


Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, 
is operated by The University of Chicago under contract W-31-109-Eng-38. 
 
 
 
 
 
 
 
 
 
 
 
 

  
 DISCLAIMER  
This report was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United States Government nor 
any agency thereof, nor The University of Chicago, nor any of their 
employees or officers, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof. The views and opinions of document 
authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

 
 
 
 
 
 
 

Available electronically at http://www.osti.gov/bridge/  
 
Available for a processing fee to U.S. Department of 
Energy and its contractors, in paper, from: 
 
U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN  37831-0062 
phone: (865) 576-8401 
fax: (865) 576-5728 
email: reports@adonis.osti.gov 
 

mailto:reports@adonis.osti.gov


January 2004                                 ANL-NT-227 
 
 
 
 
 

THE IMPACT OF COVARIANCE INFORMATION ON CRITICALITY SAFETY 
CALCULATIONS IN THE RESOLVED RESONANCE ENERGY RANGE 

   
by 
 

D. G. Naberejnev, G. Palmiotti, and W. S. Yang 
 

Nuclear Engineering Division 
Argonne National Laboratory 

9700 South Cass Avenue 
Argonne, IL 60439 

 
 
 
 

NT TECHNICAL MEMORANDUM NO. 227 
 
 

Results reported in the NT-TM series of memoranda frequently are 
preliminary and subject to revision.  Consequently, they should not 
be quoted or referenced without the author’s permission. 

 
 
 
 
 

 
 



 ii



 iii

TABLE OF CONTENTS 

 

Page 

Abstract ................................................................................................................................ vii 

Introduction.............................................................................................................................1 

1.0 Uncertainty Methodology ................................................................................................2 

2.0 Covariance Evaluation .....................................................................................................3 

2.1 General Algebra of Covariances ............................................................................3 
2.2 Experimental Statistical and Systematic Errors and Their Covariances ................4 

3.0 Covariance Information in the Current ENDF/B Format................................................5 

4.0 Current Status and Necessities in Nuclear Applications Community..............................7 

4.1 Filling in the Absent Information on Covariances .................................................8 
4.2 Current Status of Covariance Information in the Resonance Range......................9 

5.0 Assessment of Covariance on Group Cross Sections.....................................................10 

5.1 Calculation of Covariances ..................................................................................16 
5.2 Results for Covariance Matrix .............................................................................16 

6.0 Practical Applications ....................................................................................................19 

6.1 The Uranium/Iron Benchmark Assembly ............................................................19 
6.2 The ZEUS Critical Assembly...............................................................................23 

7.0 Conclusions ....................................................................................................................25 

References.............................................................................................................................27 

 

 

 

 

 

 

 

 

 



 iv

LIST OF FIGURES 

 
Page 

1.  Impact of the 10% Change in Neutron Width on the Capture Cross Section of 235U..........14 

2.  Spacing of Capture Resonances for 235U: the Difference between Neighboring        
Resonance Energies i and i+1 Divided by the Total Energy Interval ..................................14 

3.  The Ratio of the Radiative and Neutron Widths of 235U Resonances to the Sum of 
Corresponding Widths Performed Over All Resonances.....................................................15 

4.   The Ratio of the Fission Channel a and Fission Channel b Widths of  235U Resonances         
to the Sum of Corresponding Widths Performed Over All Resonances ..............................15 

5.  Uranium/Iron Benchmark Geometry. ..................................................................................20 

6.  Uranium/Iron Benchmark Core Averaged Flux Spectrum. .................................................21 

7.  Schematic View of the ZEUS Assembly .............................................................................23 

8.  ZEUS Assembly Core Averaged Flux Spectrum.................................................................24 

 



 v

LIST OF TABLES 

 

Page 

1.  33 Energy Group Structure..................................................................................................13 

2.  Group Cross Section Uncertainties .....................................................................................17 

3.  Correlations of Group Cross Sections for 235U Capture......................................................18 

4.  Correlations of Group Cross Sections for 235U Fission.......................................................18 

5.   Correlations of Group Cross Sections for 56Fe Elastic Scattering.......................................19 

6.  Keff Uncertainty of the Uranium/Iron Benchmark Assembly Due to 235U Capture 
Uncertainties with Different Assumptions on Energy Group Correlation ..........................21 

7.  Keff Uncertainty of the Uranium/Iron Benchmark Assembly Due to 235U Fission 
Uncertainties with Different Assumptions on Energy Group Correlation ..........................22 

8.  Keff Uncertainty of the Uranium/Iron Benchmark Assembly Due to 56Fe Uncertainties     
with Different Assumptions on Energy Group Correlation ................................................22 

9.  Keff Uncertainty of the ZEUS Assembly Due to 235U Capture Uncertainties with       
Different Assumptions on Energy Group Correlation ........................................................24 

10. Keff Uncertainty of the ZEUS Assembly Due to 235U Fission Uncertainties with        
Different Assumptions on Energy Group Correlation ........................................................25 

 



 vi

  

 

 

 

 



 vii

THE IMPACT OF COVARIANCE INFORMATION ON CRITICALITY SAFETY 
CALCULATIONS IN THE RESOLVED RESONANCE ENERGY RANGE 

   
 

by 
 
 

D. G. Naberejnev, G. Palmiotti, and W. S. Yang 
 

 
 

 
Abstract 

 

Resonance data play a significant role in the calculations of systems considered for 
criticality safety applications. Keff, the major parameter of interest in such a type of calculations, 
can be heavily dependent both on the quality of the resonance data as well as on the accuracy 
achieved in the processing of these data. 

If reasonable uncertainty values are available, in conjunction with their correlation in 
energy and among type of resonance parameters, one can exploit existing methodologies, based 
on perturbation theory, in order to evaluate their impact on the integral parameter of interest, i.e., 
Keff in our case, in practical applications. In this way, one could be able to judge if the 
uncertainty on specific quantities, e.g., covariances on resonance data, have a significant impact 
and, therefore, deserve a careful evaluation. 

This report, first, will recall the basic principles that lie behind an uncertainty evaluation 
and review the current situation in the field of covariance data. Then an attempt is made for 
defining a methodology that allows calculating covariances values for resolved resonance 
parameters. Finally, practical applications, of interest for criticality safety calculations, illustrate 
the impact of different assumptions on correlations among resolved resonance parameters. 
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Introduction 
 

Resonance data play a significant role in the calculations of systems considered for 
criticality safety applications. Keff, the major parameter of interest in such a type of calculations, 
can be heavily dependent both on the quality of the resonance data as well as on the accuracy 
achieved in the processing of these data. The reactor physicist is faced by a twofold problem, 
namely, to correctly process the basic nuclear parameters in order to produce multigroup cross 
sections, and to assess the effects of the uncertainties that affect these basic data. 

The information on different types of cross sections, resonance parameters and other 
quantities of interest in the ENDF (Evaluated Nuclear Data File, Ref. 1) is based on the analysis 
of a variety of measurements as well as on applicable nuclear models. Since the discrepancies 
between different measurements can be significant and the nuclear models employed are far 
from being perfect, an interest in covariance information in the ENDF system has developed in 
recent years.  

It is a fact that the covariance information in the present nuclear data is poor and is not 
adequate for a variety of its applications. The covariance information in the recent evaluations, 
such as ENDF/B-V, ENDF/B-VI, JENDL3.2, BROND2.2, and JEF2.2, is either not complete or 
is absent for a big variety of materials. The only rigorous way to provide that information is to 
perform a new evaluation incorporating covariance methodology. The construction of covariance 
information finds its origins at the experimental analysis stage. An experimenter is obliged to 
provide the most complete information possible on error components related to a particular 
experiment. Having that information, an evaluator can estimate the degree of “uncertainty” to be 
assigned to this measurement and others as well in order to provide that information to the users 
in the form of covariance files in ENDF/B format. 

