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1.  Introduction 
 
 
 It is a reality of modern neutron cross section evaluation procedures that nuclear 
models play a pivotal role. While the quality of results derived from these models varies 
considerably depending on the reaction type, isotope, sophistication of the codes, 
availability of experimental data for comparison and benchmarking purposes, etc., a 
distinct advantage of nuclear models is that the various partial cross sections 
automatically sum up to the total cross section, thereby leading to internal consistency of 
any evaluated file generated exclusively by using nuclear models. When the modeling is 
guided by reliable experimental data, where available, then the model parameters are 
constrained by these physical observations, and the overall quality of the file improves. In 
cases where explicit data are lacking, the experience and good judgment of the nuclear 
modeler, as well as systematic considerations, can serve as guides in constraining the 
choice of values for the parameters, often leading to reasonably reliable results, especially 
for the stronger reaction channels. While many of the contemporary evaluated files have 
been generated in large part by using nuclear models, the ability to generate covariance 
(uncertainty) information for these files is generally lacking, mainly due to absence of an 
agreed upon procedure for generating this information. 
 

One approach that has been explored elsewhere is to provide estimates of 
uncertainties for the parameters used in the model calculations, and then propagate these 
uncertainties – with the aid of sensitivity parameters calculated from the nuclear model – 
to produce covariance information for the derived results. In fact, experimental data have 
even been fitted by such models and these fits used to generate evaluations [1]. Although 
this deterministic approach has been applied in a few cases, it is rather labor intensive. In 
this communication a different method is suggested, namely, a statistical one based on 
utilizing the prodigious power of modern computers and the well-known Monte Carlo 
technique. 
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2.  Description of the Method 
 
 

alues is calculated for all these 
action channels and selected energies. It is recommended that at least 1000 such 

historie

mples of such evaluations can be generated in a matter of several hours – or 
perhaps at most a day – of computer running time. Existing nuclear model code packages, 
with seamlessly linked modules, can be invoked as subroutines for a master “driver” code 
that prepares the input for each history and analyzes the accumulated results to produce 
the desired covariance matrix. 

 
Critics will argue that the uncertainty associated with a particular evaluation 

generated using nuclear models cannot be limited solely to the effects of model parameter 
uncertainties. There is also the matter of model limitations and deficiencies as well as 
other considerations to account for. While this argument is certainly true conceptually, in 
fact it should be possible in a pragmatic way to account for these additional uncertainty 
sources in all the derived results reasonably well by their inclusion within the framework 
of parameter uncertainties, provided that these uncertainties are adequately posed. There 
appears, in the view of this author, to be no other viable alternative to generating in an 
objective way covariance matrices for evaluations derived directly from computer 
modeling. Certainly, if one accepts the idea that uncertainties in physical quantities 
calculated from model parameters ought to reflect the uncertainties in the underlying 

In simplest terms, the approach presented here proceeds as follows: The evaluator 
(nuclear modeler) first chooses a set of “best” parameters that will yield a complete 
evaluation for the particular isotope of interest. The selection of these “central values” 
will be guided by experimental data, experience of the evaluator, etc. It should represent 
the best effort that the evaluator is able to muster using the objective information at hand. 
The present approach is conceived, at this stage of its development, to apply only to the 
fast neutron region since those techniques used in evaluations of data for the thermal, 
resolved resonance, and unresolved resonance regions are all quite distinct. In principle, 
however, such a limitation is somewhat artificial, and consistent procedures for applying 
the present method to the thermal, resolved resonance, and unresolved resonance regions 
could be developed over time. 

