

June 2002 ANL/TD/TM02-30

Modelling of liquid metal duct

and free-surface flows using CFX

S. Aleksandrova, Coventry University

S. Molokov, Coventry University

C. B. Reed, Argonne National Laboratory

Argonne National Laboratory

9700 South Cass Avenue

Argonne, IL 60439

Work supported by the

Office of Fusion Energy Sciences

U.S. Department of Energy

Under Contract W-31-109-ENG-38

ANL/TD/TM02-30 Page 2

Contents

1. Introduction ... 4

2. Software... 6

3. Solution process .. 7

4. Hardware.. 9

5. MHD flow modelling with CFX.. 9

5.1 Formulation ... 9

5.1.1 Governing equations ... 10

5.1.2 Dimensionless equations .. 11

5.1.3 Boundary conditions ... 12

5.1.4 Free surface flows ... 12

5.1.5 Surface tension .. 13

5.2 Implementation in CFX .. 14

5.2.1 Boundary conditions ... 15

5.2.2 Transient flow.. 17

5.2.3 Free-surface flow .. 17

5.2.4 Convergence criteria ... 18

5.2.5 2D flows... 18

5.2.6 3D flows... 20

5.2.7 Command file options... 23

5.2.8 Additional subroutines used ... 49

6. Benchmark problems .. 55

ANL/TD/TM02-30 Page 3

6.1 Duct flows.. 55

6.1.1 Shercliff solution... 55

6.1.2 Hunt solution ... 56

6.1.3 Flow in an expansion .. 57

6.1.4 Flow in a square duct in a non-uniform transverse magnetic field 59

6.2 Free-surface flows... 62

6.2.1 Spreading MHD drop.. 62

6.3 MHD jet ... 64

6.3.1 Inertialess flow in a uniform field.. 66

6.3.2 Inertial flow in a uniform field... 66

6.3.3 Inertialess flow in a non-uniform field .. 66

7. Discussion and conclusions.. 68

7.1 Main problems of modelling of MHD flows... 68

7.2 Comparison of the DNS and high-Ha flow model 71

8. Acknowledgement .. 73

9. References ... 73

10. List of figures .. 78

11. Appendix 1: a sample of command file ... 85

12. Appendix 2: a sample of source code, two-dimensional flow, MHD jet .. 87

13. Appendix 3: a sample of source code, three-dimensional flow, Hunt

solution... 115

ANL/TD/TM02-30 Page 4

1. Introduction

Liquid metal free-surface flows provide an option of a renewable surface for heat

absorption, removal of impurities, and eliminating the problems of erosion and thermal

stresses [1], [2]. In a tokamak liquid metal flows through a strong magnetic field, which

results in a magnetohydrodynamic (MHD) interaction. For a free-surface flow the MHD

interaction may be even more important than for the duct flows in blankets, because the

electromagnetic forces may significantly deform the free-surface and thus make it

unfavourable for heat extraction. The MHD-related problems for the free-surface flows

have been reviewed in [3]. Among the most important ones are the effects of nonuniform

magnetic fields, inertia, surface tension, wettability and roughness of walls on both the

jet/drop shape and trajectory.

The main problems for the jet divertor are shown in Figure 1 and Figure 2 [4]. Particular

issues related to some of the problems listed in these figures have already been tackled

(Problem 1 in [5]-[7], 4 in [8], [9], 5 in [9], 6 in [4], 7 and 10 in [9], 9 in [10]). Once main

fundamental aspects for each of these sub-problems are understood, the analysis will have

been performed for a particular divertor design.

The flow analysis in [4]-[8], [10] has been performed using the asymptotic model for

high values of the Hartmann number, Ha, in the inertialess approximation, while in [9]

inertial effects have been taken into account. The dimensionless parameters are defined in

Sec. 5.1.2. In large-scale tokamaks the magnetic field is ~5-10T, which results in high or

very high values of Ha and N, the interaction parameter (Table 1). Recently it has been

suggested that the presence of liquid Li inside a plasma chamber might stabilize the

plasma [11]. Thus a decision has been made in the US to test a free-surface device in

smaller machines, such as NSTX or C-MOD [12]. In these machines the magnetic fields

are lower (Table 1), and consequently the high-Ha analysis may not apply.

Therefore, the decision has been made to attempt Direct Numerical Simulation (DNS) to

model flows for lower magnetic fields. It should be emphasized that compared to the

high-Ha flow model, DNS for MHD flows may be considered to be in its infancy,

ANL/TD/TM02-30 Page 5

although some initial progress has been made ([13]-[22], [44]). A general discussion of

the difficulties with DNS modelling for fusion-related MHD flows and the

recommendations for further model development are given in Sec. 7.

Table 1 Dimensionless parameters and expected flow regimes for Li duct- and

free-surface flows in various tokamaks (parameters have been

estimated in [3], [5], [9]).

 NSTX C-MOD LARGE-SCALE
MACHINES

Hartmann
number

~50-500 ~500-1000 ~103-105

Interaction
parameter

0.1-1 ~50-104 ~103-105

Flow regime Fully three-
dimensional,
turbulent MHD

Laminar; possibly 2-D
turbulent MHD

Laminar MHD

Features MHD effects are
weak; both bending
and “flattening” of
the jet may not be
very expressed

MHD effects are
strong. However, both
poloidal and radial
field are about 10% of
the toroidal one:
bending of the jet may
not be very expressed

MHD effects are
very strong.
Although both
poloidal and radial
field are about 10%
of the toroidal one,
bending of the jet
may be significant

High-Ha
model
applicable?

no yes yes, especially for
this regime

DNS
applicable?

Not without
turbulence models,
which do not exist at
present

Yes, but will require
great computational
power

Not with current
computational
facilities, even those
employing
supercomputers

For modelling ordinary hydrodynamic flows several commercial codes are available,

such as CFX, FLUENT, FLOW-3D, etc. Although most of them do not model MHD

flows automatically, they can be modified using user-defined subroutines to include the

body forces, such as the Lorentz force, and couple the momentum equations with the

other MHD equations.

ANL/TD/TM02-30 Page 6

We have decided to base the MHD code on CFX [23], which is a very flexible finite-

volume code widely used in the industrial applications of MHD. The user can introduce

several scalar equations and even to modify the accuracy of the numerical scheme ([23],

O. Widlund, private communication).

The aims of this report are: to summarise the first steps in the development of the

extension of CFX for modelling MHD flows, to present the results of testing the code on

several benchmark problems, and to present the description of the code for further

reference.

2. Software

The commercial fluid dynamics software package CFX 4.4 is used for solving MHD

problems described below. Main features, options and commands relevant to the current

study are described in Secs. 3 - 5. More details are given in [23]. CFX consists of the

following modules:

• Pre-processing tools

- CFX-Build 4.4

An MSC-Patran based geometry and grid generator. It is used for creating the

computational domain, specifying patches (i. e. parts of the domain where the

boundary conditions will be defined – such as walls, inlets, outlets, symmetry planes,

pressure boundaries etc.) and generating grid. Grid generation tools allow creation of

non-uniform grids, which enables one to resolve boundary layers where needed.

- CFX-Setup

This module is used for creating the command file, containing information about fluid

properties, physical models, boundary conditions and solver data.

- Fortran routines

ANL/TD/TM02-30 Page 7

Additional Fortran routines are used in order to implement the Magnetohydrodynamic

flows and other extra features as described below.

• Solver tools

- CFX-Solver

The basis of the code is a conservative finite-volume method. All variables are

defined at the centre of control volumes, and the equations are integrated over each

control volume to obtain discrete equations. The complete set of equations is solved

by iterative method. Pressure-correction algorithm is used to ensure mass

conservation.

• Post-Processing tools

- CFX-Analyse 4.4

Graphic post-processor used for analysis and presentation of results obtained from the

solver.

In addition to CFX, the following software tools have been used:

• Digital Fortran

It is used for compilation of the user subroutines that are used by the CFX solver.

• Matlab

Although CFX Analyse provides a wide range of graphic functions, sometimes

Matlab is used for visualising solution.

3. Solution process

The process of problem solution in CFX consists roughly of the following stages:

• Pre-processing

ANL/TD/TM02-30 Page 8

- Problem formulation.

- Geometry creation.

The geometry is created using CFX-Build. First, all blocks forming the

computational domain are created. Then patches (two-dimensional or three-

dimensional subdomains where the boundary conditions will be set) are specified.

Finally, computational mesh is set up and the geometry file *. GEO containing the

information about mesh points, patches and block gluing information is created.

Simple geometries can be created using the command file.

- Command file.

The command file *. FC containing information about the model is created using

CFX-Setup program or any text editor.

- Fortran subroutines.

Additional Fortran subroutines *.F are required in order to implement MHD model.

They are also used for specifying variable boundary conditions, setting

convergence criteria etc.

• Solving

All files created during the pre-processing stage are passed to the CFX-solver. It

reserves the workspace, checks the validity of the information provided and runs

the problem. During the solution process, some information about it can be

displayed on dynamic graphs. Usually it is the residual values for each of the flow

variables. It allows user to control the solution process and to see the progress of

the solution.

When the calculation is finished, CFX-Solver writes output data into the dump file

*.DMP. Additional information about the solution process (e.g. summary of input

data, residuals) and some statistics (e.g. drag on the walls, flow rates at all inlets

and outlets etc.) are written to an output file *.FO. Additional information may be

ANL/TD/TM02-30 Page 9

included into the dump/output file using command file options and user

subroutines.

• Post-processing

Data produced by CFX-Solver can be post-processed using CFX-Analyse or any

other graphical tools. In the latter case, data should be written in required format.

This can be achieved by using special options in the command file or user

subroutines. CFX-Analyse is the built-in post-processing tool that allows user to

create 2D plots, mesh plots, streamlines, contour plots, animations etc. It also has

some simple calculation tools.

4. Hardware

All three-dimensional problems have been run on a Compaq Alpha Server DS20. It

features 2 processors, 500 MHz each and 768 Mb RAM. Some two-dimensional

problems have been solved using Pentium-3 (1GHz) with 1 Gb RAM.

5. MHD flow modelling with CFX

5.1 Formulation

We will first discuss the set of governing equations and how these are implemented in the

CFX. Since the magnetohydrodynamic features are not included in CFX by default,

certain modifications are made in order to implement MHD into the CFX model. These

include introduction of the Lorentz force into the momentum equation and solution of the

electric potential equation using the additional scalar option available in CFX. By default,

CFX deals with dimensional quantities. In order to use the non-dimensional formulation,

appropriate coefficients should be introduced as discussed below. Different scales will be

used for different problems, based on a particular flow, and these will be discussed

separately when formulating the corresponding problem. Moreover, in the free-surface

flows the dimensional model is used in some cases. Both transient flow and free-surface

flow models are available in CFX.

ANL/TD/TM02-30 Page 10

5.1.1 Governing equations

Consider the flow of a viscous, electrically conducting, incompressible fluid subject to a

strong magnetic field yB ˆ
0

*

0 bB= . It is assumed throughout this study that the magnetic

Reynolds number avRem 0µσ= is small. This is not a necessary assumption, see the

discussion in [5].

Then the dimensional governing equations are the Navier-Stokes equation

 2****

*

*

)(Fvvv
v

+∇+−∇=∇⋅+ µρ
∂
∂

ρ p
t

, (1)

the Ohm’s law

 ()***** Bvj ×+∇−= φσ , (2)

and conservation of mass and current

 0** =⋅∇ v , (3)

 0** =⋅∇ j . (4)

In the above, t* is time, v* is the fluid velocity, p* is pressure, φ* is the electric potential,

F is the volumetric body force, j is the electric current density, E* is the electric field, µ

is the dynamic viscosity, σ is electric conductivity and ρ is fluid density. In MHD

problems considered here, the body force includes the Lorentz force and gravity force:

 **** gBjF ρ+×= ,

where g* is the gravity vector. Using expression (2) for the electric current, the body force

can be rewritten as

 ******** gBvvBF ρσφσ +××+×∇−= . (5)

ANL/TD/TM02-30 Page 11

Taking divergence of Eq. (2) and using Eq. (4), an equation governing the electric

potential is obtained. It reads

)(****2* Bv ×⋅∇=∇ φ . (6)

Thus a set of equations (1), (3) and (6) for fluid velocity, electric potential and pressure

has to be solved subject to appropriate boundary conditions. The Ohm’s law (2) is used

for calculation of the electric current.

5.1.2 Dimensionless equations

The characteristic values of the length, the fluid velocity, time, the electric potential and

the pressure are a, v0, a/v0, av0B0 and 2
00 Bvaσ , respectively. Then the non-dimensional

equations governing the flow are

 gBBvBvvv
v ˆ)(221 δφ

∂
∂

+××+×∇−∇+−∇=



 ∇⋅+ −− Hap

t
N , (7)

)(2 Bv ×⋅∇=∇ φ , 0=⋅∇ v , (8-9)

where ρνσ /0aBHa = is the Hartmann number that expresses the ratio of the

electromagnetic to the viscous force, 0
2
0 / vBaN ρσ= is the interaction parameter, which

expresses the ratio of the electromagnetic to the inertial force, 2
00/ Bvg σρδ = is the

parameter which expresses the ratio of the gravitational to the electromagnetic force; ĝ is

the unit vector in the direction of gravity.

The electric current can be calculated from the non-dimensional form of the Ohm’s law

 Bvj ×+∇−= φ . (10)

The velocity scale, v0, depends on a particular problem. If gravity is important, we select

 2

00 / Bgv σρ= , (11)

ANL/TD/TM02-30 Page 12

so that δ = 1. In case of the pressure-driven flow, the average duct velocity Q/a (Q is the

flow rate) is chosen as the velocity scale.

It is possible to model flows with three components of the magnetic field. In the

following benchmark problems the field is supposed to have only one component in the

direction of y.

5.1.3 Boundary conditions

The boundary condition for the fluid velocity at each wall is the no-slip condition

 v = 0. (12)

For an electrically insulating wall,

 0ˆ =
∂
∂

=⋅
n

φ
nj (13)

at the wall. Here n̂ is the normal unit vector to the wall. Additional symmetry conditions

are specified for each problem if needed.

For a perfectly conducting wall,

 φ = 0 at the wall. (14)

5.1.4 Free surface flows

CFX models free-surface flows by assuming that the surrounding medium is dynamically

active. A liquid metal is surrounded by what is called "air" with certain values of density,

ρ1, and dynamic viscosity, µ1. The "air" may be vacuum if both ρ1 and µ1 tend to zero.

For the coupled liquid metal-"air" system governing equations (7)-(9) (only Eqs. (7), (9)

for "air" without the MHD terms) are solved for each phase with appropriate parameters.

Free surface flow is modelled by volume of fluid method. In this case the boundary

conditions at the free surface are satisfied automatically. Details of the two-phase model

used are given in Sec. 5.2.3.

ANL/TD/TM02-30 Page 13

5.1.5 Surface tension

At the interface between two fluids, there is a surface tension force. Physically this force

acts directly on the surface. This is hard to achieve in CFX as the surface is always

smeared out in some way by the discretisation. The model used in CFX-4 is based on the

Continuum Surface Force model. This models the surface tension force as a force which

exists throughout the flow based upon derivatives of volume fraction, but which has the

same effect overall as the surface force, even when the surface is smeared.

The model leads to an extra body force, *

SF , in the momentum equation given by:

 rS

*** ∇= γκF , (15)

where γ is the surface tension coefficient, r is the volume fraction of the first phase and κ*

is the surface curvature defined by:

 









⋅∇−










∇⋅= nn

n
n

n
ˆˆ

ˆ

ˆ

ˆ
1 ***κ . (16)

Here r∇=n̂ is a unit vector normal to the free surface.

In a non-dimensional form based on gravitational pressure scaling (to be used in

Sec. 6.2.1 for a spreading drop problem), the surface tension body force is equal to

 rBoS ∇= − κ1F , (17)

where Bo is the non-dimensional Bond number

γ
ρga

Bo
2

= . (18)

If the variables are scaled as for the duct flows [9], then

 rHaCaS ∇= −− κ21F , (17)

ANL/TD/TM02-30 Page 14

where Ca is the capillary number

γ

ρν 0v
Ca = .

This scaling will be used in Sec. 6.3 for modelling two-dimensional jet flow. For

convenience, we introduce parameter

21 −−= HaCaλ ,

which will be used in calculations.

5.2 Implementation in CFX

As has been mentioned above, CFX codes are built to work with dimensional equations.

Thus equations (1) and (3) can be implemented directly by setting physical properties of

the fluid in the command file. The “buoyant flow” option allows accounting for the

gravity force. However, the electromagnetic force has to be introduced as a source term

for the momentum equation. The treatment of the electromagnetic force is discussed

below.

Equation (6) can be solved treating the electric potential as a user-defined scalar governed

by the steady version of a diffusion-convection equation with the source term)(Bv ×⋅∇

calculated for each control volume.

In order to use non-dimensional formulation given by Eqs. (7)-(9), appropriate non-

dimensional parameters should be used rather than actual viscosity, density etc. It follows

from Eqs. (7), (1) that N-1 stands for fluid density while Ha-2 corresponds to fluid

viscosity. The gravity vector for gravity-dominated problems should have length 1

instead of 9.81, which can also be defined in CFX command language.

The details of how to introduce the Lorentz force into the momentum equations and the

source term into the electric potential equation are considered below separately for two-

dimensional and three-dimensional flows.

ANL/TD/TM02-30 Page 15

Note that the two-dimensional model in CFX always assumes that the co-ordinate z is the

direction in which nothing changes. In fully developed flows and flows in ducts the z co-

ordinate is aligned with the axis of the duct.

5.2.1 Boundary conditions

There are several types of boundary conditions available in CFX. The following types

have been used in this report: inlets, mass flow boundaries, pressure boundaries, walls.

These are described below. Most of the boundary conditions can be specified in the

command files. In more complicated problems, user subroutines are used.

To specify a boundary where the appropriate boundary conditions will be applied, special

subdomains must be created beforehand. These are called "patches" and can be either

two-dimensional or three-dimensional.

Thus, a boundary condition in CFX command file consists of a patch name where the

condition holds, name of variable which is specified and the appropriate value of this

variable.

Inlet boundaries

An inlet is a boundary where the values of variables are specified. Mathematically, this is

known as a Dirichlet boundary condition. These values are set using the subcommand

>>INLET BOUNDARIES in the command file. If variable profiles are required, they

have to be specified using the user Fortran subroutine USRBCS.

Default values of the flow variables are their ambient values. By default, the ambient

values are 0 and can be overridden in the command file using command >>AMBIENT

CONDITIONS.

In problems considered in this report, the following flow variables must be set at inlet

boundaries: normal velocity into domain, user scalar standing for electric potential where

applicable, volume fraction in free-surface flows.

ANL/TD/TM02-30 Page 16

Mass flow boundaries

Mass flow boundaries are used to model inflow and outflow boundaries where the total

mass flow rate into or out of the domain is known, but the detailed velocity profile is not.

These mass flow rates and other information are specified using the >>FLUX and

>>INFLOW VARIABLES subcommands of >>MASS FLOW BOUNDARIES, which is

a subcommand of >>MODEL BOUNDARY CONDITIONS.

Mass flow boundaries are used at the entrance to the duct when the mass flow rate is

known. It can also be used at the exit from the duct to model Neumann boundary

conditions. In this case, fractional mass flow rate equal to 1 is specified to indicate that

all outgoing fluid flows through this outlet.

If the flow is out of the domain, all variables except for pressure will satisfy Neumann

boundary conditions. If the flow is into domain (negative mass flow rate is specified),

Neumann boundary conditions are imposed on all flow variables except for user scalars

and pressure. This, unfortunately, means that even if the velocity profile is not known and

can be modelled by CFX using the specified flow rate, one still needs to specify correct

values for the electric potential. It can be set in the command file if constant. Variable

profiles must be set using the user routine USRBCS.

Pressure boundaries

They are used to model both inflow and outflow boundaries where the surface pressure is

known, but the detailed velocity distribution is not. These can be used in duct flows to set

a constant pressure drop instead of the flow rate. Fixed values of temperature and user

scalars must be specified at pressure boundaries if the flow is into the solution domain.

The pressure is specified at the pressure boundary using the command >>PRESSURE

BOUNDARIES which is a subcommand of >>MODEL BOUNDARY CONDITIONS.

Variable pressure profiles must be specified using the user subroutine USRBCS.

ANL/TD/TM02-30 Page 17

Wall boundaries

Default conditions at solid walls are non-slip conditions for the velocity and zero

Dirichlet conditions for user scalars. Alternatively, non-zero values or shear stress can be

defined for the velocity. General type of boundary conditions can be set for user scalars.

Command >>WALL BOUNDARIES is used for this purpose. User subroutine USRBCS

can be used to set variable boundary conditions at solid walls.

5.2.2 Transient flow

Most of the problems considered in this report are the steady-state flows. However, in

some cases time-dependent formulation of the problem helps to improve problem

convergence. A steady-state calculation may be considered as a transient calculation with

an infinite time step. If a time accurate simulation of the flow from its initial guess to its

steady state solution indicates that the flow approaches the steady state solution in a very

complex manner, then it is quite likely that an attempt to reach the steady state solution in

a single, large time step will overshoot the mark and never recover.

Therefore in some problems, particularly in free-surface flows, we kept the time-

dependent term in Eq. (7) and run the problem until the steady solution had been reached.

5.2.3 Free-surface flow

CFX offers several models for treating two-phase flows. The homogeneous model is the

most appropriate one when considering free-surface flows. This model is based on the

assumption that certain solution fields of each phase are identical (e.g. velocity, pressure)

whilst still solving for distinct volume fractions. Hence, individual phase continuity

equations can be solved to determine the volume fractions, while individual transport

equations can be summed over all phases to give a single transport equation.

ANL/TD/TM02-30 Page 18

5.2.4 Convergence criteria

The default convergence criterion for steady flows and transient flows with a fixed time

step is a condition on the mass flow residual. It is set in the command file using

subcommand MASS SOURCE TOLERANCE of the command PROGRAM CONTROL.

It may be modified in a user-defined Fortran routine USRCVG. This subroutine returns a

logical flag LCONVG. Setting LCONVG to .TRUE. indicates to the program that the

flow is satisfactorily converged.

The MASS SOURCE TOLERANCE is not used for transient flows using the adaptive

time stepping option. In this case user has more control over the convergence and

divergence criteria from the command language. The relevant parameters are set using

the subcommands >>CONTROL PARAMETERS and >>CONVERGENCE TESTING

ON VARIABLE of the >>TRANSIENT CONTROL command. Any variable can be

chosen to test for convergence, not just the mass source residual. Convergence is obtained

when the residual for the tested variable for the first phase satisfies the condition RES <

MAX (RESMIN, MIN(RESMAX, RES5/REDUC)), where RES is the residual of the

corresponding variable, RESMIN is the minimum required residual value, RESMAX is

the maximum allowed residual value, REDUC is the residual reduction factor and RES5

is the value of the variable's residual computed on the fifth iteration.