A number of reasons can be advanced to support the notion that uncertainty information 
is often crucial in nuclear data applications. These reasons are as diversified as the variety of 
nuclear data uses. Nevertheless, in nuclear technology fields, one is mostly interested in the 
impact of the initial data uncertainties on the key parameters such as safety coefficients of 
reactors. Using this fact as a base, one derives that not all-possible information that one can 
obtain and store as to the uncertainties of nuclear data might be necessary. Instead, one should 
bare in mind the eventual impact that one specific type of information can produce on the 
quantities of interest. This is to say that even in situations where information on the uncertainties 
is not available, this information might be irrelevant or might be estimated with a simpler 
procedure than a new evaluation. 

If reasonable uncertainty values are available, in conjunction with their correlation in 
energy and among type of resonance parameters, one can exploit existing methodologies, based 
on perturbation theory, in order to evaluate their impact on the integral parameter of interest, i.e., 
Keff in our case, in practical applications. In this way, one could be able to judge if the 
uncertainty on specific quantities, e.g., covariances on resonance data, have a significant impact 
and therefore deserve a careful evaluation. 

This report, first, will recall the basic principles that lie behind an uncertainty evaluation 
and review the current situation in the field of covariance data. Then an attempt will be made for 
defining a methodology that allows calculating covariances values for resolved resonance 
parameters. Finally, practical applications, of interest for criticality safety calculations, will 
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illustrate the impact of different assumptions on correlations among resolved resonance 
parameters. 

 
1.0 Uncertainty Methodology  
 

The principles of uncertainty analysis and its applications to the fission reactor field are 
well documented (see, e.g., Ref. 2).  We will simply recall here that we can represent a generic 
integral reactor parameter Q (such as Keff) as a function of cross-sections: 

( )J21 ,,,fQ σσσ= L ,  (1) 

where σ1 , σ2 … σJ represent cross sections by isotope, reaction type and energy range (or energy 
group, in a multi-group representation). The uncertainties associated to the cross section can be 
represented in the form of variance-covariance matrix: 
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where the elements cij represent the expected values related to the parameters σj, and σi.  

 

The variations of the integral parameter Q due to variations of σ can be expressed using 
perturbation theories (Ref. 3), to evaluate sensitivity coefficients S: 

∑=
j j

j
j σ
δσ

SδQ/Q ,  (3) 

where the sensitivity coefficients Sj are formally given by: 

Q
σ

σ
QS j

j
j ⋅

∂
∂

= .  (4) 

The variance of Q can then be obtained as: 

∑=
J

i.j
ijij cSS)Qvar( .  (5) 

To exploit Eq. (5), one needs to obtain explicitly the Sj coefficients and to establish an 
appropriate variance-covariance matrix. In our particular case, we are interested in the Keff 
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parameter so that the classical perturbation theory can be used for the calculation of the 
sensitivity coefficients. First, we consider the Boltzmann equations for the real Φ and adjoint Φ* 
flux: 

effK/FA Φ=Φ ,   (6) 

eff
**** K/FA Φ=Φ ,  (7) 

where A is the Boltzmann operator, F is the production operator, and Keff is the multiplication 
factor of the system. Then, the sensitivity coefficients S for Keff can be calculated as: 

f
eff

eff

/IΦ
σ
F

σ
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dσ
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K
σS ⎟
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⎞

⎜
⎝
⎛

∂
∂

−
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∂

== ∗ ,   (8) 

where ΦΦ= ∗ F,If  is the normalization integral of the system, and ∂A and ∂F are the 

variations induced by the cross section uncertainties on the Boltzmann and production operators.  

 
2.0 Covariance Evaluation 
 
2.1 General Algebra of Covariances 
 

We discuss here general features of methods used for the construction of a covariance 
matrix. The reader is referred to Ref. 4 for more detailed discussions. 

A covariance matrix VX represents error information for all possible pairs of components 
Xi and Xj of a vector X of dimension n. It is derived from a multivariate probability distribution 
function p(X) as follows: 

( ) jijijijiijX XXXXδXδX)X,(XcovV −=== ,  (9) 

where iii XXδX −=  and the symbol  means that an average is to be taken with respect to 
p(X). It is clear that if i=j, then the element ( )iiXV simply reflects a variance (standard deviation 
squared) for the quantity Xi (j). 

Such quantities are commonly used to describe the propagation of errors through the 
well-known linear Law of Error Propagation (LEP). Let us consider a vector Y(X) of dimension 
m that is a function of the vector X. This vector has components Yk. Linear LEP suggests that Y 
is a linear combination of all Xj. Nevertheless, the LEP approach can be generalized provided 
that the following conditions are satisfied: (a) Y varies gradually over all the region of the most 
probable X; (b) the function p(X) is localized in the vicinity of X , and (c) Y is differentiable 

with respect to each Xj near X . In this case, Y can be approximated by a first order Taylor 

series in the vicinity of X  as follows: 
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Introducing the notation ( )
XXjkjk X/Yt

=
∂∂=  and ( )XYY kk ≈  we obtain: 

∑
=

δ+=
n

1j
jjkkk XtYY ,  (11) 

∑
=

δ=−=δ
n

1j
jjkkkk XtYYY .  (12) 

The matrix T, whose components are tjk, is called the sensitivity matrix. In terms of this matrix 
we can rewrite the preceding formula in its matrix form: 

δXTδY += ,  (13) 

where sign ‘+’ stands for transposition. 
 
From the several preceding formulas it is then easily seen that: 

∑∑
= =

=
n

1i

n

1j
jijliklk )X,X(covtt)Y,(Ycov .  (14) 

The last expression makes a connection between the mm×  covariance matrix VY for Y (with 
components lk YY δδ ), and the nn ×  covariance matrix VX for X (with components as defined 
in (9)) through the matrix T: 

TVTV XY
+= .  (15) 

Sometimes one defines a so-called relative covariance matrix R, introducing a correlation matrix 
C, and fractional errors if  and jf  of the quantities Xi and Xj: 

jiij
ji

ij
ij ffC

XX
V

R == ,  (16) 

For convenience we drop the subscript “X” for R, C, and f. 
 
2.2 Experimental Statistical and Systematic Errors and Their Covariances  
 

In a typical experiment there exist two types of errors: statistical and systematic. 
Distinguishing between these two types is somehow arbitrary. The statistical errors are generally 
related to the finite number of counts in the detector. If one could reach the limit of ‘infinite’ 
counts, this type of errors would be eliminated. The systematic errors are related to a particular 
way the experiment was conducted. Their components are the presence of background, 
calibration of detectors, etc. Therefore, in general one can write for the error of any measured 
quantity jY : 

sys
j

st
j YYY δ+δ=δ , 
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where j
sysYδ  is statistical error component and sysYδ  is systematic error component. sysYδ  is the 

same for the whole data set, therefore, it does not carry an index. Since the statistical and 
systematic errors are uncorrelated 0YY sys

j
st =δδ , and one easily obtains the expression for the 

covariance of the quantity Y: 
2

sysij
2

st
ji )Y()Y(YY δ+δδ=δδ . 

It is seen that if the systematic error is zero, then the resulting covariance matrix would be 
diagonal. Thus, it is clear that it is the systematic error that introduces nondiagonal elements into 
the covariance matrix.  

