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BAYESIAN APPROACHES FOR ADAPTIVE SPATIAL SAMPLING: 
AN EXAMPLE APPLICATION 

 
by 
 

R. Johnson, D. LePoire, A. Huttenga, and J. Quinn 
 
 

ABSTRACT 
 

BAASS (Bayesian Approaches for Adaptive Spatial Sampling) is a set of 
computational routines developed to support the design and deployment of spatial 
sampling programs for delineating contamination footprints, such as those that 
might result from the accidental or intentional environmental release of 
radionuclides. BAASS presumes the existence of real-time measurement 
technologies that provide information quickly enough to affect the progress of 
data collection. This technical memorandum describes the application of BAASS 
to a simple example, compares the performance of a BAASS-based program with 
that of a traditional gridded program, and explores the significance of several of 
the underlying assumptions required by BAASS. These assumptions include the 
range of spatial autocorrelation present, the value of prior information, the 
confidence level required for decision making, and “inside-out” versus “outside-
in” sampling strategies. In the context of the example, adaptive sampling 
combined with prior information significantly reduced the number of samples 
required to delineate the contamination footprint. 

 
 

1  INTRODUCTION 
 
 

BAASS (Bayesian Approaches for Adaptive Spatial Sampling) is a set of computational 
routines designed to support the design and deployment of adaptive sampling and analysis 
programs (ASAPs). In particular, BAASS is intended to support spatial sampling programs that 
have the following characteristics: 
 

• The decisions to be made are binary (i.e., contamination either is above some 
predefined threshold or it is not). 

 
• The purpose of sampling is to delineate the spatial extent of contamination. 
 
• Spatial autocorrelation is present. Spatial autocorrelation is present when the 

results of samples that are spatially close exhibit correlation. The spatial 
autocorrelation range is the sample separation distance beyond which no 
correlation in sample results is observable. 
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• “Soft” conceptual information is available that indicates, at the outset, where 
contamination is likely to be found and where it is not likely to be found. Soft 
information refers to information that is indicative of the presence or absence 
of contamination at a particular location, but not definitive. In contrast, a 
sample result would be considered definitive. 

 
• A “real-time” (i.e., able to return measurement results quickly enough to 

affect sampling program decisions) measurement technology is available that 
can reliably discern whether contamination is above or below the predefined 
threshold for the location being measured. 

 
As the example illustrates, in this setting BAASS can produce sampling programs that 

achieve much better delineation results with far fewer samples than a traditional gridded program 
can accomplish. 
 

As presently formulated, BAASS is not applicable to situations where: 
 

• The primary goal is to estimate the average level of contamination over an 
area. 

 
• Contamination is highly “spotty,” that is, it displays very little spatial 

autocorrelation or exists in spots too small to be detected by on-site sampling 
or scanning. 

 
• Sampling programs where the entire program needs to be designed and 

implemented without the benefit of “real-time” results. 
 

BAASS incorporates a combination of Bayesian techniques and ordinary indicator 
geostatistics into its routines. Bayesian analysis provides a quantitative way to update one’s 
understanding of a probabilistic phenomena as more information becomes available. For any 
particular location, whether contamination exists above some predefined threshold or not is not 
known definitively unless a sample is collected at that point. We can infer the probability, 
however, on the basis of other information available for that location and/or sampling results 
from neighboring locations. Bayesian statistics captures the likelihood of contamination at a 
location in a “prior” probability density function (pdf). As new nearby sample results become 
available, Bayesian analysis provides a mechanism for updating the prior pdf, converting it to a 
posterior pdf. The posterior pdf reflects the probability of contamination existing at a location 
given all the information available up to that point in time. 
 

Geostatistics is a set of tools for the analysis of spatially correlated data. The two key 
components of a geostatistical approach are the variogram and kriging. The variogram is a 
measure of the spatial autocovariance of data sets as a function of separation distance. Data are 
correlated up to a separation distance termed the range. Beyond the range, data are uncorrelated. 
Kriging is an interpolation methodology that is based on sample data and the variogram model; it 
provides an unbiased minimum-variance estimate of values throughout the spatial domain. 
Ordinary kriging is a form of kriging in which the local mean data values do not match the global 
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mean of the data. Indicator geostatistics works with data that have been transformed into 0 and 1 
values, representing the presence or absence of some characteristic of interest. Geostatistics 
allows us to infer the probability of contamination existing at a location where no samples have 
been collected or measurements made, on the basis of the neighboring sample or measurement 
locations. 
 

BAASS requires the following: 
 

• A set of decision points, usually in the form of a systematic rectangular grid, 
that is superimposed over the area of concern. The selection of the appropriate 
decision point density is driven by two conflicting requirements: spatial 
resolution needs and computational tractability. In general, the decision point 
grid needs to be dense enough so that grid point separation is less than the 
presumed spatial autocorrelation range for the contaminant(s) of concern, but 
not so dense that computation time becomes impracticable. BAASS provides 
estimates of the likelihood of contamination being present above some 
predefined threshold at each decision point, and identifies new sampling 
locations that will improve likelihood estimates. 

 
• Two-parameter beta pdfs assigned to each decision point. The “prior” beta pdf 

for any given decision point reflects the probability of finding contamination 
at that point above the predefined threshold on the basis of all initial 
information and the certainty associated with that assessment. In a hazardous 
waste site setting, the set of prior pdfs represents the initial Conceptual Site 
Model (CSM) for the site. For hazardous waste sites, initial information would 
likely have come from a site reconnaissance, interviews, and a historical 
records review. In an environmental emergency response setting where an 
atmospheric release of contaminants has taken place, an example of initial 
information would be the results from National Atmospheric Release 
Advisory Center (NARAC) fate and transport computer modeling. BAASS 
provides a mechanism for accommodating situations where no prior 
information exists, making use of “noninformative” priors. As sampling 
results are generated, BAASS provides the routines for updating prior beta 
pdfs into “posterior” pdfs that reflect both initial beliefs and more recently 
acquired measurement results. The role that prior pdfs have on the initial 
development of a sampling program and its ultimate efficacy are illustrated by 
the example application that follows. 

