
   

FLOW OF A TWO-DIMENSIONAL LIQUID METAL JET IN A STRONG 
MAGNETIC FIELD 

 
MOLOKOV, S.1 and REED, C.B.2 
1Coventry University, School of Mathematical and Information Sciences, Priory Street, 
Coventry CV1 5FB, UK, e-mail: s.molokov@coventry.ac.uk 
2Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA,  
e-mail: cbreed@anl.gov 

 
1.  Introduction and formulation 

 
A combined effect of surface tension, gravity, inertia and a transverse nonuniform magnetic 
field on the steady, two-dimensional jet (or curtain) flow is studied with reference to liquid 
metal divertors of tokamaks [1] and coating flows [2]. Here main fundamental aspects of the 
flow are presented. More details on the assumptions, analysis and results are given in [3]. 

 Consider a steady flow of a viscous, electrically 
conducting, incompressible fluid in a jet pouring 
downward in the ∗x -direction (the direction of gravity) 
from a nozzle (Fig. 1). Here ),,( ∗∗∗ zyx  are Cartesian co-
ordinates. Dimensional quantities are denoted by letters 
with asterisks, while their dimensionless counterparts - 
with the same letters, but without the asterisks. For ∗x  < 0 
the flow is between two parallel plates located at 

2/∗∗ ±= ay . The location of the free surface is defined as 
follows: )( ∗∗∗ ±= xhy , ∗x  > 0. The flow is supposed to be 
symmetric with respect to ∗y , and thus the region ∗y  > 0 
only is considered. The flow occurs in the presence of a 
strong, transverse magnetic field yB ˆ)/2(0

∗∗∗∗ = axBB , 
where ∗

0B  = constant is the induction of the magnetic field 
in the far upstream region. Laterally the flow is confined 
by perfectly conducting sidewalls at ∗∗ ±= Lz , which are 
connected through a resistor, so that the resulting constant 

electric field ∗E  is supposed to be given. Sufficiently far from the sidewalls current flows in 
the ∗z -direction only, while the flow may be considered 2-D, in the ),( ∗∗ yx -plane [4]. 

The characteristic values of the length, the fluid velocity (u,v), the electric current density 
jz, the electric field and the pressure p are 2/∗a , ∗∗∗ = aQv /0  (average velocity in the duct), 

∗∗σ 00Bv , ∗∗
00 Bv  and 2

00
∗∗∗σ Bva , respectively. In the above, σ, ρ, ν are the electrical conductivity, 

density and kinematic viscosity of the fluid, resp., and ∗Q  is the flow rate. Then the 
dimensionless, two-dimensional, inductionless equations governing the flow are [5]: 

  { }uvuuNpxBjuHa yxxz ∂+∂+δ−∂=−∇ −− 122 )( , (1a) 

  { }vvvuNpvHa yxy ∂+∂+∂=∇ −− 122 ,   )(xuBEjz += ,   0=∂+∂ vu yx , (1b-d) 

where 2/1
0 )/( ρνσ= ∗∗BaHa  is the Hartmann number; ∗∗∗ ρσ= 0

2
0 / vBaN  is the interaction 

parameter; 2
00/ ∗∗σρ=δ Bvg  expresses the ratio of gravity to the electromagnetic (EM) force 

[5]. Typical values of parameters for various flows are given in [3], [5]. Both Ha and N are 
usually high, but for some flow regimes N < 1; δ may be as low as ~ 10-4-10-6 (negligible 
gravity), or as high as ~1. Therefore, in the following it is treated as an O(1) parameter. 
 The boundary conditions at the duct walls are the no-slip conditions. At the free surface the 
kinematic and dynamic boundary conditions hold. Far upstream the flow is fully developed. 
Finally, the solution is normalized using the condition of a fixed flow rate.  
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Fig. 1 Schematic diagram of a  
2-D jet flow 



   

 In the following Eqs. (1) are analysed for high values of Ha. First the inertialess flow is 
studied in Sec. 2 for an arbitrary jet thickness and curvature of the free surface. Then in Sec. 3 
slender inertial jet is studied, which requires 1<<∂ hx .  
 
