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Extended Abstract 
 Complexity Theory is the study of order within otherwise chaotic systems (Holland, 
1999). Complexity Theory often focuses on Complex Adaptive Systems (CAS). A CAS is a 
system of components that interact and reproduce while adapting to their environment. A CAS 
consists of large numbers of components that are diverse in both form and capability. A CAS 
exhibits unstable coherence in spite of constant disruptions and a lack of central planning. 
 Large-scale, interconnected infrastructures such as communication networks are CAS. 
These infrastructures are vastly more dynamic than their predecessors. Such infrastructures 
consist of a large number of components and participants that are diverse in both form and 
capability. Furthermore, these infrastructures exhibit unstable coherence in spite of constant 
disruptions and a lack of central planning. 
 Viewing large-scale, interconnected infrastructures with complex physical architectures, 
such as communication networks, as CAS can provide many new insights (Bower and Bunn, 
2000; North, 2000a, 2000b, and 2001). The CAS approach emphasizes the specific evolution of 
integrated infrastructures and their participants’ behavior, not just simple trends or end states. The 
adaptation of the infrastructure participants to changing conditions is paramount. Also, the effects 
of random events and uncertainty are explicitly considered. One powerful computational 
approach to understanding CAS is agent-based modeling and simulation (ABMS). 
 Applying ABMS to communication networks and the infrastructures upon which they 
depend may allow such networks to be understood as more than just wires. Communication 
networks may then be electronically managed as complete, dynamic systems. An example is the 
integrated, systems-level computational perspective ABMS has provided to electrical and natural 
gas infrastructure research (North, 2001). This holistic computational perspective may allow both 
the physical and human dimensions of complex systems such as communication networks to be 
anticipated and managed on-line, in real time. Thus, ABMS may be an important tool for 
developing imperishable networks. 
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Introduction 
Complexity Theory is the study of order within otherwise chaotic systems (Holland, 

1999) that often focuses on Complex Adaptive Systems (CAS). A CAS is a system of 
components that interact and reproduce while adapting to their environment. A CAS consists of 
large numbers of components that are diverse in both form and capability. A CAS exhibits 
unstable coherence in spite of constant disruptions and a lack of central planning. Modern 
infrastructures are CAS. 

Large-scale, interconnected infrastructures such as communication networks are CAS. 
These infrastructures are vastly more dynamic than their predecessors and exhibit unstable 
coherence in spite of constant disruptions and a lack of central planning. Modeling such 
infrastructures is a daunting task. The systems employed in any given industry are highly 
complex with dynamic feedback and response mechanisms. Through years of technological 

 1



evolution, the processes and materials that make modern life possible have grown increasingly 
interconnected. By leveraging the advances in other sectors, individual industries have improved 
their ability to efficiently compete in the marketplace. Through this leveraging, the nation’s 
infrastructures have coalesced in varying degrees, forming larger interdependent systems. 

The effort to model interdependent systems immediately involves formidable challenges. 
Obtaining a physical system representation in a particular industry is mostly a matter of obtaining 
the right data and software packages. Much of this information is available in the commercial 
marketplace. The natural approach to interdependence modeling is to acquire the proper software 
packages for several industries and to try running them together. However, even if the effort were 
successful, the resulting model would lack the operators and other decision-makers that affect the 
commodity or service delivery. After all, these systems are subject to the laws of business, which 
are constantly changing, as well as the laws of physics, which are generally absolute. 

Most large-scale infrastructures are highly interconnected with other infrastructures. Each 
interconnected infrastructure affects all of the others. For example, the proliferation of Internet-
based electric power markets highlights the increasingly interdependent nature of the electric 
power (EP) and telecommunications (TC) industries. 

Corporations and other large organizations, acting within markets, operate infrastructures 
according to a myriad of marketplace, legal, regulatory, and financial considerations. How 
corporations ultimately choose to operate their interdependent infrastructures is as important as 
the physics that constrain their plans. Simulating these organizational choices in the appropriate 
physical context is important to better understand large-scale, interconnected infrastructures. 

Simulating infrastructures in isolation is beneficial for design, maintenance, and 
operation. However, considering the importance of interdependencies, more needs to be done. 
Simulations must examine the relationships between infrastructures as well as the components 
within a given infrastructure. Simulating these relationships between infrastructures is only the 
beginning. 

The Challenge 
A wide variety of tools exist to study physical infrastructures such as the TC system. 

These tools generally take an engineering view of a single infrastructure. The distinction between 
behaviors at the microscopic and macroscopic levels is important. When engineering 
requirements are imposed on the representative model, the challenges grow. CAS may be the 
answer. 
 Viewing large-scale, interconnected infrastructures with complex physical architectures, 
such as communication networks, as CAS can provide many new insights (Bower and Bunn, 
2000; North, 2000a, 2000b, and 2001). The CAS approach emphasizes the specific evolution of 
integrated infrastructures and their participants’ behavior, not just simple trends or end states. The 
adaptation of the infrastructure participants to changing conditions is paramount. Also, the effects 
of random events and uncertainty are explicitly considered. One powerful computational 
approach to understanding CAS is agent-based modeling and simulation (ABMS). 