5.2.5 2D flows

In a two-dimensional approximation the description of the flow is considerably

simplified. All quantities with the exception of φ are supposed to be independent of z. If

laterally the flow is confined by perfectly conducting sidewalls located at z = ±L*, which

are connected through a resistor, then the resulting electric field is given. In this case,

sufficiently far from the sidewalls the electric current flows in the z-direction only, while

the flow may be considered two-dimensional in the (x, y) plane. If the sidewalls are not

connected, no electric field is present in the fluid and therefore both E and φ vanish.

ANL/TD/TM02-30 Page 19

Therefore, the potential equation (8) does not need to be solved. For a magnetic field

ŷ)(xB the electric current reduces to one component:

 uBEj z += . (19)

The Lorentz force only acts in x-direction, and is equal to

)())((xBxuBEFL +−= , (20)

and the resulting body force is

 yxF ˆˆ))()((2
yx ggxuBxEB δδ ++−−= , (21)

where gx and gy are the corresponding components of the gravity vector; E is a given

constant, which is known and may be equal to zero depending on the problem.

Thus two-dimensional problems are described by the following equations deduced from

Eqs. (7)-(9):

 xxy gBuBEuHa
x

p

y

u
v

x

u
u

t

u
N δ

∂
∂

++−∇+
∂
∂

−=







∂
∂

+
∂
∂

+ −−)(221 , (22)

 yxy gvHa
y

p

y

v
v

x

v
u

t

v
N δ

∂
∂

+∇+
∂
∂

−=







∂
∂

+
∂
∂

+ −− 221 . (23)

Body force defined by Eq. (21) can be implemented in CFX in a straightforward way.

Since all the components of the body force are defined at the centre of the control

volume, the source term for each control volume in the momentum equation will be equal

to F multiplied by the volume of the respective cell. An example of implementing

Lorentz force in case of an MHD jet is given in Appendix 2.

In order to solve free-surface flows in CFX, similar equations but without the MHD terms

governing the surrounding medium (e. g. air) should also be provided.

ANL/TD/TM02-30 Page 20

5.2.6 3D flows

The situation is different in fully three-dimensional flows. In this case the electric

potential equation (8) has to be solved which is coupled to the Navier-Stokes equation

(7). There are non-zero three-dimensional electric currents induced by the magnetic field

inside the fluid. These consist of the electric field -∇φ and the electromotive force v×B

(see expression (10)). The straightforward approach to the problem is to approximate the

body force defined in the expression (26) at the centre of each cell and multiply this value

by the volume of the cell. However, this approach fails in some cases and a more careful

numerical treatment of the body force should be introduced in order to preserve global

electric current conservation ([20]).

Electric currents

For fully three-dimensional flows, non-zero three-dimensional currents defined by

Eq. (10) are present in the fluid. For a magnetic field yB ˆB= , applied in the y-direction,

the three components of the electric current are

 wB
x

j x −
∂
∂

−=
φ

,
y

j y ∂
∂

−=
φ

, uB
z

jz +
∂
∂

−=
φ

. (24)

Values of the electric current at cell centres can be calculated easily in CFX using actual

values of the velocity stored in arrays U and W, and the utility subroutine GRADS for

calculation of the gradient of the electric potential.

Electric potential equation

The electric potential satisfies Eq. (8). The right-hand side of this equation can be written

as

z

u

x

w

∂
∂

+
∂
∂

−=×⋅∇)(Bv . (25)

ANL/TD/TM02-30 Page 21

The straightforward approach in introducing such a source term into the electric potential

equation would involve using utility subroutine GRADV for calculation of the gradients

of velocity components at the cell centre and then multiplying it by the volume of the

corresponding cell. In Appendix 3, such an approach is used in user subroutine USRSRC

for a fully developed flow in a duct with conducting Hartmann walls and insulating

parallel walls. (Note that the source term in CFX appears at the same side of the equation

as the diffusion term, therefore -∇⋅(v×B) times cell volume is actually used).

Lorentz force

The Lorentz force in a vertical magnetic field has only two components:

 BjF zx −= , BjF xz = (26)

with the electric current components determined from Eq. (24). Again, the

straightforward approach illustrated in Appendix 3 is to evaluate the electric current at the

cell centres as described above and to introduce it into the momentum equations.

Integral approach

However, in some cases the straightforward approach introduces considerable error. It

happens especially on highly non-uniform or non-orthogonal grids. In such cases, more

appropriate integration of the source term and the body force over each control volume

should be used developed in [20]. It is briefly described below for orthogonal grids (from

[20]).

Electric potential equation

The source term in the electric potential equation (8) is)(Bv ×⋅∇ . To specify the source

term for the CFX solver, it has to be integrated over a control volume. Then

 ∫∫ ⋅×=×⋅∇=⋅
AV

dAdVVS nBvBv ˆ)()(. (27)

ANL/TD/TM02-30 Page 22

Here V is the volume of the cell. Thus the source term can be approximated as

 ∑ ⋅×=
f

fA
V

S nBv ˆ)(
1

, (28)

where f denotes the 6 faces of the control volume, Af is the area of the corresponding face,

and n̂ is the outward normal unit vector of the face. For an orthogonal grid,

 [))()(())()((
1

−+−+ ×−×+×−×= yyyxxx AA
V

S BvBvBvBv

]))()((−+ ×−×+ zzzA BvBv . (28)

In the above, Ax, Ay and Az are the areas of the cell faces in x, y and z directions,

respectively; ±× x)(Bv , ±× y)(Bv and ±× z)(Bv are values of the vector at the faces in

corresponding co-ordinate directions, + standing for face with higher x (y, z) and -

standing for lower one. These values are interpolated from values at the adjacent cell

centres using weight factors available in CFX.

Lorentz force and electric current density

The Lorentz force in the momentum equation (7) involves the electric current. For the

problem to be consistent, the second term Bv × must be calculated in the way similar to

the source term in the potential equation. To integrate this term over a control volume,

one needs its values at the cell faces. These are interpolated using the weight factors

available in CFX.

Then term Bv × at the cell centre is evaluated as

 ∑ ⋅×=×
f

ff A/ˆ)(
2

1
)(nBvBv . (30)

Values of the vector Bv × at the cell faces are obtained in the same way as in Eq. (28).

ANL/TD/TM02-30 Page 23

The second term of the electric current, φ∇− , can be calculated directly using the

subroutines provided by CFX for gradient calculation. It is modified slightly to include

the case when the Neumann boundary conditions are required at the inlets/outlets. It also

gives incorrect values near the walls, which should be recalculated correspondingly.

Unlike the straightforward approach discussed in the previous section, here the electric

current conservation is enforced, which gives more accurate results.

5.2.7 Command file options

Command files are used in CFX for specifying fluid properties, physical models,

boundary conditions and solver data. It is a text file with the following structure:

>>CFX4

(Subcommands and Keywords)

>>MODEL TOPOLOGY

(Subcommands and Keywords)

>>MODEL DATA

(Subcommands and Keywords)

>>SOLVER DATA

(Subcommands and Keywords)

>>CREATE GRID

(Subcommands and Keywords)

>>MODEL BOUNDARY CONDITIONS

(Subcommands and Keywords)

>>OUTPUT OPTIONS

(Subcommands and Keywords)

>>STOP

Hereafter a brief review of options relevant to the problems considered in this report is

given.

Command CFX4

This command specifies the major flow options, the list of the additional Fortran routines

used and names of variables and phases. The following subcommands are available:

ANL/TD/TM02-30 Page 24

>> Options

The following options are used in this study:

TWO DIMENSIONS / THREE DIMENSIONS

Specifies whether two-dimensional or three-dimensional model is used. If two

dimensions option is chosen, then the grid must have only one grid step in the z-direction.

NUMBER OF PHASES

Specifies number of phases used. For a duct flow, only one phase (liquid metal) is used.

For a free-surface flows, two phases are used - "air" and liquid metal.

USER SCALAR EQUATIONS

Additional scalars may be introduced in CFX. These satisfy a general

diffusion/convection equation as discussed above. However, if the name of user scalar

(defined as described below) starts with USRD, it is a dummy scalar and no equation is

solved for it. Dummy scalars can be used for calculating additional variables, such as

electric currents in three-dimensional flows, exact solutions in order to check whether the

flow is fully developed at the entrance of the duct etc.

RECTANGULAR GRID / BODY FITTED GRID

Only rectangular grid has been used in this study.

LAMINAR FLOW / TURBULENT FLOW / TURBULENT FLOW WITH WILCOX MODEL

Only laminar flows have been considered in this study.

ISOTHERMAL FLOW / HEAT TRANSFER

Heat transfer option is switched on if the temperature equation needs to be solved. Only

isothermal flows have been considered in this report.

ANL/TD/TM02-30 Page 25

COMPRESSIBLE FLOW / INCOMPRESSIBLE FLOW

Only incompressible flows have been considered in this report.

BUOYANT FLOW

Buoyancy is switched on if the flow is non-isothermal of if the gravity force should be

taken into account. In this case the gravity vector and the reference density should be

defined using command BUOYANCY PARAMETERS.

TRANSIENT FLOW / STEADY STATE

The transient flow option is switched on when a time-dependent flow is considered. It can

also be switched on for complex steady flows if convergence difficulties are experienced.

We use the transient flow option for two-phase (free surface) flows. In duct flows, the

flow is considered steady.

>> User Fortran

Here the list of the CFX Fortran subroutines used in the problem is given.

>> Variable names

Here the names of the variables used in the problem can be changed. For example,

standard names for user scalars are USER SCALAR N, where N is the number of the

scalar. Using a special name starting with USRD turns off the solution of the transport

equation for the scalar and allows one to use it to store arbitrary information. An example

of using the command is:

 U VELOCITY 'AXIAL VELOCITY'

 V VELOCITY 'VERTICAL VELOCITY'

 W VELOCITY 'AZIMUTHAL VELOCITY'

 USER SCALAR1 'USRD EXACT'

 USER SCALAR2 'USRD B'

ANL/TD/TM02-30 Page 26

>> Phase names

Using this command, one can introduce arbitrary names for the phases used in the

problem. For example, in the free surface flow one can use command

>>PHASE NAMES

 PHASE1 'AIR'

 PHASE2 'METAL'

After that, names METAL and AIR can be used in all subsequent commands.

 Command Model topology

This command deals with the geometry of the problem. It allows to create and to modify

simple geometries, patches and grids.

For example, a single rectangular block with 250, 118 and 1 mesh divisions in the x, y

and z directions, respectively, can be created by a command

>>CREATE BLOCK

 BLOCK NAME 'DUCT'

 BLOCK DIMENSIONS 250 118 1

Patches are created using command CREATE PATCH. For example, to create a

two-dimensional pressure boundary at the top of the block DUCT, the following

command could be used:

>>CREATE PATCH

 PATCH NAME 'TOP'

 BLOCK NAME 'DUCT'

 PATCH TYPE 'PRESSURE BOUNDARY'

 HIGH J

Here HIGH J keyword means that the patch will contain nodes of the block DUCT with

the highest values of J.

ANL/TD/TM02-30 Page 27

When the geometry is created using the CFX-Build program, MODEL TOPOLOGY

commands can be used in order to change names and types of patches. This is convenient

for introducing user-defined names for patches and changing the boundary conditions (for

example, at the entrance to the duct either mass flux, velocity or pressure can be given

depending on the problem). The following command changes the pressure boundary

defined in CFX-Build to inlet boundary. It also changes the name of the patch to

ENTRANCE with is more convenient when defining the boundary conditions and using

the post-processor.

>>MODIFY PATCH

 OLD PATCH NAME 'PRESS1'

 NEW PATCH NAME 'ENTRANCE'

 NEW PATCH TYPE 'INLET'

Command Model data

This command is used to specify properties of the fluids, physical and numerical models

etc.

>>Ambient variables

PHASE NAME / ALL PHASES

This option allows one to set the ambient variables for all phases at once or for each

phase separately.

After that, the list of variables being set and the corresponding values is entered.

For example, to set the ambient medium to air, the following commands can be used:

>>AMBIENT VARIABLES

 PHASE NAME 'AIR'

 VOLUME FRACTION 1.0000E+00

 >>AMBIENT VARIABLES

 PHASE NAME 'METAL'

 VOLUME FRACTION 0.0000E+00

ANL/TD/TM02-30 Page 28

>>Body forces

This option allows one to introduce simple body forces of type vCF R−= into the

momentum equation. Here C is a constant vector, and R is a diagonal matrix with

constant elements; v is the fluid velocity. More sophisticated body forces are defined

using the user subroutine USRBF.

PATCH NAME

Specifies the name of a three-dimensional patch where the body forces will act.

PHASE NAME / ALL PHASES

This option allows one to set the body forces acting on all phases or on a particular phase.

For MHD flows, the Lorentz force will be acting on the liquid metal only, since the

electrical conductivity of the air is much lower than that of the metal.

BODY FORCE

This is the component of the body force independent of v. In CFX the body force is

represented in the following way:

 vCF R−= ,

where C is the velocity-independent vector, R is the resistance constant, v is the velocity.

Thus, this command allows to introduce a constant body force component B. If more

complicated body force is used, it should be specified in subroutine USRBF.

RESISTANCE CONSTANT

Here the second component of the body force is specified, i.e. the factor in front of -v.

Again, for more complicated cases USRBF subroutine should be used instead of this

command.

ANL/TD/TM02-30 Page 29

>>Differencing scheme

This option specifies which differencing scheme is chosen for the advection term.

ALL EQUATIONS / <variable name>

Specifies whether the differencing scheme applies to all equations or to a certain variable.

NO CONVECTION / UPWIND / HYBRID / HIGHER UPWIND / QUICK / CENTRAL / CONDIF /

CCCT / MIN-MOD / VAN LEER / SUPERBEE / NO MATRIX

This keyword chooses the corresponding differencing scheme. The "no convection"

option is used, for example, for the electric potential equation where no advection takes

place, or in inertialess flows for the Navier-Stokes equations.

>>Physical properties

>>Buoyancy parameters

This command allows one to introduce gravity force. We will consider only options

relevant to isothermal flows considered in this report.

PHASE NAME / ALL PHASES

Shows whether the options apply to all phases or a particular phase only.

GRAVITY VECTOR

The three components of the gravity vector are specified here. The gravity vector is the

same for all phases.

>>Fluid parameters

This subcommand is for specification of fluid properties.

PHASE NAME / ALL PHASES

Shows whether the options apply to all phases or a particular phase only.

ANL/TD/TM02-30 Page 30

VISCOSITY

Fluid viscosity is specified by this command.

DENSITY

Fluid density is specified by this command.

>>Multiphase parameters

 >>Multiphase models

This command sets the multiphase models used in the simulation.

 >>Homogeneous

This command sets all physical processes except heat transfer to be

homogeneous (see description of the homogeneous model in chapter 5.2.3)

 SURFACE SHARPENING ALGORITHM

This keyword specifies whether the surface sharpening algorithm is employed. It

is useful in transient free-surface flows, when the interface between two fluids is

sharpened by modifying the volume fraction field after each time step.

 SURFACE SHARPENING LEVEL

There are four levels of surface sharpening available. The default level is level 2.

 SURFACE TENSION MODEL

This keyword invokes the surface tension model. If it is not included, there is no

surface tension in the problem.

 SURFACE TENSION COEFFICIENT

This keyword is used to set a constant surface tension coefficient for the

interface between the two phases.

ANL/TD/TM02-30 Page 31

 WALL CONTACT ANGLE IN DEGREES

This keyword is used to set the wall contact angle as a real number between 0.0

and 180.0. This is the angle that the interface makes to the wall, which by

convention, is relative to the first phase. If the wall in contact with the first phase

is hydrophobic then the wall contact angle will be greater than 90° and if the

wall in contact with the first phase is hydrophilic the angle will be less than 90°.

The contact angle has a default of 90°.

 >>Momentum

This command sets the model for the momentum equation to be homogeneous. It

has same keyword as the >>Homogeneous command and therefore is not

described in detail.

 >>Phase description

 PHASE NAME

Name of the phase for which the description is given.

 GAS / LIQUID / SOLID

Thermodynamic phase of the fluid.

 CONTINUOUS / DISPERSE

Continuity of the phase.

 MODIFY EMPTY CELL VELOCITY

In flows where buoyancy and other forces act, cells with small volume fractions

may attain large numerical values for velocities. The keyword MODIFY

EMPTY CELL VELOCITY sets velocities to zero in cells with volume fractions

below that specified by the keyword.

ANL/TD/TM02-30 Page 32

 MINIMUM VOLUME FRACTION

In a multi-phase calculation, in order to avoid solving zero equations in parts of

the domain where the phase is not present, the minimum value of the volume

fraction for any phase is bounded below. By default, the bounding value is 1.0E-

10, but this can be changed using the MINIMUM VOLUME FRACTION

keyword.

>>Scalar parameters

 >> Diffusivities

Specifies diffusivity coefficients in additional scalar equations. For example, in the

electric potential equation (8) the coefficient in front of the diffusive term is equal to

unity.

 PHASE NAME / ALL PHASES

Specifies whether the diffusivity specified below applies to all phases or a certain

phase.

 USER SCALARn / ALL USER SCALARS / USER SCALARS

Specifies user scalar diffusivities. One diffusivity can be defined for a certain scalar,

all user scalars, or for all scalars using a list of data.

>>Transient parameters

 >> Adaptive time stepping

This option allows CFX-4 to choose the time step from within a certain range. The

time step chosen will depend on how well the simulation is converging.

 NUMBER OF TIME STEPS

Here an integer number is given specifying how many time steps are to be used. This

includes time steps that fail because of lack of convergence.

ANL/TD/TM02-30 Page 33

 INITIAL TIME STEP

Sets the initial time step in seconds. By default, the initial time step is taken from the

restart file, if there is one.

 MINIMUM TIME STEP

Allows user to set a minimum possible time step, in seconds.

 MAXIMUM TIME STEP

Allows user to set a maximum possible time step, in seconds.

 MULTIPLY TIME STEP BY

Sets the factor by which the time step is increased when the time step increment

interval has been reached, see below.

 DIVIDE TIME STEP BY

Sets the factor by which the time step is divided when a time step fails.

 MINIMUM INTERVAL BETWEEN INCREMENTS

Controls how many successful time steps in a row there must be before the time step

is increased.

 MAXIMUM NUMBER OF CONTIGUOUS INCREMENTS

Controls the maximum number of times a time step can fail in a row before the run is

stopped.

 BACKWARD DIFFERENCE / CRANCK NICOLSON

This keyword invokes a fully implicit Backward Euler differencing (default) or

Crank-Nicolson (central) differencing in time.

ANL/TD/TM02-30 Page 34

 LINEAR TIME DIFFERENCING / QUADRATIC TIME DIFFERENCING

This keyword sets a first-order time-stepping method (default) or a second-order

time-stepping method. It is recommended that this is not used with CRANK

NICOLSON but as an alternative to it.

 INITIAL TIME

This keyword used to set the initial time, in seconds. This is most often used in a

restart job. The initial time is then taken from the restart file by default. Where the

run is not a restart, the default initial time is zero. Using this keyword will overwrite

the default.

 MAXIMUM TIME

Sets the final model time, in seconds, of the transient solution. The user control over

the number of time steps performed, but since the time step varies, the final solution

time is not known. This keyword means that the simulation will either stop after the

NUMBER OF TIME STEPS have been performed, or if the current time step is at a

time which is greater than or equal to the MAXIMUM TIME.

 >> Extrapolation order

A further advantage of adaptive time stepping is the inclusion of an extrapolation

technique that improves the initial guess to the solution at each time step. This

reduces the number of iterations required for convergence. The order of extrapolation

is set to be first order by default, but can be changed using the

>>EXTRAPOLATION ORDER command. For example, the second-order

extrapolation would be recommended with second-order time differencing.

ANL/TD/TM02-30 Page 35

 >> Fixed time stepping

 TIME STEPS / TIME VALUES

Here the list of time steps or time values is given. For example, 10 * 0.1 means ten

time steps, 0.1 seconds each. Maximum of 10000 time steps can be specified.

 BACKWARD DIFFERENCE / CRANCK NICOLSON

This keyword that invokes fully implicit Backward Euler differencing (default) or

Crank-Nicolson (central) differencing in time.

 LINEAR TIME DIFFERENCING / QUADRATIC TIME DIFFERENCING

This keyword sets a first-order time-stepping method (default) or a second-order

time-stepping method. It is recommended that this is not used with CRANK

NICOLSON but as an alternative to it.

 INITIAL TIME

This keyword used to set the initial time, in seconds. This is most often used in a

restart job. The initial time is then taken from the restart file by default. Where the

run is not a restart, the default initial time is zero. Using this keyword will overwrite

the default.

>>Set initial guess

>>Set constant guess

PHASE NAME / ALL PHASES

Specifies whether the initial guess is set for all phases or for a certain phase only.

<variable name>

Specifies variables (u, v, w, pressure, volume fraction, enthalpy, user scalar n) and their

values used as the initial guess.

ANL/TD/TM02-30 Page 36

>>Sources

This command allows one to specify extra source terms for any of the transport equations

(u, v, w, pressure, volume fraction, enthalpy, user scalar n). Since these equations are

obtained by integrating the appropriate conservation laws over a control volume the

source terms have the form of the product of the source term and the volume of the

control volume. Only constant source terms can be specified here. For more complicated

cases user subroutine USRSRC should be used.

The source term for variable φ is split into two parts as follows:

 S = Su + Sp φ. (31)

Thus, two numbers are specified for each source term.

PATCH NAME

Name of the two- or three-dimensional patches where the source term appears. In case of

a two-dimensional patch, the source term is given per unit area of the corresponding cell.

PHASE NAME / ALL PHASES

Specifies whether the source term is set for all phases or for a certain phase only.

TOTAL / PER UNIT VOLUNE AND MASS OF PHASE / PER UNIT MASS OF PHASE / PER UNIT

VOLUME / PER UNIT MASS / PER UNIT AREA AND MASS OF PHASE / PER UNIT AREA OF

PHASE / PER UNIT AREA

This keyword specifies the way the source term is defined. Details can be found in CFX

user guide.

>>Title

Here a title can be given to the problem that will appear in the output file.

ANL/TD/TM02-30 Page 37

Command Solver data

>> False timesteps

This command allows improving problem convergence by using the false time steps

method. It can be used in transient problems together with real time stepping. It can also

be combined with underrelaxation method.

PHASE NAME / ALL PHASES

Specifies whether false time steps apply to all phases or a particular phase.

ALL EQUATIONS / <variable name>

Specifies which equations should be integrated using false time steps and the

corresponding values of the false time steps.

>> Courant number false time steps

One of the difficulties of using false time steps is that knowledge of the time scales of the

problem is needed: Courant number false time steps avoid that difficulty by calculating

the time scale from the grid size and the local velocity field.

Different false time steps can be chosen for different equations when using Courant

number false time steps. This is achieved by setting a multiple of the local Courant

number time scale for each equation.

PHASE NAME / ALL PHASES

Specifies whether the following options will apply to all phases or one particular phase.