 
For convenience, a common energy grid should be selected for all considered 

reaction channels. Then, random variations are made simultaneously to all of the nuclear 
model parameters for each of a selected number of Monte Carlo “histories”. For each 
history, a distinct collection of comparable derived v
re

s (preferably more) be pursued in order to achieve a reasonable degree of 
statistical convergence (~3%). At the end of this sampling procedure, the collected Monte 
Carlo results are utilized in a statistical analysis which automatically generates a global 
covariance matrix that expresses the uncertainty in the calculated quantities, including 
cross correlations (or anti-correlations) between different energies and reaction channels. 
Using modern computer workstations (or even personal computers), a single history, 
corresponding to a complete evaluation with a given set of parameters, can generally be 
completed within a matter of minutes (or perhaps even seconds)! Thus, adequate 
statistical sa
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parameters, the Monte Car  a sense is comparable to 
conventional error propagation – is inherently reasonable. 

arameters must carry the “burden” of generating a 
conside  larger number of derived results, e.g., cross sections for a collection of 
reaction

lo approach suggested here – which in

 
In this report, some of the details associated with implementing this approach are 

discussed. In practice, the utility of this method can be established only by demonstrating 
its applicability to several practical examples. However, no attempt has been made in the 
present work to carry out such an exercise because the requisite computational tools are 
not readily available to this author. However, as we shall see below, such an investigation 
is currently being pursued by another scientist who is experienced in the development 
and application of nuclear model codes (see Section 8). 

 
One point is clearly evident to this author a priori: The covariance matrices 

generated by this approach will surely exhibit rather strong correlations. The reason for 
this is that relatively few p

rably
 channels over a wide range of energies extending from perhaps a few tens of 

keV to several tens of MeV. This follows from the general observation that when a large 
number of values are computed using just a few parameters, the uncertainty correlations 
for the derived results are frequently large. A characteristic “stiffness” of evaluated files 
generated using nuclear models is unavoidable even if the correlations between the input 
model parameters are weak or non-existent (which, of course, is not entirely the case in 
reality). It is a fact of life that the nature of the covariance matrices generated by a 
selected evaluation process depends strongly on the input information used and the 
process employed in the evaluation itself. The present method, where nuclear models are 
involved, is no exception. Thus, the approach discussed here is in keeping with the broad 
notion that covariance matrices for evaluated quantities should be generated, where 
possible, by methods that are intimately consistent with the underlying evaluation 
procedures. 
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3.  Mathematical Formalism 
 
 
 

alues, differential cross sections, 
gamma

global covariance matrix associated with the evaluation. 
 
 Now, let us define “k” as the index that identifies a particular “history” in the 
ensuing Monte Carlo analysis. We supposed that k = 1,K. That is K histories are pursued 
in the statistical analysis. For each history, there corresponds a parameter set pk and the 
derived set of evaluated results σk. Each parameter set pk is generated by varying all of 
the individual parameters relative to their central values in a manner to be discussed 
below. Each individual history, denoted by the index “k”, corresponds to production of a 
completely new evaluation for the isotope in question, i.e., it produces cross sections for 
all included reactions at all the selected energies, and, if desired, may also include 
differential and integral results as well as particle emission spectra. Of course, a subset of 
the complete evaluation could be examined without any loss of generality, if that is 
desired. The elements of the n x n global covariance matrix V of absolute uncertainties 
(encompassing all considered reactions and energies corresponding to a particular 
isotope) can be estimated in a straightforward manner from the following expression [3]: 
 

Vij = <(σik-σi0)(σjk-σj0)>     for i,j = 1,n .                                    (1) 
 

Let us suppose that pl is a typical parameter of the nuclear model used to generate 
an evaluated file. We shall then assume that there are L such parameters in total that 
exhibit uncertainty, i.e., l = 1,L. We can represent these parameters by the vector p. 
Furthermore, assume that the symbol σi corresponds to a distinct physical quantity 
calculated using the nuclear model (embodied in a nuclear model code package) using 
parameters p. These can be a collection of cross sections for several reactions and 
energies, or can even be particle emission spectrum v

