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Abstract: Grain-boundary (GB) properties in a polycrystalline system are generally anisotropic; in particular, both
the GB energy and mobility depend on the GB misorientation. Moreover, in nanocrystalline materials,
in which the grain size is less than 100 nm, grain rotations leading to the coalescence of neighboring
grains via elimination of the common GB between them may provide a new mechanism for grain
growth. Here we investigate the combined effect of curvature-driven GB migration and grain-rotation
grain-coalescence on the kinetics, topology and morphology of grain growth. A stochastic velocity-
Monte-Carlo algorithm based on a variational formulation for the dissipated power is implemented. The
presence of both growth mechanisms introduces a physical length scale Rc into the system, enabling the
growth process to be characterized by two regimes. If the average grain size is smaller than Rc, grain
growth is dominated by the grain-rotation-coalescence mechanism. By contrast, if the average grain size
is greater than Rc, growth is dominated by curvature-driven GB migration. The values of the growth
exponents, different for the two growth regimes and different from a system with isotropic GB
properties, are rationalized in terms of the detailed growth mechanism and the continuous change of the
fraction of low-angle GBs in the system. An extended von Neumann-Mullins relation based on averaged
GB properties is proposed and verified.
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1. INTRODUCTION

Grain growth is the process by which the average grain size in a polycrystalline material
increases in time. The significance of this process comes from the profound influences of the
grain size and grain-size distribution on a wide range of properties of polycrystalline materials.
Grain size is a key parameter in sintered ceramics, metal and alloy microstructures and usually
has to be controlled during thermomechanical processing in order to ensure optimization of
mechanical properties. In the classical picture, grain growth takes place via the migration of the
grain boundaries (GBs) towards their centers of curvature [1], the driving force being provided by
the decrease in energy associated with the decrease in the length of the GBs. This GB-curvature
driven grain growth has been the subject of many theoretical [2-6] and simulation studies [7-16].
Most of the simulations assume that all the GBs have the same energy and mobility, i.e., that the
energy and mobility are independent of the GB misorientation.

It is well known that real polycrystalline materials exhibit anisotropic GB properties, i.e., both
the GB energy and mobility (and, in fact, all other GB properties) are functions of the
crystallographic misorientation across the boundary (see, e.g., [1,17]). The consequences of
including the GB anisotropy were first analyzed in two-dimensional (2D) Potts-model
simulations [7,8]. GB anisotropy was subsequently also incorporated into front-tracking models
of grain growth (see, e.g., [9-16]). In addition to revealing the topological, structural and kinetic
consequences of the GB anisotropy, these simulations have recently [16], led to a generalization
of the classical Von Neumann-Mullins law for isotropic systems [18,19]. Although this modified
law preserves the basic mathematical form of the original equation, its derivation revealed that,



due to the local nature of the GB anisotropy, the modified law is valid only in a statistically-
averaged form.

Grain rotations leading to the coalescence of neighboring grains via elimination of the
common GB between them may provide another mechanism for grain growth. Even without
complete coalescence, the solid rotation of entire grains may lower the total GB energy in the
system because the GB energy depends on the misorientation between the grains. Such rotations
have been observed in a number of experiments [20-28]. Hermann et al. [20] and Lojkowski et al.
[21] used X-ray diffraction to demonstrate that randomly oriented spheres of silver and copper on
single-crystal substrates rotate into specific low-energy orientations; direct observation of the
rotation of spheres was reported by Mykura [22] using scanning electron microscopy. Ringer et
al. [23], observed the rotation of a precipitate particle to a coherent orientation following the
passage of a grain boundary. Harris et al. [24] observed grain rotations in free-standing
nanocrystalline thin films of gold with columnar microstructure while Nichols et al . [25]
observed complete grain coalescence in in-situ transmission-electron-microscopy studies of grain
growth. Other recent experiments on micron grain-sized materials reported the presence of grain
rotations in connection with texture formation or evolution in polycrystalline nickel [26,27] and
aluminum [28].

Our recent molecular-dynamics (MD) simulations of grain growth in a columnar
microstructure of fcc palladium with a grain size of 15 nm demonstrated that, for this rather small
grain size, grain-rotation induced grain coalescence provides an effective mechanism for grain
growth [29]. The coordinated rotations of neighboring grains observed in these simulations led to
grain coalescence by the elimination of the common GB between them. These simulations also
demonstrated an intricate coupling of this mechanism with the conventional, GB-curvature driven
mechanism.

To date only a few mesoscale simulation studies [30-33] have focused on grain rotation as a
mechanism contributing to grain growth. In the study of Nichols et al. [30,31], grain rotation was
viewed simply as a means to lower the internal energy in a two-dimensional microstructure of
regular hexagons with anisotropic GB energies; no grain coalescence was considered. Saetre et
al. [32,33] simulated grain growth by subgrain rotation in one and two-dimensional systems,
focusing entirely on the kinetics and topology of grain coarsening due to the grain-rotation-
coalescence mechanism alone.