 
• Some assumptions must be made about the spatial autocorrelation present for 

the contaminant(s) of concern. This spatial autocorrelation is associated with 
the indicator status of contamination (i.e., above or below the threshold), not 
with raw data values. Variograms provide one method for assessing the 
presence and nature of spatial autocorrelation present in sample or 
measurement results. Practical experience has shown that indicator 
variograms are superior to parametric variograms of raw data, which typically 
do not show clear structure. Of primary importance is specifying the shape of 
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the presumed covariance function and its range. The initial selection of a 
covariance function range can be based on available information (i.e., for 
situations where fate and transport modeling provides some sense of likely 
contaminant spatial distribution, the covariance function could be derived 
from the predictive modeling results), or it can be based on what is the 
minimum size of contamination footprints one wishes to find. In the latter 
case, a rule of thumb is to set the indicator spatial autocorrelation range to the 
average “width” of contiguous contamination footprints one wishes to 
identify. Alternatively, if a suitable number of sample or measurement results 
are available at the onset, then the range may be determined through a 
variogram analysis using geostatistical packages external to BAASS. 

 
BAASS methodology details can be found in Johnson (1996). The advantages of an 

adaptive sampling program for contaminant footprint delineation are greatest when 
contamination footprints are contiguous or blocky and “well-defined.” Suppose a site is broken 
into a set of regularly gridded cells, some of which are contaminated, on average, above a 
threshold, and some of which are not. A measure of the blockiness of a contamination footprint 
is the ratio of the number of “clean” cells that share at least one side with a contaminated cell to 
the number of contaminated cells (Thompson and Seber 1996).  
 

Figure 1 illustrates the concept of blockiness. Figure 1 shows three different 
contamination events, each of equal area. The more “scattered” contamination is 
(e.g., Scenario C), the higher the ratio. This is an important concept because as this ratio 
increases, the benefits of using BAASS decrease and area characterization moves from 
delineating areas of contamination to simply being able to correctly identify isolated 
contamination occurrences. For the three cases illustrated by Figure 1, this ratio ranges from 1.3 
for Case A, to 2.0 for Case B, to 2.6 for Case C. In theory, at the one extreme this ratio 
approaches 0 for cases where contamination footprints are very large and consolidated. At the 
other extreme, the ratio will have a value of 4 when contamination is isolated to individual cells 
that are separated from each other by at least two clean cells. In the case of the environmental 
release of radionuclides and subsequent deposition on surfaces, one would expect in general that 
contamination footprints would be relatively well-defined and contiguous, giving rise to 
relatively small blockiness ratios. 
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FIGURE 1  Different Forms of Contamination Clustering 
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2  MEASURING PERFORMANCE 
 
 

BAASS can address two basic sampling program goals: (1) estimating the area (in two 
dimensions) or volume (in three dimensions) of material contaminated above some predefined 
threshold, and (2) determining the precise spatial location of material that exceeds the predefined 
threshold. In the context of these two sampling goals, the question is how one can measure the 
performance of any particular sampling program design. 
 

For the first goal, there are two basic metrics for measuring the ability of a sampling 
program to estimate the area or volume of contamination. The first (assuming that the 
methodology is inherently unbiased) is the degree of uncertainty associated with the estimate for 
any given set of samples. The second is the rate at which that uncertainty is reduced with 
increasing sample numbers.  
 

There are several ways to address the uncertainty associated with a contaminated volume 
or area estimate (and to generate the estimate itself). One approach assumes that samples are 
systematically or randomly distributed across the region of concern and that the probability of 
any sample exceeding a guideline follows a binomial probability distribution. The contaminated 
volume/area estimate is then simply represented by the ratio of sample numbers exceeding the 
guideline to total samples collected, multiplied by the area or volume of the region of concern. If 
the number of samples is sufficiently large, then consistent with the Central Limit Theorem, the 
distribution of this ratio can be approximated by a normal distribution; confidence intervals can 
then be calculated for the ratio, and consequently for the area/volume estimate. 
 

A second approach is to lay a grid of points across the region of concern and infer the 
probability of contamination exceeding the guideline at each of the grid points, on the basis of 
available sample results. Indicator kriging provides one methodology for inferring grid-node-
specific exceedance probabilities. Once grid-node-specific exceedance probabilities have been 
calculated, an area/volume estimate can be constructed by finding the expected probability of 
exceedance across the grid node set. Alternatively, an area or volume estimate could be 
estimated by the fraction of grid nodes with probability exceeding 0.5 multiplied by the area or 
volume of the region of concern. In the latter case, uncertainty estimates could be formed by 
looking at the number of grid nodes that exceed a lower probability threshold (e.g., > 0.1) and an 
upper probability threshold (e.g., > 0.9). 
 

For the second goal, determining the location of contamination, two errors can be made 
when identifying a particular location as contaminated (contamination concentrations above a 
predefined threshold) or clean (contamination concentrations below a predefined threshold). 
These are “false positive” conclusions (i.e., locations are identified as contaminated when in fact 
they are clean) and “false negative” conclusions (i.e., locations are identified as clean when in 
fact they are contaminated). A metric that can be used to measure the ability of a sampling 
program to identify correctly a contamination footprint is the observed false positive and false 
negative rates. 
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3  EXAMPLE DESCRIPTION 
 
 

The site of interest (Figure 2) is 250 ft by 250 ft in size (or slightly larger than 1 acre). It 
contains a waste lagoon, a storage building, and is bounded on two sides by roads. In addition to 
the location of the lagoon, there is limited topographic information for the site. The hypothetical 
contamination event involves a breach of the lagoon’s banks and overland flow of contaminated 
liquid, resulting in surface soil contamination. Figure 2 shows the site and the actual footprint of 
soil with contamination above the regulatory threshold. The site owner is aware that 
contamination occurred, but does not know the extent or exact footprint of contamination that 
will need to be addressed. The purpose of the sampling program in this instance is two-fold: 
(1) estimate the contaminated surface area, and (2) delineate the contamination footprint. An 
alternative way of stating the latter is that the goal is to determine which portions of the site are 
likely clean, at some prespecified probability level. 
 
 

 

FIGURE 2  Example Site 
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To facilitate the analysis of the performance of various sampling program designs, a 
rectangular 25-by-25 node grid is superimposed over the site, resulting in a grid spacing of 10 ft. 
Each grid node is assumed to represent the conditions of its 100-ft2 grid cell. Figure 3 shows the 
locations of these nodes, or decision points. With this set of grid nodes, the minimum number of 
samples required to completely delineate the boundary would be 86. For the purposes of this 
example, it is assumed that sampling a decision point definitively determines whether the area 
represented by that decision point contains contamination above or below the threshold. 
 