An experimenter usually corrects his data to account for background and calibration of 
the detector. This also applies to errors of measured quantities. By doing so, the data that initially 
depended only on recorded count rate jC , become dependent on introduced correction 
procedures mc : )C,c(YY mδ=δ . This transforms the covariance matrix into: 

∑ ∂
∂
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From the last formula, it is seen that an experimenter needs to report the variances and sensitivity 
coefficient expressed by the derivatives of the measured quantity.  

Strictly speaking, a measurement of any physical quantity is nothing but determining a 
particular value of this quantity associated with its probability distribution function. In other 
words, what is measured is one or several possible outcomes of a trial (measurement) governed 
by a distribution of possible outcomes. In this respect, to report the most complete information 
one needs to provide the value of the measured quantity together with its probability distribution 
function. Clearly, such a way to record the information would not be very compact. One solution 
is to give not only the conventional two first moments of the distribution function (mean value 
and variance), but also higher moments of the probability distribution. This will allow for an 
evaluator to calculate/estimate the associated probability distribution in order to judge how 
reliable measured data are. For example, in case of lognormal distribution, the knowledge of 
higher moments assures not only the knowledge of the general shape of distribution, but also the 
knowledge of its skewness and kurtosis (third and fourth moments). 

 
3.0 Covariance Information in the Current ENDF/B Format 
 

From the simple mathematical background given in the previous sections, it is easily seen 
that there may exist several equivalent covariance representations for its storage and eventual 
applications. There are three interrelated quantities: the covariance matrix, correlation matrix, 
and actual uncertainties. For the proper storage of the information, two of these quantities must 
be recorded in the ENDF. For the user’s convenience, the most logical and comprehensive 
choice is to record the relative standard error together with the correlation coefficients. The 
reasons for that are very simple. It is easier for a user to grasp and compare relative errors and 
absolute correlations compared to the absolute standard error and covariance. The covariance in 
itself is not a very convenient quantity to operate with. For a given error and correlation value, it 
is easy to comprehend what impact such ensemble has on the certainty of the data. For a given 
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covariance and absolute uncertainty on the quantity itself, one has to operate with the formulas in 
the previous section before getting a useful insight in the information obtained (Ref.5).  

Despite these facts, the ENDF records the covariance information only by using either 
absolute or relative variances together with covariances. In the following ‘covariances’ mean the 
ENDF way to record the known information on the data uncertainties unless specified otherwise. 
Covariance information in ENDF/B format can be found in the files MF=31, 32, 33, 34, 35 and 
40. Each of these files contains different type of information. The file MF=31 contains the 
covariances for the prompt, delayed and total number of neutrons per fission ν . The file MF=32 
is used to provide the covariances for the resonance parameters. Finally, file MF=33 is reserved 
for the covariances for the cross sections of different reaction types. Within each MF, the 
covariances for different types of quantities are identified by MT numbers that represent 
subsections in the covariance portion of the evaluation. For example, the different MT numbers 
within files MF=32 and 33 provide covariances for different type of reactions; the different MT 
numbers within file the MF=31 differentiate between different  ν   types as described above. For 
the MF=33, “cross” covariances, i.e., covariances for different types of reactions or different 
isotopes may also be provided. Cross covariance information for different isotopes is important 
in the case where cross sections were deduced from the analysis of ratios of different cross 
sections. The fission cross section of 238U is an example. The file MF=34 contains the angular 
distributions of secondary particles. The file MF=35 contains the energy distributions of 
secondary particles. The file MF=40 contains the production of radioactive nuclei.  

ENDF gives a choice in recording the covariance information in direct and indirect ways. 
For this purpose, different flags NC and NI are assigned to specify the way to extract information 
from ENDF (Ref. 1). The NC and NI options represent the sub-subsections of an ENDF file. One 
uses NI option when the statistically independent sources of uncertainty for a given reaction pair 
need to be stored. Statistical independence imposes that one has to sum over all NI sub-
subsections to obtain the required covariance for a pair of quantities. Every NI subsection can 
contain one or two energy grids, some constants and the parameter LB. This parameter imposes a 
processing code to use some specified sequence in order to reconstruct covariance for a 
particular quantity. One can find more technical details of the ENDF format in the manual of the 
module ERRORR of the code NJOY (Ref. 6). 

On the other hand, when using NC, the covariances are described indirectly using 
different values of the flag LTY. These NC sub-subsections are useful when one desires to 
calculate the covariances based on the information given for the ratio of requested to some other 
(different or reference) quantity. The flag LTY describes three such situations and defines the 
way for a processing code (like NJOY) to extract the information and deliver the final 
covariances to the end users. 

A lot of discussions in the international nuclear data community are dedicated to the 
choice of the most clear and appropriate format for the covariance information in ENDF. The 
nuclear data community tends now to agree that the most comprehensive and user-friendly 
format is NI-type format with an appropriate LB flag. If one is to keep the existing options for 
coding covariances in ENDF files, the most convenient form, in our opinion, is LB=5. This 
coding corresponds to the formulae [Eq. (16)]. Different factors in this formula need to be 
addressed in order to carry out the covariance generation process.  
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4.0 Current Status and Necessities in Nuclear Applications Community  
 

The interest to covariance information in the nuclear applications community has risen in 
the past few years. The most obvious and conclusive reason for this rise of interest is the 
enormous effort that one dedicates nowadays to the assessment of safety of nuclear installations. 
Using the nuclear data with their uncertainties as a starting point, one strongly desires to know 
the degree of confidence that should be attributed to the theoretical and numerical treatment of 
different tasks in nuclear applications. A nuclear scientist who uses the nuclear data files for his 
applications should bare in mind the necessity to propagate the nuclear data errors through his 
calculations as rigorously as possible in order to arrive at understanding of uncertainties on his 
final product.  

It is clear that the correct and most comprehensive covariance information can only be 
obtained by collecting all possible experimental data and analyzing them with the most accurate 
theoretical models. The task of an experimentalist is to provide precise and complete 
information, surely to the possible extent, on the uncertainties of quantities measured along with 
sensitivity coefficients of possible sources of those uncertainties. In fact, the experimenter should 
try to separate as much as possible the correlated sources of uncertainties to arrive at 
uncertainties with correlation coefficients zero. For an evaluator, it is always better to have larger 
number of uncorrelated sources of uncertainties than have to incorporate the correlation 
information into the evaluated files. A supplementary way to deduce or better say, refine, the 
covariance information is to use the results of integral experiments (such as, for example, the 
measurements of Keff) to verify, and possibly to correct the covariance information on the initial 
nuclear data. Our point of view is that this method definitely can prove useful in a number of 
situations; nevertheless it does not represent a correct and comprehensive approach in refining 
the covariance information. 

Unfortunately, the covariance information in the current ENDF files is poorly 
represented. It does not cover all the reactions and isotopes which are of interest to the nuclear 
application community. In the light of what has been said above and taking into account the 
degradation of funding in the area of nuclear evaluation, the first priority for the ENDF 
evaluation is to incorporate at least the uncertainty quantities for the variety of reactions and 
isotopes as needed. In measurements, it is much more straightforward and comprehensive to 
attribute errors to a quantity than to assess the correlation coefficients.  