An agent-based model consists of a set of agents and a framework for simulating their 
decisions and interactions. ABMS is related to a variety of other simulation techniques including 
discrete event simulation and distributed artificial intelligence or multi-agent systems (Law and 
Kelton, 2000). While many traits are shared, ABMS is differentiated from these approaches by its 
focus on achieving “clarity through simplicity” as opposed to deprecating “simplicity in favor of 
inferential and communicative depth and verisimilitude” (Sallach and Macal, 2001). It offers the 
opportunity to gain new insights into the operation of large-scale, interconnected infrastructures 
and explicitly represents the behaviors of individual decision-makers. An agent-based simulation 
(ABS) in the infrastructure interdependency context consists of a set of agents and a framework 
for simulating the agents’ decision-making processes and interactions over time. 

Many insights can be gained by viewing the TC market from the ABMS-emergent-
behavior perspective. Emergent behavior is a key feature of ABMS. Emergent behavior occurs 
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when the behavior of a system is more complicated than the simple sum of the behavior of its 
components (Holland, 1999). Emergent behavior is sometimes called “swarm intelligence,” since 
it often arises from a group of individuals cooperating to solve a common problem (Bonabeau, 
Dorigo, and Theraulaz, 1999). Diversity drives swarm intelligence and provides a source for new 
ideas or approaches. The key is to balance the level of diversity. Too little diversity leads to 
stagnation. Too much diversity prevents exploitation of existing good ideas. Achieving a balance 
between these extremes of diversity is crucial to system survival. The infrastructure simulation 
will allow exploration of emergent behavior and provide insights into the ways that individual 
organizations influence their markets, as well as how each market influences its participants. 
These insights can enhance the understanding and management of infrastructure interdependence. 

 
Complex Adaptive Systems 

The nature of how emergent properties arise in systems and of how systems adapt over 
time is being studied in the field of Complexity Theory. CAS is the area most relevant to 
modeling interdependent infrastructures. A CAS, operating under high stress conditions, can be 
close to a breaking point at which any additional stress results in a dramatic change in the 
behavior of the system. The system undergoes what is akin to a phase-change in a physical 
system and shifts to a drastically different state (Sole’ and Goodwin, 2000). 

Holland has analyzed CAS extensively and drawn conclusions on their common 
characteristics (Holland, 1995). He has identified seven basic features common to all CAS – four 
properties (aggregation, nonlinearity, flows, and diversity) and three mechanisms for change 
(tagging, internal models, and building blocks). Any CAS simulation model of interdependent 
infrastructures should emphasize these features. 

Other aspects of CAS have relevance to the development of agent-based models of the 
infrastructure. The environment surrounding an agent can act as a dominant state variable that 
structures and sequences the agent’s behavior (Bonabeau, Dorigo, and Theraulaz, 1999). Thus, 
the agent’s memory is composed of the agent’s own storage capacity plus that of the 
environment. This situation echoes the declarative approach in the sense that agents must have a 
discrete set of rules that are activated when appropriate environmental cues occur. The 
environment structures an agent’s behavior. For example, consider ants building an anthill. The 
new work any ant does is prompted by the existing layout of the hill. This work modifies the 
anthill, resulting in a feedback loop. The critical issue is feedback that allows the environment to 
be part of an agent’s memory.  

The Components: Agents 
Modern infrastructures consist of a large number of participants (agents) that are diverse 

in both form and capability. Participants are both physical and economic in nature, and they have 
input, output, and decision-making capability. Economic participants include energy and 
transmission companies and consumers. Specifically, economic agents of the TC system include 
regional operating companies, local telephone service companies, long distance telephone service 
companies, wireless services companies, modem-based Internet service providers, customers, and 
regulators. Decision-makers can be characterized as having different objectives and constraints 
with a limited ability to process information. They receive incomplete information and have a 
limited (dynamic) set of choices. In the physical system, physical components are regarded as 
agents, but economic factors and policy set the environment in which they operate.  

An agent in the simulation, as defined here, is a software representation of a decision-
making unit. Following Holland, an agent’s behavior is modeled with a set of simple decision 
rules that are able to change and adapt over time in response to repeated interactions with other 
agents and with the environment. The interactions among individual agents may be simple, but 
the complex chains of interdependencies among agents may result in counter-intuitive, 
unpredictable, and chaotic patterns of system behavior.  
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Adaptation, in the biological sense, is the process whereby an organism adjusts itself to 
its environment. In an agent simulation, an agent can adapt by changing its rules with experience, 
thereby positioning itself to better fit its environment. If agents do not learn or are unable to adapt 
quickly enough to a changing environment, they can be replaced by others likely to perform 
better. This is social learning versus individual learning. Both aspects of learning would be 
present in a CAS model. Agents are specialized software-engineering objects possessing some 
form of intelligence or self-direction (Booch, 1994). 