For this particular example, the ratio of boundary decision points to the number of 
contaminated decision points is 0.45, indicating that it is a likely candidate for an application of 
BAASS. 
 

 

FIGURE 3  Decision Point Grid for Example Site 
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4  TRADITIONAL PROGRAM DESIGN PERFORMANCE 
 
 

In a traditional sampling program, samples are typically laid out on a regular grid across 
the area of interest, sampled, and then all of the samples analyzed by an off-site laboratory. This 
kind of program assumes that one can estimate the appropriate number of samples required and 
their locations prior to the fieldwork. Table 1 shows the results for 5 different traditional 
sampling programs, ranging from 12 samples to 203 samples. In each case, a triangular grid was 
used with a random start. Figure 4 visually shows the sampling results for each of these 
programs. 
 

In each case, the estimate of the contaminated surface area was the fraction of samples 
that exceeded the threshold multiplied by the area of the site. Confidence limits can be calculated 
for these estimates by assuming that the indicator results from the sampling program followed a 
binomial distribution with a probability of contamination equal to 0.5 (an assumption that yields 
the largest confidence interval for any given number of samples and their associated results). In 
this instance, confidence intervals can be calculated using a normal distribution approximation. 
Table 1 includes the confidence intervals calculated in this manner. The negative lower 
confidence interval for 12 samples reflects the approximate nature of our normal assumption 
when sample numbers are small (i.e., under an assumption of normality, negative values are 
possible; in actuality, the lower confidence interval is bounded by zero). As one would expect, 
the confidence intervals tighten as sample numbers increase. One would expect the rate of 
tightening to be proportional to the inverse of the square root of sample numbers, that is, 
increasing sample numbers by a factor of 4 would shrink the confidence interval by a factor of 2. 
This rate is confirmed by the values in Table 1. With 203 samples, the 90% upper confidence 
level on the mean is still 29% greater than the best estimate. This methodology provides an  
 
 

TABLE 1  Contaminated Areas Estimated with Gridded Programs 

 
Best Estimates and Uncertainty (ft2) 

Program 

 
Lower 90% 

Confidence Limit Best Estimate

 
Upper 90% 

Confidence Limit 
    
Reality Not applicable 10,000 Not applicable 
Gridded 12 samples -6,353a   5,208 16,769 
Gridded 20 samples    420   9,375 18,330 
Gridded 42 samples 7,213 13,393 19,572 
Gridded 105 samples 6,211 10,119 14,027 
Gridded 203 samples 7,041   9,852 12,663 
 
a The negative area results from using a normal approximation when 

computing the confidence interval with a small number of contributing 
samples. 
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FIGURE 4  Traditional Gridded Sampling Programs 
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estimate of the area of contamination along with confidence levels; it does not, however, provide 
any information about exactly where that contamination is spatially located. 
 

For the purposes of contamination delineation, the indicator sample results (0,1) for each 
traditional sampling program were interpolated to the decision point grid using ordinary kriging, 
and assuming an exponential covariance function with a range equal to 50 ft. In this particular 
case, 50 ft was selected as representing the width of the smallest contiguous area that might be 
contaminated. A search neighborhood of 50 ft was also applied, with a maximum of eight sample 
results (the closest eight) used to support the interpolation at any particular location. The end 
result was an estimate at each decision point of the probability of exceeding the threshold.  
 

For the purpose of this discussion, if decision points had a contamination probability less 
than 0.1, the associated cell was assumed to be clean. In the context of either hazardous waste 
site decision making, or environmental emergency response, if the probability of contamination 
is not sufficiently low for a particular location, action would have to be taken (e.g., remediation 
or evacuation). For this example, decision points with contamination probabilities greater than 
0.1 and their associated cells were treated as dirty. Error rates were then determined by 
comparing the conclusions drawn from interpolating the sample results with the actual 
contamination footprint for the complete set of decision points. False negative numbers represent 
decision points with calculated contamination probabilities less than 0.1, but which, in fact, were 
contaminated. False positive numbers represent decision points with calculated contamination 
probabilities greater than 0.1, but which, in fact, were clean. Table 2 summarizes the error rates 
observed for each of the traditional programs. Figure 5 shows the interpolated footprint for each 
of the programs (i.e., the set of decision points with probability of contamination greater than 
0.1), with the actual footprint overlain. 
 

As one would expect, false positive and false negative errors in general decrease as 
sample numbers increase. False negative errors are reduced to zero for programs that have 
42 samples or more. However, even with 203 samples, the resulting interpolated footprint still 
encompasses 35% more area than the actual footprint contains.  
 
 

TABLE 2  Comparison of Sampling Program Performance When Determining Contamination 
Footprints 

  
Contaminated Area Estimate (ft2) 

 
Errors 

 
 

Program 
Probability 

> 0.1 

 
Best 

Estimate 
Probability 

> 0.9 

  
False Negative 

(ft2) 
False Positive 

(ft2) 
       
Reality Not applicable 10,000 Not applicable  Not applicable Not applicable 
Gridded 12 samples   8,100   6,100 4,800  5,600  3,700 
Gridded 20 samples 17,700   8,200 6,800  2,300 10,000 
Gridded 42 samples 19,100 10,700 4,400         0   9,100 
Gridded 105 samples 16,400 10,100 5,200         0   6,400 
Gridded 203 samples 13,500 9,900 6,600         0 3,500 
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FIGURE 5  Contamination Footprints Based on Gridded Programs 
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5  ADAPTIVE PROGRAM PERFORMANCE 
 
 

The BAASS methodology can improve sampling program performance in two ways. The 
first is by bringing soft information into the analysis in a manner that influences both the 
estimate of contamination area or volume and the design of the sampling program to improve 
that estimate. The second is by adapting or adjusting the sampling program in response to 
real-time measurement results. This section reviews the performance of BAASS using this 
example for a number of different scenarios and evaluates the sensitivity of BAASS’s 
performance to soft information, spatial autocorrelation assumptions, required decision-making 
confidence levels, and “inside-out” versus “outside-in” sampling strategies.  
 