As we mentioned above, the fully correct and comprehensive way to produce covariance 
information is to collect and analyze all available measurements. The existing theoretical models 
should be used to produce the best fit possible to the experimental data through, for example, the 
generalized least square method. Along with following this path, some techniques were 
developed to detect inconsistent nuclear data sets to eventually correct/eliminate them from the 
analysis (Ref. 7). Nevertheless, in current situation of poor funding for nuclear data activities, a 
number of attempts were made to construct covariance data without thorough examination of the 
experimental results. Although, this is not a most comprehensive approach, it does display its 
utility in certain applications such as nuclear criticality safety. In this case, one is interested in 
assessing the influence of the initial (nuclear) data uncertainties on the criticality of new 
systems/configurations. To study methods/tools to be applied to a new system, one uses the set 
of benchmarks for known, analyzed, and validated critical experiments. These cover a certain 
region of applications differentiating from each other by, for example, composition, geometry 
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or/and energy spectra. A number of approaches were developed to estimate the ‘degree of 
similarity’ for a new system in question versus a set of well-established benchmark calculations 
(Ref. 8). These include generalized linear-least-square methodology, uncertainty analysis 
techniques, and sensitivity coefficients methods. The final objective of these approaches is to 
deduce whether the existing set of nuclear data and calculation tools can be used for a new 
system that one wants to study. In such instances, one might not need a very well-established set 
of uncertainties/correlation data (although this would be preferred).  

In such cases, a reasonable estimation of uncertainties and correlations could be 
proposed. For example, Argonne National Laboratory was requested to develop such an 
approach for the criticality safety community. Reference 9 deals with establishing covariances 
based on comparison of deviations between different existing evaluations for creating 
uncertainties and estimation of correlation coefficients based on the physics of the system in 
question. To do so, the cross sections processed into energy groups were intercompared for all 
existing evaluations (ENDF/B-V, ENDF/B-VI, JENDL, BROND and JEFF). Another example is 
the prior absence of covariance information in JENDL which forced the evaluators to create 
covariances that are not fully based on the analysis of all experimental results, but on the 
combination of ‘expert judgment’ with the errors coming from the nuclear models themselves 
(Ref. 10). For instance, in the resolved resonance energy range, this approach uses one (a priori 
the best) set of experimental data to assess uncertainties in the parameters of nuclear models used 
in evaluation. These are assessed once again by simply calculating the deviation between 
experimental points and calculations. The resulting differences were attributed to the 
‘uncertainties on nuclear model parameters’, therefore, an evaluator can propagate these 
uncertainties through the nuclear models calculations to finally obtain covariance on desired 
quantity (cross section, resonance parameters, etc.)  

It is difficult to say a priori what impact a quantity’s uncertainty will have on the variance 
of the final and desired result. The following example illustrates a situation where to create 
covariances, one might consider using methods not at all or only partially based on the analysis 
of experimental data. Consider a simple linear dependence of a calculated quantity Y on the 
measured quantity X: XaY ×= . The Low of Error Propagation (LEP) in this case is simply 
expressed by the Taylor series development: XaY ∆=∆ . Now, if a<<1, then even if the 
uncertainty in measured quantity X might be very large, its impact on the uncertainty in 
calculated quantity Y becomes very small. This is to say that even in situations where 
information on the uncertainties is not available, this information might be irrelevant or might be 
estimated with simpler procedures than a new evaluation. On the other hand, if a>>1, one falls 
into the situation of so-called error amplification. In this situation, it is extremely important to 
improve the knowledge of the covariances on the initial nuclear data.  

 
4.1 Filling in the Absent Information on Covariances 
 

To fulfill the blanks in the existing covariance information, several points should be 
considered. The first is to identify crucial and missing information on covariances. It is easy to 
deal with ‘missing’ part, but determining the crucial information for applications is a more 
complicated matter. To identify the importance of missing information, one must consider either 
all possible applications of the covariance in question or a particular set of applications one is 
interested in. It is time consuming and unnecessary to consider all possibilities for the covariance 
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applications. If this needs to be done, it is much more logical and coherent to remake the 
evaluations which will include the complete covariance information. In the case of a set of 
particular applications, one might be satisfied with estimated/simplified approaches to create 
covariance information as discussed above. Nevertheless, in such a situation, one still needs to 
consider how important this covariance information is for this particular set of applications by 
examining the range of these applications and the methods/tools used for their analysis. 
Furthemore, as to the availability of the reported experimental uncertainties/correlations, one 
should look for a reason why this information is missing. The reason might be threefold: (a) the 
information on covariances is created and exists, but not properly used/processed; (b) the 
information is missing with a large support from the nuclear data measurements results, and      
(c) the information is missing and there is a poor experimental base for its creation. The last 
reason clearly appeals to an estimation of covariances that might not be fully based on the 
analysis of experiments. Although, at this point, we need to understand what is the best way to 
generate missing information: through the regular and rigorous evaluation procedure or by 
estimation. If the last option is in order, we must propose the estimation methods, examples of 
which are discussed in the previous section. Finally, once all the steps are completed, one should 
estimate the impact of obtained covariance for the chosen set of applications and define the 
domain and restrictions on applicability/use of proposed methodologies. 

 
4.2 Current Status of Covariance Information in the Resonance Range 
 

Determining covariances (uncertainties plus correlation coefficients) in smooth cross 
section energy ranges, i.e., thermal and fast, is straightforward. The measurement uncertainties 
reported by experimentalists are used in the fitting procedures to obtain uncertainties on cross 
sections. The final uncertainties are recorded in ENDF files as described in previous sections. A 
number of tools exist to process this information and deliver it to the applications.  

In the resonance domain, the situation is not that simple. In this case, one a priori needs to 
record the uncertainties of the widths of individual resonances and corresponding short- and 
long-range correlations between resonances. The code SAMMY (Ref. 11) for the experimental 
analysis includes the capability to create covariance files for the resonance range.  

The nature of final uncertainties produced by SAMMY depends on the manner to 
introduce input data into the code. In principle, the code uses the experimental data with 
corresponding uncertainties as input parameters. This assumes that the experimental data are free 
of experimental errors (such as the normalization and background correction parameters, self-
shielding corrections, etc.) with exception of statistical ones. Therefore, in this case, the 
uncertainty matrix of input data is a priori diagonal (represented by the experimental 
transmission points along with their uncertainties). At the level of small groups of resonance, the 
short-range correlations (correlations between different types of widths and/or resonances) can 
be relatively easily assessed. These correlations are due to the methods of calculation used in 
SAMMY. The information on covariances of group cross sections deduced in this manner will 
not contain the long-range correlation since these correlations essentially depend on the 
systematic errors mentioned above. 

In order to get an insight into the long-range correlations between different resonances, 
some of experimental errors mentioned above (Ref. 12) (for example, the normalization and 
background correction parameters) are forced to serve as input data for SAMMY and are allowed 
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to vary during the fitting procedure. As a result, the final, fitted resonance parameters can be 
calculated along with the correlations between these resonance parameters and normalization and 
background correction parameters. According to Ref. 12, the covariance information on 
resonance parameters from ORNL is available for Gd, Al and Si. 

 As described briefly above, current JENDL evaluations also contain the information on 
resonance parameters based on the uncertainties of nuclear models parameters. These are already 
present in the JENDL files and it should be possible to process them with the code NJOY. As 
reported in Ref. 10 the covariance file are available for Li, C, O, Na, Ti, Fe, 233U, 235U, 238U, 
239Pu, 240Pu, and 241Pu. 