ALL EQUATIONS / <variable name>

By this keyword(s) the multiple of the local Courant number time scale is given for all

equations or a list of variables.

ANL/TD/TM02-30 Page 38

IGNORE SPEED OF SOUND

By default for fully compressible flows, the code uses the sum of velocity and the local

speed of sound when calculating the Courant number time scale. This can be changed to

just use the velocity, as for other flow types, by using this keyword.

INITIAL FALSE TIMESTEP

When the speed of sound is included, the Courant number time scale depends upon the

reciprocal of velocity. For the standard initial guess of no flow, this can lead to problems

on the first iteration. There is therefore a keyword INITIAL FALSE TIMESTEP for

setting a suitable value to be used just on the first iteration.

>> Equation solvers

The set of linearised difference equations for a particular variable, one equation for each

control volume in the flow, is passed to a simultaneous linear equation solver, which uses

an iterative solution method. The alternative methods, available for this purpose, are

specified within this command.

PHASE NAME / ALL PHASES

Specifies whether the following options will apply to all phases or one particular phase.

<variable name>

Specifies the variable for which the method is set.

LINE SOLVER / STONE / BLOCK STONE / ICCG / AMG / GENERAL AMG

These keywords set one of the following iteration methods: line relaxation, full field

Stone's method, block Stone's method, preconditioned conjugate gradients, algebraic

Multi-grid or general version of Algebraic Multi-grid. Usually the default method chosen

by CFX works satisfactory, and there is no need to change the solver.

ANL/TD/TM02-30 Page 39

>> Pressure correction

SIMPLE / SIMPLEC / PISO / NON ITERATIVE PISO

By default, SIMPLE algorithm (Semi-Implicit Method for Pressure-Linked Equations) is

used for updating pressure and correcting velocity components in order to ensure mass

conservation. SIMPLEC is a modification of SIMPLE which differs in its derivation of a

simplified momentum equation. In the so-called PISO algorithm, a second pressure-

correction equation is solved in order to improve the solution of the momentum equations

while maintaining continuity. SIMPLE method has been used in this study.

>> Program control

MINIMUM NUMBER OF ITERATIONS

Specifies minimum number of iterations performed by solver before the convergence

testing is done.

MAXIMUM NUMBER OF ITERATIONS

Specifies maximum number of iterations performed by solver.

MASS SOURCE TOLERANCE

Specifies the convergence criterion in terms of mass residual. To use other convergence

criteria, subroutine USRCVG should be used.

>> Reduction factors

On each "outer" iteration step, the set of linearised difference equations for a particular

variable is solved using an iterative solution method. An exact solution is not required

because this is just one step in the non-linear "outer" iteration. The computational effort

in obtaining a reasonable solution to the set of equations is controlled using command

>> Reduction factors and >>Sweeps information.

ANL/TD/TM02-30 Page 40

The residual in a particular cell is the amount by which the linear equation there is not

satisfied. Residual reduction factor is the amount by which the residual should reduce

compared to its initial value.

PHASE NAME / ALL PHASES

Specifies whether the reduction factors are given for all phases or a particular phase.

<variable name> <factor>

Specifies a variable and a corresponding reduction factor. By default, the reduction factor

is 0.1 for pressure and 0.25 for all other variables.

>> Sweeps information

MAXIMUM NUMBER

Specifies maximum number of inner iterations used for solving linearised equations on

each "outer" iteration step.

MINIMUM NUMBER

Specifies minimum number of inner iterations used for solving linearised equations on

each "outer" iteration step.

>> Transient control

The MASS SOURCE TOLERANCE is not used for transient flows using the adaptive

time stepping option. In this case any variable can be chosen to test for convergence, not

just the mass source residual. Convergence is obtained when the residual for the tested

variable for the first phase satisfies the condition RES < MAX (RESMIN,

MIN(RESMAX, RES5/REDUC)), where RES is the residual of the corresponding

variable, RESMIN is the minimum required residual value, RESMAX is the maximum

allowed residual value, REDUC is the residual reduction factor and RES5 is the value of

the variable's residual computed on the fifth iteration.

ANL/TD/TM02-30 Page 41

>> Control parameters

MINIMUM RESIDUAL VALUE

Minimum required residual value for the variable specified by subcommand

CONVERGENCE TESTING ON VARIABLE.

MAXIMUM RESIDUAL VALUE

Maximum allowed residual value for the variable specified by subcommand

CONVERGENCE TESTING ON VARIABLE.

REDUCTION FACTOR

Residual reduction factor.

DICERGENCE RATIO

The time step solution is assumed to have diverged if any variable's residual increases to

be greater than the specified DIVERGENCE RATIO multiplied by its minimum residual

value to that point. The divergence test is only performed after 5 outer iterations in order

to avoid possible zero residuals that might occur initially.

 >>Convergence testing on variable

<variable name>

Specifies the variable to which the convergence testing will apply.

>> Under relaxation factors

PHASE NAME / ALL PHASES

Specifies whether the command applies to all phases or a particular phase only.

ALL EQUATIONS

This keyword is used if the same underrelaxation factor is applied to all equations.

ANL/TD/TM02-30 Page 42

<variable name> <under-relaxation factor>

This keyword specifies under-relaxation factors for particular variables. It also may be

used for under-relaxation of body forces in momentum equations (names BFX, BFY,

BFZ and BPX, BPY, BPZ are used for velocity-independent and velocity-dependent

components of the body force - see Sec. 5.2.8 for definitions).

Command Create grid

In most of the problems presented in this study both geometry and computational mesh

are created using pre-processing tools available in CFX. However, some simple

geometries are created in command file using command >>Model Topology. In this case,

computational mesh should be created using command Create Grid. Only simple

rectangular grids are used in this study.

>> Simple grid

BLOCK NAME

This keyword is used to specify block name on which the grid is being created.

X START

The starting value of x co-ordinate.

Y START

The starting value of y co-ordinate.

Z START

The starting value of z co-ordinate.

DX

Grid increment in x-direction.

ANL/TD/TM02-30 Page 43

DY

Grid increment in y-direction.

DZ

Grid increment in z-direction.

X

A list of cell vertices in x direction (can be used instead of keywords X/Y/Z START with

DX/DY/DZ).

Y

A list of cell vertices in y direction (can be used instead of keywords X/Y/Z START with

DX/DY/DZ).

Z

A list of cell vertices in z direction (can be used instead of keywords X/Y/Z START with

DX/DY/DZ).

For example, the following command will create simple mesh with x ranging from 0 to 3

with step 0.1, y ranging from -0.5 to 0.5 with step 0.1 and z ranging from -1 to 1 with step

0.2.

>>SIMPLE GRID

BLOCK NAME 'BLOCK 1'

X START 0.0

Y START -0.5

Z START -1.0

DX 30 * 0.1

DY 10 * 0.1

DZ 10 * 0.2

END

ANL/TD/TM02-30 Page 44

The same mesh can also be created in the following way:

>>SIMPLE GRID

BLOCK NAME 'BLOCK 1'

X 0.0 TO 3.0 BY 0.1

Y -0.5 TO 0.5 BY 0.1

Z -1.0 TO 1.0 BY 0.2

END

Command Model boundary conditions

This command is used to specify boundary conditions. If non-constant boundary

conditions are needed, these are specified in user subroutine USRBCS.

>> Inlet boundaries

PATCH NAME

This keyword specifies on which patch of type INLET boundary conditions are set.

PHASE NAME / ALL PHASES

Specifies whether same inlet boundary conditions apply to all phases, or only to a

particular phase.

<variable name> <value>

Sets values for flow variables (velocities, pressure, user scalars, temperature etc.).

>> Mass flow boundaries

>> Flux

PHASE NAME / ALL PHASES

Specifies whether fluxes specified apply to all phases or a particular phase.

ANL/TD/TM02-30 Page 45

FLUXES

This keyword sets fluxes for all mass flow patches. If several mass flow patch groups are

created, then several values of mass flux must be specified - one for each group of

patches.

MASS FLOW SPECIFIED / FRACTIONAL MASS FLOW SPECIFIED

Specifies whether absolute value of mass flux is given, or fraction of overall mass flux

into domain.

>> Inflow variables

This command allows user to set constant values of flow variables on mass flow

boundaries.

PHASE NAME / ALL PHASES

Specifies whether command applies to all phases or a particular phase.

PATCH NAME

Name of the mass flow patch where the flow variables are specified.

VOLUME FRACTION

Volume fraction can be specified on a mass flow boundary (for example, when a jet

enters the domain, negative mass flux and volume fraction = 1 can be set at the

corresponding patch).

<variable name> <value>

Allows user to set values of flow variables (velocities, user scalars, temperature etc.) at a

mass flow boundary. However, values for the velocity components are only used if the

flow is into the domain.

ANL/TD/TM02-30 Page 46

>> Pressure boundaries

This command allows user to set constant values of flow variables on pressure

boundaries.

PHASE NAME / ALL PHASES

Specifies whether command applies to all phases or a particular phase.

PATCH NAME

Name of the pressure patch where the flow variables are specified.

PRESSURE

Pressure is fixed on a pressure boundary. Two pressure boundaries, for example, can be

used to model flow with given pressure drop.

VOLUME FRACTION

Volume fraction can be specified on a pressure boundary.

<variable name> <value>

Allows user to set values of some flow variables (user scalars, temperature etc.) at a mass

flow boundary. Neumann boundary conditions, i.e. zero normal gradients, are imposed on

velocity.

>> Wall boundaries

PHASE NAME / ALL PHASES

Specifies whether the command applies to all phases or one particular phase.

PATCH NAME

Name of the patch of type WALL where the boundary conditions are being set.

ANL/TD/TM02-30 Page 47

U (V, W) VELOCITY

Values of the three components of the velocity at the wall.

TAUX (TAUY, TAUZ)

Tangential stress at the wall.

TEMPERATURE / HEAT FLUX / TEMPERATURE ABC

Value of temperature or heat flux or general temperature boundary conditions at the wall.

USER SCALAR n / USER SCALAR n FLUX / USER SCALAR n ABC

Value of user scalar or its flux or general boundary conditions at the wall.

Command Output options

This command is used to control the way output data is produced.

By default, CFX-4 will produce an unformatted, single precision dump file at the end of

the simulation. This will contain adequate information to carry out a restart from the

current run. It is possible to increase the information stored in the dump file, to make it a

formatted file and to change the precision of the dump file.

>> Dump file format

UNFORMATTED / FORMATTED

It is sometimes necessary to create a formatted dump file if the CFX-4 simulation is to be

carried out on a different machine from the post-processing. In this case it is likely that

the unformatted file will not be readable on the second machine, so a formatted file is

necessary.

NUMBER OF SIGNIFICANT FIGURES

Sets the number of significant places in the output data if required.

ANL/TD/TM02-30 Page 48

SINGLE PRECISION / DOUBLE PRECISION

Changes the precision of output data.

>> Dump file options

At the end of the simulation CFX-4 always dumps out everything that is necessary to do a

restart. It is possible to dump out any selection of variables and other data to disk at any

other stage in the simulation.

PHASE NAME / ALL PHASES

Specifies whether data for all phases or a particular phase should be written into the dump

file.

ITERATION

Specifies iteration number on which data should be written.

TIME STEP / EACH TIME STEP / TIME INTERVAL / TIME STEP INTERVAL

Specifies time step (time) on which data should be written. Instead, time (step) interval

can be specified.

INITIAL GUESS

Specifies that the initial guess should be included into the dump file (for transient flows).

FINAL SOLUTION

Specifies that the final solution should be included into the dump file (for transient

flows).

ANL/TD/TM02-30 Page 49

ALL VARIABLES / ALL REAL DATA

All real data consists of all the variables and properties as well as all the other real data

that is required for a smooth restart to the flow simulation. Alternatively, all variables

option can be used if values of flow variables are needed only.

GEOMETRY DATA / NO GEOMETRY DATA

GEOMETRY DATA consists of the grid and topological information. The geometry data

is normally written to the first data group in the file, so that option NO GEOMETRY

DATA can be used in order to save space. Otherwise it is included on each time step in

transient calculations.

5.2.8 Additional subroutines used

Additional Fortran subroutines are used when an option cannot be specified via command

file (for example, non-constant boundary conditions). All user subroutines used in a

problem are written into a file M*.F (for example, m01.f). Flag IUSED should be set to 1

in each subroutine. Every subroutine should also be listed in the command file under

command >>USER FORTRAN. Hereafter only features relevant to this study are listed.

User has access to the following variables:

• U, V, W, P, VFRAC, T, SCAL

Contain values of velocity components, pressure, volume fraction, temperature and user

scalars. All these arrays have size (NNODE, NPHASE), where NNODE is the number of

all nodes, including boundary nodes and dummy nodes; NPHASE is the number of

phases. The size of the scalar array is (NNODE, NPHASE, NSCAL), where NSCAL is

number of user scalars.

• XP, YP, ZP, VOL, AREA, WFACT

Contain geometry information: co-ordinated of nodes, volumes of cells, areas of cell

faces, weight factors.

ANL/TD/TM02-30 Page 50

Other data is available such as topological information etc. There are also work arrays

WORK, IWORK and CWORK that allow user to reserve workspace for additional data

and to pass data between subroutines.

Every cell in the computational domain can be referred to either by naming the block on

which the cell resides and giving local co-ordinates (I, J, K) of the cell, or by its internal,

1D, address, which lies between 1 and NNODE (NNODE is the number of all internal

grid nodes - NCELL , including dummy cells around each block, plus the number of

boundary nodes placed in the centre of each patch - NBDRY).

Utility routines are available from all user subroutines. They perform such tasks as

finding addresses of patches, finding variable numbers etc. The most commonly used

utility routines are described below.

All user subroutines contain clearly specified user areas where the modifications can be

done.

The following subroutines have been used in this study: USRBCS, USRBF, USRCVG,

USRINT, USRSRC, USRTRN. A brief description of each subroutine is given below.

Utility routines

GETSCA

This subroutine is used to find the number of a user scalar within the SCAL array. The

alias name (CHARACTER*24) of the scalar is passed to the subroutine, and the number

of the corresponding scalar is returned.

GETVAR

In most cases, the name of the variable is passed to subroutines (the CHARACTER*6

name such as 'W ', 'VFRAC ' etc.). However, sometimes the number of variable is

required. Subroutine GETVAR returns the number of variable if its name is given.

ANL/TD/TM02-30 Page 51

GRADS

GRADS may be used to compute the physical space gradients of a scalar variable. It

creates a temporary array GRAD(NCELL,3) where values of three components of the

gradient are stored for all internal cells of the computational domain.

GRADV

GRADV may be used to compute the physical space gradients of velocity. It creates three

temporary arrays UGRAD, VGRAD and WGRAD of size (NCELL,3) where values of

three components of the gradient for each velocity component are stored for all internal

cells of the computational domain.

IPALL

This subroutine allows user to get addresses of several blocks or patches. User specifies

the name of the block or patch, whether it is a block or a patch and whether the addresses

of cell centres or vertices are required. In addition, the patch type has to be specified. The

patch type and/or the patch or block name may be specified as ‘*’ which means all the

patch types and/or all the names. An array IPT of size NPT is returned, which contains

1D addresses of patch (block) cells.

IPREC

IPREC is used to return 1D addresses for all the centres or vertices in a rectangular group

such as a block or patch. In contrast with IPALL, only one and only rectangular block or

patch can be processed. The subroutine returns dimensions ILEN, JLEN and KLEN of

the block/patch, and an array of corresponding 1D addresses.

Subroutine USRBCS

This subroutine enables user to specify more complicated boundary conditions. Simple

boundary conditions can be set using the >>MODEL BOUNDARY CONDITIONS

command.

ANL/TD/TM02-30 Page 52

User must set the flag IUBCSF to state whether the boundary conditions are to vary with

iteration, time, or time and iteration (IUBCSF = 1, 2 or 3 respectively). Array VARBCS

of size (NVAR, NPHASE, NCELL+1:NNODE) can be changed in order to set values of

flow variables (NVAR is the total number of variables). User can also set coefficients in

boundary conditions of general type, volume fractions, mass fluxes etc.

Two sample user FORTRAN files are given in the Appendix. Subroutine USRBCS is

used to set Hartmann profile and volume fraction at the inlet for the two-dimensional

MHD jet.

Subroutine USRBF

This subroutine allows user to add body force to the momentum equations. Simple body

forces of this type can be included using the >>BODY FORCES command. In this study

subroutine USRBF is used for including Lorentz force into momentum equations.

In order to enable the code to linearise the body force source term correctly, F is

expressed in the form in CFX:

 vCF R−= .

In the above C is a vector, and R is a diagonal matrix; v is the fluid velocity. Arrays BX,

BY and BZ of size NCELL are filled with the three components of the vector C for each

internal cell of the computational domain. Similarly, arrays BPX, BPY and BPZ of the

same size contain factors R.

A sample user FORTRAN file for two-dimensional MHD jet is given in the Appendix 1.

Subroutine USRBF is used to include body force BEuBF)(+−= into the momentum

equation. In Appendix 2 the body force is three-dimensional as given by Eq. (5).

ANL/TD/TM02-30 Page 53

Subroutine USRCVG

This is a general routine as it is called at the end of each iteration. The routine allows user

to set custom convergence criteria, or to modify solution parameters during the iteration

history. Simple convergence criteria can be set using the command >> SOLVER DATA.

If the problem satisfies convergence criteria, flag LCONVG should be set to .TRUE.

In the example given in the Appendix 2 subroutine USRCVG sets LCONVG = .TRUE. if

ratio of the residual to the maximum value of velocity, volume fraction and pressure is

less than 10-7.

Subroutine USRINT

This subroutine is used to overwrite the default initial conditions. Simple initial guess can

be set using command >>INITIAL GUESS in the command file. Then USRINT can be

used to overwrite or add initial conditions. Values of corresponding variables are changed

directly in arrays U, V, W etc.

In the sample Fortran file given in the Appendix 2 subroutine USRINT is used to set the

initial (straight) shape of the jet and velocity equal to Hartmann profile everywhere inside

the jet.

Subroutine USRSRC

This subroutine allows user to intervene and change the equations; in particular to add

source terms into convection-diffusion equations. In this study subroutine USRSRC is

used for specifying the source term in the electric potential equation in three-dimensional

problems. It can also be used to include body forces into the momentum equations,

instead of USRBF. In contrast to USRBF, the source term in USRSRC must be integrated

over the control volume (in simple cases, the original source per volume must be

multiplied by the volume of the cell).

ANL/TD/TM02-30 Page 54

In the sample of three-dimensional problem in Appendix 3, the source term S = ∇⋅(v×B)

is added to the electric potential equation.

Subroutine USRTRN

Subroutine USRTRN is called after the initial guess and at the end of each time step. The

routine can be used to monitor the calculation, or to produce special output for each time

step. It may also be used at the end of the job to calculate additional quantities from the

basic solution variables. In this study subroutine USRTRN is used for calculation of

electric currents in three-dimensional problems and for calculation of additional data such

as asymptotic or exact solutions of corresponding problems.

In the two-dimensional problem in Appendix 2 subroutine USRTRN is used to assign

values of the non-uniform magnetic field to a user scalar. In the three-dimensional

problem in Appendix 3 USRTRN is used to calculate electric currents and the exact Hunt

solution.

ANL/TD/TM02-30 Page 55

6. Benchmark problems

The implementation of the CFX code for MHD flows developed here has been used to

model various flows described below. Comparison with known exact and asymptotic

solutions is given where possible in order to validate the implementation.

6.1 Duct flows

Fully developed flow in an arbitrary duct cross section can be computed relatively easily

with CFX using mass flow- and pressure boundaries. The idea is to use a mass flow

boundary at the inlet with the flow rate given and a pressure boundary with constant

pressure at the outlet. If the pressure drop is given instead of the flow rate, two pressure

boundaries are defined at the inlet and the outlet with fixed pressure values.

The grid in the direction coincident with the channel axis need only contain the minimum

of two cells in order for the pressure drop to be correctly predicted.

6.1.1 Shercliff solution

Fully developed flow in a square channel with electrically insulating walls is used as the

first sample problems. It is compared with the analytical solution given by Shercliff [24].

Both the flow geometry and the co-ordinate system are shown in Figure 3 while the grid

used is shown in Figure 4. The grid is non-uniform with grid points clustered at the walls

in order to resolve the Hartmann- and parallel-layers.

The results of calculations for a square duct are shown in Figure 5 - Figure 10. Excellent

agreement has been achieved for both Ha = 100 and Ha = 200. Modelling the flow for

Ha = 200 requires better resolution of the layers to achieve the same accuracy.

ANL/TD/TM02-30 Page 56

6.1.2 Hunt solution

For a duct with electrically insulating walls the boundary layers do not carry a significant

part of the flow. However, in many cases parallel layers do carry high-velocity jets. Thus,

it is important to verify the code for such flow geometries. In order to ensure that the

code implementation can be used in modelling such flows with high velocities in thin

boundary layers, flow in a duct with perfectly conducting Hartmann walls and perfectly

conducting/insulating parallel walls has been considered (see Figure 11). The exact

solutions for such flows, and for some cases of thin conducting walls, have been obtained

by Hunt [25].

Since we were interested only in comparison with analytical results, it was more

convenient to normalise the flow using constant pressure gradient dp/dx = -1 instead of a

fixed flow rate.

Perfectly conducting walls

When all walls of the duct are perfectly conducting, the overvelocities in the side layers

are nor very high (Figure 12). The flow is almost constant in the middle of the duct with

weak jets near the sidewalls. The electric potential is close to zero in the core region

(Figure 13), also with peaks near the sidewalls. For Ha = 100 comparison with the exact

solution (plotted using stars) shows very good agreement for both axial velocity and the

potential (Figure 12 and Figure 13).

Perfectly conducting Hartmann walls, electrically insulated parallel

walls

When the sidewalls are electrically insulating, the electric current induced in the core

must vanish near the sidewalls (i. e. normal derivative of the electric potential at the wall

vanishes, see Figure 14 and Figure 16). Thus the potential jump of order 1 is induced

across the thin boundary layer and as a result velocity jets of order Ha1/2 appear (see

Figure 15 and Figure 17). For Ha = 100 (Figure 14, Figure 15) agreement with the

analytical results is perfect. However, for Ha = 200 (Figure 16, Figure 17) some minor

ANL/TD/TM02-30 Page 57

difference can be noticed. It can be explained by the fact that better resolution of

boundary layers is generally required for higher Hartmann numbers. Therefore, higher

aspect ratio of cells in computational domain is used. Current formulation of the body

force and the source term in the electric potential equation assumes that these values are

constant across the cell. However, for more precise calculations these values should result

from integration of corresponding equations and should use variable values on the faces

of each cell (see [20]). High non-uniformity of the grid makes this inaccuracy more

important, and as a result lower precision can be expected for high Hartmann numbers.