Several theoretical studies have also dealt with the physical mechanism for grain rotation [34-
38]. All of these assume that the driving force for rotation is the net torque on a grain arising from
the misorientation dependence of the energy of the GBs surrounding it, and assume that the
accommodation is by either cooperative GB dislocation motion [34-36] or diffusion [34,37,38].
In particular, building on Raj and Ashby’s theory of diffusion-accommodated GB sliding at
elevated temperatures [39], we have recently developed a theoretical framework describing the
rotation of an arbitrarily shaped grain [38] (for details, see Sec. 2).

In the present paper, we extend our previous studies of the role of GB anisotropy on
curvature-driven grain growth [16] and investigate the effects of the presence of both GB
migration and grain-rotation grain-coalescence mechanisms on the kinetic, topological and
morphological aspects of grain growth. The physical basis for our mesoscale simulations is
provided by our recently developed theory of diffusion-accommodated grain rotation [38]. A
dimensional analysis reveals that the coupling between GB migration and grain rotation during
grain growth introduces a physical length scale, Rc, into the system; this absolute length scale is
absent if only one of the two mechanisms is activated. The extremes in which one or the other
mechanism dominates may therefore be characterized by two regimes: If the average grain size,
R, is smaller than Rc, the effects of grain rotations dominate; for R > Rc, the conventional
mechanism of curvature-driven GB migration dominates. Moreover, we demonstrate that in the



grain-rotation dominated regime an entirely new mechanism of grain growth occurs. This novel
grain-growth mechanism exhibits a corresponding scaling behavior with a growth exponent,
which can assume a universal value in certain physically reasonable situations. Finally, we
demonstrate how the von Neumann-Mullins type relation based on statistically averaged local
grain environments, can be extended to include the effects of grain rotations.

The paper is organized as follows. Section 2 contains a brief description of our simulation
approach and the underlying theoretical concepts. In Section 3 we study the growth behavior of a
hypothetical model system evolving solely under the effects of grain rotations. In addition a
simple stochastic theory explaining the growth exponents is proposed. In Section 4 we analyze
the coupled effects due to the simultaneous activation of GB migration and grain rotation. Our
conclusions are in Sec. 5.

2. SIMULATION METHOD

As the formal basis for our mesoscale simulations we adopt the theoretical approach of
Needleman and Rice [40] based on a variational principle for dissipative systems. This principle
was originally formulated for GB and surface diffusion in the context of void growth [40] and
later was adapted for the simulation of curvature-driven grain growth by Cocks and Gill [14,15].
Their modification describes the rate of power dissipation due to the competition between the
reduction in the GB energy and the viscous drag during GB migration. Based on the Cocks and
Gill formulation of the functional, Cleri [41] developed a stochastic formulation that enables a
velocity Monte-Carlo (VMC) simulation approach using the variational functional as transition-
rate generating probability. We have used this approach in a study focusing on grain growth in
polycrystalline systems with anisotropic GB properties [16]. The simulation method applied here
incorporates the effects of grain rotation into the approach implemented by us earlier [16]. Here
we briefly highlight the modifications required to incorporate grain rotation to this approach.

Most importantly, the theoretical basis for the present simulations is provided by the theory of
diffusion-accommodated grain rotation developed in Ref. [38]. Considering a columnar
microstructure of column height unity, the cumulative torque acting on some grain i with respect
to its center of mass is given by [24,38]

τ
γ
θ

= ∑ L
d

dj
j

j
j    ,                                                         (1)

where Lj denotes the lengths of the individual GBs with energies γj. θj is the misorientation angle
across the GB between the grain and some neighboring grain j. As observed in our MD
simulations, analogous to GB migration, grain rotation is a viscous process; i.e., the angular
velocity of the grain, ω, with respect to an axis through its center of mass is given by

ω τ= M    ,                                                               (2)

where M is the "rotational mobility" of the grain which depends strongly on the average grain size
R. Our theoretical treatment [38] yielded a general expression for the grain-size dependence of
M,  assuming both GB-diffusion and lattice-diffusion accommodation for the rotation. Consistent
with this general theoretical framework, here we use the condensed form emphasizing the grain-
size dependence for the rotational mobility given by

M R C Rp( ) /=   ,                                                          (3)



where p = 5 for accommodation by GB diffusion and p = 4 for accommodation via lattice
diffusion through the grain interiors. C is a physical parameter which depends on the material
properties, temperature, the grain shape and the accommodation mechanism [38]. In particular,
for GB-diffusion accommodated grain rotation and a regular-hexagonal grain shape,
C=95ΩDGBδ/kT, where Ω is the atomic volume, δ the diffusion width of the GBs along the
periphery of the grain, DGB the GB self-diffusion coefficient, k Boltzmann’s constant and T the
absolute temperature.