For the purposes of this analysis, the same 625-node grid of decision points described 
previously is used. The presumed spatial autocorrelation is captured by an exponential 
covariance function with range equal to 50 ft. A search neighborhood is applied to the indicator 
interpolation process with radius equal to the assumed spatial autocorrelation range and a 
maximum number of sampled locations contributing to any particular interpolation limited to the 
nearest eight. Capping the number of sampling locations contributing to the interpolation 
enhances computational performance. Implementing a search neighborhood both improves 
computational performance and addresses the fact that contamination distributions across a site 
are nonstationary.  
 

Contamination status at decision points is determined by the probability at each point that 
contamination exceeds the requirement. Decision points with a contamination probability less 
than 0.1 are presumed clean. All other decision points are treated as contaminated. The primary 
goal of the majority of the adaptive programs that will be discussed is the same: to maximize the 
number of decision points that can be shown to be clean (i.e., have a contamination probability 
< 0.1). As will become clear from the examples, this goal translates into delineating 
contamination footprints, working from the outside inwards (i.e., from areas known to be clean 
toward areas known to be contaminated).  
 

In each case (except where noted), the implementation of the adaptive program is the 
same: a location is selected that maximizes the clean area expected, a measurement is taken, the 
beta pdfs for every decision point are updated on the basis of the sampling result, the next 
location is selected, and the process is repeated until the goals of the sampling program have 
been achieved. 
 
 
5.1  NONINFORMATIVE PRIOR 
 

Soft information regarding the contamination status of an area is captured by the prior 
beta pdfs that are applied to each of the decision points. These pdfs reflect the initial belief about 
contamination distribution for the site (i.e., the likelihood at any particular location that 
contamination is present at levels exceeding guidelines). In the unlikely absence of prior 
information, a noninformative prior can be used. A noninformative prior assigns the likelihood 
of contamination being present to 0.5 for each grid node by using small (<1) values for the beta 
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distribution parameters, alpha and beta. For the beta distribution, setting alpha equal to beta 
results in an expected probability of 0.5 (alpha and beta must be nonnegative). Small alpha and 
beta values reflect the fact that there is little information contributing to this expected 
probability. Small alpha and beta parameter values ensure that as samples are collected and beta 
pdfs updated, that the value of information provided by sample results will be greater than that 
associated with the initial noninformative prior. For the purposes of this example, alpha and beta 
are set to 0.3 for each decision point. 
 

By definition of the noninformative prior, the whole site is presumed to be contaminated 
at the start (i.e., the expected contamination probability at each decision point is 0.5, which is 
greater than the 0.1 requirement for any particular decision point to be classified as clean). This 
means that if the site were remediated on the basis of the noninformative prior alone, all of the 
contaminated area would have been remediated. The resulting remediated surface area would 
have been more than six times larger than necessary to address the actual contamination 
footprint. 
 

Figure 6 shows the progression of the adaptive sampling program for this scenario at 
several key steps. Samples results are color-coded as either green (results below threshold) or red 
(results above threshold). In each map, green areas capture decision points with expected 
probability less than 0.1. Orange areas have a probability of contamination greater than 0.1. The 
details resulting from this program are contained in Table 3. Table 3 shows the error rates 
observed at each step of the sampling program. As a point of comparison, the error rates for the 
traditional programs are included as well.  
 

As Table 3 illustrates, even with a noninformative prior, an adaptive sampling program 
outperforms a traditional gridded program from an error rate perspective for this example. The 
initial performance is better for the traditional gridded program because the small number of 
samples is systematically distributed across the area, whereas the BAASS sampling program 
evolves from one end of the site working toward the other, with sample spacing initially driven 
by the assumed spatial autocorrelation range. After approximately 20 samples, BAASS has 
covered the site and achieved much lower false negative rates than its gridded program 
counterpart, although false positive rates are still higher. By 42 samples, BAASS is 
outperforming the gridded program from an error rate perspective. After 110 samples, the 
BAASS methodology could no longer identify additional sampling locations that were both 
likely to yield a clean result and increase the number of decision points classified as clean. False 
negative rates were reduced to zero after 27 samples. After 110 samples, the area incorrectly 
identified as potentially contaminated was 500 ft2, significantly lower than the 3,500-ft2 false 
positive area that a gridded program with almost twice as many samples produces. 
 
 
5.2  “GOOD” PRIOR 
 

In this second scenario, additional information is brought to the design and 
implementation of the adaptive sampling program. In this case, we know that the contamination 
event involved the movement of contaminated liquid over the ground’s surface, and that the local  
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FIGURE 6  Adaptive Program Progression with Noninformative Prior
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TABLE 3  Sampling Program Details 

 
Traditional 

Grid 

 
Noninformative

Prior 
 

Good Prior Bad Prior 

 

Correct Range 

 
Lower Confidence 

Level (40%) Inside-Out 

Sample 

 
False 

Neg. (ft2) 
False 

Pos. (ft2) 

 
False 

Neg. (ft2) 
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)

 
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
                 

  1    0 51,600 1,100 5,800 4,600 14,900  0 26,000 4,800 1,400 300 12,500 
  2    0 49,500 300 7,000 5,200 8,200  0 25,400 2,800 2,200 300 12,500 
  3    0 47,400 1,300 3,900 5,200 5,300  100 21,300 3,000 700 600 7,800 
  4    100 45,400 2,600 3,400 5,200 3,200  0 30,400 1,100 2,600 200 9,600 
  5    200 42,900 2,600 2,200 2,900 5,100  100 25,000 700 6,400 200 8,800 
  6    100 43,100 2,600 1,800 2,900 4,600  200 21,700 700 4,800 200 8,700 
  7    100 40,800 2,500 2,900 2,900 3,700  200 18,800 900 3,600 500 8,500 
  8    100 41,400 2,500 2,000 2,200 4,400  200 11,300 1,000 2,700 300 10,200 
  9    100 39,300 800 3,500 1,800 6,300  200 8,200 1,000 1,900 300 9,800 
10    100 37,300 800 5,100 1,800 5,400  100 12,500 1,200 900 300 9,300 
11    100 35,300 800 3,600 1,800 5,000  100 8,100 1,700 600 300 9,700 
12 5,600   3,700  100 33,200 0 5,200 1,800 4,400  100 5,800 1,000 900 300 8,300 
13    100 33,400 0 4,500 1,800 4,000  100 4,200 900 1,400 400 7,200 
14    100 31,400 0 6,000 1,800 4,400  100 6,300 400 2,600 0 8,200 
15    100 29,300 0 4,900 1,800 4,000  100 4,100 600 1,500 0 9,500 
16    100 27,200 0 7,500 1,800 3,600  0 5,800 500 2,300 0 8,800 
17    100 25,100 0 6,600 1,000 5,700  0 3,900 500 1,500 0 10,300 
18    100 23,000 0 5,600 1,000 4,900  0 4,300 500 1,100 0 11,600 
19    100 20,900 0 4,600 1,000 4,000  0 3,800 500 1,300 0 12,400 
20 2,300 10,000  100 18,800 0 4,100 0 4,900  0 3,200 500 900 0 11,700 
21    100 16,600 0 3,700 0 7,800  0 3,600 500 500 0 12,200 
22    100 17,400 0 2,800 0 7,300  0 3,000 200 800 0 10,900 
23    100 15,900 0 2,400 0 6,500  0 3,500 200 600 0 11,000 
24    100 15,000 0 1,900 0 5,500  0 3,000 300 500 0 8,700 
25    100 14,100 0 1,500 0 4,600  0 2,600 200 700 0 7,600 
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TABLE 3  (Cont.) 