 
5.0 Assessment of Covariance on Group Cross Sections 
 

To judge how crucial the covariance information in the resonance domain is or could be 
in a variety of criticalty safety applications, one can perform a relatively simple sensitivity study. 
A set of covariances for resonance cross sections should be used in a certain representative 
criticality calculation. Given the absence of resonance parameters covariances in the ENDF, one 
might use the covariances calculated without the involvement of the experimental data analysis. 
In this section, we present an approximate methodology to construct covariance matrix for the 
group cross sections based on uncertainties and correlations of resonance parameters. This 
methodology is ad-hoc and is not based on the analysis of experimental data, but instead on 
several physical assumptions. Development of this methodology will serve us to evaluate the 
importance of covariances on resonance parameters in nuclear applications. This evaluation is 
performed for two well-established benchmark examples described in the following sections. 

In nuclear applications, one operates with cross sections processed into a certain energy 
group structure. These groups are defined in a way that, for a particular reaction x and group G, 
the reaction rate within this group is conserved, i.e., 

∫
+

φσ=φσ
1G

G

E

E
xG

G
x dE)E()E(  with ∫

+

φ=φ
1G

G

E

E
G dE)E( .  (17) 

The flux )E(φ  is not known a priori, and thus group cross sections (group constants) can be 
estimated only either by iterations or by using a certain flux shape that approximates well the 
flux in a particular system under study.  

Generally, the cross sections )p,E(xσ  depend not only on energy E but also on the 
number of parameters p  such as resonance parameters and nuclear models parameters. In this 
study, we will focus on the influence of the resonance parameters covariances on the group cross 
sections covariances, therefore, we consider only resonance parameters dependence in p . In this 
case, the group cross section variations are expressed as follows: 

∑ δ
∂
σ∂

=δσ
i

i
i

G
xG

x p
p

.  (18) 

It is numerically difficult to deal with such a large number of parameters (for example, 
235U has about 3000 resolved resonances). Therefore, we propose here to group resonance 
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parameters in packages, based on the physical assumptions that we will discuss later. In other 
words, we rewrite the previous expression as: 

∑∑
∈

δ
∂
σ∂

=δσ
g gi

g
i

i

G
xG

x p
p

,  (19) 

where g
ip  is a set or resonance parameters that belong to the package g, gi∈ . Now, one can 

construct the covariance matrix for the group cross sections: 

∑∑ ∑ ∑∑∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
δδ

∂
σ∂

∂
σ∂

=δδ
∂
σ∂

∂
σ∂

=δσδσ
∈ ∈g 'g gi 'gj

'g
j

g
i'g

j

'G
x

g
i

G
x

i j
ji

j

'G
x

i

G
x'G

x
G
x p,p

pp
p,p

pp
, .  (20) 

Now we make several assumptions about the packaging of resonances. First, we suppose 
that all resonances inside of each package are 100% correlated. Second, we assume that each 
resonance within a package contributes the same amount to the package cross section.  

The first assumption means that within each package g
ipδ  can be replaced by its ‘package 

value’ gpδ , i.e., the index i of individual resonances is dropped within the package. This quantity 
describes a simultaneous variation of the same kind of resonance parameters within a package. 
The resonance parameter covariance matrix will no longer depend on individual resonances, but 
on packages of resonances: 'gg'g

j
g
i p,pp,p δδ→δδ .  

The second assumption permits us to replace the sums of derivatives of the group cross 
sections with respect to individual resonance parameters by a derivative with respect to the 
package parameters: 

     .
pp g

G
x

gi
g
i

G
x

∂
σ∂

→
∂
σ∂∑

∈

 

If each resonance’s contribution is the same, then the sum of partial derivatives will be 
proportional to the derivative with respect to the simultaneous change of all parameters in the 
package. The proportionality constant is the inverse of the number of resonances in the package.  

Under these assumptions, the expression for the group cross sections covariance matrix 
becomes: 

∑∑ δδ
∂
σ∂

∂
σ∂

=δσδσ
g 'g

'gg
'g

'G
x

g

G
x'G

x
G
x p,p

pp
,  .  (21) 

The described packaging of resonances does not have to correspond to the group cross 
section structure, but should be chosen to satisfy the two assumptions discussed above. It is 
noteworthy that at the limit of small packages containing only one resonance, the resulting 
formula [Eq. (21)] is equivalent to the initial definition of the group covariance matrix [Eq. (20)]. 

It is now necessary to introduce a way to characterize the covariance matrix for the 
packages of resonance parameters 'gg p,p δδ . This covariance matrix can be rewritten as 
follows: 
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'GGpp'GG'GG Cppp,p δδ=δδ , 

where 
'GGppC  is the correlation matrix for resonance parameters. To evaluate the upper and lower 

bounds of the impact that this covariance matrix produces on the group cross sections, it is 
necessary to consider limiting cases of full (C=1) and zero (C=0) correlations. It is also worthy to 
study intermediate situations. To begin with, we can assume that the correlations between the 
packages of resonance parameters are equal 0.5. However, a more elaborate approach can be 
proposed. This approach is the adaptation of the formalism proposed earlier in Ref. 9. In fact, the 
correlations C between two packages of resonance parameters g and g’ will compose of two 
factors: long-range correlations L and short range correlations S. In other words, the correlation 
between two packages g and g’ are given as a product of two factors: 

'gg'gg'gg SLC = .  (22) 

The long-range correlations decrease as the distance in energy between quantities increases. This 
suggests an exponential behavior of such a correlation function. In order to illustrate this 
behavior, we write the long-range correlations in the following way: 

ε

−
α−= 'gg

'gg

EE
1L ,   (23) 

which is a first-order approximation of an exponential. In this expression, 'gg EandE  are 
medium energies of groups g and g’, and ε  is the total resonance energy range. The constant α  
is generally confined between 1 and 2. In this study, 5.1=α  is assumed. Note that this 
expression gives right limiting cases for close and remote resonance packages. 

The short-range correlations are characterized by the similarity of errors of the package 
resonance parameters. It is given by: 

     
)p,pmax(
)p,pmin(

S
'gg

'gg
'gg ∆∆

∆∆
= . 

This expression accounts also for the sign of correlation between pairs of packages. 

Numerically, the calculation of all components in Eq. (21) is straightforward. To 
illustrate the procedure, an example based on the resonance structure of 235U was considered. A 
program was written to permit reading and modifying part of the ENDF tape relevant to the 
current study (MF=2, MT=151, resolved resonance parameters). This is done in order to 
calculate the derivatives in Eq. (21) taking the initial, unperturbed ENDF tape as a reference.  

The sensitivity of the group cross sections to the resonance parameter uncertainties was 
first investigated using a 33-group structure shown Table 1. The code NJOY is used to process 
around 3000 resolved resonances of 235U with Reich-Moore formalism. In this example, all 
neutron partial widths nΓ  were perturbed by +10% in the energy range 40 to 2000 eV (the 
energy range in 33-group structure that contains resonances). Figure 1 presents the relative 
variations of the group cross sections resulted from the perturbation of nΓ . It is seen that the 
capture cross section is changed up to 9% by 10% change of nΓ . 
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The hypothesis introduced earlier was also tested for resonances of 235U isotope. The 
spacing between resonances of 235U in the same energy range was first examined. Figure 2 
represents the difference of the energies of neighboring resonances normalized to the total 
energy range considered (1 to 2300 eV). It is seen that the distance between resonances is 
relatively uniform, and its contribution to the whole resolved resonances energy range is less 
than fractions of a percent. Figures 3 and 4 show the ratio of partial widths to the sum of 
corresponding partial widths. It is seen from these figures that if the resolved resonances energy 
range is subdivided into a number of packages (let say 10), then from a statistical point of view, 
the contribution of each resonance to the group cross section does not exceed ~10% in a rough 
estimation. 