The initial structure is generated via a 2D Voronoi construction and periodic border conditions
are applied to the simulation cell. Analogous to the meshing in finite-element simulations,
minimization of the variational functional using the VMC algorithm requires discretization of the
initial microstructure. Two sets of mesh points (or nodes) are introduced, one consisting of the
triple points and the other one discretizing the GBs. Each node is linked to neighboring nodes by
straight segments; for example, a triple-point node is connected to three neighboring nodes while
a GB node is connected to only two other nodes (one or both of which may be associated with
triple points). The introduction of this GB mesh allows GB curvature to be modeled in terms of a
series of straight segments. Each grain is assigned an initial orientation with respect to a fixed
axis in the plane of the simulation cell; therefore each GB is characterized by the misorientation
angle between two neighboring grains. Even in a columnar 2D microstructure the full GB texture
covers a large parameter space, consisting of both the relative misorientation of two neighboring
grains and the inclination of the boundary plane with respect to a reference direction. For
simplicity and for comparison with our previous atomistic simulations of grain growth [29] we
assume all the GBs in the system to be <001> tilt boundaries. In practice, to account for the
<001> texture of the microstructure, the grain orientations are restricted to the 0-90o interval, and
initial grain orientation angles are assigned randomly within this interval (subject to the constraint
that no GB misorientation θ was less than 1o). Because the GBs in this system are <001> tilt
boundaries in a fourfold symmetric system, only misorientation angles between 0 and 45o are
unique. How this particular textured microstructure affects our results will be discussed at the end
of Section 4.3.

As in our earlier study of anisotropic grain growth [16], we assume the following functional
forms for the dependence of the GB energy and GB mobility on the GB misorientation. For the
GB energy, we use the Read-Shockley formula [42], empirically extended to high angles [43]:

γ θ γ θ θ( ) sin( )[ ln(sin( ))]max= −2 1 2r      ,                                        (4)

where γmax is the plateau value and r is a measure of how steeply the GB-energy rises at small
angles. The value of the parameter r fitted for <001> tilt GBs in palladium is r = 0.693 [29]. For
the GB mobility we adopt the θ dependence proposed by Humphreys [44]:

m m B n( ) [ exp( ( / ) )]maxθ θ θ= − −1 0    ,                                           (5)

with the parameters B = 5, n = 4 and θ0 = 200 [44]. As described in Section 4, the plateau values
γmax and mmax do not need to be specified since our simulations will be carried out in reduced
units.

To incorporate grain rotations into the model, additional terms are added to the functional;
these describe the competition between the reduction in GB energy due to the rotation and the
related energy dissipation during the viscous rotation. In addition to the velocity field, {v}, of all
the GB and triple-point nodes, the dissipated-power functional, Π({v},{ω},{r},{φ}), therefore
includes also a set of grain-rotation rates, {ω}. As described in our previous study [16], {r}



represents the set of time-dependent coordinates of the GB and triple-point nodes, while {φ} is
the set of grain orientations. This extended functional reads:
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where the first sum is taken over all the GB segments, Nsgm, of lengths li used to represent the
discretized GB network; the second sum includes all Ng grains in the system (see also Eqs.
(1)–(3)).

The subscripts 1 and 2 in the first two terms in Eq. (6) (describing the energy balance during
curvature-driven GB migration) indicate that the values of the quantities are taken at the two end
points of each segment.  si1 and si2 are the tangent unit vectors at the ends of segment i,
considered to point away from the end of the segment. vi1 and vi2 are the velocities of the nodes
associated with segment i. vn

i1 and vn
i2 are the normal components of the velocities at the end

points of segment i. γi and m i , the GB energy and mobility of segment i, depend on the
misorientation across the segment.

We use Cleri's velocity Monte-Carlo stochastic approach [41] to find the set of GB-node
velocities, {v}, which minimizes the variational functional at each time step [16]. The grain
angular velocities, {ω}, are given by Eq. (2). Also, all GBs are discretized so that the Herring
relation for the triple-point angles can be satisfied [45]. This results in the GBs being curved,
providing the necessary driving force for GB-curvature-driven grain growth. Only in the special
case in which grain growth is solely due to the rotation-coalescence mechanism (see Sec. 4), will
straight, non-discretized GBs be considered.

Fig.1. Schematic representation of a grain-coalescence event. In (a) , grains A and B sharing a common boundary
(dotted line) rotate towards one-another until the GB misorientation vanishes, i.e., the GB disappears, leading to the
coalescence of the two grains sketched in (b). As seen in (b), the coalescence gives rise to a topological discontinuity
associated with the elimination of two triple junctions. The nature of this discontinuity, and the subsequent relaxation
of the microstructure, were observed in our earlier MD simulations of grain growth [29].

In addition to the well-known T1 and T2 topological discontinuities associated with neighbor
switching and the disappearance of three-sided grains [46], grain coalescence gives rise to the
topological discontinuities shown schematically in Fig. 1. In particular, the disappearance of an
entire GB also eliminates the two triple junctions at the GB endpoints. In practice, this
topological discontinuity is incorporated in our simulations by considering two neighboring
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grains as having coalesced when the misorientation of their common GB is less than 0.5°; at that
point, the appropriate topological rearrangements are carried out.

3. GRAIN GROWTH BY ROTATION-COALESCENCE ALONE

In a two-dimensional system, grains can rotate about the texture axis in the clockwise or
counterclockwise direction. The change of orientation of a grain during rotation will lead to a
change in the misorientations and energies of all the GBs surrounding the grain, such that the
total energy of all the GBs delimiting the grain will decrease. According to Eq. (1) the GBs with
the largest contribution to the cumulative torque are those with the smallest misorientation angle,
as they have the largest value of the gradient dγ(θ)/dθ. The rate of grain rotation is given by Eq.
(2), in which the rotational mobility, M, depends strongly on the average grain size, R , as
illustrated in Eq. (3).