 
Traditional 

Grid 

 
Noninformative

Prior 
 

Good Prior Bad Prior 

 

Correct Range 

 
Lower Confidence 

Level (40%) Inside-Out 

Sample 

 
False 

Neg. (ft2) 
False 

Pos. (ft2) 

 
False 

Neg. (ft2) 
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)

 
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
                 

26    100 13,300 0 1,200 0 6,200  0 2,300 200 700 0 8,200 
27    100 12,400 0 1,400 0 5,200  0 2,000 200 600 0 8,000 
28    0 13,900 0 1,100 0 4,600  0 1,600 200 500 0 8,100 
29    0 12,600 0 900 0 4,700  0 1,600 300 500 0 8,800 
30    0 11,800 0 1,600 0 4,300  0 1,400 300 500 0 8,100 
31    0 10,700 0 900 0 3,900  0 1,800 300 500 0 8,400 
32    0 12,500 0 1,100 0 3,600  0 1,400 300 500 0 8,400 
33    0 11,300 0 900 0 3,300  0 1,200 300 400 0 8,400 
34    0 10,400 0 1,000 0 3,000  0 1,200 300 300 0 9,100 
35    0 9,600 0 800 0 2,800  0 1,400 200 300 0 8,400 
36    0 8,900 0 800 0 2,500  0 1,200 200 200 0 7,400 
37    0 9,200 0 600 0 2,500  0 1,000 100 200 0 7,400 
38    0 10,000 0 400 0 2,300  0 1,100 100 200 0 6,600 
39    0 11,600 0 200 0 2,100  0 3,400 200 200 0 6,100 
40    0 9,900 0 300 0 1,900  0 1,100 200 100 0 6,000 
41    0 9,400 0 500 0 1,700  0 1,100   0 6,000 
42 0   9,100  0 8,900 0 300 0 1,800  0 1,100   0 6,400 
43    0 8,400 0 200 0 1,600  0 1,200   0 5,100 
44    0 7,900 0 300 0 1,400  0 1,100   0 5,100 
45    0 8,300 0 200 0 1,200  0 1,000   0 5,100 
46    0 7,700 0 400 0 1,400  0    800   0 5,100 
47    0 7,200 0 300 0 1,100  0    700   0 5,400 
48    0 6,700 0 700 0 1,200  0    800   0 5,200 
49    0 6,300 0 300 0 1,100  0    700   0 4,300 
50    100 6,300 0 500 0 1,000  0    600   0 4,700 
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TABLE 3  (Cont.) 

 
Traditional 

Grid 

 
Noninformative

Prior 
 

Good Prior Bad Prior 

 

Correct Range 

 
Lower Confidence 

Level (40%) Inside-Out 

Sample 

 
False 

Neg. (ft2) 
False 

Pos. (ft2) 

 
False 

Neg. (ft2) 
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)

 
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
                 

51    100 6,000 0 300 0 1,000  0    500   0 5,200 
52    100 5,400 0 400 0 1,000  0    400   0 5,300 
53    100 5,100 0 300 0    900  0    300   0 4,300 
54    100 4,800 0 500 0 1,000  0    200   0 4,100 
55    100 4,500 0 300 0    900  0    200   0 4,100 
56    100 4,200 0 700 0    900      0 3,700 
57    0 3,800 0 300 0 1,100      0 3,700 
58    0 4,100 0 200 0    900      0 3,900 
59    0 5,100 0 100 0    800      0 4,000 
60    0 4,000   0    700      0 4,500 
61    0 4,000   0    600      0 4,700 
62    0 3,700   0    500      0 4,100 
63    0 3,400   0    400      0 4,100 
64    0 3,100   0    300      0 4,100 
65    0 3,600   0    300      0 4,100 
66    0 3,200            
67    0 3,000            
68    0 2,800            
69    0 3,000            
70    0 2,800            
71    0 2,600            
72    0 2,500            
73    0 2,300            
74    0 2,100            
75    0 2,100            
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TABLE 3  (Cont.) 

 
Traditional 

Grid 

 
Noninformative

Prior 
 

Good Prior Bad Prior 

 

Correct Range 

 
Lower Confidence 

Level (40%) Inside-Out 

Sample 

 
False 

Neg. (ft2) 
False 

Pos. (ft2) 

 
False 

Neg. (ft2) 
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)

 
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
                 

76    0 2,100            
77    0 2,000            
78    0 2,100            
79    0 2,000            
80    0 2,100            
81    0 2,100            
82    0 2,000            
83    0 2,200            
84    0 2,000            
85    0 2,200            
86    0 2,300            
87    0 2,100            
88    0 2,200            
89    0 2,100            
90    0 2,100            
91    0 2,000            
92    0 1,900            
93    0 2,000            
94    0 1,900            
95    0 1,800            
96    0 1,700            
97    0 1,600            
98    0 1,500            
99    0 1,400            
100    0 1,300            
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TABLE 3  (Cont.) 