ABMS has been used to study emergent systems as varied as computer networks 
(Triantafyllopoulos, et. al., 2001), electrical power infrastructures (Bower and Bunn, 2000; North, 
2000a), equities (LeBaron, 1999), foreign exchange (Yang, 2000), and integrated economies 
(Epstein and Axtell, 1996). Furthermore, some of this work involved interdependent systems such 
as interwoven electrical and natural gas infrastructures (North, 2000b, and 2001). Consideration 
of these examples suggests that ABMS might also be used to study communication networks and 
the interdependencies between communication networks and other infrastructures such as 
electrical grids. 

Temporal Issues 
A particular technical challenge of modeling combined infrastructures is the treatment of 

time. System behavior is determined by decisions made over a variety of time scales, and the 
creation of agent models that cover the full range of time scales is critical to understanding 
complex infrastructure interdependencies. Human economic decision-making dominates longer 
time scales while physical laws dominate shorter time scales. The focus of each agent’s rules 
varies to match the time scale in which it operates.  

 
Model of Interdependent Infrastructures 

A model of interdependent TC and EP infrastructures might contain five layers, one for 
each of the physical infrastructures, one for each of the corresponding industries, and a consumer 
layer that is common to all infrastructures.  The infrastructure layers would contain physical 
network models; e.g., EP nodes (generating units, power plants, transformer stations, and 
distribution stations) and EP links (transmission lines); and TC nodes (telephones, PBXs, and 
switches) and TC links (TC lines). Not every physical component would be modeled in the 
infrastructures; rather, the physical infrastructure would be modeled only to the level of detail 
required to reproduce aggregate system features, such as total energy flow, at a reasonable level 
of accuracy. 

The EP and TC industrial layers would consist of the decision-making entities within 
these respective industries. The industry layers are where the identities of agents are established 
on the basis of economic considerations. Financial decisions regarding the operation of and 
investment in the respective infrastructures are made at this level on the basis of revenues from 
consumers.  

In addition to the financial realm, interdependencies also arise in the form of the physical 
connections; e.g., EP providers increasingly depend on TC to manage their power systems. This 
TC capacity is often owned by the EP providers themselves, but it is still prone to the same types 
of problems as other TC systems.  Conversely, virtually all TC switches depend on the EP for 
long-term operation, with limited short-term backups.   Furthermore, some EP providers are 
beginning to directly enter the TC market. For example, New York’s Consolidated Edison is now 
beginning to offer high-bandwidth Ethernet service in metropolitan New York using cables run 
through its existing electrical conduits (Kary, 2002). The EP and TC infrastructures have been 
carefully buffered from one another by conscious design decisions throughout the systems. This 
buffering must be properly understood to effectively model these systems.  However, it is 
important to note that this buffering has both strong temporal or geographic limitations.  
Temporally, the buffering provided by components such as storage batteries lasts for limited 
periods of time.  Geographically, both EP and TC often share the same rights of way reducing the 
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independence of the systems. Modeling the financial and energy flows in this way allows for the 
formation of the feedback loops that could exist between these infrastructures. It also allows for 
explicit accounting of financial as well as other resources, giving an indication of the 
organizational possibilities for survival, growth, acquisition, and bankruptcy within the industry. 

A distinct advantage of a combined model is the reduction of bias associated with the 
constituent disciplines. However, a model that provided sufficient environmental stimuli to each 
one of these decision-makers would permit each to respond in his element. With adequate 
linkages, events could ripple through both the physical and the financial realms.  

The complexity of modern systems and markets leads to the need to model both the 
physical and financial infrastructures in the environment defined by policy. The potential 
usefulness as a policy-testing platform is alluring. To have a model that captures both engineering 
and market constraints allows a wide variety of policy questions to be explored before 
implementation. Adjustments in the behavioral rules for one class of decision-makers could have 
significant physical and financial impacts. Market shifts that create high demand for a particular 
commodity could be stymied by insufficient capacity to meet that demand. This imbalance would 
feed back into the market with unpredictable results, depending on available alternatives. Thus, 
local interactions can have system-wide impact. 

Another advantage of a combined model is the exploration of a larger range of possible 
responses. While not predictive, such a model could expose potential behaviors that would not 
otherwise be considered. The model is not constrained in its ability to adapt to new 
circumstances. Perhaps not all observed model behaviors would be immediately explainable. But, 
the observation of these behaviors in a reasonable model forces one to consider the possible 
responses. 

Conclusion 
Applying ABMS to communication networks and the infrastructures upon with they 

depend may allow such networks to be understood as more than just wires. Communication 
networks may then be electronically managed as complete, dynamic systems. An example is the 
integrated, systems-level computational perspective ABMS has provided to electrical and natural 
gas infrastructure research (North, 2001). This holistic computational perspective may allow both 
the physical and human dimensions of complex systems such as communication networks to be 
anticipated and managed online, in real time. Thus, ABMS may be an important tool for 
developing imperishable networks. 
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