One of the main aims of the current simulations is to examine the effects of grain rotation on
the kinetics and topological aspects of grain growth. However, here we focus on the growth in the
presence of grain rotation only, while the combined effects of both mechanisms will be
investigated in Sec. 4. To explore the effect of the particular functional form of the misorientation
dependence of the GB energy, γ(θ) two different functional forms are considered: i) A realistic
functional form for the <001> tilt GBs expressed as the extended Read-Shockley formula in eqn.
(4). ii) A simplified triangular shape γ(θ)/γmax = 4θ/π for 0<θ<π/4 and γ(θ)/γmax = 2 - 4θ/π for
π/4<θ<π/2, which depends on just one parameter, γmax, which we set equal to one. Moreover, to
better understand the effect of the grain rotational-mobility parameter p in Eq. (3) on the growth
process, we have performed simulations for p = 3, 4 and 5 employing both of the above
mentioned functional forms for γ(θ). While the cases for p = 5 and p = 4 have direct physical
interpretation in terms of a diffusion-accommodation mechanism [16], the value p = 3 is
primarily of mathematcal interest.
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Fig. 2 Time variation of the average grain area (normalized using the initial value) for various values of the parameter
p. In these simulations both the extended Read-Shockley (ERS) and triangular (T) formulas are used for the GB energy
dependence on the misorientation.



We first focus onthe growth kinetics. Figure 2 shows the time variation of the average grain
area for the systems with various values of the parameter p and for γ(θ) given by both the
extended Read-Shockley (Eq. (4)) and triangular formula. We follow the time evolution of the
total number of grains from initially 10,000 until only about 300 grains remain. After some
transition period, which is different for each value of p, the systems reach scaling regimes in
which the growth is characterized by power laws (i.e. A(t)~tn) with different growth exponents n.
Interestingly, the growth kinetics is very similar for the two quite different functional forms of
γ(θ). This suggests that the growth exponent assumes a universal value in a similar way to the
growth exponent in the systems evolving by curvature-driven GB migration growth in isotropic
systems.

A theoretical model predicting the values of the exponent n for the grain growth by grain-
rotation induced grain coalescence and based on the mean-field approach, similar to that applied
to curvature-driven grain growth by Burke and Turnbull [2], is presented in the Appendix. This
predicts that the exponent, n, which under certain conditions is universal depends only on the
parameter p in Eq. (3), i.e., on the specific accommodation mechanism. Table 1 summarizes the
simulation findings together with the theoretically predicted values of the growth exponent. One
can see that the growth exponents n = 2/(p-1) for both functional forms of γ(θ) are almost the
same and in very good agreement with the theoretically predicted exponents given by Eq. (A.8).
We should mention here that the value of the parameter q entering Eq. (A.7) and determined from
the simulations is indeed very small (q ~ 0.02 - 0.05) for both functional forms. Our simulation
results, corroborated by our analytical derivation, thus suggest the existence of a new universal
coarsening exponent, n, characterizing the growth in 2D domain structures by the mechanism of
grain-rotation induced grain coalescence. This coarsening exponent only depends on the
parameter p characterizing the size dependence of the rotational mobility of the grains.

Table 1. Analytical and simulated values for the coarsening exponents n characterizing, the time dependence of the
average grain area, A(t)~tn, for the system evolving in the presence of grain rotation only. Simulation results are
reported for two functional types of the misorientation dependence of the grain boundary energy γ(θ).

n (Simulation)p        n
(Eq. (A.8)) γ(θ)-extended

Read-Shockley
γ(θ)-triangular

shape

5 0.50 0.50 0.51

4 0.66 0.66 0.67

3 1.0 0.99 0.95

Apart from the increase of the average grain size, other important microstructural features,
such as the balance between low-angle and high-angle GBs, are modified during growth. This is
best characterized by the misorientation-angle distribution function, which gives the fraction of
the total number of GBs with a given misorientation. For reference and comparison, in addition to
the distributions for the system evolving by rotation coalescence, Fig. 3 shows the distributions
for the same system evolving by curvature driven GB migration only. Since the driving force for
grain rotation arises mainly from the low-angle GBs, and since each grain-coalescence event
eliminates a low-angle GB, for these systems grain rotation significantly changes the content of
low- and high-angle GBs during growth: compared with the initial distribution at t = 0
(N=10,000), this fraction decreases significantly during growth. This is opposite to what happens
in a system evolving by GB migration only for which the fraction of low-angle GBs increases in



time (see ref. [16]). As also shown in our previous study [16], in a microstructure generated by
assigning random uniformly distributed grain orientations the misorientation-angle distribution is
independent of misorientation (see the crosses in Fig. 3).
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comparison, the log-normal distributions fitted for rotation-coalescence ( ) , rotation-coalescence plus migration
(⋅⋅⋅⋅⋅⋅⋅) and for GB migration (-----) mechanisms are shown.