6.1.3 Flow in an expansion

As a next step we consider the two-dimensional flow in a sudden duct expansion (Figure

18). This benchmark problem is an important test case because there are sharp inner

corners, which may affect the accuracy of the numerical solution. A strong, uniform,

transverse magnetic field is applied in y-direction. With velocity scale aQv /0 = (average

velocity in the duct region), where Q is the flow rate and a is the length scale, governing

Eqs. (7)-(9) become

 xvvv
v

ˆ)(221 uHap
t

N −∇+−∇=



 ∇⋅+ −−

∂
∂

, (38)

 0=⋅∇ v . (39)

In the above, v = (u(x, y), v(x, y)) is the two-dimensional velocity field. The electric field

is assumed to be zero, which corresponds to perfectly conducting, short-circuited

sidewalls.

In [26] the nature of the flow in the boundary layer formed at the junction x = 0 in a

strong magnetic field and the effect of inertia has been studied with asymptotic and

numerical methods. Here we compare the results with these in [26] and perform

calculations for lower values of the interaction parameter.

ANL/TD/TM02-30 Page 58

Inertialess flow

Consider first a symmetric 1:2 expansion. When no inertia is present, the fluid tends to

flow from narrow a duct into the wider one in the shortest possible way. It is seen in

Figure 19 that no separating zone is present, as expected, and the streamlines follow the

form of the expansion. Upstream, the flow is fully developed with classical Hartmann

profile. Near the junction, the flat Hartmann profile of the axial velocity component

transforms into M-shaped profile in the direction of the field (Figure 20). This is a

different effect from that causing jets in the parallel layers. Here high velocities near the

points of expansion are caused by the necessity of fast flow redistribution at the junction

and additional inflow into the top and the bottom parts of the wider duct. Perfect

agreement between the CFX results and those in [26] have been achieved. Comparison

for axial velocity component is shown in Figure 20.

Figure 21 and Figure 22 show that the flow is fully developed except for the immediate

vicinity of the junction, where a parallel layer is present [26]. The graph of pressure at the

top wall of the wider duct (Figure 23) also shows that apart from a very thin boundary

layer at x = 0 the pressure is almost a straight line from the point of the expansion.

Inertial flow

Now let us include inertial effects into the problem. Asymptotic analysis [26] shows that

when N << Ha3/2 a layer of thickness N-1/3 is formed at the junction where the

electromagnetic force is balanced by the inertial effects. Since it still does not ensure that

the non-slip conditions are satisfied, an additional, viscous, sublayer is formed at the wall

x = 0 where the balance of inertial and viscous forces takes place.

For low values of N flow separation occurs. For example for N = 1 streamlines (Figure

24) show that inertia prevents the fluid from following the duct shape as in the inertialess

case. It needs larger distance in x-direction to fill the whole duct. As a result, stagnant

zones are formed near the corners x = 0, y = ±1 where the viscous forces become

important. Consequently, less fluid flows into the "shoulders" of the expansion at x = 0,

ANL/TD/TM02-30 Page 59

and the M-shaped profile is less pronounced at the junction (Figure 25) as compared to

the inertialess case.

Figure 26 shows pressure distribution along the top of the wider duct. Pressure is nearly

constant near the corner where the stagnant zone is present (Figure 26). This follows by

rising (adverse pressure gradient, which is the cause of separation), and then falling

pressure. Even though the value of N is low, from Figure 26 and Figure 27 follows that it

takes only approximately 0.7 characteristic lengths for pressure gradient to reach its fully

developed value. Thus a comparatively weak field is sufficient to suppress separation in a

two-dimensional duct expansion.

Flow in an asymmetric duct

Similar results hold for an asymmetric duct with expansion at one side of the duct (Figure

28). The graphs for an asymmetric 1:2 expansion are shown in Figure 29-Figure 31. A

stagnant zone is formed near the upper corner (Figure 29). Qualitatively, the flow

behaves in the same way as that in a symmetric expansion cut along the symmetry line

y = 0. Thus already for N = 1 the so-called Coanda effect is suppressed ([27], [28], [29]).

6.1.4 Flow in a square duct in a non-uniform transverse magnetic

field

As a test problem for the three-dimensional flows consider a steady, three-dimensional

flow of a viscous, electrically conducting, incompressible fluid in a straight, insulating,

square duct in the z-direction (Figure 32). A strong transverse magnetic field yB ˆ)(zB=

is applied in y-direction. We use a step-like field

 zBBzB dd γtanh)1(5.0)1(5.0)(−++= , (51)

where γ = 2 is the field gradient and Bd = 0.5 is the magnitude of the uniform magnetic

field downstream. The profile of the magnetic field is shown in Figure 33. The flow is

supposed to be inertialess. Such a flow has been considered in [30] using asymptotic and

numerical methods.

ANL/TD/TM02-30 Page 60

The flow is governed by Eqs. (7)-(9) without the gravity term (δ = 0). The average duct

velocity is chosen as the velocity scale, so that the flow rate is equal to 4.

Boundary conditions are the non-slip condition

 v = 0 at n = 0, (52)

and the electrically insulated walls condition

 0=
∂
∂

n

φ
 at n = 0, (53)

where n is the co-ordinate normal to a wall.

Far upstream and far downstream the flow is fully developed, i. e.

 0=
∂
∂

z

φ
, 0=

∂
∂

x

p
 as z → ± ∞. (54)

Computational model

The length of the computational domain in z-direction should be sufficiently high to

enable flow to develop. On the other hand, the cost of computation increases dramatically

with increasing number of mesh points, while high aspect ratio of the cell lengths affects

the precision and the convergence speed of the problem. Therefore, the length of the duct

sufficient for the flow to develop far from the non-uniform field region has been

estimated using several preliminary runs with low resolution. The results show that for

Ha = 200 a duct of length equal to 16 length scales is sufficiently long for the pressure

and potential to satisfy conditions (54) and to reach their fully developed values.

False time stepping has been used to reach convergent solution. False time steps equal to

0.1 for the three components of velocity and 1.0 for electric potential and pressure have

been used at the beginning of the run, and then increased as the residual decreased. In

order to improve convergence of the inner iteration, the reduction factor for the electric

ANL/TD/TM02-30 Page 61

potential has been set to 0.01, and maximum number of inner iterations has been set to 50

for the electric potential and to 100 for pressure.

Non-uniform grid has been used in all three directions. It ensures sufficient resolution of

the boundary layers in x and y directions, and reduces number of the mesh points in the

z-direction by clustering mesh points near the region of changes of the field at z = 0.

The development of the axial velocity profile is shown in Figure 34 and Figure 35. The

flow profile is close to being fully developed already at 2=z (Shercliff's flow, see

[24]). In the region 3<z three-dimensional currents circulate, which push the fluid to

the sidewalls 1=x , and the M-shaped profile is formed (Figure 34 (c)-(g), Figure 35).

The streamlines in the centreplane of the duct y = 0 are shown in Figure 36. The

boundary for the three-dimensional currents may be detected from the graph for pressure

(Figure 37). These currents cause transverse pressure difference in a duct cross-section.

CFX is a very convenient tool for visualising the paths of the three-dimensional currents.

In various three-dimensional flows the currents are usually shown either schematically or

as a projection onto the plane transverse to the magnetic field (see e. g. [5], [31], [32]).

the actual paths of three-dimensional currents in the present flow for y > 0 are shown in

Figure 38. It is seen that the current paths are very complex and involve the core, and the

Hartmann- and parallel layers.

Paths shown in blue lines at z = -3 (loops 1) are in the fully developed flow region. The

current flows in the cross-section z = const, being induced in the core, flowing in the

parallel layers, and returning in the Hartmann layers. Closer to z = 0 the current path

inclines in the direction of the flow (curves 2, 4). At z = 0, y = 0 there is a current loop

that closes in the core only (curve 5). For y > 0 such a loop is also present, but of smaller

size (curve 6). There are transitional lines, which flow around the recirculating core

current zone, but involve either Hartmann or parallel layers (curves 3 and 7).

ANL/TD/TM02-30 Page 62

Now consider the flow for a higher Hartmann number. The results for Ha = 200 are

shown in Figure 39 - Figure 43. Qualitatively they are similar to those for Ha = 50 but the

three-dimensional effects are stronger.

Overall the results are in agreement with those in [30] and [31].

6.2 Free-surface flows

In free surface flows, interaction between two phases (liquid and "air") is studied. The

homogeneous model available in CFX is used in this study for modelling free surface

flows, and therefore equations for both media are solved. Thus, parameters of both metal

and "air" should be provided. When comparing results with the asymptotic theory, finite

physical properties of the surrounding air should be taken into account (see Table 2).

Table 2 Physical properties of lithium and air ([33], [3], [34])

 Density, kg/m3 Kinematic

viscosity, m2/s

Dynamic viscosity,

kg/(m⋅s)

Lithium 500 9.0×10-7 4.5×10-4

Air 1.209 1.49×10-5 1.8×10-5

6.2.1 Spreading MHD drop

As the first benchmark problem for the unsteady free-surface flow, we consider an

inertialess, two-dimensional, gravity-dominated flow in a spreading drop of liquid metal

subject to a strong vertical magnetic field (Figure 44). The reason is that for this unsteady

flow an asymptotic, high-Ha solution is available ([35]).

In dimensional form, the flow is governed a by two-dimensional version of Eqs. (1) and

(3) with body force

 yxF ˆˆ*2

0

* ρσ +−= uB . (32)

ANL/TD/TM02-30 Page 63

The boundary conditions are the non-slip condition at the solid wall

 v* = 0 at y* = 0, (33)

and the symmetry condition

 0
*

*

=
∂
∂
x

v
, u* = 0 at x* = 0. (34)

Since the air flow around the drop should also be take into account, the following

boundary conditions hold for air far from the drop:

 0
*

*

=
∂
∂

x

u
, v* = 0 as x* → ∞, 0

*

*

=
∂
∂
y

v
, u* = 0 as y* → ∞. (35)

This means that if there is any air flow out/into the computational domain, it is fully

developed.

The initial conditions for the metal are zero velocities and the following shape of the

drop:

 







−=

2

2*
** 1)(

a

x
axh , (36)

where the characteristic length a is equal to 0.001 m in presented calculations. Physical

data for lithium and air have been used (see Table 2).

The asymptotic analysis presented in [35] shows that the shape of the drop at the time t*

is described by the following formula:

 







+

−
+

=
3/2

0

*2

2*

3/1

0

*

)/61(
1

)/61(
),(

tta

x

tt

a
txh . (37)

The scaling of time is gBa ρσ /2

0 . In the following calculations B0 = 0.58 T and

a = 0.0001 m have been chosen so that Ha = 50.

ANL/TD/TM02-30 Page 64

The shape of the drop after 0.185 s is presented in Figure 45. The liquid metal is shown in

green, while air in blue. The intermediate colors show the smeared interface. The

asymptotic solution is shown with the black line. The agreement is very good, taking into

account fact that the asymptotic solution has been developed for high Hartmann numbers

and for a dynamically passive surrounding medium with infinitely low density.

The velocity field is stratified for both u and v in the core region (Figure 46 and Figure

47). As the velocity components calculated with CFX refer to both air and liquid, there

are non-zero velocities outside the asymptotic drop profile. As velocities are low, the air,

however, is a mostly passive medium. Indeed, the pressure distribution repeats the shape

of the drop (Figure 48), also in full agreement with the asymptotic solution [35].

6.3 MHD jet

Consider a two-dimensional, steady flow of a liquid metal jet pouring from a nozzle in

the presence of a transverse magnetic field (Figure 49). Due to the symmetry, only one

half of the jet is considered. For sufficiently high jet velocity gravity can be neglected [9].

Thus, only effects of the inertia and the surface tension are considered.

With velocity scale aQv /0 = (average velocity in the duct region), where Q is the flow

rate and a is the length scale, and the magnetic field yB ˆ)(xB= , Eqs. (7)-(9) governing

the flow of the liquid metal become

 xvvv
v

ˆ))()(()(2221 ExBuxBHap
t

N +−∇+−∇=



 ∇⋅+ −−

∂
∂

, (40)

 0=⋅∇ v , (41)

where v = (u(x, y), v(x, y)). One also needs to consider equations governing the flow in

the surrounding air. With the same scaling, the equations governing the air flow are

 vvv
v 2

1

1 (+−∇
∇⋅− p

t

∂
, (42)

ANL/TD/TM02-30 Page 65

 0=⋅∇ v . (43)

In the above, the modified interaction parameter and the modified Hartmann number are

defined as follows:

 µ
νρ

ρν
HaaBHa ==

11

01 , ρ
ρ
σ

N
v

Ba
N ==

01

2

0
1 , (44)

where ρ1, ν1 are the density and the kinematic viscosity of the air, respectively, and

 1/ ρρρ = , 1/ µµµ = (45)

are the ratios of the density and the dynamic viscosity of the metal and the air. Real

physical data for air and lithium have been used, therefore

 25=ρ , 56.413=µ . (46)

Since the homogeneous model is used in CFX for modelling the two-phase flow of metal

and air, the velocity and pressure fields are shared by both phases (metal and air).

Boundary conditions are the non-slip condition

 v = 0 at solid walls. (47)

Far upstream and downstream the flow is fully developed so that

 const
x

p
=

∂
∂

, v = 0 as x → ±∞. (48)

At the entrance to the duct, the flow rate

 ∫ ==
1

0

1udyQ (49)

is given.

ANL/TD/TM02 30 Page 66

6.3.1

First consider uniform magnetic field (= 1) for E = Ha the

x [9] (50). The only ef

of the free surface is minor flow redistribution near the exit of the duct. In the absence of

solid walls, no viscous effects are present. Thus the velocity profile varies from the

file in the jet region far from the

exit from the duct (see 51). The pressure distribution is linear in the duct and

Figure 52 Figure 53 for the parallel layer at the

nozzle.

6.3.2

When inertia is added (= 1), the flow in the duct and the jet in the fully developed

regions does not change. However, the character of the flow redistribution near the exit of

uct changes. Due to inertia, pressure gradient is "carried" out of the duct region into

the jet region (55). Therefore, the pressure reaches its constant value further

Figure 56 red to the inertialess case (Figure). Similarly, the

velocity development length into the jet region is larger (57). The jet thickness,

6.3.3 Inertialess flow in a non uniform field

-uniform magnetic field. The magnetic





>−+
≤

=
.0tanh)1(1

,0,1
)(

inf xifxB

xif
xB

ζ
 (50)

Here Binf is the induction of the uniform magnetic field as x → ∞, and ζ is the gradient of

the magnetic field equal to 2. Since the magnetic field in the jet region is lower than in

the duct region, the Lorentz force becomes weaker. As a result, fluid accelerates and mass

conservation requires jet to shrink. The asymptotic analysis [9] shows that the thickness

ANL/TD/TM02-30 Page 67

of the jet changes with distance as h(x) = B(x). It agrees very well with the numerical

solution presented in Figure 59. The velocity in the core region increases as 1/B(x), also

as predicted by the asymptotic theory of [9]. It is compared with the asymptotic solution

in Figure 60 and a perfect agreement is seen. The discrepancy in the duct region is due to

the insufficiently high value of the Hartmann number (Ha = 200). As Hartmann number

tends to infinity, the asymptotic value u = 1 is expected. The streamlines near the exit

region are shown in Figure 61.

ANL -30 Page

7. Discussion and conclusions

both duct and free- -dimensional flows, convergence is relatively fast, usually

-2 hours. Modelling the three dimensional flows takes far more time.

Calculations for a three dimensional flow in a rectangular duct for Ha

96 hours to converge. This compares to about one minute of CPU time for the high Ha

Computational time for the DNS model highly increases with the growth of the Hartmann

Ha > 200 become very expensive. This is a general feature of the DNS,

ot specific to the CFX. The question is for what flow conditions it is realistic to use

DNS. Based on years of experience of using the high Hartmann number flow model and

a short, one year experience with CFX we reached certain conclusions, which are

discu

challenges in MHD modelling for various flow regimes. Then we discuss applicability of

DNS and high Ha model to flows in various liquid metal systems for tokamaks.

 Main problems

Generally, while modelling flows in divertors and blankets of tokamaks one faces the

1. Complex geometry of supplying/draining ducts

 Nonuniform magnetic fields

3.

4. If walls are fully or partially conducting, global currents may circulate

5.

walls and inside the flow domain.

 Deformable free surface.

ANL/TD/TM02-30 Page 69

Some of these issues are illustrated best in the following examples (in both cases high-

Ha model has been used):

Example 1: Flow in electrically coupled radial-toroidal-radial bends [36], [37].

A system of bends with common thin conducting walls is shown in Figure 62. The

electric currents induced in one bend penetrate the other, change the whole flow pattern

and affect the pressure drop. Although the bends are hydraulically decoupled, the whole

system must be treated simultaneously.

The position of various boundary layers is shown with the shaded areas. Some layers are

being formed across the flow. If Direct Numerical Simulation (DNS) is were used to

model this kind of flow, all these layers need to be resolved properly. Failure to do that

would lead to wrong results both qualitative and quantitative.

Similar problem arises if insulating dividing walls end within the flow region.

Example 2: Flow in an insulating circular duct in a nonuniform field [5], [6]

The second example is that of the flow in an electrically insulating circular duct in a

nonuniform magnetic field varying in the flow direction. The isolines of the core pressure

in the plane transverse to the field are shown in Figure 63. There are two prominent

features concerning this flow. One is the formation of the flow-induced internal layer

inside the core in the region –3 < x < 3. The other one is very high development length

(the length of the flow affected by 3-D currents). In the example above it is about 20 duct

diameters. For ARIES inlet pipes the development length is about 125 duct diameters.

For this type of flow the following observations can be made:

1. Not only the boundary layers but also the internal, curvilinear layer need to be

resolved numerically. In the calculations in [5], [6] at least 128 points were

needed in the flow direction (using a highly nonuniform grid) and 32 points in

the transverse direction to get satisfactory results.

ANL/TD/TM02-30 Page 70

2. The computational domain needs to be very long to account for high

development length

3. Since the development length is high, the three-dimensional effects from

different divertor/blanket elements (bend, manifold, jet, rivulet, draining duct)

will overlap and thus the whole divertor will need to be modelled as a single

piece.

The question then is what is realistic to expect from DNS with current computational

facilities (supercomputers included).

ANL/TD/TM02-30 Page 71

Table 3 Comparison of DNS and high-Ha model

DNS HIGH-HA MODEL

Advantages
1. Takes into account all terms in the

equations, including inertia
2. Allows treatment of complex

geometries and all three components
of the field

3. Commercial codes are available
(CFX, FLUENT, FLOW-3D, etc.)
which are relatively easy to use

Disadvantages

1. Very limited development history
(almost no comparison with
experiments)

2. Has never been proved to have
worked for high fields (max. Ha for
3-D flows is between 100 and 500)

3. Very slow

1. Has been proved to work well for

high fields: excellent agreement with
the experiments within its range of
applicability

2. Most knowledge on liquid-metal
MHD for fusion has been obtained
using this model

3. Allows treatment of complex
geometries, including a three-
component field.

4. Fast

1. Currently does not take into
account inertial effects (although
some attempts are being made
[42], [43])

2. Does not work for very low
Hartmann numbers

3. More difficult and time
consuming to modify than the
commercial codes

7.2 Comparison of the DNS and high-Ha flow model

The advantages and disadvantages of DNS and high-Ha model are listed in Table 3.

If one combines Table 3 with the expected flow regimes for various machines (Table 1),

one can conclude that if high-Ha model is applicable (large tokamaks and C-MOD), it is

a preferred option. It is sufficiently fast to expect that a complex geometry may be

modelled as one piece (maybe a major part of a divertor or a blanket). The model has

been under development for over 40 years; it has been tried, understood, and compared

ANL/TD/TM02-30 Page 72

with the experiments for duct flows. It also gives a great insight into the effects occurring

within the flow.

Concerning DNS, one can expect it to work for relatively low fields reaching the values

of Ha of about 500-1000. Therefore, it is applicable for C-MOD. Calculations, however,

will be costly. Indeed, perhaps the most comprehensive study of an MHD duct flow with

DNS has been performed in [15]. The code has been specifically developed for the

geometry studied, and thus was faster than the commercial codes. Nevertheless, to

perform calculations presented in the paper required weeks of CPU time.

Applying DNS to model flows in NSTX is very problematic. The reason is that the flow

for N < 1 is likely to be highly turbulent. This is especially so for insulating walls, for

which the parameter of transition to turbulence is not N but Re/Ha [38]. Thus successful

flow modelling largely depends on the adequate turbulence models. Despite some initial

attempts to develop such models for MHD flow for simple geometries [20], [39]-[41],

[44] understanding of turbulent MHD is years away from now. Moreover, different

turbulent models may be required for different divertor elements (fully developed duct

flow, bends/expansions of ducts, free-surface flows, etc.)

Taking into account what has been said in the above there is no reason to believe that

within the next couple of years MHD flows for NSTX can be adequately modelled. As

the flow regime in NSTX (turbulent MHD) stands alone among the other machines, from

the point of view of understanding of free-surface MHD flows, more knowledge for

large-scale tokamaks could be gained by testing the divertor in C-MOD.

Despite the drawbacks, CFX (as, perhaps other codes) is a very convenient tool to study

MHD flows. It is very flexible and allows great degree of user control. Therefore, its

development ought to be continued, but at this stage it is best not to try to overextend the

range of parameters by attempting to reach highest possible values of Ha or lowest

possible values of N, as it is very easy to obtain wrong results.

Let us provide an example. To obtain a steady flow CFX provides various possibilities.

One is to use underrelaxation; another false time steps. For some flows for high values of

ANL/TD/TM02-30 Page 73

Ha calculations using underrelaxation converged to a solution, which looked very

reasonable but failed the test with the exact solution (the solution in the core was not a

constant; jets were of different thickness). The difference was small but increased with

increasing Ha. No such problem has been observed while using false time steps. Thus

flow modelling with CFX, as any other DNS code, requires a great degree of experience

not only using the code itself, but with computational fluid dynamics, and above all high-

field magnetohydrodynamics.

Comparison with the experiments and available analytical results is crucial at each step of

the code development. DNS modelling may be considered as just one in a series of steps

on the road towards understanding a particular flow. High-Ha models, exact solutions,

and the physical insight must all be involved. Thus at this stage it seems to be best to use

DNS to study fundamental flow problems and thus gain knowledge in the range of

moderate values of Ha and N, and attempt modelling flows for C-MOD.

8. Acknowledgement

This work has been supported by the Office of Fusion Energy Sciences, U.S. Department

of Energy, under Contract No. W-31-109-ENG-38.

We are grateful to Ola Widlund for sharing his experience on working with CFX and for

providing subroutines for implementation of the integral formulation of the MHD model.

9. References

[1] B. G. Karasev, A. V. Tananaev (1990) Liquid metal fusion reactor systems,

Plasma devices and operations 1, 11-30.

[2] R. Mattas et al. (2000) ALPS - advanced limiter-divertor plasma-facing systems,

Fus. Tech. Eng. Des. 49-50, 127-134.

[3] S. Molokov, C. B. Reed (1999) Review of free-surface MHD experiments and

modeling, Argonne National Laboratory Report, ANL/TD/TM99-08.