-ray spectra, etc. The list of these physical quantities that are to be included in the 
evaluation, as well as the energies, is established prior to the analysis described here. The 
list is finite, thus i = 1,n, and the collection can be represented symbolically by the vector 
σ. A functional (one-to-one) deterministic relationship exits between p and σ, i.e., σi = 
fi(p) for i = 1,n. The relationship is complicated, however, and can be established only 
through the selected nuclear modeling procedure and extensive numerical calculations. 
For convenience, let p0 correspond to the evaluator’s choice of “best” parameters for the 
model used to generate a particular evaluation, as indicated above. This choice is guided 
by experimental data, systematical considerations, experience, etc., in the usual fashion. 
It is not envisioned that this should be a global parameter set such as one might find in 
RIPL [2], but rather a set of parameters “tuned” for optimal representation of the best 
available objective information for the specific isotope in question. Of course, in the 
absence of such an optimal “local” parameter set, global values might be used provided 
that adequate parameter uncertainties are assigned. The consequence of applying this 
choice of values for the parameter set is the collection of derived results σ0 that 
represents the final evaluation for the isotope in question. For convenience, we refer to 
these numbers as the “central” values for the purpose of analyzing uncertainties and 
generating a 
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The symbol <…> signifi esults obtained from the 
ollection of K histories. Thus, more explicitly, 

lts and the model 
compared as part of 

 
atrices) o

e augmented, as requ
 resonance regions. Each distinct region can be addressed according to the 

es averaging with respect to the r
c
 

Vij =  (1/K) × Σk=1,K (σik-σi0)(σjk-σj0)      for i,j = 1,n .                           (2) 
 

Arguments over whether K or K-1 should appear in the denominator of Eq. (2) 
are of no significance since K should be as large as is practicable given the available 
computer resources, and certainly at least as large as K = 1000 (~3% statistical 
“accuracy” in the computed averages), as mentioned above. If a relative covariance 
matrix (i.e., a matrix involving fractional errors) is desired, it can be obtained readily 
from the expression 
 

Rij = Vij/(σi0×σj0)    for i,j = 1,n .                                            (3) 
 
If the correlation matrix is sought, it can be obtained directly from the expression 
 

Cij =   Vij /(Vii ×Vjj )    for i,j = 1,n .                                          (4) 
 
One might anticipate that 
 

σi0 ≈ (1/K) × Σ k=1,K σik    for i = 1,n .                                         (5) 
 
That is to say that the mean values obtained from analysis of Monte Carlo sampling 
results should lie rather close to the central values as defined above. If the parameter 
uncertainties are relatively small, and consequently the spreads in derived values obtained 
by Monte Carlo simulation are also relatively small, then the assumption expressed in Eq. 
(5) is probably reasonably valid. However, Eq. (5) need not be unconditionally true due 
to the largely non-linear relationships between the derived resu

arameters. In any event, mean values and central values should be p
the analytical process to insure that nothing has gone seriously wrong in the procedure. 
 

Equations (1) - (5) offer a rational approach – in a statistical sense – to the quest 
for the appropriate covariance matrices to apply for evaluations based entirely on nuclear 
modeling. Furthermore, by resorting to Monte Carlo simulation one avoids the 
difficulties associated with determining a very large number of sensitivity parameters 
numerically (actually they are approximations to partial derivatives), although explicit 
sensitivity information can be extracted from this analysis if desired. All the needed 
variances (or standard deviations) are produced automatically along with correlations 
between distinct energies, various reaction channels, etc. In short, by implementing this 
approach we work the computer very hard and our brains less so. The results obtained 
using the present method can be cast into the appropriate selected evaluated data formats, 
and our problem of producing viable covariance matrices for evaluations generated from 

uclear models is solved, at least for the fast-neutron region. The global matrix (or then
various sub-m btained in this manner for the fast neutron region can eventually 

ired, to include uncertainties for the thermal, resonance, and b
unresolved
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dictates of the applicable evaluation methodology. Cross-energy-region covariances can 
then be introduced, most probably in an ad hoc manner initially, in order to yield 
omplete covariance matrices for the entire general purpose “vertical” evaluation. 

