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Abstract—An empirical correlation is developed for the

electrical field strength E(J,T) of a melt-cast processed BSCCO-
2212 superconductor.  The empirical correlation is based, in
part, on the theory of magnetic relaxation and on experimental
data at 77 and 87 K.  It is developed for temperatures in the
range between 77 and 92 K, which is the range of interest for
practical devices such as the superconducting fault current
limiters.  The general form of the correlation may be applicable
to other high-Tc superconductors.

Index Terms—Fault current limiters, flux-creep resistivity,
magnetic diffusion, magnetic relaxation

I. INTRODUCTION

basic property of superconductors is the electric field
strength E, which is a function of the current density J,

the temperature T, and the magnetic flux density B.  The
magnetic flux density B is the sum of the applied field and
the self field due to the current density J.  If there is no
applied field, the electric field strength can be considered a
function of the current density and temperature, E = E(J,T).
In practical applications of high-Tc superconducting devices,
information on E(J,T) is often needed over a range of current
density and temperature.  For example, in a resistive fault
current limiter, the superconductor heats up substantially
during a fault.  Even for the so-called superconductor shielded-
core reactor (SSCR), which is often known as the inductive
fault current limiter, the superconductor tube heats up
considerably during a fault.  To accurately determine the
voltage drop across the fault current limiter during a fault, a
complete map of E as a function of J and T must be known.
Recently, Cha [1-3] reported that thermal and magnetic
diffusion is the mechanism for field penetration of a
superconductor tube when it is subjected to a pulsed magnetic
field.  Similarly, thermal and magnetic diffusion is important
for the SSCR because it is based on the shielding capability
of a superconductor tube.  Furthermore, thermal and magnetic
diffusion is also important for the trapping of a magnetic field
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in a superconductor pellet that is using a pulsed current supply
[4-6]. As pointed out by Cha [1], to model the coupled
thermal and magnetic diffusion and understand how the
magnetic field and temperature of the superconductor evolve
during a transient, complete information on E(J,T) must be
known, presumably from experimental measurement.
However, such information is difficult to obtain because most
researchers only measure the E/J characteristics at one or two
temperatures (mostly at 77 K).

In this paper, we employ the data on E/J characteristics of a
melt-cast processed BSCCO-2212 superconductor at two
temperatures (77 and 87 K).  Our main objective is to develop
an empirical correlation for E(J,T), based on the experimental
data at 77 and 87 K, which can then be used to calculate E
from 77 K to the critical temperature of 90-92 K.  The
correlation can then be used to calculate the electric field
strength E for a range of temperatures and current densities of
interest for practical devices made of melt-cast processed
BSCCO-2212 superconductors.  The correlation we developed
is based, in part, on the theory of magnetic relaxation [7], and
its general form may be applicable to other high-Tc
superconductors.

II. EXPERIMENTAL DATA

The experimental data were reported previously [8].  The
superconductor is a melt-processed BSCCO rod made by
Hoechst (now called Nexans).  The diameter of the rod is 7.85
mm.  The standard four-points measurement technique was
employed for all of the tests.  The distance between the
voltage taps was 87 mm.  Braided current leads were soldered
to the ends of the sample and connected to a pulsed power
supply.  Pulsed current with a duration of 400 ms (square
wave) was used in the experiment.  Tests at 77 K were
conducted in an open dewar containing liquid nitrogen; tests
at 87 K were conducted in the same open dewar containing
liquid argon.

Figure 1 shows the V/I characteristics of the melt-cast
processed BSCCO-2212 rod at 77 and 87 K.  The critical
current, defined by the 1 µV/cm criterion at 77 K, is one order
of magnitude larger than that at 87 K.  The tests were
conducted by gradually increasing the current density and were
terminated when the heating effect became appreciable.  It
should be noted that the range of experimental data for current
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density at 87 K is relatively small when compared with that at
77 K, because the critical current density (defined by the 1-
µV/cm criterion) is much smaller at 87 K than at 77 K.
Dissipation and heating in the superconductor are much larger
at 87 K than at 77 K.  Therefore, it was necessary to terminate
the experiment at 87 K at a relatively low current density.
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Fig. 1.  Measured V/I characteristics at 77 and 87 K for a melt-cast
processed BSCCO-2212 superconductor.