2.  Inertialess jet flow for high Ha 

 
 In this section the problem defined by Eqs. (1) is analysed for Ha >> 1, ∞→N . In the 
following all the flow variables denote their core values. Terms O(Ha-1) are neglected. In a 
sufficiently strong magnetic field the flow region splits into the following main subregions 
(Fig. 1): the cores C1, C2, the Hartmann layers H1, H2 of thickness O(Ha-1) at the walls and 
the free surface, respectively, and the internal parallel layer S at x = 0 of thickness O(Ha-1/2).  
 The analysis of the flow in the cores and the Hartmann layers yields the following results. 
 In the duct region one gets u = 1, v = 0, i.e. the Hartmann flow holds up to the junction, 
while pressure “absorbs” all variations of the field with x. 
 For the jet region the analysis leads to the following nonlinear third-order equation for 
function h(x): 

  12' −+δ−=λκ hBEB , (2) 

where [ ] 2/32'1''
−

+=κ hh  is the curvature of the free surface; parameter )/( 0
2

0
2 ∗∗∗ σγ=λ vBa  

expresses the ratio of the surface tension and EM forces; γ is the surface tension coefficient,‘ 
= d/dx. As λ varies in a wide range (~10-7-100) [3] it is treated as an O(1) parameter. If λ is 
low, the EM force dominates surface tension. Nevertheless, as will be shown below even if λ 
<< 1, the surface tension cannot always be neglected. 
 The other core variables are expressed in terms of h as follows: u(x) = h-1(x), 

uyyxv x∂−=),( ,  p(x) = -λκ. The constant pressure of the surrounding medium is set to zero. 
 As there is a corner at x = 0, y = 1, the fluid will tend to be attached to it [2], i.e. 

  h = 1   at x = 0, (3) 

while θ= tan)0('h  is arbitrary provided the angle θ satisfies Gibbs’ inequality [2].  
The conditions far downstream from the duct exit depend on the asymptotics of B at 

infinity. For ∞→ BB = const. as ∞→x , the boundary conditions are: 

  β→h ,   0'→h    as ∞→x , (4a,b) 

where 12 )( −
∞∞ −δ=β EBB . In this case parameter β has a meaning of being half the constant jet 

thickness far downstream. More generally, parameter β-1 may be thought of as an efficient 
gravity modified by the Lorentz force. In the far downstream region the flow variables are 

12 −
∞

−
∞∞ −δ= EBBu , 0=∞v , 1−

∞∞ δ= Bjz , 0=∞p , so that the fluid flows with a constant velocity 
in a jet of a uniform thickness determined by the field in the downstream region. 
 The flow in the parallel layer, for which there is a balance of viscous and EM forces, is 
similar to that in a linear duct expansion [6] and thus is not discussed here.  

Solutions of Eqs. (2)-(4) for various limiting cases are presented in Table 1.  
The jet profile is uniform for B = 1, β = 1 (Case I).  
Solution of linearized Eq. (2) is given in row II. In particular, it shows that surface 

tension acts over a distance O(λ1/3) from the nozzle. 
Case III corresponds to negligible surface tension. In particular, for δ = 0 and E = -1 (zero 

net current far upstream in the duct), one gets h = B, i.e. the jet expands if B increases or 
contract if B decreases along the flow. This is in excellent agreement with the numerical 
solution [10]. 

Even if λ << 1, surface tension effects are negligibly small in the whole domain only if 
solution III satisfies the boundary condition (2). 

 



   

Table 1. Jet profiles for various limiting cases. Inertialess flow 
 Conditions h Notation 
I B = 1, β = 1 1 - 

II B = 1,   |β – 1| << Ha-1/2,   |h’| << 1 he ∆−β η−  η = xλ-1/3 

III λ = 0 [ ])(/)(2 xEBxB −δ  - 

IV B = 1+mx, δ = 0, E =-1 1+mx m – field gradient  

If λ ≠ 0 and for a uniform field (B = 1), Eq. (2) becomes: 

  11' −− β−=λκ h . (5) 

 The boundary-value problem defined by Eqs. (5), (2), (3) has been solved numerically. The 
results of calculations for λ = 10-4 and for several values of β are shown in Fig. 2. Linearized 
solutions are also shown in the figure with broken lines.  
 For values of |β – 1| higher than those in Fig. 2 the solution breaks down. To investigate 
this effect calculations have been performed for 25.1=β  and several values of λ integrating 
an initial-value problem from down- into the up- stream direction. We let calculations run 
beyond the level h = 1 until the solution either reaches h = 0, or terminates (Fig. 3). The 
starting point is arbitrary (X = 0 in Fig. 3) as Eq. (5) is invariant with respect to translation 
along the x-axis. It is seen that for λ < 1 the solution terminates at certain points, where 

