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Abstract 

The Center for Transportation Research at the Argonne National Laboratory (ANL) supports the DOE by evaluating 
advanced automotive technologies in a systems context.  ANL has developed a unique set of compatible simulation tools 
and test equipment to perform an integrated systems analysis project from modeling through hardware testing and 
validation.  This project utilized these capabilities to demonstrate the trade-off in fuel economy and Oxides of Nitrogen 
(NOx) emissions in a so-called `pre-transmission´ parallel hybrid powertrain.  The powertrain configuration (in simulation 
and on the dynamometer) consists of a Compression Ignition Direct Ignition (CIDI) engine, a Continuously Variable 
Transmission (CVT) and an electric drive motor coupled to the CVT input shaft.  The trade-off is studied in a simulated 
environment using PSAT with different controllers (fuzzy logic and rule based) and engine models (neural network and 
steady state models developed from ANL data).  Copyright� 2002 EVS19 

1. INTRODUCTION 
The search for improved fuel economy and reduced emissions, without sacrificing performance, safety, reliability, and 
affordability has made the hybrid vehicles a challenge for the automotive industry. Diesel engines offer high fuel 
economy, but produce undesirable emissions (particulate matter and NOx) in conventional vehicles.  Hybridization, i.e., 
by adding a traction motor and energy storage, can potentially reduce these emissions by operating the engine in the 
optimum efficiency range and capturing regenerative braking during deceleration. 
 
To better understand the potential benefits of hybridization, ANL has developed an integrated set of tools for modeling, 
simulating and testing propulsion components, systems and vehicles.  The first phase of this study, described in this paper, 
demonstrates the fuel economy versus NOx emissions trade-off in simulation.  The second phase, still in process, will 
attempt to demonstrate similar results in hardware using the Hardware-In-the-Loop (HIL) test cell at the APRF. 
 
PSAT, developed under Matlab/Simulink, was used in this study because it is a forward-looking model, allowing realistic 
control strategies to be developed that can be translated directly for use with the hardware in the APRF.  PSAT is a 
command-based model, meaning that vehicle performance is estimated from the calculated component torque response to 
realistic commands, such as throttle for the engine, displacement for the clutch, gear number for the transmission, or 
mechanical braking for the wheels.  Essentially, a driver model attempts to follow a pre-defined speed cycle.  Since the 
simulated components react realistically to the commands and transient effects are taken into account (such as engine 
starting, clutch engagement/disengagement, or shifting), realistic control strategies can be developed. 
 
Several PSAT characteristics, previously described [2, 3], have been useful in the study: 
• Flexibility to exchange control strategies while the rest of the powertrain model remains the same 
• Easily exchanged component models to facilitate the comparison of steady-state and neural network engine models 
• Capability to run batch mode  
• Validated component and vehicle models [1]  
 
The characteristics of the conventional (reference) and hybrid vehicles are listed in the following table and Figure 1 shows 
the PSAT Simulink model of the pre-transmission parallel hybrid powertrain used in this study. 



 
 Conventional Pre-Transmission Parallel Hybrid  
Vehicle 
Characteristics 

Mass = 1100 kg 
Frontal Area = 1.5 m2 
Coefficient of Drag = 0.2 

Mass = 1297 kg 
Frontal Area = 1.5 m2 
Coefficient of Drag = 0.2 

Engine 1.7L CIDI Mercedes Benz (75kW) 1.7L CIDI Mercedes Benz (75kW) 
Motor  UQM Permanent Magnet (32kW continuous) 
Transmission 4 gear automatic (3:1, 1.7:1, 1:1, 0.7:1) Modified Nissan CVT (ratio range 0.5 to 2.5) 
Final Drive 3.24:1 3.1:1 
Battery 12v Pb-Acid (SLI) Li-Ion 14Ah 96 elements – ANL prototype  
Accessories Mechanical = 500W 

Electrical = 200W 
Mechanical = 500W 
Electrical = 700W 

 
Table 1: Comparison of Reference and Hybrid Vehicle Characteristics 

 

Figure 1: PSAT model – Pre-transmission CVT parallel hybrid 

2. COMPARISON OF CONTROL STRATEGIES  
The philosophy behind the control strategies is that the energy in the system should be managed such that:  
1. Driver inputs (from brake and accelerating pedals) are satisfied consistently (driving the hybrid vehicle should not 

“feel” different from driving a conventional vehicle),  
2. The battery is sufficiently charged (to meet performance requirements) and  
3. The overall system efficiency is optimal (based on the engine, motor, battery, and transmission). 
 
The power controller implements this philosophy (in the form of control rules or adaptive strategies) to determine how 
much power is needed to drive the wheels, how much to charge the battery and the power demand allocated to the engine 



and motor.  If the battery needs to be charged, negative power is assigned to the electric motor, and the engine provides 
the power for both driving and charging the battery.  To determine the optimal power split and the power 
generation/conversion of the individual components, efficiency maps of the components are used.  Rule based and fuzzy 
logic strategies, described in the following paragraphs, were developed, simulated and compared in this paper. 