ANL/TD/TM02-30 Page 74

[4] S. Molokov, I. Cox, C. B. Reed (2001) Theoretical investigation of liquid metal

MHD free surface flows for ALPS, Fusion Technology 39, 880-884.

[5] S. Molokov, C. B. Reed (2002) Parametric study of the liquid metal flow in a

straight insulated circular duct in a strong nonuniform magnetic field, Fusion

Science and Technology, (to be published).

[6] S. Molokov, C. B. Reed (2001) Liquid metal flow in an insulated circular duct in a

strong non-uniform magnetic field, Part 1: Flow in a straight duct and the

benchmark problem, Argonne National Laboratory Report, ANL/TD/TM01-18.

[7] S. Molokov, C. B. Reed (2001) Liquid metal flow in an insulated circular duct in a

strong non-uniform magnetic field, Part 2: Inclination of the field gradient to the

duct axis, Argonne National Laboratory Report, ANL/TD/TM01-19.

[8] S. Molokov, C. B. Reed (2001) Liquid-metal jet flow in a strong uniform

magnetic field, Argonne National Laboratory Report, ANL/TD/TM01-21.

[9] S. Molokov, C. B. Reed (2002) Flow of a two-dimensional Liquid Metal jet in a

Strong Magnetic field, Argonne National Laboratory Report, ANL/TD/TM02-29.

[10] S. Molokov, C. B. Reed (2000) Fully developed magnetohydrodynamic flow in a

rivulet, Argonne National Laboratory Report, ANL/TD/TM00-12.

[11] J.N. Brooks, T.D. Rognlien, D.N. Ruzic, J.P. Allain (2001) Erosion/redeposition

analysis of lithium-based liquid surface divertors, Journal of Nuclear Materials

290-293, 185-190.

[12] M. Ulrickson (2001) Applications of Free Surface Liquids for Fusion Plasma

Facing Components, Int. Seminar on Electromagnetic control of Liquid Metal

Processes, Coventry, UK, June 27-29 2001.

[13] A. Sterl (1990) Numerical simulation of liquid-metal flows in rectangular ducts, J.

Fluid Mech. 216, 161-191.

ANL/TD/TM02-30 Page 75

[14] L. Lenhart (1994) Magnetohydrodynamik in Rechteckgeometrien,

Wissenschaftliche Berichte FZKA 5317, Forschungszentrum Karlsruhe.

[15] B. Mück, C. Günter, U. Müller, L. Bühler (2000) Three-dimensional flows in

rectangular ducts with internal obstacles, J. Fluid Mech. 418, 265-295.

[16] L. Leboucher (1999) Monotone scheme and boundary conditions for finite volume

simulation of magnetohydrodynamic internal flows at high Hartmann number, J.

Comput. Phys. 150, 181-198.

[17] I. Di Piazza, L. Büler (1999) Numerical simulations of Buoyant

Magnetohydrodynamic flows using the CFX code, Forschungszentrum Karlsruhe

Report FZKA 6354.

[18] I. Di Piazza, M. Ciofalo (2002) MHD free convection in a liquid-metal filled

cubic enclosure. I. Differential heating, Int. J. Heat and Mass Transfer 45,

1477-1492.

[19] I. Di Piazza, M. Ciofalo (2002) MHD free convection in a liquid-metal filled

cubic enclosure. II. Internal heating, Int. J. Heat and Mass Transfer 45,

1493-1511.

[20] O. Widlund (2000) Modelling of magnetohydrodynamic turbulence, Technical

Report ISRN KTH/MEK/TR--99/11--SE, TRITA-MEK.

[21] T. Tagawa, R. Moreau, G, Authié (2000) Buoyant flow in long vertical enclosures

in the presence of a strong horizontal magnetic field, Proceeding of the 4th Pamir

International conference, France, 153-158.

[22] A. Y. Ying et al. (2001) MHD and heat transfer issues and characteristics for Li

free surface flows under NSTX conditions, Fusion Technology 39, 739-745.

[23] CFX On-Line Help, AEA Technology Engineering Software Ltd.

ANL/TD/TM02-30 Page 76

[24] J. A. Shercliff (1953) Steady motion of conductive fluids in pipes under transverse

magnetic fields, Proc. Cambr. Philos. Soc. 49, 136-144.

[25] J. C. R. Hunt (1965) Magnetohydrodynamic flow in rectangular ducts, J. Fluid

Mech. 21, 577-590.

[26] S. Molokov (2000) Two-dimensional parallel layers at high Ha, Re and N,

Proceeding of the 4th Pamir International conference, France, 153-158.

[27] N. Alleborn, K. Nandakumar, H. Raszillier, F. Durst (1997) Further contributions

on the two-dimensional flow in a sudden expansion, J. Fluid Mech. 330, 169-188.

[28] W. Cherdron, F. Durst, J. H. Whitelaw (1978) Asymmetric flows and instabilities

in symmetric ducts with sudden expansions, J. Fluid Mech. 84, 13-31.

[29] F. Durst, J. C. F. Pereira, C. Tropea (1993) The plane symmetric sudden-

expansion flow at low Reynolds numbers, J. Fluid Mech. 248, 567-581.

[30] C. C. Sellers, J. S. Walker (1999) Liquid-metal flow in an electrically insulated

rectangular duct with a non-uniform magnetic field, Int. J. Engineering Science

37, 541-552

[31] J. S. Walker, B. F. Picologlou (1995) Liquid-metal flow in an insulated

rectangular expansion with a strong transverse magnetic field, J. Fluid Mech. 305,

111-126.

[32] R. Holroyd, J. S. Walker (1989) A theoretical study of the effects of wall

conductivity, non-uniform magnetic fields and variable-area ducts on liquid metal

flows at high Hartmann number, J. Fluid Mech. 84, 471-495.

[33] CFX Material properties database, AEA Technology Engineering Software Ltd.

[34] C. J. Smithells, E. A. Brandes (1976) Metals reference book, Butterworths:

London & Boston.

ANL/TD/TM02-30 Page 77

[35] S. Molokov (2002) Evolution of free surface disturbance in a strong magnetic

field, Proceeding of the 5th Pamir International conference, France, September

2002.

[36] S. Molokov, R. Stieglitz (1995) Liquid-metal flow in a system of electrically

coupled U-bends in a strong uniform magnetic field. J. Fluid Mech. 299, 73-95.

[37] R. Stieglitz, S. Molokov (1997) Experimental study of magnetohydrodynamic

flows in electrically coupled bends, J.Fluid Mech. 343, 1-28.

[38] J. Sommeria, R. Moreau (1982) Why, how, and when, MHD turbulence becomes

two-dimensional, J. Fluid Mech. 118, 507-518.

[39] S. Cuevas, P. F. Picologlou, J. S. Walker, G. Talmage (1997) Liquid-metal MHD

flow in rectangular ducts with thin conducting or insulating walls: laminar and

turbulent solutions, Int. J. Engineering Science 35, 485-503.

[40] S. Cuevas, P. F. Picologlou, J. S. Walker, G. Talmage. T. Q. Hua (1997) Heat

transfer in laminar and turbulent liquid-metal MHD flows, Int. J. Engineering

Science 35, 505-514.

[41] S. Smolentsev et al. (2002) Application of the "K-epsilon" model to open channel

flows in a magnetic field, Int. J. Eng. Science 40, 693-711.

[42] L. Bühler (1996) Instabilities in quasi-two-dimensional magnetohydrodynamic

flows, J. Fluid Mech. 326, 125-150.

[43] A. Potherat, J. Sommeria, R. Moreau (2000) An effective two-dimensional model

for MHD flows with transverse magnetic field, J. Fluid Mech. 424, 75-100.

[44] D. Lee, H. Choi (2001) Magnetohydrodynamic turbulent flow in a channel at low

magnetic Reynolds number, J. Fluid Mech. 439, 367-394.

ANL/TD/TM02-30 Page 78

10. List of figures

Figure 1 MHD problems in for the upper parts of the divertor.

Figure 2 MHD problems in for the lower part of the divertor.

Figure 3 Shercliff solution. Geometry and co-ordinate system.

Figure 4 Shercliff solution. Grid used: (a) for Ha = 100; (b) for Ha = 200.

Figure 5 Shercliff solution. Electric potential in the plane y = 0 for a square

duct and for Ha = 100 (numerical solution - solid lines; exact solution -

crosses).

Figure 6 Shercliff solution. Axial velocity in the plane x = 0 for a square duct

and for Ha = 100 (numerical solution - solid lines; exact solution -

crosses).

Figure 7 Shercliff solution. Axial velocity in the plane y = 0 for a square duct

and for Ha = 100 (numerical solution - solid lines; exact solution -

crosses).

Figure 8 Shercliff solution. Electric potential at x = 0 for a square duct and for

Ha = 200 (numerical solution - solid lines; exact solution - crosses).

Figure 9 Shercliff solution. Axial velocity in the plane y = 0 for a square duct

and for Ha = 200 (numerical solution - solid lines; exact solution -

crosses).

Figure 10 Shercliff solution. Axial velocity in the plane x = 0 for a square duct

and for Ha = 200 (numerical solution - solid lines; exact solution -

crosses).

ANL/TD/TM02-30 Page 79

Figure 11 Hunt solution. Geometry and co-ordinate system.

Figure 12 Hunt solution for a square duct with perfectly conducting walls. Axial

velocity in the plane y = 0 for Ha = 100 (numerical solution - solid

lines; exact solution - stars).

Figure 13 Hunt solution for a square duct with perfectly conducting walls.

Electric potential in the plane y = 0 for Ha = 100 (numerical solution -

solid lines; exact solution - stars).

Figure 14 Hunt solution for a square duct with perfectly conducting Hartmann

walls and electrically insulating parallel walls. Electric potential in the

plane y = 0 for Ha = 100 (numerical solution - solid lines; exact

solution - stars).

Figure 15 Hunt solution for a square duct with perfectly conducting Hartmann

walls and electrically insulating parallel walls. Axial velocity in the

plane y = 0 for Ha = 100 (numerical solution - solid lines; exact

solution - stars).

Figure 16 Hunt solution for a square duct with perfectly conducting Hartmann

walls and electrically insulating parallel walls. Electric potential in the

plane y = 0 for Ha = 200 (numerical solution - solid lines; exact

solution - stars).

Figure 17 Hunt solution for a square duct with perfectly conducting Hartmann

walls and electrically insulating parallel walls. Axial velocity in the

plane y = 0 for Ha = 200 (numerical solution - solid lines; exact

solution - stars).

Figure 18 Flow in a duct with a 1:2 symmetric expansion in a transverse

magnetic field.

ANL/TD/TM02-30 Page 80

Figure 19 Inertialess flow in a duct with an expansion. Streamlines for Ha = 200.

Figure 20 Inertialess flow in a duct with an expansion. Velocity profiles in the

duct (x = -3) and at the junction (x = 0) for Ha = 200. Solid lines - CFX

numerical solution, stars - numerical solution obtained by a different

method ([26]).

Figure 21 Inertialess flow in a duct with an expansion. Core velocity (y = 0) for

Ha = 200.

Figure 22 Inertialess flow in a duct with an expansion. Pressure distribution for

Ha = 200.

Figure 23 Inertialess flow in a duct with an expansion. Pressure at the top of the

wider duct (y = 1) for Ha = 200.

Figure 24 Inertial flow in a duct with an expansion. Streamlines for Ha = 200,

N = 1.

Figure 25 Inertial flow in a duct with an expansion. Velocity profiles in the duct

(x = -3) and at the junction (x = 0) for Ha = 200, N = 1.

Figure 26 Inertial flow in a duct with an expansion. Pressure at the top of the

wider duct (y = 1) for Ha = 200, N = 1.

Figure 27 Inertial flow in a duct with an expansion. Pressure distribution for

Ha = 200, N = 1.

Figure 28 Flow in an asymmetric duct with an expansion in a transverse

magnetic field.

ANL/TD/TM02-30 Page 81

Figure 29 Inertial flow in an asymmetric duct with an expansion. Streamlines

for Ha = 200, N = 1.

Figure 30 Inertial flow in an asymmetric duct with an expansion. Pressure

distribution for Ha = 200, N = 1.

Figure 31 Inertial flow in an asymmetric duct with an expansion. Pressure at the

top of the wider duct (y = 1) for Ha = 200, N = 1.

Figure 32 Flow in a square duct in a non-uniform transverse magnetic field.

Figure 33 Flow in a square duct in a non-uniform transverse magnetic field.

Magnetic field versus axial co-ordinate.

Figure 34 Axial velocity profiles for inertialess flow in a square duct in a non-

uniform transverse magnetic field. Ha = 50. Line y = 0 and (a) z = -6;

(b) z = -2; (c) z = -1; (d) z = -0.5; (e) z = 0; (f) z = 0.5; (g) z = 1; (h) z = 2;

(i) z = 6.

Figure 35 Axial velocity profiles in the inertialess flow in a square duct in a non-

uniform transverse magnetic field for Ha = 50.

Figure 36 Streamlines in the inertialess flow in a square duct in a non-uniform

transverse magnetic field in the plane y = 0 for Ha = 50.

Figure 37 Pressure in the inertialess flow in a square duct in a non-uniform

transverse magnetic field on the central line of the duct x = y = 0

(broken line) and near the wall x = y = 1 (solid line). Ha = 50.

Figure 38 Electric current lines in the inertialess flow in a square duct in a non-

uniform transverse magnetic field for Ha = 50.

ANL/TD/TM02-30 Page 82

Figure 39 Axial velocity profiles in the inertialess flow in a square duct in a non-

uniform transverse magnetic field in the plane y = 0 for Ha = 200.

Figure 40 Streamlines in the inertialess flow in a square duct in a non-uniform

transverse magnetic field in the plane y = 0 for Ha = 200.

Figure 41 Pressure in the inertialess flow in a square duct in a non-uniform

transverse magnetic field on the central line of the duct x = y = 0

(broken line) and near the wall x = y = 1 (solid line). Ha = 200.

Figure 42 Electric current lines in the inertialess flow in a square duct in a non-

uniform transverse magnetic field in the plane y = 0 for Ha = 200.

Figure 43 Pressure variation in the inertialess flow in a square duct in a non-

uniform transverse magnetic field in the plane y = 0 for Ha = 200.

Figure 44 Liquid metal drop in a strong, vertical magnetic field.

Figure 45 Liquid metal drop in a strong, vertical magnetic field after 0.185 s.

Solid line - asymptotic solution.

Figure 46 Liquid metal drop in a strong, vertical magnetic field. Horizontal

velocity for both phases ("air" and liquid metal). Solid line - drop

surface (asymptotic solution).

Figure 47 Liquid metal drop in a strong, vertical magnetic field. Vertical velocity

for both phases ("air" and liquid metal). Solid line - drop surface

(asymptotic solution).

Figure 48 Liquid metal drop in a strong, vertical magnetic field. Pressure for

both phases ("air" and liquid metal). Solid line - drop surface

(asymptotic solution).

ANL/TD/TM02-30 Page 83

Figure 49 Liquid metal jet in a strong, transverse magnetic field.

Figure 50 Liquid metal jet in a strong, transverse magnetic field. Variation of jet

thickness in a uniform field for E = -1, Ha = 200.

Figure 51 Liquid metal jet in a strong, transverse magnetic field. Velocity profile

in a uniform field for E = -1, Ha = 200. Velocity in the duct (solid line)

and in the jet region (stars).

Figure 52 Liquid metal jet in a strong, transverse magnetic field. Variation of

pressure in a uniform field for E = -1, Ha = 200.

Figure 53 Liquid metal jet in a strong, transverse magnetic field. Variation of

pressure in a uniform field at y = 0 for E = -1, Ha = 200.

Figure 54 Liquid metal jet in a strong, transverse magnetic field. Velocity in the

core in a uniform field at y = 0 for E = -1, Ha = 200.

Figure 55 Liquid metal jet in a strong, transverse magnetic field. Variation of

pressure in a uniform field for E = -1, Ha = 200, N = 1.

Figure 56 Liquid metal jet in a strong, transverse magnetic field. Variation of

pressure in a uniform field at y = 0 for E = -1, Ha = 200, N = 1.

Figure 57 Liquid metal jet in a strong, transverse magnetic field. Velocity in the

core in a uniform field at y = 0 for E = -1, Ha = 200, N = 1.

Figure 58 Liquid metal jet in a strong, transverse magnetic field. Variation of jet

thickness for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2. Colour map represents

the numerical solution, the solid black line shows the asymptotic

solution.

ANL/TD/TM02-30 Page 84

Figure 59 Liquid metal jet in a strong, transverse magnetic field. Variation of

pressure for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2.

Figure 60 Liquid metal jet in a strong, transverse magnetic field. Core velocity

in the jet (y = 0) for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2. Solid line

corresponds to the numerical solution, stars to the asymptotic

solution.

Figure 61 Liquid metal jet in a strong, transverse magnetic field. Streamlines in

the jet for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2.

Figure 62 Flow in electrically coupled U-bends(from [36]).

Figure 63 Flow in a circular insulating duct in a nonuniform magnetic field.

Projection of lines of constant pressure onto the plane transverse to

the field. The field is out of the plane of the figure; it varies between x

= -1 and x = 1. Variable x is in the flow direction. Variable z is in the

direction transverse to the magnetic field (duct axis is at z = 0).

Hartmann and Roberts layers are not shown. Here Ha=7000. (from

[5]).

ANL/TD/TM02-30 Page 85

11. Appendix 1: a sample of command file

>>CFX4
 >>SET LIMITS
 LARGE
 TOTAL INTEGER WORK SPACE 5000000
 TOTAL CHARACTER WORK SPACE 2000
 TOTAL REAL WORK SPACE 70000000
 MAXIMUM NUMBER OF BLOCKS 10
 MAXIMUM NUMBER OF PATCHES 100
 MAXIMUM NUMBER OF INTER BLOCK BOUNDARIES 20
 >>OPTIONS
 TWO DIMENSIONS
 RECTANGULAR GRID
 CARTESIAN COORDINATES
 LAMINAR FLOW
 ISOTHERMAL FLOW
 INCOMPRESSIBLE FLOW
 TRANSIENT FLOW
 USER SCALAR EQUATIONS 3
 NUMBER OF PHASES 2
 >>USER FORTRAN
 USRBCS
 USRBF
 USRCVG
 USRINT
 USRTRN
 >>VARIABLE NAMES
 U VELOCITY 'U VELOCITY'
 V VELOCITY 'V VELOCITY'
 W VELOCITY 'W VELOCITY'
 PRESSURE 'PRESSURE'
 VOLUME FRACTION 'VOLUME FRACTION'
 DENSITY 'DENSITY'
 VISCOSITY 'VISCOSITY'
 USER SCALAR1 'USRD B'
 USER SCALAR2 'USRD EXACT U'
 USER SCALAR3 'USRD EXACT H'
 >>PHASE NAMES
 PHASE1 'AIR'
 PHASE2 'METAL'
>>MODEL TOPOLOGY
 >>MODIFY PATCH
 OLD PATCH NAME 'INLET'
 NEW PATCH NAME 'ENTRANCE'
 NEW PATCH TYPE 'INLET'
 >>MODIFY PATCH
 OLD PATCH NAME 'OUTLET'
 NEW PATCH NAME 'EXIT'
 NEW PATCH TYPE 'MASS FLOW BOUNDARY'
 >>MODIFY PATCH
 OLD PATCH NAME 'USER3D DUCT'
 NEW PATCH NAME 'ALLDUCT'
 NEW PATCH TYPE 'USER3D'
>>MODEL DATA

ANL/TD/TM02-30 Page 86

 >>AMBIENT VARIABLES
 PHASE NAME 'AIR'
 VOLUME FRACTION 1.0000E+00
 >>AMBIENT VARIABLES
 PHASE NAME 'METAL'
 VOLUME FRACTION 0.0000E+00
 >>DIFFERENCING SCHEME
 ALL EQUATIONS 'NO CONVECTION'
 >>TITLE
 PROBLEM TITLE 'MHD JET'
 >>PHYSICAL PROPERTIES
 >>FLUID PARAMETERS
 PHASE NAME 'AIR'
 VISCOSITY 1.000E-06
 DENSITY 1.0000E+00
 >>FLUID PARAMETERS
 PHASE NAME 'METAL'
 VISCOSITY 2.5000E-05
 DENSITY 1.0000E+00
 >>MULTIPHASE PARAMETERS
 >>PHASE DESCRIPTION
 PHASE NAME 'AIR'
 GAS
 CONTINUOUS
 >>PHASE DESCRIPTION
 PHASE NAME 'METAL'
 LIQUID
 CONTINUOUS
 >>MULTIPHASE MODELS
 >>MOMENTUM
 HOMOGENEOUS
 SURFACE SHARPENING ALGORITHM
 >>TRANSIENT PARAMETERS
 >>FIXED TIME STEPPING
 TIME STEPS 100* 1.00000E+00
>>SOLVER DATA
 >>PROGRAM CONTROL
 MAXIMUM NUMBER OF ITERATIONS 1000
 MINIMUM NUMBER OF ITERATIONS 100
 >>UNDER RELAXATION FACTORS
 U VELOCITY 8.000E-01
 V VELOCITY 8.000E-01
 PRESSURE 1.0000E+00
 VOLUME FRACTION 1.0000E+00
 VISCOSITY 1.0000E+00
>>MODEL BOUNDARY CONDITIONS
 >>INLET BOUNDARIES
 PHASE NAME 'AIR'
 PATCH NAME 'ENTRANCE'
 VOLUME FRACTION 0.0000E+00
 >>INLET BOUNDARIES
 PHASE NAME 'METAL'
 PATCH NAME 'ENTRANCE'
 VOLUME FRACTION 1.0000E+00
 >>PRESSURE BOUNDARIES
 PHASE NAME 'METAL'
 PATCH NAME 'PRESS FORCED'

ANL/TD/TM02-30 Page 87

 VOLUME FRACTION 0.0000E+00
 >>PRESSURE BOUNDARIES
 PHASE NAME 'AIR'
 PATCH NAME 'PRESS FORCED'
 VOLUME FRACTION 1.0000E+00
>>OUTPUT OPTIONS
 >>DUMP FILE OPTIONS
 ALL PHASES
 EACH TIME STEP
 INITIAL GUESS
 FINAL SOLUTION
 ALL REAL DATA
 NO GEOMETRY DATA
>>STOP