 
But, it is widely acknowledged that “God” (or the “Devil” for that matter) can be 

found 

c

 
in the details. Improperly handled, such numerical details could doom a 

conceptually reasonable approach to certain failure. So, in the next sections some of these 
details are discussed and suggestions as to how the various pertinent issues might be 
addressed are offered. 
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4.  The Model Parameters 
 
 
 It was noted above that a collection of parameters p is used to characterize the 

Uncertainties for continuous parameters can be represented by probability density 
functions or, more commonly, by mean values and standard deviations. If the 
uncertainties are modest (e.g., less than 20%), then these distributions can be adequately 
approximated by Gaussians [3]. If the uncertainties are larger, and the physical quantities 
are defined to be non-negative, then the lognormal probability function should probably 
be used [4]. In any event, the sampling of parameter space can, in general, be carried out 
in accordance with the usual methods used to sample random variables from 
distributions. However, it is well known that the parameters that constitute the numerical 
embodiment of a nuclear model cannot be treated as completely independent random 
variables. There are physical constraints between these parameters to consider, e.g., such 
as the one introduced by the well known “Vr2 ≈ invariant potential well strength” 
relationship for nuclear potentials [5]. These constraints can lead to non-negligible 
correlations. Thus, sampling to generate random parameter vectors pk for the Monte 
Carlo exercise must be carried out with great care to take such correlations into account. 
When correlations do exist, the individual parameters of this vector may not be varied 
completely independently. One way to carry out the sampling, at least when the 
uncertainties are modest, might be to perform a linear transformation from real parameter 
space to a pseudo space of comparable parameters where the correlations essentially 
vanish. Values for these pseudo parameters could be selected independently at random 
(without concern for correlations) and then transformed back again to realistic parameters 
for the purpose of calculating physical quantities in the Monte Carlo trial. The details of 
how to do this properly will probably entail a fair amount of additional investigation and 
such an effort should be undertaken eventually. 

 
The influence of parameter correlations, while ultimately of considerable 

importance, is nevertheless a detail that can be examined later in the development of the 
present method. For simplicity, the concept discussed here should be demonstrated at the 
outset by assuming that all the continuous variable parameters of the model are 
uncorrelated. In fact, it would be interesting to eventually compare the results obtained 
with and without the inclusion of correlations in the model parameter set. Of course, even 
if the model parameters are treated as uncorrelated, correlations will emerge for the 
derived cross sections, etc. In passing, it should be noted that such a Monte Carlo 
approach has been used with considerable success by the nuclear astrophysics 
community, especially by the ORNL group [6]. The “parameters” of their analyses are 
stellar reaction rates. Uncorrelated uncertainties are assumed for these values. The 
“model code”, in this case, is a model of stellar evolution. The derived results are mean 
values for stellar isotopic abundances and their associated uncertainties. 

model (or computational process if you will) that generates an evaluation denoted 
symbolically by the vector σ.  Among these parameters are particle potential radii, well 
depths and diffuseness, discrete level parameters, level densities, etc. These parameters 
are of two types: continuous and discrete. 
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Another category of model parameters is the discrete category, e.g., spins, 

arities, and those discrete parameters specifically associated with the pre-compound 

lly, one should take care to insure that the 
ncertainties assumed for all the various parameters of the model correspond to 

comple

p
model. How should uncertainty be handled here? Consider an example. An important 
low-lying level might have either spin/parity 1/2- or 3/2- . If we don’t know which it is we 
could assign 50% probability to each possibility, and for every individual history select 
one or the other based on a binary “coin toss” approach; this is not hard to do with 
random number generator routines. Fina
u

tely equivalent degrees of confidence for each of them [3]. Simply stated, it is 
inappropriate to assume uncertainty corresponding to a one-sigma error bar for one 
parameter while assuming a three-sigma error bar uncertainty for another one. 
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5.  The Derived Quantities 
 

 (negative 
correlations) between this sub-matrix and other sub-matrices for other reactions would 
also be generated. The evaluator’s dream of being able to ascertain correlations between 
various reaction channels would be realized because evaluations generated by nuclear 
models produce, simultaneously and in a unified fashion, values for cross sections and 
other observables corresponding to all considered reaction channels and energies. The 
power of this approach is impressive, but the evaluator should not lose sight of the 
underlying simplifying assumptions of the model, nor of the fact that the uncertainty 
estimates and correlations assigned to the model parameters may, by necessity, be 
somewhat ad hoc. As long as this point is kept clearly in mind by the evaluator, and the 
inherent deficiencies and limitations of the process are made known to the user 
community to the extent possible, it would appear that the advantages of this approach 
outweigh the disadvantages. Error bands corresponding to the derived covariance 
matrices should be plotted along with the central values and experimental data, where 
available, to see if the obtained standard deviations are reasonable. In particular, in cases 
where data exist, even if sparse, the parameter errors should be chosen so that these error 
bands are reasonably consistent with the observed scatter in the available experimental 
data. 