The simulations also reveal additional information regarding the grain morphology and the
grain-size distribution of the coarsening microstructure. Figure 4 shows the grain-size



distributions evaluated in the scaling regimes for three systems evolving in the presence grain
rotation only, GB migration only and in the presence of both grain rotation and GB migration (the
case when both grain rotation and GB migration are present, will be discussed in Sec. 4.3). For
comparison, the best-fit log-normal distribution functions for all three distributions are also given.
Interestingly, the grain-size distribution function for the system evolving by rotation-coalescence
mechanism follows almost perfectly a log-normal distribution; by contrast, in the system evolving
by GB migration there is a considerable deviation from the log-normal distribution. The grain-
rotation coalescence distribution is narrower and has a higher peak value than that for the system
evolving by GB migration; it also drops more quickly to zero at small grain sizes and even shows
an apparent cut-off at about 0.2 in the reduced grain-size. One can rationalize the differences
between the two distribution functions by recalling that under GB migration small grains shrink
continuously until they disappear. However, when only grain rotation takes place, there is no
mechanism by which a grain can decrease its size: indeed, a grain may only increase its size by
discrete coalescence events with its neighboring grains.

4. GRAIN GROWTH BY SIMULTANEOUS GB MIGRATION AND
GRAIN ROTATION

We now consider growth under the combined effects of both grain rotation and GB migration.
As we show the simultaneous presence of both GB migration and grain rotation introduces a
physical length scale into the system, in the form of a physical grain size, Rc; this absolute length
scale is absent if only one of the two mechanisms is present. We estimate the value of this
physical length scale by using a dimensional analysis.

4.1 Dimensional analysis of characteristic length and time scale

For the purpose of this dimensional analysis, we consider a single representative term in Eq.
(6). In the presence of both GB migration and grain rotation, this term has the form, Π  = Πmig +
Πrot = [γv + (v2/m)l] + [τω + (ω2/M)]. To put Π into dimensionless form we choose to express the
GB energy, γ, in units of γmax, the GB mobility, m in units of mmax, the length, l, of a GB segment
in units of the initial average grain radius, R0 and the time, t, in units of t0=R0

2/γmaxmmax. Having
chosen these, the representation in reduced units for the other physical quantities of interest are:
v0=γmaxmmax/R0 for the node velocity v, ω0=γmax mmax/R0

2 for the angular velocity ω, and
τ0=R0γmax for the torque τ. This choice allows us to define the dimensionless variables: γ*=γ/γmax,
m*=m/mmax, R*=R/R0, v*=v/v0, τ*=τ/τ0 and ω*=ω/ω0. Using these, the above sum of the two
representative variational-functional terms can be written in dimensionless form as follows:
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where Π0 = (γmax 2 mmax )/R0 and M*=(R0/R)p. It is important to notice that we have introduced
the dimensionless parameter η = −( / )maxC m Rp

0
3 ; i.e., the time evolution of the microstructure

described by this functional depends on the actual value of the parameter η. The parameter η can
be written in the equivalent forms:
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                                                            (9)

is a characteristic physical length scale. Note that for p = 5, η ~ Rc
2, whereas for p = 4, η ~ Rc.

Equation (8) illustrates that η  may be viewed as the ratio of two lengths: the average initial
grain size, R0, which depends on the microstructure, and the physical length scale Rc determined
solely by the material properties and temperature, i.e., the GB mobility, mmax, and the materials
constant C. Thus, when R0 >> Rc, η is small and the growth is GB-migration dominated, whereas
when R0, << Rc,, η  is large and the growth is grain-rotation dominated. For a hexagonal grain
shape and assuming GB-diffusion as the accommodation mechanism for grain rotation, i.e., p = 5
in Eq. (3), R C mc = ( / )max

/1 2 .
Up to a numerical factor of the order unity Rc is the same as dc, the critical grain size, where

the crossover from rotation-coalescence to GB-migration dominated grain growth occurs [29].
Using a different line of reasoning, we have estimated dc in a previous study [29]. In particular,
using data for Pd at 1400 K, i.e. just below the melting point, we estimated that dc  is ~ 3.2 nm.
We interpreted this result as an indication that, in a pure material, grain rotations only contribute
to grain growth if the grain size is of the nanometer dimensions [29].

The parameter η  is analogous to the Reynolds number in the analysis of the Navier-Stokes
equation describing the incompressible flow of viscous fluids in hydrodynamics. The Reynolds
number characterizes the relative importance of inertial and viscous forces; at a certain value of
the Reynolds number the flow regime changes from laminar to turbulent flow. It is also important
to recall that the Reynolds number is used to characterize the flow similarity; for example, the
flows around two geometrically similar bodies will be identical (in dimensionless variables) if the
Reynolds numbers for the two bodies are the same. Introduction of the parameter η  has similar
implications. In particular, a certain value of η  marks the transition from GB-migration-
dominated to rotation-dominated growth and can be used to study similarity of the growth.

In the context of the physical interpretation of the parameter η, there are two limiting cases: η
= ∞ characterizes the system in the presence of grain rotation only, whereas η = 0 characterizes
the system in the presence of GB migration alone.