12. Appendix 2: a sample of source code, two-dimensional

flow, MHD jet

 SUBROUTINE USRINT(U,V,W,P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,CONV,
 + XC,YC,ZC,XP,YP,ZP,VOL,AREA,VPOR,ARPOR,WFACT,
 + DISWAL,IPT,IBLK,IPVERT,IPNODN,IPFACN,IPNODF,
 + IPNODB,IPFACB,WORK,IWORK,CWORK)
C###
C###
C Program for setting initial data at the first time step
C###
C###
C
C**
C
C UTILITY SUBROUTINE FOR USER-SUPPLIED INITIAL FIELD.
C
C**
C
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINE
C CUSR INIT
C
C**
C CREATED
C 13/06/90 ADB
C MODIFIED
C 07/08/91 IRH NEW STRUCTURE
C 10/09/91 IRH CORRECTION TO IUSED
C 26/09/91 IRH ALTER ARGUMENT LIST
C 01/10/91 DSC REDUCE COMMENT LINE GOING OVER COLUMN 72.
C 03/10/91 IRH CORRECT COMMENTS
C 28/01/92 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT,
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3
C 08/02/93 NSW REMOVE REDUNDANT COMMENTS
C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.
C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D, REMOVE COMMA
C FROM BEGINNING OF DIMENSION STATEMENT
C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE
C 09/08/94 NSW CORRECT SPELLING
C MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA
C 19/12/94 NSW CHANGE FOR CFX-F3D
C 30/01/95 NSW INCLUDE NEW EXAMPLE
C 02/07/97 NSW UPDATE FOR CFX-4

ANL/TD/TM02-30 Page 88

C
C**
C
C SUBROUTINE ARGUMENTS
C
C U - U COMPONENT OF VELOCITY
C V - V COMPONENT OF VELOCITY
C W - W COMPONENT OF VELOCITY
C P - PRESSURE
C VFRAC - VOLUME FRACTION
C DEN - DENSITY OF FLUID
C VIS - VISCOSITY OF FLUID
C TE - TURBULENT KINETIC ENERGY
C ED - EPSILON
C RS - REYNOLD STRESSES
C T - TEMPERATURE
C H - ENTHALPY
C RF - REYNOLD FLUXES
C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)
C CONV - CONVECTION COEFFICIENTS
C XC - X COORDINATES OF CELL CORNERS
C YC - Y COORDINATES OF CELL CORNERS
C ZC - Z COORDINATES OF CELL CORNERS
C XP - X COORDINATES OF CELL CENTRES
C YP - Y COORDINATES OF CELL CENTRES
C ZP - Z COORDINATES OF CELL CENTRES
C VOL - VOLUME OF CELLS
C AREA - AREA OF CELLS
C VPOR - POROUS VOLUME
C ARPOR - POROUS AREA
C WFACT - WEIGHT FACTORS
C DISWAL - DISTANCE OF CELL CENTRE FROM WALL
C
C IPT - 1D POINTER ARRAY
C IBLK - BLOCK SIZE INFORMATION
C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES
C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS
C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS
C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACES
C
C WORK - REAL WORKSPACE ARRAY
C IWORK - INTEGER WORKSPACE ARRAY
C CWORK - CHARACTER WORKSPACE ARRAY
C
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST
C BE SET BY THE USER IN THIS ROUTINE.
C
C LOGICAL VARIABLE LRDISK IN COMMON BLOCK IOLOGC INDICATES WHETHER
C THE RUN IS A RESTART AND CAN BE USED SO THAT INITIAL INFORMATION
C IS ONLY SET WHEN STARTING A RUN FROM SCRATCH.
C
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE
C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4
C USER MANUAL.
C
C**
 DOUBLE PRECISION U
 DOUBLE PRECISION V
 DOUBLE PRECISION W
 DOUBLE PRECISION P
 DOUBLE PRECISION VFRAC

ANL/TD/TM02-30 Page 89

 DOUBLE PRECISION DEN
 DOUBLE PRECISION VIS
 DOUBLE PRECISION TE
 DOUBLE PRECISION ED
 DOUBLE PRECISION RS
 DOUBLE PRECISION T
 DOUBLE PRECISION H
 DOUBLE PRECISION RF
 DOUBLE PRECISION SCAL
 DOUBLE PRECISION CONV
 DOUBLE PRECISION XC
 DOUBLE PRECISION YC
 DOUBLE PRECISION ZC
 DOUBLE PRECISION XP
 DOUBLE PRECISION YP
 DOUBLE PRECISION ZP
 DOUBLE PRECISION VOL
 DOUBLE PRECISION AREA
 DOUBLE PRECISION VPOR
 DOUBLE PRECISION ARPOR
 DOUBLE PRECISION WFACT
 DOUBLE PRECISION DISWAL
 DOUBLE PRECISION WORK
 DOUBLE PRECISION TIME
 DOUBLE PRECISION DT
 DOUBLE PRECISION DTINVF
 DOUBLE PRECISION TPARM
 DOUBLE PRECISION FULL
 DOUBLE PRECISION EMPTY
 LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,
 + LPOROS,LTRANS
 LOGICAL LRDISK,LWDISK
C
 CHARACTER*(*) CWORK
C
C++++++++++++++++ USER AREA 1 +++
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES
 DOUBLE PRECISION Ha, RO, SIGMA, AA, VISC, B0, ParInterC,YY,VEL
C++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++
C
 COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM,
 + /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE,
 + NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST,
 + NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/DEVICE/NREAD,
 + NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,/IOLOGC/LRDISK,LWDISK,
 + /LOGIC/LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,
 + LAXIS,LPOROS,LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL,
 + /SGLDBL/IFLGPR,ICHKPR,/TRANSI/NSTEP,KSTEP,MF,INCORE,
 + /TRANSR/TIME,DT,DTINVF,TPARM
C
C++++++++++++++++ USER AREA 2 +++
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS
C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE
C NO CONFLICT WITH NON-USER COMMON BLOCKS
C
C++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++
C
 DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE),
 + P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),TE(NNODE,NPHASE),
 + ED(NNODE,NPHASE),RS(NNODE,NPHASE,6),T(NNODE,NPHASE),
 + H(NNODE,NPHASE),RF(NNODE,NPHASE,4),
 + SCAL(NNODE,NPHASE,NSCAL),DEN(NNODE,NPHASE),
 + VIS(NNODE,NPHASE),CONV(NFACE,NPHASE)

ANL/TD/TM02-30 Page 90

 DIMENSION XC(NVERT),YC(NVERT),ZC(NVERT),XP(NNODE),YP(NNODE),
 + ZP(NNODE),VOL(NCELL),AREA(NFACE,3),VPOR(NCELL),
 + ARPOR(NFACE,3),WFACT(NFACE),DISWAL(NCELL)
 DIMENSION IPT(*),IBLK(5,NBLOCK),IPVERT(NCELL,8),IPNODN(NCELL,6),
 + IPFACN(NCELL,6),IPNODF(NFACE,4),IPNODB(NBDRY,4),
 + IPFACB(NBDRY)
 DIMENSION IWORK(NIWS),WORK(NRWS),CWORK(NCWS)
C
C+++++++++++++++ USER AREA 3 +++
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS
C
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS
C
C++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++
C
C---- STATEMENT FUNCTION FOR ADDRESSING
 IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I)
C
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG
C
 IVERS = 3
 ICHKPR = 2
C
C++++++++++++++++ USER AREA 4 +++
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1
C
 IUSED = 1
C
C++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++
C
 IF (IUSED.EQ.0) RETURN
C
C---- FRONTEND CHECKING OF USER ROUTINE
 IF (IUCALL.EQ.0) RETURN
C
C++++++++++++++++ USER AREA 5 +++
C
C---- AREA FOR INITIALISING VARIABLES U,V,W,P,VFRAC,TE,ED,RS,T,SCAL
C ONLY.
C
C---- EXAMPLE 1 (SET TEMPERATURE TO 300.0 EVERYWHERE)
C
C USE IPALL TO FIND 1D ADDRESSES OF ALL CELL CENTRES
C CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK)
C
C DO 100 IPHASE = 1, NPHASE
C LOOP OVER ALL INTERIOR CELLS
C DO 110 I=1,NPT
C USE ARRAY IPT TO GET ADDRESS
C INODE=IPT(I)
C T(INODE,IPHASE)=300.0
C 110 CONTINUE
C 100 CONTINUE
C
C---- END OF EXAMPLE 1
C
C---- EXAMPLE 2 (SET FIRST SCALAR TO 0.5 EVERYWHERE IF STARTING RUN
C FROM SCRATCH, BUT NOT ON A RESTART).
C
C IF(.NOT.LRDISK) THEN
C
C USE IPALL TO FIND 1D ADDRESSES OF ALL CELL CENTRES
C CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK)

ANL/TD/TM02-30 Page 91

C
C DO 100 IPHASE = 1, NPHASE
C LOOP OVER ALL INTERIOR CELLS
C DO 110 I=1,NPT
C USE ARRAY IPT TO GET ADDRESS
C INODE=IPT(I)
C SCAL(INODE,IPHASE,1)=0.5
C 110 CONTINUE
C 100 CONTINUE
C
C END IF
C
C---- END OF EXAMPLE 2
C
C----TO SET UP THE INITIAL FIELD FOR REFERENCE EXAMPLE 29
C
C###
C Setting initial data:
C shape and velocities of the jet
C###

C###
C If program restarts from previous dump file (LRDISK=.TRUE.),
C no initial data is set
C###

 IF(.NOT.LRDISK) THEN

 AA = 1.D+00

 Ha = 200.D0

 SIGMA = 3.3434D+06
 VISC = 9.D-07
 RO = 500.D+00
 B0 = DSQRT(RO*VISC/SIGMA)*Ha/AA
 ParInter=Ha**2.D0*VISC/AA

 write(6,*) '###### B0 = ',B0
 write(6,*) '###### N = ',ParInter

 FULL = 1.0D0
 EMPTY = 1.D-10

C###
C First, velocities are set to zero everywhere and
C all domain full of "air" (phase 1)
C###

 CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK)

 DO 101 K = 1,NPT
 INODE = IPT(K)
 VFRAC(INODE,1) = FULL
 VFRAC(INODE,2) = EMPTY
 U(INODE,1) = 0.D0
 V(INODE,1) = 0.D0
 U(INODE,2) = 0.D0
 V(INODE,2) = 0.D0
 101 CONTINUE

ANL/TD/TM02-30 Page 92

C###
C On patch ALLDUCT (straight central subdomain)
C volume fraction of liquid metal (phase 2) is set to 1
C and Hartmann profile for velocity
C###

 CALL IPALL('ALLDUCT','*','PATCH','CENTRES',IPT,NPT,CWORK,IWORK)

 DO 102 K = 1,NPT
 INODE = IPT(K)
 VFRAC(INODE,1) = EMPTY
 VFRAC(INODE,2) = FULL
 YY = YP(INODE)/AA
 IF ((YY.LE.1.D0).AND.(YY.GE.-1.D0)) THEN
 VEL = Ha/(Ha-tanh(Ha))*(1.D0-DEXP(Ha*(YY-1.D0))*
 + (1.D0+DEXP(-2.D0*Ha*YY))/(1.D0+DEXP(-2.D0*Ha)))
 ELSE
 VEL = 0.D0
 END IF
 U(INODE,1) = VEL
 U(INODE,2) = VEL
 102 CONTINUE

 ENDIF
C
C++++++++++++++++ END OF USER AREA 5 +++++++++++++++++++++++++++++++++
C
 RETURN
C
 END
 SUBROUTINE USRBF(IPHASE,BX,BY,BZ,BPX,BPY,BPZ,U,V,W,P,VFRAC,DEN,
 + VIS,TE,ED,RS,T,H,RF,SCAL,XP,YP,ZP,VOL,AREA,VPOR,
 + ARPOR,WFACT,IPT,IBLK,IPVERT,IPNODN,IPFACN,IPNODF,
 + IPNODB,IPFACB,WORK,IWORK,CWORK)
C###
C###
C Program for setting body forces
C###
C###
C
C***
C
C UTILITY SUBROUTINE FOR USER-SUPPLIED BODY FORCES
C
C >>> IMPORTANT <<<
C >>> <<<
C >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<
C >>> THE DESIGNATED USER AREAS <<<
C
C***
C
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES
C BFCAL
C
C***
C CREATED
C 24/01/92 ADB
C MODIFIED
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 2
C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.
C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D
C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE

ANL/TD/TM02-30 Page 93

C 23/03/94 FHW EXAMPLES COMMENTED OUT
C 09/08/94 NSW CORRECT SPELLING
C MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA
C 19/12/94 NSW CHANGE FOR CFX-F3D
C 31/01/97 NSW EXPLAIN USAGE IN MULTIPHASE FLOWS
C 02/07/97 NSW UPDATE FOR CFX-4
C
C***
C
C SUBROUTINE ARGUMENTS
C
C IPHASE - PHASE NUMBER
C
C * BX - X-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE
C * BY - Y-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE
C * BZ - Z-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE
C * BPX -
C * BPY - COMPONENTS OF LINEARISABLE BODY FORCES.
C * BPZ -
C
C N.B. TOTAL BODY-FORCE IS GIVEN BY:
C
C X-COMPONENT = BX + BPX*U
C Y-COMPONENT = BY + BPY*V
C Z-COMPONENT = BZ + BPZ*W
C
C U - U COMPONENT OF VELOCITY
C V - V COMPONENT OF VELOCITY
C W - W COMPONENT OF VELOCITY
C P - PRESSURE
C VFRAC - VOLUME FRACTION
C DEN - DENSITY OF FLUID
C VIS - VISCOSITY OF FLUID
C TE - TURBULENT KINETIC ENERGY
C ED - EPSILON
C RS - REYNOLD STRESSES
C T - TEMPERATURE
C H - ENTHALPY
C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)
C XP - X COORDINATES OF CELL CENTRES
C YP - Y COORDINATES OF CELL CENTRES
C ZP - Z COORDINATES OF CELL CENTRES
C VOL - VOLUME OF CELLS
C AREA - AREA OF CELLS
C VPOR - POROUS VOLUME
C ARPOR - POROUS AREA
C WFACT - WEIGHT FACTORS
C
C IPT - 1D POINTER ARRAY
C IBLK - BLOCK SIZE INFORMATION
C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES
C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS
C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS
C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS
C
C WORK - REAL WORKSPACE ARRAY
C IWORK - INTEGER WORKSPACE ARRAY
C CWORK - CHARACTER WORKSPACE ARRAY
C
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST
C BE SET BY THE USER IN THIS ROUTINE.

ANL/TD/TM02-30 Page 94

C
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE
C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4
C USER MANUAL.
C
C***
C
 DOUBLE PRECISION BX
 DOUBLE PRECISION BY
 DOUBLE PRECISION BZ
 DOUBLE PRECISION BPX
 DOUBLE PRECISION BPY
 DOUBLE PRECISION BPZ
 DOUBLE PRECISION U
 DOUBLE PRECISION V
 DOUBLE PRECISION W
 DOUBLE PRECISION P
 DOUBLE PRECISION VFRAC
 DOUBLE PRECISION DEN
 DOUBLE PRECISION VIS
 DOUBLE PRECISION TE
 DOUBLE PRECISION ED
 DOUBLE PRECISION RS
 DOUBLE PRECISION T
 DOUBLE PRECISION H
 DOUBLE PRECISION RF
 DOUBLE PRECISION SCAL
 DOUBLE PRECISION XP
 DOUBLE PRECISION YP
 DOUBLE PRECISION ZP
 DOUBLE PRECISION VOL
 DOUBLE PRECISION AREA
 DOUBLE PRECISION VPOR
 DOUBLE PRECISION ARPOR
 DOUBLE PRECISION WFACT
 DOUBLE PRECISION WORK
 DOUBLE PRECISION SMALL
 DOUBLE PRECISION SORMAX
 DOUBLE PRECISION TIME
 DOUBLE PRECISION DT
 DOUBLE PRECISION DTINVF
 DOUBLE PRECISION TPARM
 LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,
 + LPOROS,LTRANS
C
 CHARACTER*(*) CWORK
C
C+++++++++++++++++ USER AREA 1 +++
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES
 DOUBLE PRECISION Ha, AA, UFORCE, GAM, E, EFIELD, BFIELD
C
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++
C
 COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM,
 + /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE,
 + NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST,
 + NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/DEVICE/NREAD,
 + NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,/LOGIC/LDEN,LVIS,
 + LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,LPOROS,
 + LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL,/SGLDBL/IFLGPR,ICHKPR,
 + /SPARM/SMALL,SORMAX,NITER,INDPRI,MAXIT,NODREF,NODMON,
 + /TRANSI/NSTEP,KSTEP,MF,INCORE,/TRANSR/TIME,DT,DTINVF,TPARM
C

ANL/TD/TM02-30 Page 95

C+++++++++++++++++ USER AREA 2 +++
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS
C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE
C NO CONFLICT WITH NON-USER COMMON BLOCKS
C
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++
C
 DIMENSION BX(NCELL),BY(NCELL),BZ(NCELL),BPX(NCELL),BPY(NCELL),
 + BPZ(NCELL)
C
 DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE),
 + P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE),
 + VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE),
 + RS(NNODE,NPHASE,*),T(NNODE,NPHASE),H(NNODE,NPHASE),
 + RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL)
C
 DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3),
 + VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),IPT(*),
 + IBLK(5,NBLOCK),IPVERT(NCELL,8),IPNODN(NCELL,6),
 + IPFACN(NCELL,6),IPNODF(NFACE,4),IPNODB(NBDRY,4),
 + IPFACB(NBDRY),IWORK(*),WORK(*),CWORK(*)
C
C+++++++++++++++++ USER AREA 3 +++
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS
C
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS
C
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++
C
C---- STATEMENT FUNCTION FOR ADDRESSING
 IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I)
C
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG
C
 IVERS = 2
 ICHKPR = 2
C
C+++++++++++++++++ USER AREA 4 +++
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1
C
 IUSED = 1
C
C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++
C
 IF (IUSED.EQ.0) RETURN
C
C---- FRONTEND CHECKING OF USER ROUTINE
 IF (IUCALL.EQ.0) RETURN
C
C+++++++++++++++++ USER AREA 5 +++
C
C THIS ROUTINE IS ENTERED REPEATEDLY FOR EACH PHASE IN A MULTIPHASE
C CALCULATION. BODY FORCES CAN BE SET FOR A PARTICULAR PHASE USING
C THE VARIABLE IPHASE. EG. IF (IPHASE.EQ.2) WOULD ALLOW BODY FORCES
C FOR THE SECOND PHASE.
C
C----ADD USER-DEFINED BODY FORCES.
C
C----EXAMPLE 1: LOCALISED MOMENTUM SOURCE, EG. PROPELLOR.
C
C----USE IPREC TO FIND ADDRESSES
C
C CALL IPREC('DUCT','BLOCK','CENTRES',IPT

ANL/TD/TM02-30 Page 96

C + ,ILEN,JLEN,KLEN,CWORK,IWORK)
C
C IST = ILEN/2 + 1
C IFN = IST
C JST = 1
C JFN = JLEN/2
C
C SMOM = 10.0
C DO 103 K = 1, KLEN
C DO 102 J = JST, JFN
C DO 101 I = IST,IFN
C INODE = IP(I,J,K)
C BX(INODE) = BX(INODE) + SMOM
C 101 CONTINUE
C 102 CONTINUE
C 103 CONTINUE
C
C----EXAMPLE 2: LOCALISED RESISTANCE
C
C----USE IPREC TO FIND ADDRESSES
C
C CALL IPREC('DUCT','BLOCK','CENTRES',IPT
C + ,ILEN,JLEN,KLEN,CWORK,IWORK)
C
C IST = ILEN/4 + 1
C IFN = 3*ILEN/4
C JST = 1
C JFN = JLEN
C
C RESIST = 1.0E+2
C DO 203 K = 1, KLEN
C DO 202 J = JST, JFN
C DO 201 I = IST,IFN
C INODE = IP(I,J,K)
C BPX(INODE) = BPX(INODE) - RESIST
C BPY(INODE) = BPY(INODE) - RESIST
C BPZ(INODE) = BPZ(INODE) - RESIST
C 201 CONTINUE
C 202 CONTINUE
C 203 CONTINUE
C
C----EXAMPLE 3: LOCALISED RESISTANCES (DISCONTINUOUS CHANGE)
C
C----USE IPREC TO FIND ADDRESSES
C
C CALL IPREC('DUCT','BLOCK','CENTRES',IPT
C + ,ILEN,JLEN,KLEN,CWORK,IWORK)
C
C IST1 = ILEN/4 + 1
C IFN1 = IST1 + ILEN/4 - 1
C IST2 = IFN1 + 1
C IFN2 = ILEN - 1
C
C DO 313 K = 1, KLEN
C DO 312 J = 1, JLEN
C
C RESIST = 1.0
C DO 311 I = IST1,IFN1
C INODE = IP(I,J,K)
C BPX(INODE) = BPX(INODE) - RESIST
C BPY(INODE) = BPY(INODE) - RESIST
C BPZ(INODE) = BPZ(INODE) - RESIST
C 311 CONTINUE

ANL/TD/TM02-30 Page 97

C
C RESIST = 10.0
C DO 321 I = IST2,IFN2
C INODE = IP(I,J,K)
C BPX(INODE) = BPX(INODE) - RESIST
C BPY(INODE) = BPY(INODE) - RESIST
C BPZ(INODE) = BPZ(INODE) - RESIST
C 321 CONTINUE
C
C 312 CONTINUE
C 313 CONTINUE

C###
C Setting body force for phase 2 (liquid metal)
C###

 IF (IPHASE.EQ.2) THEN

 E = -1.D0
 GAM = 2.D0

 CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK)

 DO 203 K = 1, NPT
 INODE = IPT(K)

 IF (XP(INODE).GT.0.D0) THEN
 BFIELD=1.D0-0.5D0*DTANH(GAM*XP(INODE))
 ELSE
 BFIELD = 1.D0
 ENDIF

 UFORCE = -BFIELD**2.D0

C###
C In all internal cells body force is set equal to
C Fx = UFORCE * U - E * BFIELD
C###

 BPX(INODE) = BPX(INODE) + UFORCE
 BX(INODE) = BX(INODE) - E*BFIELD
 203 CONTINUE

 ENDIF
C
C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++
C
 RETURN
C
 END
 SUBROUTINE USRCVG(U,V,W,P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,XP,
 + YP,ZP,VOL,AREA,VPOR,ARPOR,WFACT,CONV,IPT,IBLK,
 + IPVERT,IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,CMETH,
 + MNSL,MXSL,RDFC,RESOR,URFVAR,LCONVG,WORK,IWORK,
 + CWORK)
C###
C###
C Program for setting initial data at the first time step
C###
C###
C
C***
C