2.1. RULE BASED CONTROL 
Rule based control attempts to optimize engine efficiency by staying on the best efficiency curve.  The engine can provide 
the required wheel power plus, depending upon state-of-charge (SOC), power to recharge the battery.  Engine speed is 
regulated by the CVT ratio and the electric motor provides power to improve the overall drivetrain efficiency (e.g., used 
alone at low vehicle power demands). 

2.2. FUZZY LOGIC CONTROL  
Fuzzy logic is similar to rule-based control, in that the best efficiency curve (Figure 2) is used to define the optimal speed 
and torque for a given power level as well as the CVT ratio determining engine speed.  The difference is that fuzzy logic 
attempts to optimize system efficiency whereas rule based control (as implemented) optimizes engine efficiency. 
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Figure 2: MB 1.7L Engine Map (ANL data) 

 
The CIDI engine efficiency is highest for engine speeds between 180 and 260 rd/s on the optimal curve, corresponding to 
an engine power between 25 and 50 kW, with the absolute optimum at 44 kW.  Therefore, the power-split strategy should 
preferably result in an engine power in this range.  A similar approach has been used to analyze the efficiency of the 
permanent magnet motor/generator, however motor speed is directly related to vehicle speed and the efficiency can only 
be optimized by optimizing motor power at a given motor speed. 
 
To study the trade-off between fuel economy and emissions, two strategies were tuned and analyzed: 
1. Fuel economy optimization (cf. Figure 2 upper curve) 
2. NOx emissions optimization (cf. Figure 2 lower curve). 



 
Figure 3 presents a simplified overview of the power controller. The first block converts the driver inputs from the brake 
and accelerator pedals to a driver power command. The signals from the pedals are normalized to a value between zero 
and one (zero: pedal is not pressed, one: pedal fully pressed). The braking pedal signal is then subtracted from the 
accelerating pedal signal, so that the driver input takes a value between –1 and +1. 
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Figure 3: Fuzzy Logic Controller Block Diagram 

The fuzzy energy management strategy described below has been implemented using a Takagi-Sugeno fuzzy logic 
controller [10].  A fuzzy logic controller relates the controller outputs to the inputs using a list of if-then statements called 
rules (example in Table 2).  The if-part of the rules refers to adjectives that describe regions (fuzzy sets) of the input 
variable. A particular input value belongs to these regions to a certain degree, represented by the degree of membership 
(see Figure 4 for examples of membership functions that define the degree of membership).  The then-part of the rules of a 
Takagi-Sugeno controller refers to values of the output variable.  To obtain the output of the controller, the degrees of 
membership of the if-parts of all rules are evaluated, and the then-parts of all rules are averaged, weighted by these 
degrees of membership. 

Table 2: Example Rules of the Fuzzy Logic Controller 

 

1 If SOC is too high then Pgen is 0 kW 
2 If SOC is normal and Pdriver is normal and ωEM is optimal then Pgen is 10 kW 
3 If SOC is normal and ωEM is not optimal then Pgen is 0 kW 
4 If SOC is low and Pdriver is normal and ωEM is low then Pgen is 5 kW 
5 If SOC is low and Pdriver is normal and ωEM is not low then Pgen is 15 kW 
6 If SOC is too low then Pgen is Pgen,max 
7 If SOC is too low then scale factor is 0 
8 If SOC is not too low and Pdriver is high then Pgen is 0 kW 
9 If SOC is not too low then scale factor is 1 
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 Figure 4: Example of 
Membership Functions 

If the SOC is too high (rule 1) the desired generator power (Pgen) will be zero, to prevent overcharging the battery. If the 
SOC is normal (rules 2 and 3), the battery will only be charged when both the EM speed is optimal and the driver power 
is normal.  If the SOC drops too low, the battery will be charged at a higher power level. This will result in a relatively 
fast recovery to a normal SOC. If the SOC drops to too low (rules 6 and 7), the SOC is increased as fast as possible to 
prevent battery damage.  To achieve this, the generator power is maximized and the scaling factor is decreased from one 
to zero.  Rule 8 prevents battery charging when the driver power demand is high and the SOC is not too low.  Charging in 
this situation moves the engine power outside the optimum range (25-50 kW).  Finally, when the SOC is not too low (rule 
9), the scaling factor is one. 



3. COMPARISON OF ENGINE MODELS 

3.1. NEURAL NETWORK 
Neural network (NN) models were generated to simulate the transient behavior of fuel rate and NOx using a Pierburg 
Emissions Bench.  The models were trained using selected transient data inputs recorded from a Mercedes 1.7L CIDI 
engine.  The resultant neural network was validated using unique transient data recorded from the same engine.   