III. MAGNETIC RELAXATION

Magnetic relaxation (or thermally activated flux creep) was
first studied in low-temperature superconductors.  At relatively
low temperatures (≈4 K), the effect of magnetic relaxation in
low-temperature superconductors was usually very small and
especially sensitive experimental techniques were required to
detect it.  Furthermore, the relatively small specific heat of a
low-temperature superconductor causes the superconductor to
heat up rapidly when dissipation occurs as a result of either
increased current density or temperature.  Very often the
amount of power dissipated is enough to heat up the low-
temperature superconductor and quickly drive it into either the
flux-flow or normal state.  Consequently, the phenomenon of
flux creep in low-temperature superconductors is often masked
by a sudden increase in temperature.  The situation is quite
different for high-Tc superconductors.  At relatively high
temperatures (≈77 K), the rate of magnetic relaxation is large
(it is sometimes referred to as giant flux creep) and the range
of operating current for flux creep is much larger than that of
low-temperature superconductors.  Furthermore, at 77 K, the
specific heat of the high-Tc superconductors can be two orders
of magnitude larger than that of low-temperature
superconductors at 4 K.  For example, the volumetric specific
heat of Nb3Sn at 6.2 K is 0.6 x 104 J/m3-K, whereas that of
BSCCO-2212 at 77 K is 1.2 x 106 J/m3-K.  Therefore, a
high-Tc superconductor will heat up much more slowly than a
low-temperature superconductor for a similar amount of
dissipation.  These factors make the detection of magnetic
relaxation [7] and magnetic diffusion [1-3] much easier in
high-Tc superconductors than in low-temperature
superconductors.

High-Tc superconductors usually obey the so-called power
law,

E/Ec = (J/Jc)
n , (1)

where both Ec and Jc can be functions of temperature, and the
exponent n is a strong function of temperature and can vary
widely for various high-Tc superconductors.  The power law is
the result of magnetic relaxation and can be explained in terms
of the Anderson-Kim model for thermally activated flux creep
[7].  The basic concept is that magnetic flux lines can move in
and out of the pinning sites because of thermal fluctuation.
When flux lines are moving at a velocity v in a perpendicular
magnetic field B, an electric field E,

E = v B , (2)

is generated.  It is generally assumed that the velocity v is
given by the relationship

v = v0 exp[-U(J)/kT] , (3)

where k is the Boltzman constant and U(J) is a current-
dependent activation energy for depinning, which vanishes at
the critical current density Jc [7,9].  Equations 2 and 3 can be
combined to give

E(J) = Ec exp[-U(J)/kT] , (4)

with Ec = B v0.  If a logarithmic dependence of U on J is
assumed,

U(J) = U0 ln(Jc/J) , (5)

and the result is the power law shown in Eq. 1, with

n = U0/kT . (6)

The parameter U0 is independent of J, but it can be a function
of T.  From Eq. 5, it can be easily verified that, as J = Jc, U =
0, and consequently flux lines can move freely out of the
pinning sites.

IV. DEVELOPMENT OF AN EMPIRICAL CORRELATION
FOR E(J,T)

Theory of flux creep or magnetic relaxation is of little help
in determining the temperature dependence of U0.  However,
we may get a hint from the argument that, when T approaches
Tc, the superconductor becomes normal and turns into an
Ohmic conductor.  The exponent n should approach one and
the E/J relationship becomes linear.  The following equation
satisfies this condition.

n = U0/kT = 1 + C0 ln(Tc/T) , (7)

where C0 is a constant.  It is easily shown that n = 1 when
T = Tc.  From the experimental data at 77 and 87 K, it was
found that C0 ≅ 40.  Equation 1 can be written as

E(J,T) = f(T) x Jn = f(T) x J[1 + 40 ln(Tc/T)] , (8)
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where the function f depends on temperature only and is equal
to

f(T) = Ec / (J c)
n . (9)

Figure 2 shows the calculated E(J,T)/f(T) as a function of
current density and temperature.  It can be seen that E(J,T)/f(T)
changes by one to two orders of magnitude when the
temperature is changed by one degree and the change is fairly
uniform.  A function that satisfies these characteristics is

f(T) = A(T) x 102(T-89) , (10)

where A(T) is a coefficient to be determined by experimental
data.  A(T) can be a linear or a quadratic function of T.  To
ensure that E(J,T) remains positive to 92 K, we employed a
quadratic function for A(T),

A(T) = a + bT + cT2 . (11)
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Fig. 2.  Variation of E(J,T)/f(T) as a function of J for various temperatures
(Eq. 8).

We know that the normal-state resistivity of the BSCCO-
2212 superconductor at 92 K is ≈500 µΩ-cm.  To utilize this
condition, we take the derivative of E(J,T) with respect to the
current density, and, from Eq. 8, we obtain

ρ(J,Τ) = ∂E(J,T)/∂J = f(T) x [1 + 40 ln(Tc/T)] x J[40ln(Tc/T)],(12)

where ρ(J,T) is the resistivity of the superconductor.  At T =
Tc ≅ 92 K, we have

ρ(Tc) = 500 = f(Tc) = (a + bTc + cT c
2) x 102(Tc-89) . (13)

Equation 13 and the experimental data of E/J characteristics at
77 and 87 K (Fig. 1) can be used to determine the constants a,
b, and c.  It was determined that

a = 39.236680, b = -0.856427, and c = 0.004673 . (14)

