation.  Based on these studies, we concluded
that there exists a strong relationship between metal dusting and degree of
crystallization of the coke and proposed a mechanism for the initiation and propagation
of metal dusting attack.  We found that the coke that has experienced metal dusting
exhibits much better crystallinity than the coke deposits in the absence of metal dusting.
Both metal dusting and carbon filament growth are related to the catalytic crystallization
of carbon.  Carbon does not crystallize well at low temperatures because of the strong
C-C bond and its special layered structure.  Carbon must dissolve and diffuse into a
metal or a carbide particle.  This particle acts as a catalyst to aid in the crystallization of
carbon.  In this catalytic crystallization process, metals are liberated as small particles
which further contribute to metal dusting corrosion.  The catalytic growth of carbon
filaments is due to the transport of carbon from one facet of a metal or carbide particle
that favors carbon deposition (but not carbon precipitation) to another facet that favors
precipitation.  The decrease in free energy from highly disordered carbon to well-
crystallized carbon is the driving force for both catalytic growth of carbon filaments and
for metal dusting.9,11,12

Based on the above studies, we conclude that the metal dusting mechanism for
both iron and nickel are similar, which is due to the carbon catalytic crystallization
process.  The only difference is that iron carbide is thermodynamically stable and can
form and can serve as a catalyst for the carbon catalytic crystallization, but nickel
carbide is thermodynamically not stable.  In the case of nickel, carbon dissolves and
directly diffuses through nickel and uses nickel lattice as a template for its catalytic
crystallization.  Since the rate of the lattice mismatch of nickel and carbon is larger than
that between carbon and Fe3C, the energy barrier is larger for carbon precipitating from
nickel lattice than that for carbon precipitating from Fe3C lattice.  Therefore, the metal
dusting rate for nickel and its alloys is smaller than that of iron and its alloys.
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In the current project, substantial progress was made in evaluating the
performance of metallic materials subjected to simulated metal dusting environments at
1 atm and at high pressures.  Surface profiler has been successfully introduced into
metal dusting research for quantitative measurements on pit characteristics, in
particular, pit depth.  Several accomplishments can be identified from the study as:

• There are two major issues of importance in metal dusting.  First is the formation of
carbon/coke and subsequent deposition of carbon on metallic materials.  Second is
the initiation of metal dusting in the alloy and subsequent propagation of the
degradation.  The first is influenced by the aC in the gas mixture and the availability
of the catalytic surface for carbon-producing reactions to proceed.  There may be a
threshold in aC (>>1) for carbon deposition.  Metal dusting of the alloy in the
reformer environments is determined by a competition between the oxide scale
development and access to the virgin metal surface for the carbon deposit.  In
several long-term metal dusting experiments, we conducted extensive post-
exposure analysis of the specimens to establish the time for initiation of metal
dusting and propagation rates as a function of alloy chemistry, gas chemistry, and
system pressure.

• By conducting long-term tests at 1 and 14.3 atm, while maintaining a carbon activity
of ≈31, we established that the time for initiation of metal dusting is substantially
reduced at the higher pressure, even for Ni-base alloys.  Similar results were
obtained when comparing the surface morphology of specimens tested at 1 and 30
atm at a carbon activity of 104.

• Surface profiler was introduced by the first time into metal dusting research to
measure the depth of pits associated with metal dusting attack.  We also measured
the pit density in several Ni-base alloys using scanning electron microscopy.  Pit
density for each alloy was found to be different.  The results indicated higher pit
density in Alloys 601 and 45TM when compared to that in Alloys 602CA and 693.

• Based on a detailed analysis of pits (in several Ni-base alloys) as a function of
exposure time, we correlated the growth in diameter of a single pit with the weight
change observed for the alloys.   We established that the alloys tested, except Alloy
214, lose weight by localized pitting when exposed in metal dusting environments.
Alloy 214 developed numerous shallow pits leading to more uniform attack.

• Generally, the time for initiation of pits in Ni-base alloys is of the order of thousands
of hours.  However, the pit propagation rate is of major importance in assessing the
viability of an alloy for any chemical process application.  To expedite the initiation
step and thereby emphasize pit propagation, we developed a pre-pitting approach.
We used Alloy 800 and 9Cr-1Mo steel, as surrogate alloys, to develop the pre-pitting
approach, since these alloys have a short initiation time for pitting.  Subsequently,
we applied the same approach to several Ni-base alloys.  The method has led to
development of multiple specimens of each alloy with pits for further study on
propagation as a function of process variables such as temperature, system
pressure, and gas chemistry.
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• We have also developed an approach to identify the locations of pits and potential
pitting areas by an electrochemical copper deposition approach since the pit
locations exhibit low resistance, leading to enhanced deposition of copper.  Copper
indicator experiments showed that there may be channels in the oxide scales for
transfer of carbon into alloy substrates.  These channels could be located because
their electrical resistance is much lower than that of the oxide scale.