3.2. STEADY STATE ENGINE MAP 
To further quantify the simulation accuracy of the trained fuel rate NN model, an engine map (EM) model was generated 
using a locus of steady state operating point data recorded from the same engine.  The model was instructed to simulate 
the same transient training and validation cycles previously submitted to the neural network model for simulation. 
Equivalent error plots and statistical error calculations were generated from the subsequent EM model simulation data 
results.  The simulation accuracy of a NN model was then compared to the accuracy of the steady state EM model.  The 
results are summarized in the following paragraph and details of the model generation and validation are included in the 
Appendix. 
 
Figures 5 and 6 illustrate the differences in using fuel rate neural network and engine map models on the US06 validation 
cycle.  The NN model simulation output was continuous and maintained minimal phase differential compared to the 
measured data.  By contrast, the EM model simulation output contained magnitude errors and multiple discontinuities in 
addition to a time shift error with respect to the measured data.  The EM model discontinuities are due to transient 
operation outside the bounds of the steady state data range, upon which the map model is predicated.  The phase shift is 
likely due to measurement time delays in the test cell.  Since the EM model is generated on mean steady state data, 
simulations using this model incorporate no time delay, and subsequently lead the measured data in time.  The NN model 
not only simulated the volumetric fuel rate with accurate magnitude predictions, but also matched the phasing of the fuel 
rate data vector. 
 

           
 

Figure 5: NN vs. EM Model Validation Cycle   Figure 6: EM Simulation vs. Measured US06 data  
     (ANL data - red, EM - blue, NN - green)      (ANL data - red, EM - blue, NN - green) 

4. RESULTS  
The vehicle was simulated on urban and highway driving cycles using the two control strategies (rule based and fuzzy 
logic) and the neural network model (based on the previous comparison).  Fuel economy and NOx emissions were 
compared taking into account battery SOC.  Due to the significant impact of SOC on fuel economy and emissions, the 
method used in this study is presented first.  



4.1. INFLUENCE OF SOC ON FUEL ECONOMY AND NOx EMISSIONS 
Initial and final SOC of the electrical energy storage device must be considered to accurately account for the total energy 
used when evaluating hybrid vehicle fuel economy.  Either the initial SOC must equal the final SOC or a correction must 
be made.  Figure 7, based on the following calculations, graphically illustrates the strong relationship between SOC 
difference and fuel economy (i.e., measured/estimated gasoline equivalent versus ‘hybrid gasoline equivalent’): 
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The hybrid gasoline equivalent fuel economy estimates the energy necessary to recharge the battery to its initial SOC.  
The figure shows comparable values when initial and final SOC are close, but differences can be significant as the 
difference increases. Using the same methodology, Figure 8 demonstrates that NOx emissions can also be SOC corrected. 
 

Gasoline FE versus Hybrid Gasoline Equivalent FE
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Figure 7: Fuel Economy Correction for SOC   Figure 8: NOx Correction for SOC 

4.2. INFLUENCE OF CONTROL STRATEGY ON FUEL ECONOMY AND NOx EMISSIONS 
Figure 9 illustrates the impact of SOC and control strategy on fuel economy and NOx emissions:   

• SOC significantly affects the results on the urban cycle; for rule based control, changing the SOC goal from 0.5 to 0.7 
increases fuel economy by almost 20% as well as reduces NOx emissions.  

• Fuzzy logic needs to be refined for the highway cycle since better results are obtained with rule based control. 

• Variation of -/+ 10% in fuel economy and NOx emissions can be obtained by varying control strategy philosophy and 
parameters 

• In addition to control strategy, initial conditions and overall system efficiency induce a variation of fuel economy and 
NOx results.  When developing a control strategy, trade-offs other than fuel economy and emissions should be taken 
into account.  For example, battery life considerations could dictate SOC lower than 0.7 even if fuel economy and 
NOx might be penalized. 
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Trade off between Fuel Economy and NOx Emissions

Figure 9: Influence of Control Strategy on Fuel Economy and NOx Emissions 

4.3. INFLUENCE OF HYBRIDIZATION ON FUEL ECONOMY AND NOx EMISSIONS 
Hybridization can increase fuel economy by keeping the engine in an optimum efficiency range.  In general, and in 
particular for the engine considered in this study, this means higher average load and speed which leads to higher average 
operating temperature and higher NOx emissions.  The following figures compare the operating points for the same 
engine in conventional (Figure 10) and hybrid (Figure 11) vehicle applications to illustrate this point.   

Figure 10: Operating points (conventional)  Figure 11: Operating points (hybrid)  
 
This comparison supports the results of the analysis in this study, illustrated in Figure 12, that hybridization without 
changing engine size can increase fuel economy (18% in the example), but increase NOx emissions (25% in the example).  
However, if the engine had ideal characteristics for a hybrid vehicle with larger islands of high efficiency and low 



emissions (originally developed for the PNGV program), the result could be a fuel economy increase of about 13% 
accompanied by a NOx decrease of almost 40%. 
 