Table 1. 33 Energy Group Structure 

    Energy Boundaries (eV) 
Group Upper  Lower 

1 1.96400E+07  1.00000E+07  
2 1.00000E+07  6.06500E+06  
3 6.06500E+06  3.67800E+06  
4 3.67800E+06  2.23130E+06  
5 2.23130E+06  1.35300E+06  
6 1.35300E+06  8.20800E+05  
7 8.20800E+05  4.97870E+05  
8 4.97870E+05  3.01900E+05  
9 3.01900E+05  1.83100E+05  

10 1.83100E+05  1.11090E+05  
11 1.11090E+05  6.73700E+04  
12 6.73700E+04  4.08600E+04  
13 4.08600E+04  2.47880E+04  
14 2.47880E+04  1.50300E+04  
15 1.50300E+04  9.11800E+03  
16 9.11800E+03  5.53080E+03  
17 5.53080E+03  3.35400E+03  
18 3.35400E+03  2.03400E+03  
19 2.03400E+03  1.23410E+03  
20 1.23410E+03  7.48500E+02  
21 7.48500E+02  4.53900E+02  
22 4.53900E+02  3.04320E+02  
23 3.04320E+02  1.48600E+02  
24 1.48600E+02  9.16600E+01  
25 9.16600E+01  6.79040E+01  
26 6.79040E+01  4.01600E+01  
27 4.01600E+01  2.26000E+01  
28 2.26000E+01  1.37090E+01  
29 1.37090E+01  8.31500E+00  
30 8.31500E+00  4.00000E+00  
31 4.00000E+00  5.40000E-01  
32 5.40000E-01  4.14000E-01  
33 4.14000E-01   thermal 
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Fig. 1. Impact of the 10% Change in Neutron Width on the Capture Cross Section of 235U 
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Fig. 2.  Spacing of Capture Resonances for 235U: the Difference between Neighboring Resonance 

Energies i and i+1 Divided by the Total Energy Interval 
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Fig. 3. The Ratio of the Radiative (Gn) and Neutron (Gg) Widths of 235U Resonances (count i) to 

the Sum of Corresponding Widths Performed Over All Resonances 
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Fig. 4.  The Ratio of the Fission Channel a (Gfa) and Fission Channel b (Gfb) Widths of 235U 

Resonances (count i) to the Sum of Corresponding Widths Performed Over All 
Resonances  



 

 

16

5.1 Calculation of Covariances 
 

 We describe here the procedure used to calculate covariances for the group cross sections 
with the formalism described in the previous section. This procedure consists of several steps 
described below. A program was written to accomplish these steps. 
 
1. Packaging of resonances was chosen to correspond to the group structure: g=G. Thus, since 
all terms in the sum are zero except for those with g=G, one directly obtains: 

'GG
'G

'G
x

G

G
x'G

x
G
x

'G
x

G
x p,p

pp
,),cov( δδ

∂
σ∂

∂
σ∂

=δσδσ=σσ . 

2. Derivatives 
G

G
x

p∂
σ∂  are replaced with 

G

G
x

p∆
σ∆ , GG p*fracp =∆  with frac=0.01%. This fractional 

change was determined from the behavior of numerical derivatives: the value of the derivative 
seems to stabilize at frac=0.01%. Also G

Gi
iG n/pp ∑

∈

= , Gn  is the number of resonances in the 

group G. The analysis includes the following: (1) a program reads an ENDF tape and changes all 
resonances parameters by an amount frac specified by the user in the specified energy range 
(corresponding to the packages of resonances); (2) a new, modified portion MF=2, MT=151 is 
created and then inserted into the initial ENDF tape; (3) the modified tape is processed; (4) the 
difference between group cross sections processed with unchanged ENDF tape and group cross 
sections processed with modified ENDF tape gives the G

xσ∆ .  
3. The covariances for the resonance parameters are determined by: 

'GGpp'GG'GG Cppp,p δδ=δδ , 

where Gpδ  are assumed to be 10% of Gp .  

4. The correlations between resonance parameters 
'GGppC  are calculated as described in the 

previous section: ε−−= /EE5.11C 'GGpp 'GG
. In this expression 'GG E,E  are medium energies 

of each group, ε  is the total resonance energy range. 

Finally, the relative covariance matrix therefore is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δ

∆
σ∆

σ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δ

∆
σ∆

σ
=

σ
δσ

σ
δσ

'G
'G

'G
x

'G
x

G
G

G
x

G
x

'G
x

'G
x

G
x

G
x p

p
1p

p
1,

'GGppC , 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δ

∆
σ∆

σ G
G

G
x

G
x

p
p

1  is the relative change of G
xσ  when Gp  changes by Gpδ . 

 
5.2 Results for Covariance Matrix 
 
The covariance matrices were calculated for the following cross sections: capture and fission 
cross sections of 235U and elastic cross section of 56Fe. These cross sections were calculated 
relative to the change of neutron resonance width nΓ . Tables 2 through 5 summarize the results. 
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Relatively high correlations can be observed in most groups and for the three types of 
cross sections. This is largely due to selected formalism. The constant α in Eq. (23) was chosen 
to be 1.5. Reducing this constant will allow lowering the correlation coefficients. We also note, 
that Tables 3 through 5 only display correlations for groups with non-zero uncertainties 
(covariances). 

Table 2. Group Cross Section Uncertainties ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δ

∆
σ∆

σ G
G

G
x

G
x

p
p

1  

Group  235U Capture 235U Fission 56Fe Elastic 
33 1.21E-02 0.00E+00 0.00E+00 
32 0.00E+00 0.00E+00 0.00E+00 
31 0.00E+00 5.03E-02 0.00E+00 
30 1.10E-01 6.22E-02 0.00E+00 
29 9.11E-02 9.21E-02 0.00E+00 
28 1.20E-01 8.04E-02 0.00E+00 
27 9.44E-02 9.72E-02 0.00E+00 
26 1.20E-01 8.45E-02 0.00E+00 
25 1.35E-01 1.14E-01 0.00E+00 
24 5.63E-02 1.17E-01 0.00E+00 
23 7.06E-02 7.60E-02 0.00E+00 
22 8.78E-02 1.11E-01 0.00E+00 
21 8.91E-02 5.14E-02 0.00E+00 
20 8.37E-02 1.40E-01 0.00E+00 
19 8.57E-02 8.92E-02 0.00E+00 
18 3.59E-02 3.33E-02 0.00E+00 
17 0.00E+00 0.00E+00 0.00E+00 
16 0.00E+00 0.00E+00 0.00E+00 
15 0.00E+00 0.00E+00 0.00E+00 
14 0.00E+00 0.00E+00 0.00E+00 
13 0.00E+00 0.00E+00 5.31E-02 
12 0.00E+00 0.00E+00 0.00E+00 
11 0.00E+00 0.00E+00 1.81E-02 
10 0.00E+00 0.00E+00 2.60E-02 
9 0.00E+00 0.00E+00 2.60E-02 
8 0.00E+00 0.00E+00 2.56E-02 
7 0.00E+00 0.00E+00 2.98E-02 
6 0.00E+00 0.00E+00 0.00E+00 
5 0.00E+00 0.00E+00 0.00E+00 
4 0.00E+00 0.00E+00 0.00E+00 
3 0.00E+00 0.00E+00 0.00E+00 
2 0.00E+00 0.00E+00 0.00E+00 
1 0.00E+00 0.00E+00 0.00E+00 
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Table 3. Correlations of Group Cross Sections for 235U Capture 
 