 
 It has already been mentioned that σ can symbolize a wide variety of derived 
physical quantities generated by nuclear model calculations. So, in practice there exists a 
bookkeeping problem to deal with. In all likelihood, the first covariance files that would 
be generated by this method would correspond to integrated, energy-dependent cross 
sections for a selected set of reaction channels addressed by the model, and for a 
collection of chosen energies. The covariance matrix for a particular reaction, but 
corresponding to all the selected energies over the range considered, would correspond to 
a sub-matrix of the global covariance matrix described above. Correlations between 
elements of this sub-matrix will appear, and correlations or anti-correlations
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6.  Coding Issues 
 
 

To implement the approach discussed above requires the development of a 
driver/controller master computer code that utilizes a chosen suite of nuclear modeling 
codes in a subordinate mode, i.e., as subroutines. The driver code needs to sample model 
parameter space and carry out all the bookkeeping required to perform the statistical 
analysis describe here, to produce the covariance matrix, and to cast the results into 
appropriate formats. This driver program calls upon as its “slave”, the chosen suite of 
nuclear model codes a total of K times, thereby generating a collection of results for the 
ensuing statistical analysis as described above. An additional code module might be 
required to assemble the covariances from the driver code and produce evaluated library 
files in the chosen evaluated data format, e.g., the ENDF format that is widely used in 
applied nuclear science [7]. 
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7.  Bookeeping and Shortcuts 

 

> which are defined above, and thus offer some indication as 
to how many histories “K” are required to achieve a reasonable degree of convergence 
for the matrix elements. Francis Perey once mentioned to this author that there is no point 
in discussing the uncertainty in an uncertainty [8]. Nevertheless, it is commonly accepted 
that a certain degree of stability (robustness) is desired for the values one assigns to 
elements of a covariance matrix. Numerical criteria could be established to guide the 
Monte Carlo procedure toward a desired level of stability for the computed values <…>. 
One criterion might be a comparison between the average values for cross sections and 
other selected observables and the selected central values (e.g., see Appendix A). It 
should be noted here that for every history one obtains values for each of the various 
computed physical quantities, even those for which the cross sections are very small. 
Thus, the degree of “smallness” or “largeness” of the computed values for cross sections 
or other observable quantities derived from the model is not an issue that influences the 
statistical outcome. 
 
 The last point to be made is that one needs to consider which types of probability 
distributions are to be used in sampling the nuclear model parameters within their 
respective ranges. The statistical considerations involved in selecting these distributions 
are discussed in detail in the monograph by Smith [3] and again to a limited extent in 
Appendix B below. 

 
 

The output from contemporary nuclear model codes is generally quite extensive. 
It taxes the mind to conceive of dealing with 1000+ such sets of output in the forms 
currently encountered. Consequently, for the approach discussed here to be practical, it 
would be appear necessary to avoid collecting all this information explicitly. Rather, the 
sums associated with the covariance matrix elements, i.e., those expressed in Eqs. (1), 
(2), and (5) above, should be generated as running sums, on the fly, with no intermediate 
values retained for the derived parameters. What is the point of keeping such information 
anyway? The only possible justification for retaining intermediate information would be 
for use plotting and possible some other non-essential statistical purposes. In fact, this 
approach could be used to test for statistical convergence of the computed values for 
those average quantities <…
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8.  A Suggested Test Case 
 