 
Traditional 

Grid 

 
Noninformative

Prior 
 

Good Prior Bad Prior 

 

Correct Range 

 
Lower Confidence 

Level (40%) Inside-Out 

Sample 

 
False 

Neg. (ft2) 
False 

Pos. (ft2) 

 
False 

Neg. (ft2) 
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)

 
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
False 

Neg. (ft2)
False 

Pos. (ft2)
                 

101    0 1,200            
102    0 1,100            
103    0 1,100            
104    0 1,000            
105 0 6,400  0    900            
106    0    800            
107    0    700            
108    0    600            
109    0    600            
110    0    500            
203 0 3,500  0             
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topography would have controlled which way the contaminated liquid traveled. By using the 
topographical information for the site, a “prior” or initial CSM was constructed, as shown in 
Figure 7. This prior was constructed by setting beta distribution parameters at each decision 
point to reflect the initial information available. As simple examples, we know with certainty that 
the lagoon footprint is contaminated. Decision points falling within the lagoon footprint have 
their alpha and beta values set accordingly (i.e., beta set to zero, and alpha to a large number). 
Conversely, we know with certainty that the building footprint downgradient from the lagoon is 
clean. Decision points falling within the building footprint have beta set to a large number, and 
alpha set to zero. For all other areas of the site, we select alpha and beta to reflect our belief 
about contamination probabilities, with both parameters kept around one or less, to reflect the 
fact that these beliefs are not at all certain. 
 

The resulting prior, color-coded in Figure 7, might be referred to as a “good” prior. It 
captures the majority of the actual contamination, while carving away portions of the site that are  
 
 

 

FIGURE 7  Initial Conceptual Site Model Using Prior Information 
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unlikely to be contaminated. Still, this prior is far from perfect. An error analysis of the decisions 
that would be made on the basis of this prior alone reveals that 4% of the contaminated area 
would have been missed, and we still would have remediated more than twice what was 
necessary. 
 

Figure 8 shows the progression of the adaptive sampling program for this scenario at 
several key steps. The details resulting from this program are contained in Table 3. Table 3 
includes the error rates observed at each step of the sampling program. With a “good” prior, 
BAASS consistently outperformed the 203-sample gridded program after only 22 samples. 
Compared with the noninformative prior scenario, the availability of a “good” prior allowed the 
adaptive sampling program to hone in on the actual contaminant boundary much faster than in 
the noninformative case. After 60 samples, the BAASS methodology can no longer identify 
additional sampling locations that are both likely to yield a clean result and increase the number 
of decision points classified as clean. At this stage of the adaptive sampling program, both false 
negative and false positive errors have been reduced to zero. 
 
 
5.3  “BAD” PRIOR 
 

There may be cases where initial, soft information is misleading (i.e., an incorrect initial 
CSM). The question in this instance is how badly an adaptive sampling program might perform 
given faulty information at the outset. Figure 9 shows a “bad” prior scenario. This prior misses 
almost 70% of the actual contamination footprint. In this particular case, if BAASS is allowed to 
pick sampling locations on the basis of this prior with the goal of maximizing clean areas, the 
prior is so misleading that BAASS will fail to identify the presence of contamination outside the 
footprint of the lagoon. However, if the adaptive sampling program is “seeded” with a sample 
that encounters contamination (alerting BAASS to the presence of contamination outside the 
lagoon), BAASS will proceed to delineate the contamination. 
 

Figure 10 shows the progression of the adaptive sampling program for a “seeded” 
scenario at several key steps. In this case, the seeded location was selected to ensure that 
contamination would be encountered with the first sample. The details of the resulting adaptive 
sampling program are contained in Table 3. Compared with the “good” prior, the misleading 
prior in this case results in a sampling program that is not as efficient when delineating the 
contamination boundary. It takes almost twice as many samples to drive false negative errors to 
zero than for the “good” prior scenario. After 64 samples, the BAASS methodology can no 
longer identify additional sampling locations that are both likely to yield a clean result and 
increase the number of decision points classified as clean. At this stage of the adaptive program, 
there still remains 300 ft2 of false positive area. However, the resulting sampling program is still 
significantly more efficient than a traditional gridded program. 
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FIGURE 8  Adaptive Sampling Progression Based on “Good” CSM 
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FIGURE 9  Initial Conceptual Site Model Based on Misleading Information 
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FIGURE 10  Adaptive Sampling Progression Based on “Bad” CSM 
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5.4  SPATIAL AUTOCORRELATION RANGE ASSUMPTIONS 
 

BAASS requires an assumption about the range of the spatial autocorrelation presumed 
present. For sites where no samples exist, the spatial autocorrelation range assumption represents 
an educated guess. An assumed spatial autocorrelation range that is smaller than reality means 
that the resulting sampling density will likely be greater than actually necessary. An assumed 
spatial autocorrelation range that is larger than reality means that one will be estimating 
probabilities of exceeding guidelines that are far too certain (e.g., close to 1 or 0) than reality 
would warrant. For the simple example presented, the actual indicator autocorrelation range is 
110 ft, or a little more than twice the range used for the scenarios presented thus far. 
 

Figure 11 shows the progression of the adaptive sampling program if one uses the 
“correct” spatial autocorrelation range and the “good” prior described in Section 5.2. The details 
of this adaptive sampling program are contained in Table 3. Using the correct autocorrelation 
range reduces the number of samples required to completely delineate the contamination 
footprint by about 10% in this case. Setting the spatial autocorrelation range to 150% of its true 
value produces a sampling program that, with only one “clean” sample located close to the actual 
contamination, concludes that there is no contamination present. The repercussions of 
overestimating the spatial autocorrelation range are significant ⎯ potentially missing 
contamination completely. 
 

The spatial autocorrelation range assigned to any particular problem to a large degree 
determines initial sample spacing for BAASS applications. The implications are that when the 
presence or absence of contamination within a large area (i.e., an area whose scale is much 
greater than any presumed spatial autocorrelation range) is unknown, the number of samples 
BAASS will allocate to that area in search of contamination will be determined by the assumed 
spatial autocorrelation range. A rule of thumb to use in this case is to set the autocorrelation 
range to the width of a contaminated area that would be important to find, if it existed. 
 
 
5.5  MODIFYING ACCEPTABLE UNCERTAINTY LEVELS 
 

In the scenarios presented thus far, sample locations were selected on the basis of their 
expected ability to increase the number of decision points deemed clean. The definition of 
cleanup to this point has been an expected probability less than 0.1. This section presents the 
impact from changing acceptable uncertainty levels on the evolution of the adaptive sampling 
program. For this scenario, the clean cutoff is raised to 0.4, that is, decision points that have an 
expected probability of contamination less than 0.4 are presumed clean. The goal of the sampling 
program is to maximize the number of decision points that satisfy that criterion. The “good” 
prior CSM is used as the basis for initiating the program. 
 