∞→|'| h , −∞→|''| h , while κ remains finite. For λ < 0.003 the solution terminates above h = 
1. Thus, for sufficiently low values of λ the steady flow obeying the pinned-end boundary 
condition (3) is not possible. The situation for which the solution breaks down first will be 
called critical, characterised by λcr, βcr. 
 If curvature is linearized, κ ≈ h’’, the solution exists for all values of λ and β (Fig. 3). 
 Variation of angle ))0('(tan 1 h−=θ  with λ for expanding jets is shown in Fig. 4. For any 
value of β, as λ decreases, θ eventually becomes +90o. 
 If parameters λ and β are beyond critical several possibilities arise: (i) the flow becomes 
unstable; (ii) the slope never becomes equal to π/2, being adjusted in the parallel layer; (iii) 
pinned-end boundary condition is violated. Here we study scenario (iii).  
 For β < 1 (contracting jet) the point of attachment may move upstream (Fig. 4). At the 
solid walls a contact angle, θ0, must be specified. If wettability of walls is poor, then θ0>π/2. 
This corresponds to a sub-critical flow (Fig. 5a), which for super-critical values of parameters 
is not permitted. Thus the point of attachment will move upstream until the whole duct drains. 

 
Fig. 3 The results of shooting from downstream for 
β = 1.25, B = 1, and for λ = 1 (1), 0.5 (2), 0.1 (3), 
0.01 (4), 0.003 (5), 0.001 (6) 

Fig. 2 Variation of h with x for λ = 10-4, B = 1, 
and for β = 1.064 (1), 1.042 (2), 1.02 (3), 1 (4), 
0.981 (5), 0.962 (6), 0.943 (7).  



   

 
 If wettability is good (θ0 < π/2), a new 
equilibrium is possible (Fig. 5b). In this 
case regions of stagnant fluid (St) are 
formed, in which there is an equilibrium 
between the effective gravity and surface 
tension: 1' −β−=λκ . At points A in Fig. 5b 

∞→|'| h , h’ changes its sign, while κ 
matches that of a critical solution. 

What exactly will happen for an 
expanding jet largely depends on the 
geometry of the flow at x = 0 and again on 
the wettability of the solid walls. If walls at 
x = 0 are also present, they will be partially 
flooded (Fig. 6). The parallel layer 
becomes that in a sudden expansion [7]. 
Several other possibilities have been 
discussed in [3]. Other flows studied are 
straight jet pouring into a draining duct 
(Fig. 6), a jet from one duct into another, 
and that in a liquid bridge. 

Ultimately, the dynamics of the 
transition and the supercritical flow itself 

will depend on such experimental conditions as wall roughness, cleanness, etc. Therefore, 
experimental studies of the dynamics contact angles in MHD flows may be crucial. 
 Concerning nonuniform magnetic fields, they can be efficiently used to tailor the jet 
profile. Indeed, it is possible to obtain profile of the jet with a desired thickness h(x). For 
h(0)=1, solving Eq. (2) for B(x) gives { }2/122

2
1 )]'(4[)( κλ−δ++−= hhEEhxB . A solution for 

a linearly expanding jet is presented in Table 1, line IV. Other results are presented below. 
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Fig. 5 Schematic diagram of the post-critical 
profiles of a contracting jet for poor (a) and good 
(b) wettability of walls. 

 
Fig. 4 Variation of θ (deg) with λ for B = 1 and for 
β = 1.25 (1), 1.67 (2), 2.5 (3). 
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Fig. 7 Straight jet pouring into the draining 
duct for B = 1, λ = 10-4, β = 1.25. Pinned-end 
conditions (thick straight line); given contact 
angle (broken straight line). 

 Fig. 6 Flows for B = 1, λ = 10-4: subcritical flow 
for β = 1.064 (1), and super-critical flows for β = 
1.07, and for θ0 = 150o (2), 30o (3). Straight line: 
βcr = 1.075. 



   

Table 2. Jet profiles for B = 1 and for various limiting cases. Slender inertial jet 
 Conditions h Notation 
I β = 1 1 - 

II |β – 1| << 1,  |h’| << 1 he l ∆−β η−  
τ = λ-1/3N-1, 6/)12( 3/23/1 rrl −τ= − , 

η = xλ-1/3, 811212108 3 +τ+−=r   

III λ = 0 
11 1ln −− −+β−= hgNx  )1/()( 111 −−− β−β−= hg  

IV ∞→β , λ = 0 [ ] 11 −− Nx  - 

V 0→β , λ = 0 ( ) 2/11 12
−− +βNx  - 

 
3. Slender inertial jet 

 
Consider now inertial, laminar flow; see the discussion in [3]. The inertial term uuN x∂−1  

in Eq. (1a) is retained, while all other inertial terms in Eqs. (1a,b) are neglected. This requires 
that the jet is slender (h’ << 1, i.e. linearized curvature) [3]. Similar analysis to that in Sec. 2 
yields a third-order ordinary differential equation for the jet thickness as follows: 