G\G' 33 30 29 28 27 26 25 24 23 22 21 20 19 18 
33 1.000                           
30 0.998 1.000                         
29 0.996 0.998 1.000                       
28 0.994 0.996 0.998 1.000                     
27 0.990 0.992 0.994 0.996 1.000                   
26 0.984 0.986 0.987 0.990 0.994 1.000                 
25 0.973 0.975 0.977 0.979 0.983 0.989 1.000               
24 0.955 0.957 0.959 0.961 0.965 0.972 0.982 1.000             
23 0.926 0.928 0.930 0.932 0.936 0.943 0.953 0.971 1.000           
22 0.879 0.880 0.882 0.884 0.888 0.895 0.906 0.923 0.952 1.000         
21 0.800 0.802 0.803 0.806 0.810 0.816 0.827 0.844 0.873 0.921 1.000       
20 0.670 0.672 0.673 0.676 0.680 0.686 0.697 0.714 0.743 0.791 0.870 1.000     
19 0.456 0.458 0.459 0.462 0.465 0.472 0.483 0.500 0.529 0.577 0.656 0.786 1.000   
18 0.102 0.104 0.106 0.108 0.112 0.119 0.129 0.147 0.176 0.224 0.303 0.433 0.647 1.000 
 

 
Table 4. Correlations of Group Cross Sections for 235U Fission 

 
G\G' 31 30 29 28 27 26 25 24 23 22 21 20 19 18 
31 1.000                           
30 0.999 1.000                         
29 0.997 0.998 1.000                       
28 0.995 0.996 0.998 1.000                     
27 0.991 0.992 0.994 0.996 1.000                   
26 0.984 0.986 0.987 0.990 0.994 1.000                 
25 0.974 0.975 0.977 0.979 0.983 0.989 1.000               
24 0.956 0.957 0.959 0.961 0.965 0.972 0.982 1.000             
23 0.927 0.928 0.930 0.932 0.936 0.943 0.953 0.971 1.000           
22 0.879 0.880 0.882 0.884 0.888 0.895 0.906 0.923 0.952 1.000         
21 0.800 0.802 0.803 0.806 0.810 0.816 0.827 0.844 0.873 0.921 1.000       
20 0.670 0.672 0.673 0.676 0.680 0.686 0.697 0.714 0.743 0.791 0.870 1.000     
19 0.456 0.458 0.459 0.462 0.465 0.472 0.483 0.500 0.529 0.577 0.656 0.786 1.000   
18 0.103 0.104 0.106 0.108 0.112 0.119 0.129 0.147 0.176 0.224 0.303 0.433 0.647 1.000 
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Table 5.  Correlations of Group Cross Sections for 56Fe Elastic Scattering 

G\G' 13 11 10 9 8 7 
13 1.000           
11 0.934 1.000         
10 0.866 0.932 1.000       
9 0.755 0.821 0.889 1.000     
8 0.571 0.637 0.705 0.816 1.000   
7 0.268 0.334 0.401 0.513 0.697 1.000

 

6.0 Practical Applications 
 
In order to illustrate the possible impact on quantities of interest for the criticality safety 

community, the resonance cross section correlations and uncertainties evaluated in the previous 
section were applied to the estimation of Keff uncertainty. Specifically, two well-known problems 
were considered. The first one is representative of a fast spectrum system, even if the presence of 
a large quantity of iron in the core in addition to a stainless steel reflector contributes to soften 
the neutron energy spectrum. This is the case of the Uranium/Iron Benchmark Assembly. The 
second application is the ZEUS critical assembly. This is a system that has an intermediate 
neutron energy spectrum where one can expect a larger impact of uncertainty on resonance 
parameters. 

The sensitivity coefficients for Keff are calculated by solving Eqs. (6) and (7) in 
multigroup form using the BISTRO Sn code (Ref. 13), and then evaluating the sensitivity 
coefficients using the perturbation calculation modules of the ERANOS system (Ref. 14). The 
uncertainty modules of the ERANOS system are also used to calculate the final uncertainty by 
the means of Eq. (5).  

In order to evaluate the bounds of the impact of covariances of the resonance parameters, 
three different hypotheses have been considered on the correlation among the multigroup 
variances: no correlation, full correlation, and the evaluated correlations that have been 
calculated in the previous section. 

 
6.1 The Uranium/Iron Benchmark Assembly 
 

This benchmark assembly (Ref. 15) consists of a 235U(93% enriched)/iron cylinder 
reflected by stainless steel (see Fig. 5). 
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Fig. 5. Uranium/Iron Benchmark Geometry 

Real and adjoint fluxes were calculated in the 33-group energy structure shown in    
Table 1 and S8 approximation.  

For the sake of simplicity, the four core regions were homogenized into one single 
composition. Cross sections were generated by the ECCO (Ref. 16) cell code with a JEF2.2 
based library. The resulting core average flux spectrum is shown in Fig. 6. 
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Fig. 6. Uranium/Iron Benchmark Core Averaged Flux Spectrum 

As it can be observed, the spectrum is of the fast type. One can notice that the presence of 
a large amount of iron in the core composition in conjunction with the absence of a blanket 
region before the stainless steel reflector has the effect to shift non-negligible portion of the flux 
to the region of the resolved resonance of 235U that starts around 2 KeV. Uncertainty results for 
the 235U capture and fission, and the 56Fe elastic cross section determined using the variances and 
covariances of Tables 2 through 5 are shown in Tables 6, 7, and 8. Only groups that give 
significant contribution to the total uncertainty are shown. 

 

Table 6. Keff Uncertainty of the Uranium/Iron Benchmark Assembly Due to 235U Capture 
Uncertainties with Different Assumptions on Energy Group Correlation.  

 Total is obtained by statistically combining individual values. 

 
Group No 

Correlation 
Evaluated 

Correlation 
Full 

Correlation 
18 2.74E-04 8.70E-04 1.43E-03 
19 8.33E-04 1.95E-03 2.40E-03 
20 6.72E-04 1.91E-03 2.18E-03 
21 5.94E-04 1.82E-03 2.06E-03 
22 2.55E-04 1.22E-03 1.38E-03 
23 4.54E-04 1.58E-03 1.82E-03 
24 1.84E-04 1.02E-03 1.18E-03 
25 1.73E-04 9.77E-04 1.15E-03 
26 2.26E-04 1.11E-03 1.30E-03 
27 1.03E-04 7.53E-04 8.90E-04 
28 5.68E-05 5.59E-04 6.62E-04 
29 3.88E-05 4.62E-04 5.47E-04 
30 1.91E-05 3.24E-04 3.84E-04 

Total 1.41E-03 4.46E-03 5.31E-03 
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Table 7. Keff Uncertainty of the Uranium/Iron Benchmark Assembly Due to 235U Fission 
Uncertainties with Different Assumptions on Energy Group Correlation.  

 Total is obtained by statistically combining individual values. 