Figure 12 shows the progression of the adaptive sampling program using this uncertainty 
level. The details of this adaptive sampling program are contained in Table 3. Surprisingly, 
relaxing the uncertainty requirements for decision making actually appears to make the sampling 
approach initially more efficient for this example in delineating the contamination footprint.  
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FIGURE 11  Adaptive Sampling Progression with Correct Range and “Good” CSM 
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FIGURE 12  Adaptive Sampling Progression with Relaxed Confidence Level Requirements 
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While a lingering false negative problem remains through 40 samples, the false positive rate was 
significantly lower, particularly early in the program. The likely explanation is that relaxing the 
required confidence level allows a wider initial spacing for the sampling program. This, in turn, 
allows more rapid coverage of the overall site. After 40 samples, the BAASS methodology can 
no longer identify additional sampling locations that are both likely to yield a clean result and 
increase the number of decision points classified as clean using a 0.4 probability level.  
 

One option for leveraging the apparent initial lower false positive rates that the relaxed 
confidence level provides is to initiate an adaptive sampling program with a relaxed level of 
uncertainty until good sampling coverage for the area of concern has been achieved, then tighten 
confidence level requirements to drive out any remaining false positive and false negative errors. 
Applying this logic, one could drive the first 30 samples using a 0.4 confidence level. Tightening 
this to a 0.1 confidence level for the balance of the program would yield exactly the same total 
number of samples (60) as the program that uses the 0.1 confidence level throughout, but with 
significantly improved false positive error rate performance at the outset of the program. 
 
 
5.6  INSIDE-OUT VERSUS OUTSIDE-IN STRATEGIES 
 

All of the adaptive sampling examples presented to this point drive sample selection by 
maximizing the area believed to be clean at some probability level. This translates practically 
into an outside-in approach to boundary delineation. An alternative approach would be to 
maximize the area believed to be contaminated at some probability level. This would translate 
into an inside-out approach to boundary delineation. This section presents the impact of changing 
from an outside-in to an inside-out program. The objective is to maximize the number of 
decision points believed to be contaminated at a 90% level. The “good” prior CSM is used as the 
basis for initiating the program. 
 

Figure 13 shows the progression of the adaptive sampling program. The details of this 
adaptive sampling program are contained in Table 3. As Table 3 indicates, for this example an 
inside-out approach yields consistently lower false negative rates for most of the samples 
collected than the outside-in approach exemplified by maximizing the error defined as clean. 
This is at the expense, however, of false positive errors, which are consistently and significantly 
higher throughout the course of the program than the outside-in alternative. 
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FIGURE 13  Inside-Out Approach to Contamination Delineation  
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6  DISCUSSION AND CONCLUSIONS 
 
 
6.1  ADAPTIVE SAMPLING PROGRAM PERFORMANCE 
 

For this simple example, in all adaptive cases considered, the adaptive sampling program 
converged on the actual footprint with far fewer samples than a traditional gridded program. 
Convergence is measured by the false positive and false negative error rates observed. In the best 
case, using a “good” prior and the correct spatial autocorrelation range, after only 20 samples the 
adaptive program achieved consistently lower false positive and false negative error rates than a 
gridded program with 203 samples. Even in the worst case presented, with a noninformative 
prior and an incorrect range, the adaptive program consistently outperformed the 203-sample 
gridded program after only 42 samples had been collected. 
 

For hazardous waste site or emergency response decision making, the health risk 
repercussions of false negative errors (i.e., missing contamination of concern) are significantly 
greater than those for false positive errors. The adaptive programs presented were almost all 
driven by the same goal: maximize the area categorized as clean or safe at a prescribed 
confidence level (which is directly equivalent to establishing an acceptable false negative rate). 
Because the driver was the false negative rate, in general, the false negative rates observed as 
adaptive sampling progressed were significantly lower than the false positive rates. The one 
alternative considered, an inside-out approach that maximized the area known to be 
contaminated at the 90% confidence level, yielded slightly lower false negative rates at the 
expense of significantly higher and lingering false positive rates. The possibility of completely 
missing contamination because of a faulty CSM suggests that rather than pursuing a purely 
inside-out or outside-in approach, a more effective option would be to “search-and-bound,” that 
is, to invest initial data collection in verifying that contamination is present at specific locations 
where it is suspected, and then to switch to a program that finds boundaries by maximizing the 
area verified as clean. 
 

For all but one of the adaptive sampling program scenarios considered, the confidence 
level for determining that a decision point was clean was set to 90% (i.e., if the expected 
probability of contamination at that decision point was determined to be less than 0.1, the 
decision point was considered clean). If this probability was accurately estimated, and all of the 
clean decision points had an expected probability of contamination equal to 0.1, then one would 
expect that 10% of those points would in fact turn out to be contaminated. Figure 14 shows the 
expected and observed false negative rate for several of the adaptive sampling program scenarios 
as a function of sample number. Here the expected rate is simply calculated as the expected or 
average probability value across the set of decision points determined to be clean. Figure 14 
underscores several key points: 
 

• In general, the expected false negative rates were significantly below 10% 
throughout the sampling sequence for most of the programs. This is not 
surprising when one compares the expected false negative rates with the 10% 
criteria. In fact, requiring that all decision points categorized as clean have a  
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FIGURE 14  Expected and Observed Error Rates for Different Sampling Scenarios 
 
 

probability of less than 0.1 means that, on average, the probability of 
contamination across that set is less than 0.1, as is illustrated by the expected 
false positive rates. Thus, if one’s goal is to achieve a particular false positive 
rate on average across a set of decision points, the confidence level required 
for any particular point can be relaxed. 

 
• The expected false negative rate is strongly linked to the assumed spatial 

autocorrelation range. The longer the range, the greater the influence sampling 
results have on the estimated probability of contamination for neighboring 
decision points, and the lower the expected false negative rates derived from a 
given set of samples. Ranges that are larger than reality result in estimated 
probabilities at decision points that are much more confident than the data 
would warrant. Conversely, ranges that are smaller than reality result in 
estimated probabilities whose confidence is underestimated.  
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• For the adaptive sampling programs, the observed false negative rates were 
even less than the expected false negative rates. There may be several reasons 
for this, but one likely explanation is the fact that the presumed range was less 
than the actual range. In contrast, for small sample numbers the actual false 
negative rate for the traditional gridded sampling program was larger than the 
expected false negative rate.  