• We have tested several Ni-base alloys at a carbon activity of 104 at system
pressures of 1 and 30 atm.  The environment in these tests being more aggressive,
the time for pit initiation is short.  The emphasis in these tests is to quantify the pit
propagation rates and correlate the data with alloy chemistry.

• Synchrotron X-ray nanobeam was used to analyze the thin oxide scale and oxide
sublayers on the surface of alloys after exposure in simulated metal dusting
environment.  Results showed spinel with enhanced iron content as the major phase
in the oxide scale at the metal dusting pit region.  The oxidation state of Iron in spinel
in the oxide scale on alloy surface is greater than +2, which diminishes the stability
of oxide scale in the reducing condition prevalent in the reformer environments.
Nickel metal particles were also identified in oxide scale which may join to form
continuous channels for transport of carbon into the alloys.

• Increasing the Cr content (from 20 to 29 wt.%) in alloys had less effect in decreasing
the pit growth rate when compared with the benefit of decreasing the Fe content in
the alloy on the growth rate.  The presence of Fe in the alloy leads to formation of
(Fe,Cr) spinel phase in the scale.  Over time, the Fe/Cr ratio in the spinel increases
to essentially make it unstable in the high-carbon environments and eventual
breakdown of the protective capacity of the scale.  Therefore, we designed and
prepared several alloys with low concentration of Fe and tested in metal dusting
environments.  Results showed that the ANL-developed alloys formed predominantly
Cr oxide in the scale and the incubation time (for metal dusting) was extended ten
times more than that of the commercial alloys with similar chromium contents.

• We developed a process-control approach to mitigate metal dusting, in which the
metal-dusted alloys (i.e., with pits on the surface) were given an intermediate
oxidation treatment in an atmosphere without carbon.  Subsequent exposure of
these oxidized specimens to metal dusting environments showed substantial drop in
pit-progression rate leading to possibility of extended service life for the metallic
components.

• We also evaluated Cu, Cu-coated, and Cu-clad materials for their susceptibility and
pitting degradation in metal dusting environments.  Copper and Cu-coated materials
did not exhibit adequate resistance to metal dusting, especially after thousands of
hours of exposure.  The performance of Cu-clad alloys is dependent on the
thickness and mechanical integrity of the clad layer.  Additional long-term tests are
needed to establish the adequacy of their performance in metal dusting
environments.
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• We also developed several Cu-Ni-Al alloys and evaluated their resistance in metal
dusting environments and their tensile properties in air.  Cu-Ni-Al alloys were
resistant to metal dusting attack and they need to be evaluated further in a
systematic manner for commercializing them for structural applications.

• We have evaluated weldment specimens of several Fe- and Ni-base alloys in metal
dusting environments at a system pressure of 1 atm.   In general, Ni-base alloy
weldments exhibited superior performance than the Fe-base alloy weldments when
tested in the same environment.  The study focused on the relative performance of
the weld metal, heat affected zone, and base metal upon exposure to metal dusting
environments.  The pit growth rates at the weld area are generally higher than those
of the corresponding base alloys.  Severe corrosion at the heat-affected zones was
also observed.

• We have evaluated the pit progression in Alloys 602CA and 693 that were exposed
at 659°C for 1.5 and 3 years in a metal dusting environment of a reformer plant.
Both alloys exhibited several pits on the surface.  Maximum size of the pit in Alloy
602CA was larger than that in Alloy 693.  The average pit depth/diameter ratio for
Alloy 693 is higher than that for Alloy 602CA.  The size of pits in the bent regions
(probably cold worked) of both Alloys 602CA and 693 are smaller than that in the flat
regions.

• We conducted a detailed analysis of two Alloy 800HT components that failed in a
hydrogen reformer service.  Results showed that the oxide scale on the alloy surface
was predominantly Fe1+xCr2-xO4 spinel phase with high Fe content, which has been
shown to offer little resistance to metal dusting attack.

• We examined a failed component made of Alloy RA333 that was exposed to a metal
dusting environment in a gas boiler.  The analysis showed evidence for Cr depletion
in the surface region and accumulation of Fe and Ni which can act as channels for
transport of carbon and continued metal dusting degradation of the substrate alloy.
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