4.2 Growth law and the crossover regime

We first analyze the growth law to determine the range of η  values for which grain rotation
and GB migration compete on an equal basis. We then perform a detailed analysis for one
particular value of η (η = 250) in this crossover regime.

As shown in Figs. 5(a), and 5(b) the value of the growth exponent, n, depends on the
parameter η. Specifically, we find that for η < 10, the growth exponent is n ≈ 0.71, which is the
same as the value for the system in the presence of GB-migration only (see ref. [16]). Similarly,
for η  > 3000 we find n ≈ 0.50, i.e., the same as the value obtained in the presence of growth by
grain rotation-coalescence only (see Fig. 2). In the range 10 < η < 3,000, n decreases smoothly
(and approximately exponentially with η) from n = 0.71 to n = 0.5. Figure 5(b) reveals that a
value of η  ≈ 250 sets the system in the middle of the crossover interval.

We can rewrite Eq. (8) as R0 = Rc/η1/2; i.e., one can have the alternate view of the crossover
regime in terms of the initial average grain size R0. We find that the GB-migration dominated
regime is obtained for grain sizes larger than R0 > 0.33Rc (η < 10), while for R0 < 0.018Rc (η >
3,000) the system is in the grain-rotation dominated regime. When considering these values one



should bear in mind that, provided the growth process is followed over a long time such that
significant changes of the average grain size occur, a continuous change from rotation-dominated
to migration-dominated growth is obtained. In our simulations for growth in the scaling regime
(evolution from 5000 to 500 grains) the average grain size increases by roughly a factor of three.
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Figure 6 shows four snapshots of evolving microstructures with different values of η ranging
between 0 and ∞; all snapshots contain about 700 grains evolved from initially 10,000 grains. It is
interesting to see that in the presence of grain rotation only (η = ∞; see Fig. 6(a)), most of the
grains are relatively elongated. In addition, close inspection of this microstructure indicates the
presence of a relatively small number of small grains. One can therefore anticipate a narrower
grain-size distribution compared with the cases when GB migration is present. By contrast, for η
= 0 (see Fig. 6(b)) there are no significantly elongated grains in the microstructure. In this case
the microstructure has an overall resemblance to that of isotropic grain growth (i.e., soap froth,
see Fig. 6(d)). However, there are some differences due mainly to the triple-point angles
deviating from 120°, which is a consequence of the presence of both low-angle and high-angle
GBs in the system. The morphology of the microstructure is quite different when both GB
migration and grain rotation are present (see the system for η  = 250 in Fig. 6(c)). This
microstructure exhibits characteristics of both microstructures in Figs. 6(a) and 6(b). For
example, one can see the presence of some elongated grains, the signature of grain rotation; also,
the presence of some relatively small grains compared with the average, reflecting a broader
distribution of the grain sizes, is a characteristic of GB migration only (see Fig. 6(b)). We find
that in the presence of GB migration (both with and without grain rotation), the dihedral angles
between boundaries at triple junctions quickly assume their equilibrium values and the Herring
relation [45] is satisfied.

(a) (b)

η = ∞



         

(a) η = ∞

                

  

(b) η = 0

        

 

(c) η = 250

               

(d) isotropic GBs

Fig. 6 Four typical snapshots of the microstructure when only about 700 (from initially 10,000) grains are left in a
system evolving under various growth conditions. (a) grain rotation only (η  = ∞). (For this system the straight GB
model was used in the simulations.); (b) Curvature- driven GB migration only (η = 0); (c) Simultaneous grain rotation
and GB migration (η = 250) and (d) GB migration only in a system with isotropic GB properties.

4.3 Distribution functions

Figure 4 shows that the presence of both grain rotation and GB migration (η = 250) leads to a
widening of the grain-size distribution compared with the case when only rotation is present and a
shift of the peak positions towards larger reduced grain sizes. Moreover, GB migration tends to
eliminate the cut-off threshold xc at small grain sizes, i.e., grains which are much smaller than the
average start to be present more frequently in these systems. One can understand this by recalling
that under GB migration small grains will shrink continuously until they disappear (by a T2 event
or by a combination of T1 and T2 events). However, when only grain rotation takes place, there is
no mechanism by which a grain can decrease its size. Rather, a grain may only increase its size by
discrete coalescence events with its neighboring grains. Moreover, since the rotational mobility
depends so strongly on the average grain size (see Eq. (3)), small grains will be more likely to
undergo coalescence events, and therefore grow faster, than larger ones.
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Finally, we mention that there is no consensus on the precise form of the grain-size
distribution of a microstructure evolving under curvature-driven grain growth. While
experimental data suggest that a log-normal distribution function is appropriate, neither
theoretical models nor simulation studies (see, e.g., Fig. 4) have reproduced such a distribution.
Therefore, the deviations from the log-normal distribution are not surprising.