ANL/TD/TM02-30 Page 98

C THIS SUBROUTINE ALLOWS USERS TO MONITOR CONVERGENCE, ALTER
C UNDER RELAXATION FACTORS, REDUCTION FACTORS ETC
C AND WRITE SOLUTION DATA AS A FUNCTION OF ITERATION
C
C >>> IMPORTANT <<<
C >>> <<<
C >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<
C >>> THE DESIGNATED USER AREAS <<<
C
C***
C
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINE
C CUSR CVGTST
C
C***
C CREATED
C 09/12/88 ADB
C MODIFIED
C 08/08/91 IRH NEW STRUCTURE
C 03/09/91 IRH ADD CONV TO ARGUMENT LIST
C 23/09/91 IRH ADD USEFUL COMMON BLOCKS
C 29/11/91 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT,
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3
C 07/07/92 IRH CORRECT EXAMPLE
C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.
C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D
C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE
C 22/08/94 NSW MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA
C 19/12/94 NSW CHANGE FOR CFX-F3D
C 25/03/96 NSW CORRECT MAXIMUM VELOCITY EXAMPLE
C 02/07/97 NSW UPDATE FOR CFX-4
C
C***
C
C SUBROUTINE ARGUMENTS
C
C U - U COMPONENT OF VELOCITY
C V - V COMPONENT OF VELOCITY
C W - W COMPONENT OF VELOCITY
C P - PRESSURE
C VFRAC - VOLUME FRACTION
C DEN - DENSITY OF FLUID
C VIS - VISCOSITY OF FLUID
C TE - TURBULENT KINETIC ENERGY
C ED - EPSILON
C RS - REYNOLD STRESSES
C T - TEMPERATURE
C H - ENTHALPY
C RF - REYNOLD FLUXES
C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)
C XP - X COORDINATES OF CELL CENTRES
C YP - Y COORDINATES OF CELL CENTRES
C ZP - Z COORDINATES OF CELL CENTRES
C VOL - VOLUME OF CELLS
C AREA - AREA OF CELLS
C VPOR - POROUS VOLUME
C ARPOR - POROUS AREA
C WFACT - WEIGHT FACTORS
C
C IPT - 1D POINTER ARRAY
C IBLK - BLOCK SIZE INFORMATION
C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES

ANL/TD/TM02-30 Page 99

C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS
C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS
C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACES
C
C CMETH - SOLUTION METHOD
C MNSL - MINIMUM NUMBER OF SWEEPS
C MXSL - MAXIMUM NUMBER OF SWEEPS
C RDFC - REDUCTION FACTORS REQUIRED
C RESOR - NON LINEAR RESIDUALS
C URFVAR - UNDER RELAXATION FACTORS
C * LCONVG - LOGICAL CONVERGENCE FLAG
C
C WORK - REAL WORKSPACE ARRAY
C IWORK - INTEGER WORKSPACE ARRAY
C CWORK - CHARACTER WORKSPACE ARRAY
C
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST
C BE SET BY THE USER IN THIS ROUTINE.
C
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE
C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4
C USER MANUAL.
C
C***
C
 DOUBLE PRECISION U
 DOUBLE PRECISION V
 DOUBLE PRECISION W
 DOUBLE PRECISION P
 DOUBLE PRECISION VFRAC
 DOUBLE PRECISION DEN
 DOUBLE PRECISION VIS
 DOUBLE PRECISION TE
 DOUBLE PRECISION ED
 DOUBLE PRECISION RS
 DOUBLE PRECISION T
 DOUBLE PRECISION H
 DOUBLE PRECISION RF
 DOUBLE PRECISION SCAL
 DOUBLE PRECISION XP
 DOUBLE PRECISION YP
 DOUBLE PRECISION ZP
 DOUBLE PRECISION VOL
 DOUBLE PRECISION AREA
 DOUBLE PRECISION VPOR
 DOUBLE PRECISION ARPOR
 DOUBLE PRECISION WFACT
 DOUBLE PRECISION CONV
 DOUBLE PRECISION RDFC
 DOUBLE PRECISION RESOR
 DOUBLE PRECISION URFVAR
 DOUBLE PRECISION WORK
 DOUBLE PRECISION SMALL
 DOUBLE PRECISION SORMAX
 DOUBLE PRECISION TIME
 DOUBLE PRECISION DT
 DOUBLE PRECISION DTINVF
 DOUBLE PRECISION TPARM
 LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,
 + LPOROS,LTRANS
 LOGICAL LCONVG

ANL/TD/TM02-30 Page 100

C
 CHARACTER*(*) CMETH,CWORK
C
C+++++++++++++++++ USER AREA 1 +++
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES
C
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++
C
 COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM,
 + /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE,
 + NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST,
 + NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/DEVICE/NREAD,
 + NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,/LOGIC/LDEN,LVIS,
 + LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,LPOROS,
 + LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL,/RESID/IRESID,NRESID,
 + /SGLDBL/IFLGPR,ICHKPR,/SPARM/SMALL,SORMAX,NITER,INDPRI,
 + MAXIT,NODREF,NODMON,/TRANSI/NSTEP,KSTEP,MF,INCORE,
 + /TRANSR/TIME,DT,DTINVF,TPARM
C
C+++++++++++++++++ USER AREA 2 +++
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS
C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE
C NO CONFLICT WITH NON-USER COMMON BLOCKS
C
C---- COMMON BLOCK FOR EXAMPLE IN USER AREA 6
C COMMON /UC1/ VELOLD
C
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++
C
 DIMENSION CMETH(NVAR,NPHASE),MNSL(NVAR,NPHASE),MXSL(NVAR,NPHASE),
 + RDFC(NVAR,NPHASE),RESOR(NVAR,NPHASE),URFVAR(NVAR,NPHASE)
 DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE),
 + P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE),
 + VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE),
 + RS(NNODE,NPHASE,6),T(NNODE,NPHASE),H(NNODE,NPHASE),
 + RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL)
 DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3),
 + VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),
 + CONV(NFACE,NPHASE),IPT(*),IBLK(5,NBLOCK),
 + IPVERT(NCELL,8),IPNODN(NCELL,6),IPFACN(NCELL,6),
 + IPNODF(NFACE,4),IPNODB(NBDRY,4),IPFACB(NBDRY),IWORK(*),
 + WORK(*),CWORK(*)
C
C+++++++++++++++++ USER AREA 3 +++
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS
C
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS
C
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++
C
C---- STATEMENT FUNCTION FOR ADDRESSING
 IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I)
C
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG
C
 IVERS = 3
 ICHKPR = 2
C
C+++++++++++++++++ USER AREA 4 +++
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1
C
 IUSED = 1
C

ANL/TD/TM02-30 Page 101

C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++
C
 IF (IUSED.EQ.0) RETURN
C
C---- FRONTEND CHECKING OF USER ROUTINE
 IF (IUCALL.EQ.0) RETURN
C
C+++++++++++++++++ USER AREA 5 +++
C
C---- EXAMPLE: (TEST ON MAX OF MASS RESIDUAL AND ENTHALPY RESIDUAL)
C
C CALL GETVAR('USRCVG','P ',IPRES)
C CALL GETVAR('USRCVG','H ',IH)
C
C URESM=0.0
C DO 10 IPHASE=1,NPHASE
C URESM=MAX(URESM,RESOR(IPRES,IPHASE),RESOR(IH,IPHASE))
C 10 CONTINUE
C
C LCONVG = URESM .LT. 1.0E-5
C
C----END OF EXAMPLE
C
C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++
C
C
C+++++++++++++++++ USER AREA 6 +++
C
C---- EXAMPLE: MONITOR CHANGE IN MAXIMUM VELOCITY
C ADJUST UNDER RELAXATION ACCORDINGLY
C
C VELMAX=0.0
C DO 20 IPHASE=1,NPHASE
C USE IPALL TO FIND 1D ADDRESSES OF ALL CELL CENTRES
C CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK)
C LOOP OVER ALL CELL CENTRE LOCATIONS IN FLOW DOMAIN
C DO 30 I=1,NPT
C USE ARRAY IPT TO GET ADDRESS
C INODE=IPT(I)
C VELMAX=MAX(VELMAX,ABS(U(INODE,IPHASE)),ABS(V(INODE,IPHASE)),
C + ABS(W(INODE,IPHASE)))
C 30 CONTINUE
C 20 CONTINUE
C
C IF (NITER.GT.1) THEN
C DVEL=(VELMAX-VELOLD)/VELMAX
C URFMIN=0.01
C URFMAX=0.8
C URF=(1.0-DVEL)*URFMAX+DVEL*URFMIN
C WRITE(NWRITE,100)NITER,DVEL,URF
C CALL GETVAR('USRCVG','U ',IU)
C CALL GETVAR('USRCVG','V ',IV)
C CALL GETVAR('USRCVG','W ',IW)
C DO 40 IPHASE=1,NPHASE
C URFVAR(IU,IPHASE)=URF
C URFVAR(IV,IPHASE)=URF
C URFVAR(IW,IPHASE)=URF
C 40 CONTINUE
C ENDIF
C
C VELOLD=VELMAX
C
C----END OF EXAMPLE

ANL/TD/TM02-30 Page 102

C###
C Setting convergence criterion
C###

C###
C Convergence test will first be performed after 150th iteration
C###

 IF (NITER.GT.150) THEN

 CALL GETVAR('USRCVG','P ',IPRES)
 CALL GETVAR('USRCVG','U ',IU)
 CALL GETVAR('USRCVG','V ',IV)
 CALL GETVAR('USRCVG','VFRAC ',IVFRAC)

C###
C Maximum values of flow variables are calculated
C###

 VELMAX=0.0D0
 VFRACMAX=0.0D0
 PMAX=0.0D0
 DO 20 IPHASE=1,NPHASE
 CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK)
 DO 30 I=1,NPT
 INODE=IPT(I)
 VELMAX=MAX(VELMAX,ABS(U(INODE,IPHASE)),ABS(V(INODE,IPHASE)))
 VFRACMAX=MAX(VFRACMAX,ABS(VFRAC(INODE,IPHASE)))
 PMAX=MAX(PMAX,ABS(P(INODE,IPHASE)))
 30 CONTINUE
 20 CONTINUE

C###
C Maximum values of residuals of flow variables are calculated
C###

 VELRESM=0.0D0
 VFRACRESM = 0.0D0
 PRESM = 0.0D0
 DO 10 IPHASE=1,NPHASE
 VELRESM=MAX(VELRESM,RESOR(IU,IPHASE),RESOR(IV,IPHASE))
 VFRACRESM=MAX(VFRACRESM,RESOR(IVFRAC,IPHASE))
 PRESM=MAX(PRESM,RESOR(IPRES,IPHASE))
 10 CONTINUE

C###
C If ratio of RES/MAX. VALUE is less than 1E-7, problem converged
C###

 LCONVG = (VELRESM/VELMAX.LT.1.0E-7).AND.(PRESM/PMAX.LT.1.0E-7)
 + .AND.(VFRACRESM/VFRACMAX.LT.1.0E-7)

 IF (LCONVG) THEN
 write(6,*) '##### Converged! #####'
 write(6,*) '##### VMAX = ',VELMAX,' PMAX = ',PMAX,
 + ' VFRACMAX =',VFRACMAX
 write(6,*) '##### VRES = ',VELRESM,' PRES = ',PRESM,
 + ' VFRACRES =',VFRACRESM
 ENDIF

 ENDIF
C***

ANL/TD/TM02-30 Page 103

C
C+++++++++++++++++ END OF USER AREA 6 ++++++++++++++++++++++++++++++++++
C
 RETURN
C
 END
 SUBROUTINE USRBCS(VARBCS,VARAMB,A,B,C,ACND,BCND,CCND,IWGVEL,
 + NDVWAL,FLOUT,NLABEL,NSTART,NEND,NCST,NCEN,U,V,W,
 + P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,XP,YP,ZP,
 + VOL,AREA,VPOR,ARPOR,WFACT,IPT,IBLK,IPVERT,
 + IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,WORK,IWORK,
 + CWORK)
C###
C###
C Program for setting boundary conditions
C###
C###
C
C***
C
C USER ROUTINE TO SET REALS AT BOUNDARIES.
C
C >>> IMPORTANT <<<
C >>> <<<
C >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<
C >>> THE DESIGNATED USER AREAS <<<
C
C***
C
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINE
C CUSR SRLIST
C
C***
C CREATED
C 30/11/88 ADB
C MODIFIED
C 08/09/90 ADB RESTRUCTURED FOR USER-FRIENDLINESS.
C 10/08/91 IRH FURTHER RESTRUCTURING ADD ACND BCND CCND
C 22/09/91 IRH CHANGE ICALL TO IUCALL + ADD /SPARM/
C 10/03/92 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT,
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3
C 30/06/92 NSW INCLUDE FLAG FOR CALLING BY ITERATION
C INSERT EXTRA COMMENTS
C 03/08/92 NSW MODIFY DIMENSION STATEMENTS FOR VAX
C 21/12/92 CSH INCREASE IVERS TO 4
C 02/08/93 NSW INCORRECT AND MISLEADING COMMENT REMOVED
C 05/11/93 NSW INDICATE USE OF FLOUT IN MULTIPHASE FLOWS
C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.
C 01/02/94 NSW SET VARIABLE POINTERS IN WALL EXAMPLE.
C CHANGE FLOW3D TO CFDS-FLOW3D.
C MODIFY MULTIPHASE MASS FLOW BOUNDARY TREATMENT.
C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE
C 02/07/94 BAS SLIDING GRIDS - ADD NEW ARGUMENT IWGVEL
C TO ALLOW VARIANTS OF TRANSIENT-GRID WALL BC
C CHANGE VERSION NUMBER TO 5
C 09/08/94 NSW CORRECT SPELLING
C MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA
C 19/12/94 NSW CHANGE FOR CFX-F3D
C 02/02/95 NSW CHANGE COMMON /IMFBMP/
C 02/06/97 NSW MAKE EXAMPLE MORE LOGICAL
C 02/07/97 NSW UPDATE FOR CFX-4
C 08/09/98 NSW CORRECT SIZE OF WALL ARRAY IN COMMENT

ANL/TD/TM02-30 Page 104

C 22/05/00 NSW INITIALISE IUBCSF
C
C***
C
C SUBROUTINE ARGUMENTS
C
C VARBCS - REAL BOUNDARY CONDITIONS
C VARAMB - AMBIENT VALUE OF VARIABLES
C A - COEFFICIENT IN WALL BOUNDARY CONDITION
C B - COEFFICIENT IN WALL BOUNDARY CONDITION
C C - COEFFICIENT IN WALL BOUNDARY CONDITION
C ACND - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION
C BCND - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION
C CCND - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION
C IWGVEL - USAGE OF INPUT VELOCITIES (0 = AS IS,1 = ADD GRID MOTION)
C NDVWAL - FIRST DIMENSION OF ARRAY IWGVEL
C FLOUT - MASS FLOW/FRACTIONAL MASS FLOW
C NLABEL - NUMBER OF DISTINCT OUTLETS
C NSTART - ARRAY POINTER
C NEND - ARRAY POINTER
C NCST - ARRAY POINTER
C NCEN - ARRAY POINTER
C U - U COMPONENT OF VELOCITY
C V - V COMPONENT OF VELOCITY
C W - W COMPONENT OF VELOCITY
C P - PRESSURE
C VFRAC - VOLUME FRACTION
C DEN - DENSITY OF FLUID
C VIS - VISCOSITY OF FLUID
C TE - TURBULENT KINETIC ENERGY
C ED - EPSILON
C RS - REYNOLD STRESSES
C T - TEMPERATURE
C H - ENTHALPY
C RF - REYNOLD FLUXES
C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)
C XP - X COORDINATES OF CELL CENTRES
C YP - Y COORDINATES OF CELL CENTRES
C ZP - Z COORDINATES OF CELL CENTRES
C VOL - VOLUME OF CELLS
C AREA - AREA OF CELLS
C VPOR - POROUS VOLUME
C ARPOR - POROUS AREA
C WFACT - WEIGHT FACTORS
C
C IPT - 1D POINTER ARRAY
C IBLK - BLOCK SIZE INFORMATION
C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES
C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS
C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS
C IPFACB - POINTER TO NODES FROM BOUNDARY FACES
C
C WORK - REAL WORKSPACE ARRAY
C IWORK - INTEGER WORKSPACE ARRAY
C CWORK - CHARACTER WORKSPACE ARRAY
C
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST
C BE SET BY THE USER IN THIS ROUTINE.
C
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE
C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4

ANL/TD/TM02-30 Page 105

C USER MANUAL.
C
C***
 DOUBLE PRECISION VARBCS
 DOUBLE PRECISION VARAMB
 DOUBLE PRECISION A
 DOUBLE PRECISION B
 DOUBLE PRECISION C
 DOUBLE PRECISION ACND
 DOUBLE PRECISION BCND
 DOUBLE PRECISION CCND
 DOUBLE PRECISION FLOUT
 DOUBLE PRECISION U
 DOUBLE PRECISION V
 DOUBLE PRECISION W
 DOUBLE PRECISION P
 DOUBLE PRECISION VFRAC
 DOUBLE PRECISION DEN
 DOUBLE PRECISION VIS
 DOUBLE PRECISION TE
 DOUBLE PRECISION ED
 DOUBLE PRECISION RS
 DOUBLE PRECISION T
 DOUBLE PRECISION H
 DOUBLE PRECISION RF
 DOUBLE PRECISION SCAL
 DOUBLE PRECISION XP
 DOUBLE PRECISION YP
 DOUBLE PRECISION ZP
 DOUBLE PRECISION VOL
 DOUBLE PRECISION AREA
 DOUBLE PRECISION VPOR
 DOUBLE PRECISION ARPOR
 DOUBLE PRECISION WFACT
 DOUBLE PRECISION WORK
 DOUBLE PRECISION SMALL
 DOUBLE PRECISION SORMAX
 DOUBLE PRECISION TIME
 DOUBLE PRECISION DT
 DOUBLE PRECISION DTINVF
 DOUBLE PRECISION TPARM
 LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,
 + LPOROS,LTRANS
C
 CHARACTER*(*) CWORK
C
C+++++++++++++++++ USER AREA 1 +++
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES
 DOUBLE PRECISION AA, EMPTY, FULL, HA, YY, VEL
C
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++
C
 COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM,
 + /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE,
 + NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST,
 + NRLIST,NTOPOL,/BCSOUT/IFLOUT,/CHKUSR/IVERS,IUCALL,IUSED,
 + /DEVICE/NREAD,NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,
 + /IMFBMP/IMFBMP,JMFBMP,/LOGIC/LDEN,LVIS,LTURB,LTEMP,LBUOY,
 + LSCAL,LCOMP,LRECT,LCYN,LAXIS,LPOROS,LTRANS,/MLTGRD/MLEVEL,
 + NLEVEL,ILEVEL,/SGLDBL/IFLGPR,ICHKPR,/SPARM/SMALL,SORMAX,
 + NITER,INDPRI,MAXIT,NODREF,NODMON,/TRANSI/NSTEP,KSTEP,MF,
 + INCORE,/TRANSR/TIME,DT,DTINVF,TPARM,/UBCSFL/IUBCSF
C

ANL/TD/TM02-30 Page 106

C+++++++++++++++++ USER AREA 2 +++
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS
C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE
C NO CONFLICT WITH NON-USER COMMON BLOCKS
C
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++
C
 DIMENSION VARBCS(NVAR,NPHASE,NCELL+1:NNODE),VARAMB(NVAR,NPHASE),
 + A(4+NSCAL,NPHASE,NSTART:*),B(4+NSCAL,NPHASE,NSTART:*),
 + C(4+NSCAL,NPHASE,NSTART:*),FLOUT(*),ACND(NCST:*),
 + BCND(NCST:*),CCND(NCST:*),IWGVEL(NDVWAL,NPHASE)
C
 DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE),
 + P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE),
 + VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE),
 + RS(NNODE,NPHASE,6),T(NNODE,NPHASE),H(NNODE,NPHASE),
 + RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL)
C
 DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3),
 + VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),IPT(*),
 + IBLK(5,NBLOCK),IPVERT(NCELL,8),IPNODN(NCELL,6),
 + IPFACN(NCELL,6),IPNODF(NFACE,4),IPNODB(NBDRY,4),
 + IPFACB(NBDRY),IWORK(*),WORK(*),CWORK(*)
C
C+++++++++++++++++ USER AREA 3 +++
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS
C
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS
C
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++
C
C---- STATEMENT FUNCTION FOR ADDRESSING
 IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I)
C
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG
C
 IVERS = 5
 ICHKPR = 2
C
C+++++++++++++++++ USER AREA 4 +++
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1
C AND SET IUBCSF FLAG:
C BOUNDARY CONDITIONS NOT CHANGING IUBCSF=0
C BOUNDARY CONDITIONS CHANGING WITH ITERATION IUBCSF=1
C BOUNDARY CONDITIONS CHANGING WITH TIME IUBCSF=2
C BOUNDARY CONDITIONS CHANGING WITH TIME AND ITERATION IUBCSF=3
C
 IUSED = 1
 IUBCSF = 0
C
C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++
C
 IF (IUSED.EQ.0) RETURN
C
C---- FRONTEND CHECKING OF USER ROUTINE
 IF (IUCALL.EQ.0) RETURN
C
C+++++++++++++++++ USER AREA 5 +++
C
C---- AREA FOR SETTING VALUES AT INLETS, PRESSURE BOUNDARIES
C AND OUTLETS. (NOTE THAT THE MASS FLOW AT OUTLETS IS
C SPECIFIED IN USER AREA 7)
C

ANL/TD/TM02-30 Page 107

C IF USING A REYNOLDS STRESS OR FLUX MODEL, NOTE THAT AT INLETS
C IT IS IMPORTANT THAT THE USER SETS ALL COMPONENTS OF THE
C REYNOLDS STRESS AND FLUX AND THE TURBULENT KINETIC ENERGY
C AS WELL AS THE ENERGY DISSIPATION RATE.
C
C SET THE VALUES IN VARBCS(NVAR,NPHASE,ILEN,JLEN,KLEN)
C
C---- EXAMPLE: SETTING A LINEAR T PROFILE ON INLET PATCH 'ENTRANCE'
C LEAVE OTHER VARIABLES AS SET IN COMMAND LANGUAGE
C
C-- INTERROGATE GETVAR FOR VARIABLE NUMBERS.
C
C CALL GETVAR('USRBCS','T ',IT)
C
C SET IPHS = 1 FOR SINGLE PHASE FLOW.
C
C IPHS = 1
C
C USE IPREC TO FIND ADDRESSES
C
C CALL IPREC('ENTRANCE','PATCH','CENTRES',IPT,ILEN,JLEN,KLEN,
C + CWORK,IWORK)
C
C XMAX=2.0
C XMIN=1.0
C TMAX=300.0
C TMIN=250.0
C LOOP OVER PATCH
C DO 103 K = 1, KLEN
C DO 102 J = 1, JLEN
C DO 101 I = 1, ILEN
C USE STATEMENT FUNCTION IP TO GET ADDRESSES
C INODE = IP(I,J,K)
C SET VARBCS
C F=(XP(INODE)-XMIN)/(XMAX-XMIN)
C VARBCS(IT,IPHS,INODE) = F*TMAX + (1.0-F)*TMIN
C 101 CONTINUE
C 102 CONTINUE
C 103 CONTINUE
C
C----END OF EXAMPLE

C###
C Setting Hartmann profile at the entrance to the duct
C###

 CALL GETVAR('USRBCS','U ',IU)
 CALL GETVAR('USRBCS','VFRAC ',IVFRAC)
 CALL IPALL('ENTRANCE','*','PATCH','CENTRES',IPT,NPT,CWORK,IWORK)