 
 

Figure 12: Trade-off between Fuel Economy and NOx Emissions  

5. CONCLUSION 
A neural network model was developed to realistically assess NOx emission.  We demonstrated that hybridization allows 
both the diminution of both fuel consumption and NOx emission.  Moreover, control strategies philosophies as well as 
parameter values also play an important part of the trade-off between fuel economy and emission.  However, even if 
hybridization and control play an important role, optimizing the entire system remains the ultimate solution.  To do so, 
each component has to be chosen and calibrated based on a system prospective.  In order to validate the tools developed, 
control strategies will be integrated and tested on a bench with real component using Hardware-in-the-Loop. 
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APPENDIX - ENGINE MODEL DEVELOPMENT 

NEURAL NETWORK MODEL 
Neural Network (NN) models were generated to simulate the transient behavior of fuel rate and NOx obtained from a 
Pierburg emissions bench.  The Neural Network models were trained using selected transient data inputs recorded from a 
Mercedes 1.7L CIDI engine.  The resultant neural network was validated using unique transient data recorded from the 
1.7L CIDI engine. 

Neural Network Training Data 

Training data, recorded from transient operation of the 1.7L CIDI engine, was submitted to the NN models in contiguous 
block form.  The training data consisted of a collection of (4) geometric transient cycles, and (3) drive cycles.  The 
training data was selected to encompass the widest range of engine operation, first in simulated drive cycle operation, and 
second through augmentation of drive cycle data with geometric transient cycles.  The combination of both transient cycle 
data topologies provided wide engine map coverage. 

Neural Network Training 

The training data was presented to the NN a series of times, and training was discontinued at the point of diminishing 
return.  In particular, once the simulation error no longer decreased, following exposure to another training set session, the 
training session was terminated.   The inputs to the NN model were engine speed, map torque and time delayed map 
torque.  The fuel rate neural models incorporated a total of nine hidden neurons, in addition to the output fuel rate neuron, 
and the input vector neurons, whereas the NOx neural model has a total of ten hidden neurons, in addition to the output 
NOx neuron, and the input vector neurons. 

Evaluation of Training Effectiveness 

The trained NN model was presented with the training set data and instructed to simulate said data accordingly.  
Comparison of simulated vs. measured data was plotted against time, in addition to simulated data vs. measured data.  
Error calculations were performed; the quality of the simulation was defined by the error plots and forthcoming statistical 
error calculations.  Figure X illustrates the simulation accuracy through comparison to the measured data.  The simulation 
data is identified in green, and the measured data in blue. 
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Figure A-1: NOx NN Model Validation       Figure A-2: NOx Simulated Vs. Measured Training Data 
        (measured - blue, simulated - green) 
 

STEADY STATE MODEL 
To further quantify the simulation accuracy of the trained fuel rate NN model, an engine map (EM) model was generated 
using a locus of steady state operating point data recorded from the same engine.  The model was instructed to simulate 
the same transient training and validation cycles previously submitted to the neural network model for simulation. 
Equivalent error plots and statistical error calculations were generated from the subsequent EM model simulation data 
results.  The simulation accuracy of a NN model was then compared to the accuracy of the steady state EM model.  
Figures A-3 and A-4 show the NN model vs. EM model comparison using the US06 Validation cycle. 
 

      
Figure A-3: US06 VFF EMM Validation Drive Cycle     Figure A-4: EMM Simulation vs. Measured US06 data 
(Measured data - blue, EM model simulation - green) 

VALIDATION OF NEURAL NETWORK MODEL USING TRANSIENT TEST DATA 
The trained NN model, having predicted the training data with a high degree of precision, was next evaluated with data 
never before introduced to this model.  Each cycle was individually presented to the trained NN model, and subsequent 
comparison and error plots were generated.  Error calculations revealed the simulation coefficient of determination (R2) 
deviation from ideal was in the range of 0.9691 to 0.9946 for the fuel rate model and 0.8453 to 0.9947 for the Pierburg 
NOx model. 
 
Figures A-5 through A-8 illustrate an example of the simulation of a US06 validation driving cycle using the volumetric 
fuel rate NN model as well as the Pierburg NOx NN model. 



 

        

Figure A-5: Zoom Plot US06 Fuel Rate NN Validation         Figure A-6: Fuel Rate Simulated Vs. Measured 
US06  

        

Figure A-7: Zoom Plot US06 NOx NN Validation  Figure A-8: NOx Simulated Vs. Measured US06 
 

 

 

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory (“Argonne”) under Contract No. W-
31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, 
irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display 
publicly, by or on behalf of the Government.  
 