  EBhBhhBNh −δ++−=λ −−− 12321 '''' . (50) 

 Solutions of Eqs. (50), (2), (3) for B = 1 and for various limiting cases are presented in 
Table 2. The jet profile is uniform for β = 1 (Case I; curve 5 in Fig. 8), as in Sec. 2.  
 Solution of linearized Eq. (2) is given in row II. It shows that surface tension acts over a 
distance O(λ1/3l). In this region there is a balance between the EM, inertial and surface tension 
forces. For 3/1−λ>>N  one gets 0→τ , 1→l , i.e. the flow becomes inertialess. For 

3/1−λ<<N  one gets ∞→τ , 1~ −τl , from which follows that Nxl ~η .  
For l = 0 the solution has been presented in an implicit form (Case III, Fig. 8). For all 

cases presented in Fig. 8, except for β = 0, inertia acts over a distance of about 2N-1, which is 
less than one value of the characteristic length. 

For ∞→β  gravity is fully balanced by E, while the jet is completely diverted in the ±y-
direction at a distance x = N-1 (Case IV). This is similar to a submerged 2-D jet studied in [8].  

If 0→β  (high gravity) the jet becomes thinner along the flow, while the fluid accelerates 
(Case V). If E = 0, this becomes the classical solution for an ordinary hydrodynamic jet pulled 
by gravity [9]; parameter N/β being the inverse of the Froude number. 
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Fig. 8 Slender inertial jet for B = 1, λ = 0 and for  
β = ∝ (1), 4 (2), 2 (3), 0.57 (4), 1 (5), 10 (6), and 
pure-gravity solution (Case V) for β = 10. 

Fig. 9 Slender inertial jet in a step-like field for 
λ = 1, x0 = 20, E = -1, 6.0=∞B , ζ = 1,  
δ = 0 and for N = ∝ (1), 10 (2), 3 (3), 1 (4). 



   

 Now let us discuss the effect of nonuniform fields. In the following we will consider a 
family of step-like fields: )(tanh)1()1( 02

1
2
1 xxBBB −ζ−++= ∞∞ . Parameter ζ defines the 

gradient of the field; x0 defines the position where B is an average value of ∞B  and 1. The 
results for λ = 1, x0 = 20, E = -1, 6.0=∞B , ζ = 1are shown in Fig. 9. As point x0 is located far 
into the jet region, the jet profile at the nozzle is a constant. As in Sec. 2 the jet thickness 
largely follows the field profile. However, surface-tension induced “wiggles” are present. 
Their intensity increases with increasing λ and N [3]. If the flow remains steady, inertia is 
important for N < 3 only. This conclusion is valid for all cases studied in [3], i.e. velocities up 
to 10m/s and field down to 1T, except for an increasing, high-gradient field. This may result 
in a flip-over of the jet profile at some distance from the nozzle. For gradually varying fields 
this effect does not occur. 

 
4. Conclusions 
 
If the flow is inertialess and the field downstream is uniform, the jet thickness tends to a 
certain constant β. In this region the Lorentz force compensates gravity, while variations of 
pressure and thus surface tension force vanish. Therefore in contrast to ordinary 
hydrodynamic flows it is possible to create a curtain of a constant thickness. 

Concerning the effect of surface tension, it acts over a distance O(λ1/3) from the nozzle. 
For λ << 1 surface tension acts in a layer at the nozzle, where the flow is governed by the 
EM-surface tension balance. The surface tension tends to smooth the jump in the constant jet 
profile downstream and that at the nozzle. As one moves from downstream region towards the 
nozzle, |κ| monotonically increases. If the jump to be smoothed is too high, the solution ceases 
to exist. This situation is called critical. For λ << 1 sub-critical solutions exist only for a very 
narrow range of the jump |β-1|. If the value of λ or |β-1| are beyond critical, partial flooding of 
the nozzle walls, or draining of the duct are expected. The critical solutions give the upper 
limit for the pinned-end condition to hold. If the advancing or receding contact angles for a 
wall are not 0o or 180o, the Gibbs’ condition will be violated for the values of |β-1| and λ less 
than critical, so the range of existence of a sub-critical flow is even narrower. 

If the magnetic field is non-uniform, the jet tends to expand if the field increases, and 
contract if the field decreases; the jet thickness being proportional to B(x). Partial flooding of 
walls is also expected. For high-gradient field surface-tension induced wiggles have been 
observed in the jet profile, which increase in magnitude with increasing λ. 
 It has been shown that for the steady flow inertial effects are generally not important for  
N > 3. The analysis presented here is valid for a single-component field and for a two-
dimensional jet. The work on jets of finite cross-section and flow stability is in progress.  
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