 
 
6.2  STOPPING CRITERIA 
 

Adaptive sampling programs can be open-ended. In many cases, the number of samples 
that can be collected is resource constrained, that is, there is a fixed budget allocated to data 
collection, or a limited set of data acquisition assets have a limited window of time to capture 
data. In resource constrained settings, the question is not when to stop sampling, but how to 
make sure sampling resources are used most efficiently.  
 

However, when resources are not constrained, the question is how to determine when 
sufficient samples have been collected. Figure 15 shows how the categorization of surface soils 
changes as an adaptive sampling program progresses. In Figure 15, soils have been broken into 
three categories: (1) those deemed clean (expected probability of contamination less than 0.1), 
(2) those deemed contaminated (expected probability of contamination greater than 0.9), and 
(3) those with expected probabilities falling between these two levels. As Figure 15 illustrates, 
the “gain” (as measured by increase in area deemed clean) per sample in general decreases as 
more samples are collected. The variability observed in Figure 15 is the result of individual  
 
 

 

FIGURE 15  Site Categorization as a Function of Sample Numbers 
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samples unexpectedly encountering contamination (i.e., instead of reaping gains in the clean area 
as expected, the area considered contaminated grows and the clean area shrinks). Figure 16 
presents the same conclusion a bit differently. Figure 16 plots the average gain in clean area per 
sample, where the average represents the average gain of that particular sample and the two 
previous samples. Average gain is used here to smooth out some of the variability observed in 
Figure 15. For remediation programs, sampling stopping criteria become a financial cost-benefit 
calculation. When the marginal cost of sampling exceeds the average remediation cost avoided 
by reclaiming an area as clean, then sampling should stop. In an emergency response situation, 
appropriate stopping criteria are not as obvious and would likely involve significant political 
input. 
 

It is important to note that there is an ultimate sampling end point for the types of 
adaptive programs presented in these scenarios. This occurs when BAASS can no longer identify 
sampling locations that it expects will add to the “clean soils” category. However, this end point 
may represent a larger number of samples than would be justified on the basis of a stopping 
criterion. 
 
 
6.3  SPATIAL AUTOCORRELATION RANGE ASSUMPTIONS 
 

Geostatistics provides tools for determining the range of spatial autocorrelation present 
for a contamination event on the basis of sample data. However, an accurate assessment of the 
true spatial autocorrelation range present for a given situation requires a substantial data set. For 
many hazardous waste sites, and certainly in an emergency response situation, these data sets are  
 
 

 

Figure 16  Clean Area Gain as a Function of Sample Numbers 
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not available before additional data collection takes place. The question then is what spatial 
autocorrelation range value should be used for BAASS. As already discussed, spatial 
autocorrelation ranges that are too small will lead to overly dense sampling program designs. 
Spatial autocorrelation ranges that are too large lead to overly confident decision making and the 
possibility of missing contamination that is present. The consequence of the first error is wasted 
resources (time and money). The consequence of the second error is the potential for 
unacceptable health risks. 
 

Identifying an appropriate spatial autocorrelation range upon which to base BAASS 
analysis can be approached in several ways. The first is to consider whatever soft information is 
immediately available (e.g., fate and transport modeling results) that might suggest the size of a 
contamination footprint one would expect. The average width of this expected footprint could be 
a starting point. A second is to identify the size of a contamination footprint that would be 
critical to identify, if it did indeed exist. Again, the average width of this critical size could 
function as a first estimate at a spatial autocorrelation range. When using BAASS, the range can 
be adjusted and refined as data become available that provide support for a variogram calculation 
of the range value. 
 
 
6.4  CERTAINTY LEVEL SPECIFICATIONS 
 

The scenarios presented suggest that the certainty level specification is perhaps not as 
critical a factor in sampling program success as one might expect. In fact, from the perspective of 
quickly determining the approximate footprint of contamination, the scenario with the relaxed 
confidence level appears to have been more efficient than the scenario with a tightened 
confidence level. In both cases, the final error rates observed when the sampling programs were 
complete were significantly less than the confidence levels required. The primary risk of less 
restrictive confidence levels is overlooking contamination altogether. However, one hybrid 
approach would be to initiate an adaptive sampling program with a loose confidence level, and 
then subsequently tighten the level once all sampling under the loose confidence level was 
complete. Implementing this for the example problem suggests that initial false positive errors 
can be significantly reduced, while still achieving the same overall sampling efficiency. 
 
 
6.5  INITIAL CONCEPTUAL SITE MODEL 
 

The CSM represents one’s initial understanding of the likely distribution of 
contamination. It is captured in the prior beta distributions defined for each decision point. The 
scenarios indicate that a “good” CSM can lead to significant sample number reductions as 
compared with having no prior information, but that an adaptive sampling program can perform 
well even under a “bad” initial CSM. The primary danger with a “bad” CSM is the risk of 
missing contamination altogether because areas are identified as not requiring any sampling at 
all, when in fact contamination is present. To at least partially offset the potential negative 
effects of a “bad” CSM, an adaptive sampling approach that begins as an inside-out approach to 
first identify locations where contamination is present and that then switches to an outside-in 
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approach to bound the encountered contamination may make the most sense. This form of 
program could be termed a search-and-bound approach. 

 
 

6.6  APPROACH LIMITATIONS 
 

The implementation of BAASS and associated adaptive sampling programs, as described 
here, is specifically applicable to the identification and delineation of contamination when there 
are clearly defined thresholds that distinguish between contamination levels that are of concern, 
and those that are not. The efficiencies observed are predicated on the presence of spatial 
autocorrelation. If spatial autocorrelation is not present at a site, and/or if the range of spatial 
autocorrelation is less than the separation distance between decision points, then the value of 
BAASS is lost. Also, BAASS assumes that sampling produces results that are representative of 
the contamination status of the location where the sampling occurred. The implementation of 
BAASS, as described here, presumes that both measurement error and short-scale heterogeneity 
are not a significant concern for indicator (yes/no) decision making. The presence of 
measurement error and/or short-scale heterogeneity are problematic for sampling programs in 
general, be they adaptive programs or more traditional gridded programs. 
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