 
Group No 

Correlation 
Evaluated 

Correlation 
Full 

Correlation 
18 5.48E-04 1.79E-03 2.89E-03 
19 1.70E-03 4.02E-03 4.89E-03 
20 2.08E-03 4.69E-03 5.33E-03 
21 6.37E-04 2.74E-03 3.10E-03 
22 6.19E-04 2.67E-03 3.06E-03 
23 8.50E-04 3.05E-03 3.56E-03 
24 5.31E-04 2.42E-03 2.84E-03 
25 2.62E-04 1.70E-03 2.01E-03 
26 2.71E-04 1.72E-03 2.05E-03 
27 1.95E-04 1.46E-03 1.74E-03 
28 7.11E-05 8.82E-04 1.06E-03 
29 6.84E-05 8.65E-04 1.04E-03 
30 1.96E-05 4.63E-04 5.55E-04 
31 2.56E-05 5.29E-04 6.34E-04 

Total 3.08E-03 9.01E-03 1.070E-02 
 

 
 

Table 8. Keff Uncertainty of the Uranium/Iron Benchmark Assembly Due to 56Fe Uncertainties 
with Different Assumptions on Energy Group Correlation.  

 Total is obtained by statistically combining individual values. 

 
Group No 

Correlation 
Evaluated 

Correlation 
Full 

Correlation 
7 7.14E-04 1.60E-03 2.19E-03 
8 7.80E-04 1.96E-03 2.28E-03 
9 6.79E-04 1.90E-03 2.14E-03 

10 8.76E-04 2.08E-03 2.40E-03 
11 3.25E-04 1.30E-03 1.52E-03 
13 3.46E-04 1.29E-03 1.57E-03 

Total 1.60E-03 4.21E-03 5.01E-03 
 
 

From Tables 6 through 8, it can be seen that correlations play quite a significant role. 
When full correlation among the groups is assumed, the total uncertainty can increase by more 
than a factor of 3 relative to the uncorrelated case. The Keff uncertainties reported above are due 
uniquely to the +10% Γn widths variation of resolved resonances. It is also likely that one can 
expect similar results for other important resonance parameters. One concludes that in order to 
avoid additional uncertainty on criticality calculations, a relatively good accuracy is needed on 
resonance parameters. 
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As expected, the fission of 235U contributes more to the Keff uncertainty than the other 
reactions. It is interesting to note that the contribution of the 56Fe elastic scattering uncertainties 
is comparable to that of the 235U capture, and it is coming from the fast component of the 
spectrum. Finally, it is noted that the results for the case with evaluated correlations are very 
similar to the results for the case with full correlations. This is mainly due to the relatively high 
values of estimated correlations as described in Eq. (23). Although the expression in Eq. (23) is 
based on reasonable assumptions, it needs to be validated using experimental information. 

 
6.2 The ZEUS Critical Assembly 
 

The ZEUS assembly (Ref. 17 and Fig. 7) consists of a cylindrical core region containing 
interspersed plates of highly enriched uranium metal and graphite that are surrounded on all sides 
by a metallic copper reflector. As in the previous case, a simplified R-Z cylindrical geometry 
was adopted and real and adjoint fluxes were calculated. The corresponding averaged flux 
spectrum is shown in Fig. 8. 

 

                              
 

Fig. 7. Schematic View of the ZEUS Assembly 
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Fig. 8. ZEUS Assembly Core Averaged Flux Spectrum 

As one can expect, due to the large amount of graphite in the core composition, there is a 
significant part of the spectrum in the intermediate region. Because, 12C has no resonance 
structure in its data, the uncertainty evaluation was limited to the 235U contribution. Results for 
the capture and fission cross sections are shown in Tables 9 and 10. 

 
Table 9. Keff Uncertainty of the ZEUS Assembly Due to 235U Capture Uncertainties with 

Different Assumptions on Energy Group Correlation.  
 Total is obtained by statistically combining individual values. 

 
Group No 

Correlation 
Evaluated 

Correlation 
Full 

Correlation 
18 3.42E-04 1.33E-03 2.60E-03 
19 1.09E-03 3.47E-03 4.55E-03 
20 1.18E-03 4.07E-03 4.72E-03 
21 1.02E-03 3.98E-03 4.42E-03 
22 7.27E-04 3.43E-03 3.75E-03 
23 9.16E-04 3.84E-03 4.19E-03 
24 5.76E-04 3.08E-03 3.35E-03 
25 6.47E-04 3.25E-03 3.55E-03 
26 1.02E-03 4.03E-03 4.42E-03 
27 7.48E-04 3.47E-03 3.80E-03 
28 7.16E-04 3.39E-03 3.73E-03 
29 5.60E-04 3.01E-03 3.31E-03 
30 4.80E-04 2.79E-03 3.07E-03 
33 2.66E-05 6.66E-04 7.31E-04 

Total 2.92E-03 1.223E-02 1.392E-02 
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Table 10. Keff Uncertainty of the ZEUS Assembly Due to 235U Fission Uncertainties with 
Different Assumptions on Energy Group Correlation.  

 Total is obtained by statistically combining individual values. 
 

Group No 
Correlation 

Evaluated 
Correlation 

Full 
Correlation 

18 6.57E-04 2.46E-03 4.58E-03 
19 1.84E-03 5.85E-03 7.52E-03 
20 3.03E-03 8.22E-03 9.46E-03 
21 1.14E-03 5.39E-03 5.98E-03 
22 1.61E-03 6.41E-03 7.06E-03 
23 1.81E-03 6.76E-03 7.45E-03 
24 1.59E-03 6.34E-03 7.02E-03 
25 9.46E-04 4.93E-03 5.47E-03 
26 1.04E-03 5.14E-03 5.73E-03 
27 1.04E-03 5.12E-03 5.72E-03 
28 5.03E-04 3.59E-03 4.01E-03 
29 5.95E-04 3.89E-03 4.36E-03 
30 1.87E-04 2.20E-03 2.46E-03 
31 2.86E-04 2.71E-03 3.04E-03 

Total 5.15E-03 1.951E-02 2.243E-02 

 

Results confirm the conclusions observed for the uranium/iron benchmark. The increased 
sensitivity of the resonance parameters due to the intermediate type of spectrum of the system 
produces both larger total uncertainties as well as larger effects when correlations are taken into 
account. This indicates that, for future studies, the ZEUS assembly would be a good candidate to 
illustrate the impact of correlations among resolved resonance parameters, in particular for 235U. 

 
7.0 Conclusions 
 

Resonance data play a major role in criticality safety calculations. Therefore, it is very 
important to assess uncertainties that are related not only to the specific parameters that are used 
for evaluating the cross sections, but also that associated with correlations among the different 
resonance parameters. The interest of this work was not to precisely quantify the impact of 
covariance information in the resonance domain, but to judge how important such information is 
for the applications. 

We reviewed the basic principles that lie behind an uncertainty evaluation and review the 
current situation in the field of covariance data. Then, because of the lack of tools for correctly 
evaluating the variances and correlations among resolved resonance parameters, a methodology 
to estimate these values was developed. This methodology is based on a number of physical 
assumptions that we tested on the example of 235U resonances. Relatively high correlations can 
be observed in most groups for the capture and fission cross sections of 235U, and elastic 
scattering cross section of 56Fe.   
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In order to estimate the impact of calculated uncertainties and correlations on Keff, two 
well-known criticality safety benchmark problems were considered. Furthermore, we focused on 
these two practical applications to illustrate the impact of different assumptions on the 
correlation values (no correlation, full correlation and evaluated correlation). The calculated 
uncertainties on Keff show that resonance parameters need a careful evaluation in order to 
minimize their associated uncertainty, and, consequently, the uncertainty on integral parameters. 
Correlations among parameters cannot be ignored without having a significant impact on 
calculations.  

In order to correctly quantify the importance of correlations, an appropriate tool based on 
the analysis of experimental data is needed. The methodology that has been proposed leads to 
quite high values of correlations. In the future, we need to confirm these types of results by using 
a tool that is based on experimental values and nuclear modeling information.  
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