As shown in Fig. 3, during the growth by grain rotation-coalescence alone, the fraction of
low-angle GBs decreases significantly, while for curvature-driven GB migration alone the
opposite trend is observed. Thus, it is interesting to see the evolution when both are present. For η
= 250, Fig. 7 shows that initially the fraction of low-angle GBs decreases slowly until about 8,000
grains are left in the system. As the number of grains continues to decrease, the fraction of low-
angle GBs starts to increase slowly. By the time there are 6,000 grains left in the system, the
misorientation distribution function is almost the same as the one at the start when 10,000 were
present. Further grain growth leads to a small increase of the fraction of low-angle GBs. This time
dependence illustrates the delicate balance between the mechanisms of GB migration and grain
rotation.

In summary, in the grain-growth regime dominated by GB-migration the main driving force is
given by the high-angle GBs with their higher energies and mobilities (see [16]); by contrast for
growth in the grain-rotation dominated regime the low-angle GBs, with their higher (dγ/dθ), are
more important. One should also notice that in each regime the fraction of the GBs that
contributes most to the growth diminishes (see Figs. 3 and 7) as the grain growth progresses. As
mentioned in Section 2 in the columnar 2D <001> textured microstructure considered in these
simulations, the GB misorientations are restricted to 0-45o and the probability of any particular
GB misorientation in the 0-45o is constant. Consistent with this, 45% of all the GBs in the system
are misoriented by 20o or less and all of these will experience energy gradients causing rotation.
A quite different misorientation distribution function characterizes a fully 3D microstructure with
random orientations of the grains. This was calculated first by Mackenzie and Thomson [47] and
later demonstrated experimentally by Samajadar and Doherty [48]. In the 3D cubic crystal
structure, relevant to 2D growth in thin film columnar structures as well as in fully 3D structures,



only about 4% of the GBs are misoriented by less than 20o. Hence far fewer GBs are close to a
zero angle misorientation. Consequently, one expects that rotation effects will be less important
in a fully 3D cubic crystal structure. Moreover, the crossover grain size Rc to the evolution of the
microstructure under partial or full rotation control will be shifted to even smaller grain sizes.

4.4 Extended von Neumann-Mullins relation

For a system with isotropic GB properties evolving by curvature-driven GB migration, von
Neumann [18] derived the key equation,

dA

dt

m
nn = −π γ

3
6( )                                                     (10)

relating the rate of area change of a grain to its number of sides, n, and to the product of the GB
energy γ and mobility m. Eq. (10), known as the von Neumann-Mullins (VNM) relation, allows a
simplified description of a coarsening network in an isotropic system in terms of only two
variables: the area, An and the topological class, n, i.e., the number of sides of each grain.
According to Eq. (10), the rate of area change for each grain is independent of the boundary
shapes and of the rates of growth of the neighboring grains.

Focusing on the effect of GB anisotropy on grain-growth in a previous study [16], we
investigated the adherence of curvature-driven grain growth to an extended, averaged VNM
relation:
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where <γnmn> is the average value of γ m for the GBs surrounding the grains of topological class
n, and <θn> is the average value for the triple-point angles of the n-sided grains; <…> indicates
an average over all grains with n sides. One can see that Eq. (11) reduces to the VNM relation for
isotropic systems by simply substituting <θn> = 2π/3 and <γnmn> = γ m.

We point out that Eq. (11) requires input from simulation, specifically the averaged quantities
<γnmn>  and <θn>, whereas the VNM relation requires no simulation input. Our simulations
revealed that, although the growth is considerably more complex in a system with anisotropic GB
properties, the growth process can still be rationalized in terms of groups of grains belonging to
the same topological class [16].

In the presence of both GB migration and grain rotation, two processes contribute to the
change of the grain area. While GB migration leads to a continuous and smooth change of the
area, change due to the grain-rotation-coalescence mechanism is sudden and discrete. This
discrete change is described in the Appendix.

Figure 8 shows the time evolution, over a relatively short period of time, of the average area,
<An(t)> – <An(0)>, of n-sided grains in the scaling regime for the system with η  = 250. One
should notice that only grains that do not change their number of sides are considered when
calculating <An(t)>. Although the rate of area change of individual grains in a topological class
varies, the rate of change of the average area of the grains in each topological class is
approximately constant. Figure 8 reveals that the average area of a six-sided grain does not
change; by contrast, the average areas of grains with n < 6 decrease and those with n > 6 increase.
Moreover, the rates of average area change do not increase linearly with n, by contrast with the
prediction from the VNM relation (see Eq. (10)).
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Figure 9 shows our simulation results for the rates of area change for grains belonging to
various topological class n, for both the isotropic system and for a system with η  = 250. In
addition, the rates predicted from Eq. (10) and from the extended averaged VNM relation, Eq.
(11), are shown. As we saw previously [16], the VNM relation is followed almost perfectly for
the isotropic case. Although the average rate of grain-area change shows some deviation from
linearity and is not at all represented by the VNM relation, for η  = 250 the extended averaged
VNM relation fits the simulation results well. This demonstrates that, although the degree of
complexity increases in the simultaneous presence of anisotropic GB properties and grain



rotation, the growth of the grains which are not involved in any grain coalescence events can still
be rationalized in terms of groups of grains belonging to the same topological class.