 
 A reasonable test case to investigate at the outset might involve performing an 
evaluation for a structural material isotope such as 56Fe. There exist considerable 
experimental data for this material, corresponding to several reaction channels. The major 
cross sections to consider below 20 MeV are: neutron total, neutron elastic and inelastic 
scattering, neutron capture, (n,2n), (n,3n), (n,p), (n,np+pn), (n,α), (n,nα+αn), and 
possibly (n,3He). One could select a reasonable number of energies spanning the region 
from about a few tens of keV to 20 MeV to form a common grid, and then apply the 
present methodology to determine the covariance matrices. Whether or not one believes 
the results for this early test case in great detail, it nevertheless would be interesting to 
show how correlations and anti-correlations between the evaluated results emerge for a 
particular reaction at various energies or between the distinct reaction channels at specific 
energies. The author has learned that Arjan Koning has utilized his model code suite 
TALYS recently to investigate the approach described in this report, and he has 
considered 56Fe as a test case for his analysis [9]. The results of Koning’s work are 
preliminary and they will be published later when his investigation is complete. Thus, 
they are not discussed in this report. At this time, however, it can be mentioned that 
Koning finds the present approach to be entirely feasible. Furthermore, he has 
demonstrated that this method offers considerable promise as a practical tool for use in 
generating covariance matrix information for evaluated nuclear data libraries. 
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9.  Conclusions 
 
 

A conceptually simple method for generating covariance matrices for evaluations 
based on nuclear modeling calculations is presented. The essential idea is that all the 
nuclear model parameters are varied randomly in a Monte Carlo exercise involving the 
generation of multiple evaluations. The covariance matrix elements are derived from the 
sampling results using equations based on the statistical definition of a covariance matrix. 
The actual application of this method is more complicated. It requires having a suite of 
nuclear model codes that can be called upon as subroutines by a driver code that 
randomly varies the model parameters and also performs the statistical bookkeeping tasks 
required to evaluate the covariance matrix elements. Early tests of the present approach 
by Arjan Koning (NRG-Petten) have demonstrated that this approach is both feasible and 
reasonably practical [9]. However, extensive further work is required to determine 
reasonable uncertainties and error correlations for the nuclear model parameters that are 
to be used for the generation of specific general purpose isotopic evaluated nuclear data 
files. 
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Appendix A 
 
 
 In the main body of this report, an approach for generating covariance matrices in 
situations where nuclear models are used to produce evaluations is suggested. In that 
discussion, it was assumed that central values for the evaluated quantities were generated 

 priori (before the sampling procedure is initiated) by the modeler/evaluator, based on 

body of this report by the 
ubscript “0”, e.g., σ0i for a specific quantity being evaluated. Of course, there is the 

). 

 to resort to chosen ranges of parameters 
ased on various considerations such as systematics, experience with neighboring nuclei, 

Un

in the 
ain body of this report. In fact, the same nomenclature and equations can be used, i.e., 

central values must be 
alculated first from averages of sampling results before the covariance matrix can be 

bed earlier. Once these average values 
re determined, then the elements of the covariance matrix can be evaluated. This would 

 l
ick can be exploited. 

bol <…> signifies averaging with respect to the results obtained from the 
ollection of K sampling histories. Thus, more explicitly, 

ij =  (1/K) × Σk=1,K (σik × σjk) – (1/K2) [Σk=1,K σik ] × [Σk=1,K (σjk ]   for i,j = 1,n .   (A.2) 

a
visual comparisons to experimental data (where available) supplemented by experience 
and the best judgment of the practitioner. This is the contemporary approach followed by 
most evaluators. These central values were denoted in the main 
s
additional requirement of providing estimates for the ranges of all parameters being 
sampled and, if possible, even probability distributions to govern the sampling procedure 
(see Appendix B
 
 However, there are many instances where there are no experimental data or other 
objective information available a priori to guide the evaluator in providing central values. 
The best that can be done by the evaluator is
b
etc. der these conditions, Soo-Youl Oh has pointed out that an alternative formulation 
of the present method is required, as discussed below [10]. 
 