Thus, the final correlation for E(J,T) is

E(J,T) = (39.236680 – 0.856427T + 0.004673T2) x 102(T-89) x
  J[1 + 40 ln(Tc/T)] , (15)

where the temperature T is in Kelvin, the current density J is
in A/cm2, and the electrical field strength E is in µV/cm.
Figure 3 shows the comparison of the E(J,T) calculated from
Eq. 15, and the experimental data obtained at 77 and 87 K.
The correlation appears to match the experimental data at 77
and 87 K fairly well and is capable of predicting the general
trend of E as a function of current density at other
temperatures between 77 and 92 K.  The correlation developed
here is specifically for the melt-cast processed BSCCO-2212
superconductor, because the data used to determine the
coefficients are from Fig. 1.  However, the general form of
E(J,T) given by Eqs. 8-11 may be applicable to other bulk
high-Tc superconductors.
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Fig. 3.  Calculated E(J,T) and experimental data for a melt-cast processed
BSCCO-2212 rod at 77 and 87 K.  E(J,T) is calculated from Eq. 15.

It is usually the resistivity ρ(J,T) that is needed in the
calculation of the temperature and magnetic flux density
distribution during a transient [1].  The final correlation for
the resistivity, from Eq. 12, is

ρ(J,T) = (39.236680 – 0.856427T + 0.004673T2) x 102(T-89) x
  [1 + 40 ln(Tc/T)] x J[40 ln(Tc/T)] , (16)

where the unit for the resistivity ρ in Eq. 16 is in µΩ-cm.
Figure 4 shows the calculated resistivity as a function of the
temperature and current density.

V. FLUX-FLOW RESISTIVITY

The correlation developed previously is applicable to the
superconductor in the flux-creep regime.  If the current density
is above some specific value Jff(T), the superconductor will be
driven into the flux-flow state.  In the flux-flow regime, the
Bardeen-Stephen model for flux-flow resistivity can be
employed.  Thus, for J > Jff,
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Fig. 4.  Calculated resistivity ρ(J,T) as a function of temperature and current
density.  ρ(J,T) is calculated from Eq. 16.

ρff(B,T) = ρ0 [B / µ0 Hc2(T)] , (17)

where B is the operating magnetic flux density, Hc2(T) is the
upper critical field, µ0 is the permeability in free space, and ρ0

is the resistivity of the superconductor in normal state.  The
normal-state resistivity ρ0 is constant and independent of
temperature.  Strictly speaking, the normal-state resistivity ρ0

should be evaluated at the local temperature because it is the
resistivity of the normal core of a vortex [10].  However, this
ρ0(T) is not a quantity that can be measured easily.  For
engineering applications, ρ0 can be assumed to be equal to the
measured normal-state resistivity at critical temperature ρ0(Tc).
The upper critical field Hc2 is a function of temperature and is
usually determined from the phase diagram (H vs. T) of the
superconductor.  Near the critical temperature, Hc2 decreases
linearly with increasing temperature [10].

If dissipation and heating in the superconductor is small
and cooling is sufficient to keep the superconductor at
constant temperature, the resistivity will be independent of
temperature.  In this case, Brandt [11] proposed that the
following expression be used to evaluate the resistivity:

ρ(J,B) = ρff{(J/Jc)
n-1/[1+(J/Jc)

n-1]} . (18)

Equation 18 combines the power law of the flux creep regime
and ρff of the flux flow regime.  It can be easily shown that ρ
approaches ρff when J >> Jc (flux flow), and ρ ∝ J n-1 when
J << Jc (power law for flux creep).  Equation 18 is intended to
be applicable only to isothermal systems.  However, careful
examination reveals that it might be applicable to
nonisothermal systems if one considers that the flux-flow

resistivity ρff, the critical current density Jc, and the exponent
n, are functions of temperature.  Most likely all three
parameters, ρff, Jc, and n in Eq. 18, are nonlinear functions of
temperature.  The validity of using Eq. 18 for nonisothermal
systems remains to be determined.  

VI. SUMMARY

We have developed an empirical correlation for E(J,T) of a
melt-cast processed BSCCO-2212 superconductor based on
experimental data at 77 and 87 K.  The correlation (Eq. 15) is
valid from 77 to 92 K, which is the range of interest for
practical devices such as the high-Tc superconducting fault
current limiters.  The resistivity, which is usually needed to
calculate the temperature and flux density distribution, is
derived from the correlation for E(J,T) and is given by Eq. 16.
Although the E(J,T) correlation is developed specifically for
BSCCO-2212, the general form of the correlation (Eqs. 8-11)
may be applicable to other high-Tc superconductors as well
because the correlation is based, in part, on the general theory
of magnetic relaxation (thermally activated flux creep).
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