5. CONCLUSIONS

By studying the grain growth in a 2D system in the presence of both GB migration and grain
rotation, our mesoscopic simulations shows the presence of a physical length scale Rc. This
enables the growth process to be characterized by two regimes. If the average grain size is smaller
than Rc, grain growth is dominated by the grain-rotation-coalescence mechanism. By contrast, if
the average grain size is greater than Rc, the growth is dominated by curvature-driven GB
migration.

For the system evolving in the grain-rotation dominated regime we have found that the growth
exponent, n = 2/(p-1) is universal and depends only on one parameter, p, controlling size
dependence of the grain rotational mobility. Although the degree of complexity of grain growth
increases in the presence of both GB migration and grain rotation, not all the growth
characteristics are changed. As our simulations show, the time evolution of the system is still
governed by a power law. Moreover, our study also shows that an extended von Neumann-
Mullins relation, based on averaged grain-boundary properties, can be further extended to include
the effect of grain rotations.

As it was mentioned in in Sec. 4.1, the order-of-magnitude estimate based on the simulated
GB mobility in a pure material yields a lower limit for Rc of a few nanometers. because GB
migration can be strongly impeded by impurities swept up and dragged along by a moving GB,
experimentally determined GB mobilities can be orders of magnitude lower than the values
extracted from simulations [1]. Moreover, a low mobility of the triple junctions would also
significantly slow GB migration. As a consequence, according to Eq. (9), a lower value of GB
mobility would significantly increases the physical length scale Rc, with the potential of bringing
it into the micron grain-size range. In practice, the effect of grain rotations on grain growth may
therefore not be restricted to nanocrystalline materials and may be important even for some
coarse-grained materials.
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APPENDIX

Growth law due to grain-rotation coalescence alone

Consider a two-dimensional system consisting of a large number, N, of grains characterized by their orientation
angles with respect to an arbitrary fixed direction. Each grain is free to rotate about an axis perpendicular to the plane in
the clockwise or counterclockwise direction. The GB energy depends on the misorientation angle between any two
neighboring grains and the change of the orientation of one grain due to rotation leads to a change in the
misorientations of all the GBs surrounding a given grain. Consequently the energies of all the GBs surrounding the
grain change such that overall the total energy of all the GBs delimiting the grain decreases. When two neighboring
grains assume the same orientation, they coalesce forming a single larger grain.



The total number of grains present in the system, N, decreases discontinuously every time a coalescence event takes
place. By analogy with radioactive decay, we assume that grains can be characterized by some average "lifetime", tL,
equal to the average time it takes for a grain to undergo a coalescence event. Therefore we write

  1 1

N

dN

dt tL
= −    .                                                                        (A.1)

As two grains coalesce when they have acquired the same orientation, it is reasonable to assume that coalescence
events take place with a frequency proportional to the average rate of grain rotation, <ω>. Therefore, tL is proportional
to 1/<ω>.

Without loss of generality we assume that the N grains are located in a square box of size Lb surrounded by
periodic replicas in both directions. The average grain area, A(t), is related to the total number of grains, N(t), by
N(t)A(t) = Lb

2
. By differentiating this relation, we find N(t)dA(t)+dN(t)A(t) = 0. This is equivalent to dA(t)/A(t) = -

dN(t)/N(t) which, by using Eq. (A.1), gives:
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where B1 is a constant. Thereby relating the rate of change of the average grain area, dA/dt, to <ω>.
To integrate Eq. (A.2) we need to know the dependence of <ω> on A. For an individual grain, i, ωi is given by Eq.

(2) in which both the rotational mobility, M, and the cumulative torque, τ, depend on the average grain size (see Eqs.
(1) and (3)). For simplicity we assume that the average grain size R is related to the average grain area A by the relation
R = A

1/2
. We can define for each grain i the aggregate GB energy gradient as <dγ/dθ>i = (1/NGB)Σj=1dγj/dθj , where j

runs over all the NGB GBs delimiting grain i. By averaging this over the whole system, we obtain

  d

d N

d

di

N

i

γ
θ

γ
θ

=
=
∑

1

1
  .                                                                   (A.3)

Here we assume, based on the simulations that during the growth <dγ/dθ> depends on the average grain area, A, as a
power law, i.e., <dγ/dθ> ~ A

q
. Using Eqs. (A.3) and (1), the average cumulative torque τ acting on a grain becomes
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where B2 is another constant. Inserting this together with Eq. (A.4) into Eq. (2) we see that the dependence of <ω> on
A is given by
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Inserting Eq. (A.5) into Eq. (A.2) and integrating for the time dependence of A(t), we obtain:

 A t t tp q n( ) ~ '

2
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with growth exponent n' given by

 n
p q

' =
− −

2

1 2
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Although n' depends on the two parameters p and q, our simulations presented below show that q is very small. In fact,
in the steady-state self-similar growth regime one can expect that <dγ/dθ> assumes a constant value, i.e., q=0 (see
Eq.(A.4)). This suggest that the growth exponent in the steady-state regime is given by



 n
p

=
−
2

1
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As a limiting case, for p=1 and assuming q=0, Eqs. (A.2) and (A.5) predict an exponential increase in time for A(t).
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