 The approach described here is similar in many ways to the one discussed 
m
Eqs. (1) – (5) in Section 3. However, the differences are both conceptual and tactical. 
First, one determines the central values σ0i by applying Eq. (5) from Section 3. No 
approximate sign (“≈“) is used. Consequently, in principle these 
c
generated. Then, and only then, can one apply Eqs. (1) – (4) from Section 3. In short, the 
central values are estimated a posteriori based on averaging the results obtained from 
repeated sampling of all the parameters, as descri
a
seem ike a lot of extra work but, in fact, it is not really that difficult because the 
advantage of the following tr
 

First, it is required to write both Eqs. (1) and (2) from Section 3 in a somewhat 
different form: 
 

Vij = <σik × σjk> – <σik> × <σjk>     for i,j = 1,n .                           (A.1) 
 
The sym
c
 

V
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It is clear from these two equations e of samplings actually needs to be 
erformed only once since running sums of the quantities σik , σjk , and σik × σjk can be 
valuated as the sampling exercise progresses. 

that the sequenc
p
e
 
 In short, the approach described here can be applied in cases where there is 
insufficient information available for the evaluator to specify central values a priori. The 
central values, along with their covariance matrices, are derived from a statistical 
sampling treatment based only on presumed knowledge of the parameter ranges and 
possibly of their probability distributions. 
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Appendix B 
 
 
 Two additional aspects of this subject are worthy of a brief discussion. They fall 
within the two distinct categories discussed briefly below: 
  
B.1  Probability Distributions for Uncertain Parameters
  

According to the Principle of Maximum Entropy upon which Bayesian statistics 
draws widely, there are three reasonable possibilities for the model parameter probability 
distributions to consider in the context of the present situation [3]. 
  

1.  If one has no further idea about the nature of a particular model parameter “p” 
other than its range, i.e., that it falls within the parameter limits (plow,phigh), then one 
should assume a uniform (constant) probability distribution over this range and zero 
outside. That is, each values of the parameter within the selected range is to be treated as 
equally likely while no values outside the range need be considered. 
  

2.  If one has an estimate of the standard deviation ∆p (error or uncertainty) in a 
parameter, as well as a decent estimate of the central value, p0, and if the uncertainty ∆p 
<< p0, then one should assume a normal (Gaussian) distribution for the parameter p with 
∆p as the standard deviation and p0 as the mean value. 
  

3.  If the same conditions prevail as in #2 except that p is known to be inherently 
positive and ∆p is NOT small, then one should assume a lognormal probability 
distribution for p with mean value p0 and standard deviation ∆p [4]. This prevents 
negative values for p from being generated during sampling exercises. Furthermore, it is 
well known that the lognormal probability distribution approaches the normal distribution 
in the limit of small uncertainties [3,4]. 
  
B.2  Correlations in Parameter Uncertainties
  

Considerable concern over the issue of correlations between parameters has been 
expressed in numerous private communications to this author. Indeed, this may be a 
problem, but it is suggest that it should first be established just how serious a problem it 
really is before exerting a lot of effort to refine our understanding of the nature of these 
correlations. First, even if the parameters are sampled in an entirely uncorrelated fashion 
there will still be strong correlations observed in the various derived values (cross 
sections, angular distributions, particle emission spectra, etc.). These correlations are 
introduced courtesy of the nuclear model itself. The issue that should concern us is that of 
establishing what effect the assumption of correlations – any ad hoc correlations – might 
have on the computed results. It would seem reasonable to start out with modest goals in 
mind. For example, one might compare results obtained with no correlation between the 
potential radius (r) and potential well depth (V) with those obtained by assuming very 
strong correlations between these two parameters, e.g., such as would maintain Vr2 nearly 
an invariant. Such ad hoc tests could serve to provide a better understanding of the 
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impact of correlations on the process ean values and covariance matrices 
y Monte Carlo sampling. A healthy dose of common sense is also in order in this regard. 
or example, the parameters of the potential wells for α-particles, as required to calculate 
,α) c

calculate (n,p) cross sections. 
owever, the parameters chosen for the incident neutron potential well will affect all the 

ons between the (n,α) and (n,p) 
sults. 

 

 of generating m
b
F
(n ross sections, will probably not be correlated very strongly – if at all – with the 
parameters for the proton potential wells, as required to 
H
cross sections and thus introduce significant correlati
re
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