 IPHS = 1

 AA = 1.D+00
 HA = 200.0D0

 FULL = 1.0D0
 EMPTY = 1.D-10

 CALL IPALL('ENTRANCE','*','PATCH','CENTRES',IPT
 + ,NPT,CWORK,IWORK)

 DO 110 K = 1, NPT

ANL/TD/TM02-30 Page 108

 INODE = IPT(K)
 YY = YP(INODE)/AA

 IF ((YY.LE.1.D0).AND.(YY.GE.-1.D0)) THEN

 VEL = Ha/(Ha-tanh(Ha))*(1.D0-DEXP(Ha*(YY-1.D0))*
 + (1.D0+DEXP(-2.D0*Ha*YY))/(1.D0+DEXP(-2.D0*Ha)))
 ELSE
 VEL = 0.D0
 END IF

C###
C Volume fraction of metal is set to 1, velocity to Hartmann profile
C###

 VARBCS(IVFRAC,1,INODE) = EMPTY
 VARBCS(IVFRAC,2,INODE) = FULL
 VARBCS(IU,1,INODE) = VEL
 VARBCS(IU,2,INODE) = VEL

 110 CONTINUE

C***

C
C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++
C
C+++++++++++++++++ USER AREA 6 +++
C
C---- AREA FOR SETTING VALUES AT WALLS
C
C USE A(4+NSCAL,NPHASE,NNODE)
C WHERE NSCAL = NO. OF SCALARS, AND NPHASE = NO. OF PHASES.
C
C THE CONVENTION FOR VARIABLE NUMBERS IS DIFFERENT IN THIS ROUTINE
C FROM THAT IN THE REST OF THE PROGRAM. IT IS:
C
C IU = 1, IV = 2 , IW = 3, IT = 4, IS = 5
C
C---- EXAMPLE: SETTING FREE SLIP BOUNDARY CONDITIONS AT ALL WALLS
C AND SETTING T=300.0 AND SCALAR1 AND SCALAR2 =0.0
C ON WALL1. SET T=400.0 ON CONDUCTING SOLID BOUNDARY WALL2
C
C-- SET POINTERS
C
C IU = 1
C IV = 2
C IW = 3
C IT = 4
C IS = 5
C
C-- SET IPHS = 1 FOR SINGLE PHASE FLOW.
C
C IPHS = 1
C
C USE IPALL TO FIND 1D ADDRESSES OF A GROUP OF PATCH CENTRES
C
C CALL IPALL('*','WALL','PATCH','CENTRES',IPT,NPT,CWORK,IWORK)
C
C LOOP OVER GROUP OF PATCHES
C DO 200 I=1,NPT
C USE ARRAY IPT TO GET ADDRESS

ANL/TD/TM02-30 Page 109

C INODE=IPT(I)
C A(IU,IPHS,INODE) = 0.0
C B(IU,IPHS,INODE) = 1.0
C C(IU,IPHS,INODE) = 0.0
C
C A(IV,IPHS,INODE) = 0.0
C B(IV,IPHS,INODE) = 1.0
C C(IV,IPHS,INODE) = 0.0
C
C A(IW,IPHS,INODE) = 0.0
C B(IW,IPHS,INODE) = 1.0
C C(IW,IPHS,INODE) = 0.0
C 200 CONTINUE
C
C USE IPREC TO FIND ADDRESSES OF SINGLE PATCH
C
C CALL IPREC('WALL1','PATCH','CENTRES',IPT,ILEN,JLEN,KLEN,
C + CWORK,IWORK)
C LOOP OVER PATCH
C DO 203 K = 1, KLEN
C DO 202 J = 1, JLEN
C DO 201 I = 1, ILEN
C USE STATEMENT FUNCTION IP TO GET ADDRESSES
C INODE = IP(I,J,K)
C
C A(IT,IPHS,INODE) = 1.0
C B(IT,IPHS,INODE) = 0.0
C C(IT,IPHS,INODE) = 300.0
C
C A(IS,IPHS,INODE) = 1.0
C B(IS,IPHS,INODE) = 0.0
C C(IS,IPHS,INODE) = 0.0
C
C A(IS+1,IPHS,INODE) = 1.0
C B(IS+1,IPHS,INODE) = 0.0
C C(IS+1,IPHS,INODE) = 0.0
C
C 201 CONTINUE
C 202 CONTINUE
C 203 CONTINUE
C
C USE IPALL TO FIND 1D ADDRESSES OF A GROUP OF PATCH CENTRES
C
C CALL IPALL('WALL2','*','PATCH','CENTRES',IPT,NPT,CWORK,IWORK)
C
C LOOP OVER GROUP OF PATCHES
C DO 300 I=1,NPT
C USE ARRAY IPT TO GET ADDRESS
C INODE=IPT(I)
C ACND(INODE) = 1.0
C BCND(INODE) = 0.0
C CCND(INODE) = 400.0
C 300 CONTINUE
C
C----END OF EXAMPLE
C
C+++++++++++++++++ END OF USER AREA 6 ++++++++++++++++++++++++++++++++++
C
C
C+++++++++++++++++ USER AREA 7 +++
C
C----- DEFINE FLOW AT OUTLETS (MASS FLOW BOUNDARIES)
C (TO TEMPERATURES AND SCALARS AT MASS FLOW BOUNDARIES USE

ANL/TD/TM02-30 Page 110

C USER AREA 5)
C
C SET PARAMETER IFLOUT:
C IFLOUT = 1 ==> MASS FLOW SPECIFIED AT LABELLED OUTLETS.
C IFLOUT = 2 ==> FRACTIONAL MASS FLOW SPECIFIED AT LABELLED OUTLETS
C IFLOUT = 2
C
C SET OUTLET FLOW RATES:
C FLOUT(LABEL) = MASS FLOW OUT OF OUTLETS LABELLED LABEL (IFLOUT=1).
C FLOUT(LABEL) = FRACTIONAL MASS FLOW OUT OF OUTLETS LABELLED LABEL
C (IFLOUT=2).
C FOR MULTIPHASE FLOWS IT IS NECESSARY TO SET
C EITHER
C FLOUT(LABEL) = TOTAL MASS FLOW
C IFLOUT = 1
C IMFBMP = 0
C OR
C FLOUT(LABEL + (IPHASE-1)*NLABEL) FOR EACH PHASE
C IFLOUT = 1 OR 2
C IMFBMP = 1
C
C---- EXAMPLE: EQUIDISTRIBUTION OF FRACTIONAL MASS FLOW AMONGST OUTLETS
C
C IFLOUT=2
C FRAC = 1.0 / MAX(1.0, FLOAT(NLABEL))
C DO 300 ILABEL = 1, NLABEL
C FLOUT(ILABEL) = FRAC
C300 CONTINUE
C
C----END OF EXAMPLE
C
C+++++++++++++++++ END OF USER AREA 7 ++++++++++++++++++++++++++++++++++
C
 RETURN
C
 END
 SUBROUTINE USRTRN(U,V,W,P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,XP,
 + YP,ZP,VOL,AREA,VPOR,ARPOR,WFACT,CONV,IPT,IBLK,
 + IPVERT,IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,WORK,
 + IWORK,CWORK)
C###
C###
C Program for calculation additional data sets
C###
C###
C
C**
C
C USER SUBROUTINE TO ALLOW USERS TO MODIFY OR MONITOR THE SOLUTION AT
C THE END OF EACH TIME STEP
C THIS SUBROUTINE IS CALLED BEFORE THE START OF THE RUN AS WELL AS AT
C THE END OF EACH TIME STEP
C
C >>> IMPORTANT <<<
C >>> <<<
C >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<
C >>> THE DESIGNATED USER AREAS <<<
C
C**
C
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES
C CUSR TRNMOD
C

ANL/TD/TM02-30 Page 111

C***
C CREATED
C 27/04/90 ADB
C MODIFIED
C 05/08/91 IRH NEW STRUCTURE
C 01/10/91 DSC REDUCE COMMENT LINE GOING OVER COLUMN 72.
C 29/11/91 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT,
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2
C 05/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3
C 03/07/92 DSC CORRECT COMMON MLTGRD.
C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.
C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D
C 22/08/94 NSW MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA
C 19/12/94 NSW CHANGE FOR CFX-F3D
C 02/07/97 NSW UPDATE FOR CFX-4
C 02/07/99 NSW INCLUDE NEW EXAMPLE FOR CALCULATING FLUX OF A
C SCALAR AT A PRESSURE BOUNDARY
C
C***
C
C SUBROUTINE ARGUMENTS
C
C U - U COMPONENT OF VELOCITY
C V - V COMPONENT OF VELOCITY
C W - W COMPONENT OF VELOCITY
C P - PRESSURE
C VFRAC - VOLUME FRACTION
C DEN - DENSITY OF FLUID
C VIS - VISCOSITY OF FLUID
C TE - TURBULENT KINETIC ENERGY
C ED - EPSILON
C RS - REYNOLD STRESSES
C T - TEMPERATURE
C H - ENTHALPY
C RF - REYNOLD FLUXES
C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)
C XP - X COORDINATES OF CELL CENTRES
C YP - Y COORDINATES OF CELL CENTRES
C ZP - Z COORDINATES OF CELL CENTRES
C VOL - VOLUME OF CELLS
C AREA - AREA OF CELLS
C VPOR - POROUS VOLUME
C ARPOR - POROUS AREA
C WFACT - WEIGHT FACTORS
C CONV - CONVECTION COEFFICIENTS
C
C IPT - 1D POINTER ARRAY
C IBLK - BLOCK SIZE INFORMATION
C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES
C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS
C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS
C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS
C
C WORK - REAL WORKSPACE ARRAY
C IWORK - INTEGER WORKSPACE ARRAY
C CWORK - CHARACTER WORKSPACE ARRAY
C
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST
C BE SET BY THE USER IN THIS ROUTINE.
C
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE

ANL/TD/TM02-30 Page 112

C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4
C USER MANUAL.
C
C**
C
C
 DOUBLE PRECISION U
 DOUBLE PRECISION V
 DOUBLE PRECISION W
 DOUBLE PRECISION P
 DOUBLE PRECISION VFRAC
 DOUBLE PRECISION DEN
 DOUBLE PRECISION VIS
 DOUBLE PRECISION TE
 DOUBLE PRECISION ED
 DOUBLE PRECISION RS
 DOUBLE PRECISION T
 DOUBLE PRECISION H
 DOUBLE PRECISION RF
 DOUBLE PRECISION SCAL
 DOUBLE PRECISION XP
 DOUBLE PRECISION YP
 DOUBLE PRECISION ZP
 DOUBLE PRECISION VOL
 DOUBLE PRECISION AREA
 DOUBLE PRECISION VPOR
 DOUBLE PRECISION ARPOR
 DOUBLE PRECISION WFACT
 DOUBLE PRECISION CONV
 DOUBLE PRECISION WORK
 DOUBLE PRECISION SMALL
 DOUBLE PRECISION SORMAX
 DOUBLE PRECISION DTUSR
 DOUBLE PRECISION TIME
 DOUBLE PRECISION DT
 DOUBLE PRECISION DTINVF
 DOUBLE PRECISION TPARM
 DOUBLE PRECISION SGNWL
 LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,
 + LPOROS,LTRANS
C
 CHARACTER*(*) CWORK
C
C++++++++++++++++ USER AREA 1 +++
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES
 DOUBLE PRECISION BFIELD, GAM
C
C++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++
C
 COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM,
 + /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE,
 + NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST,
 + NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/CONC/NCONC,
 + /DEVICE/NREAD,NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,
 + /LOGIC/LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,
 + LAXIS,LPOROS,LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL,
 + /SGLDBL/IFLGPR,ICHKPR,/SPARM/SMALL,SORMAX,NITER,INDPRI,
 + MAXIT,NODREF,NODMON,/TIMUSR/DTUSR,/TRANSI/NSTEP,KSTEP,MF,
 + INCORE,/TRANSR/TIME,DT,DTINVF,TPARM
C
C++++++++++++++++ USER AREA 2 +++
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS
C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE

ANL/TD/TM02-30 Page 113

C NO CONFLICT WITH NON-USER COMMON BLOCKS
C
C++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++
C
 DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE),
 + P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE),
 + VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE),
 + RS(NNODE,NPHASE,6),T(NNODE,NPHASE),H(NNODE,NPHASE),
 + RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL)
 DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3),
 + VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),
 + CONV(NFACE,NPHASE),IPT(*),IBLK(5,NBLOCK),
 + IPVERT(NCELL,8),IPNODN(NCELL,6),IPFACN(NCELL,6),
 + IPNODF(NFACE,4),IPNODB(NBDRY,4),IPFACB(NBDRY),IWORK(*),
 + WORK(*),CWORK(*)
 DIMENSION SGNWL(6)
C
C++++++++++++++++ USER AREA 3 +++
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS
C
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS
C
C++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++
C
 DATA SGNWL/1.0D0,1.0D0,1.0D0,-1.0D0,-1.0D0,-1.0D0/
C
C---- STATEMENT FUNCTION FOR ADDRESSING
 IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I)
C
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG
C
 IVERS = 3
 ICHKPR = 2
C
C++++++++++++++++ USER AREA 4 +++
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1
C
 IUSED = 1
C
C++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++
C
 IF (IUSED.EQ.0) RETURN
C
C---- FRONTEND CHECKING OF USER ROUTINE
 IF (IUCALL.EQ.0) RETURN
C
C++++++++++++++++ USER AREA 5 +++
C
C---- EXAMPLE (SET TIME INCREMENT FOR NEXT TIME STEP)
C
C DTUSR = 0.1
C
C---- END OF EXAMPLE
C
C---- EXAMPLE (CALCULATE FLUX OF FIRST SCALAR AT A PRESSURE BOUNDARY)
C
C IPHASE = 1
C FLUX = 0.0
C USE IPALL TO FIND ADDRESSES OF BOUNDARY NODES ON PATCH PRESS1
C CALL IPALL('PRESS1','PRESS','PATCH','CENTRES'
C + ,IPT,NPT,CWORK,IWORK)
C LOOP OVER ALL BOUNDARY NODES
C DO 300 I=1,NPT

ANL/TD/TM02-30 Page 114

C USE ARRAY IPT TO GET ADDRESS
C INODE = IPT(I)
C IBDRY = INODE - NCELL
C IFACE = IPFACB(IBDRY)
C INDUM = IPNODB(IBDRY,2)
C NWL = IPNODB(IBDRY,4)
C FLUX = FLUX
C + + SGNWL(NWL)*CONV(IFACE,IPHASE)*SCAL(INDUM,IPHASE,1)
C 300 CONTINUE
C
C---- END OF EXAMPLE
C###
C Calculating additional data:
C shape and velocities of the jet (asymptotic solution)
C in all internal cells
C###
 CALL GETSCA('USRD B',IB,CWORK)
 CALL GETSCA('USRD EXACT U',IW,CWORK)
 CALL GETSCA('USRD EXACT H',IH,CWORK)

 GAM = 2.D0

 CALL IPALL('*','*','BLOCK','CENTRES',IPT
 + ,NPT,CWORK,IWORK)
 DO 110 K = 1, NPT

 INODE = IPT(K)

 IF (XP(INODE).GT.0.D0) THEN
 BFIELD=1.D0-0.5D0*DTANH(GAM*XP(INODE))
 ELSE
 BFIELD = 1.D0
 ENDIF

 SCAL(INODE,1,IW)=1.D0/BFIELD
 SCAL(INODE,1,IB)=BFIELD

 SCAL(INODE,2,IW)=1.D0/BFIELD
 SCAL(INODE,2,IB)=BFIELD

 IF (YP(INODE).GT.BFIELD) THEN
 SCAL(INODE,1,IH)=0.D0
 SCAL(INODE,2,IH)=0.D0
 ELSE
 SCAL(INODE,1,IH)=1.D0
 SCAL(INODE,2,IH)=1.D0
 ENDIF

 110 CONTINUE

C###
C Calculating additional data:
C shape and velocities of the jet (asymptotic solution)
C on all patches
C###

 CALL IPALL('*','*','PATCH','CENTRES',IPT
 + ,NPT,CWORK,IWORK)
 DO 210 K = 1, NPT

 INODE = IPT(K)

 IF (XP(INODE).GT.0.D0) THEN

ANL/TD/TM02-30 Page 115

 BFIELD=1.D0-0.5D0*DTANH(GAM*XP(INODE))
 ELSE
 BFIELD = 1.D0
 ENDIF

 SCAL(INODE,1,IW)=1.D0/BFIELD
 SCAL(INODE,1,IB)=BFIELD

 SCAL(INODE,2,IW)=1.D0/BFIELD
 SCAL(INODE,2,IB)=BFIELD

 IF (YP(INODE).GT.BFIELD) THEN
 SCAL(INODE,1,IH)=0.D0
 SCAL(INODE,2,IH)=0.D0
 ELSE
 SCAL(INODE,1,IH)=1.D0
 SCAL(INODE,2,IH)=1.D0
 ENDIF

 210 CONTINUE

C**
C
C++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++
C
 RETURN
C
 END

13. Appendix 3: a sample of source code, three-dimensional

flow, Hunt solution

 SUBROUTINE USRBF(IPHASE,BX,BY,BZ,BPX,BPY,BPZ,U,V,W,P,VFRAC,DEN,
 + VIS,TE,ED,RS,T,H,RF,SCAL,XP,YP,ZP,VOL,AREA,VPOR,
 + ARPOR,WFACT,IPT,IBLK,IPVERT,IPNODN,IPFACN,IPNODF,
 + IPNODB,IPFACB,WORK,IWORK,CWORK)C
C###
C###
C Program for setting body forces
C###
C###
C***C
C UTILITY SUBROUTINE FOR USER-SUPPLIED BODY FORCES C
C >>> IMPORTANT <<<
C >>> <<<
C >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<
C >>> THE DESIGNATED USER AREAS <<<
C
C***
C
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES
C BFCAL
C
C***
C CREATED
C 24/01/92 ADB
C MODIFIED
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 2

ANL/TD/TM02-30 Page 116

C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.
C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D
C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE
C 23/03/94 FHW EXAMPLES COMMENTED OUT
C 09/08/94 NSW CORRECT SPELLING
C MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA
C 19/12/94 NSW CHANGE FOR CFX-F3D
C 31/01/97 NSW EXPLAIN USAGE IN MULTIPHASE FLOWS
C 02/07/97 NSW UPDATE FOR CFX-4
C
C***
C
C SUBROUTINE ARGUMENTS
C
C IPHASE - PHASE NUMBER
C
C * BX - X-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE
C * BY - Y-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE
C * BZ - Z-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE
C * BPX -
C * BPY - COMPONENTS OF LINEARISABLE BODY FORCES.
C * BPZ -
C
C N.B. TOTAL BODY-FORCE IS GIVEN BY:
C
C X-COMPONENT = BX + BPX*U
C Y-COMPONENT = BY + BPY*V
C Z-COMPONENT = BZ + BPZ*W
C
C U - U COMPONENT OF VELOCITY
C V - V COMPONENT OF VELOCITY
C W - W COMPONENT OF VELOCITY
C P - PRESSURE
C VFRAC - VOLUME FRACTION
C DEN - DENSITY OF FLUID
C VIS - VISCOSITY OF FLUID
C TE - TURBULENT KINETIC ENERGY
C ED - EPSILON
C RS - REYNOLD STRESSES
C T - TEMPERATURE
C H - ENTHALPY
C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)
C XP - X COORDINATES OF CELL CENTRES
C YP - Y COORDINATES OF CELL CENTRES
C ZP - Z COORDINATES OF CELL CENTRES
C VOL - VOLUME OF CELLS
C AREA - AREA OF CELLS
C VPOR - POROUS VOLUME
C ARPOR - POROUS AREA
C WFACT - WEIGHT FACTORS
C
C IPT - 1D POINTER ARRAY
C IBLK - BLOCK SIZE INFORMATION
C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES
C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS
C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS
C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS
C
C WORK - REAL WORKSPACE ARRAY
C IWORK - INTEGER WORKSPACE ARRAY
C CWORK - CHARACTER WORKSPACE ARRAY

ANL/TD/TM02-30 Page 117

C
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST
C BE SET BY THE USER IN THIS ROUTINE.
C
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE
C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4
C USER MANUAL.
C
C***
C
 DOUBLE PRECISION BX
 DOUBLE PRECISION BY
 DOUBLE PRECISION BZ
 DOUBLE PRECISION BPX
 DOUBLE PRECISION BPY
 DOUBLE PRECISION BPZ
 DOUBLE PRECISION U
 DOUBLE PRECISION V
 DOUBLE PRECISION W
 DOUBLE PRECISION P
 DOUBLE PRECISION VFRAC
 DOUBLE PRECISION DEN
 DOUBLE PRECISION VIS
 DOUBLE PRECISION TE
 DOUBLE PRECISION ED
 DOUBLE PRECISION RS
 DOUBLE PRECISION T
 DOUBLE PRECISION H
 DOUBLE PRECISION RF
 DOUBLE PRECISION SCAL
 DOUBLE PRECISION XP
 DOUBLE PRECISION YP
 DOUBLE PRECISION ZP
 DOUBLE PRECISION VOL
 DOUBLE PRECISION AREA
 DOUBLE PRECISION VPOR
 DOUBLE PRECISION ARPOR
 DOUBLE PRECISION WFACT
 DOUBLE PRECISION WORK
 DOUBLE PRECISION SMALL
 DOUBLE PRECISION SORMAX
 DOUBLE PRECISION TIME
 DOUBLE PRECISION DT
 DOUBLE PRECISION DTINVF
 DOUBLE PRECISION TPARM
 LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,
 + LPOROS,LTRANS
C
 CHARACTER*(*) CWORK
C
C+++++++++++++++++ USER AREA 1 +++
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES
C
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++
C
 COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM,
 + /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE,
 + NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST,
 + NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/DEVICE/NREAD,
 + NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,/LOGIC/LDEN,LVIS,
 + LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,LPOROS,
 + LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL,/SGLDBL/IFLGPR,ICHKPR,
 + /SPARM/SMALL,SORMAX,NITER,INDPRI,MAXIT,NODREF,NODMON,

ANL/TD/TM02-30 Page 118

 + /TRANSI/NSTEP,KSTEP,MF,INCORE,/TRANSR/TIME,DT,DTINVF,TPARM
C
C+++++++++++++++++ USER AREA 2 +++
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS
C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE
C NO CONFLICT WITH NON-USER COMMON BLOCKS
C
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++
C
 DIMENSION BX(NCELL),BY(NCELL),BZ(NCELL),BPX(NCELL),BPY(NCELL),
 + BPZ(NCELL)
C
 DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE),
 + P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE),
 + VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE),
 + RS(NNODE,NPHASE,*),T(NNODE,NPHASE),H(NNODE,NPHASE),
 + RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL)
C
 DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3),
 + VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),IPT(*),
 + IBLK(5,NBLOCK),IPVERT(NCELL,8),IPNODN(NCELL,6),
 + IPFACN(NCELL,6),IPNODF(NFACE,4),IPNODB(NBDRY,4),
 + IPFACB(NBDRY),IWORK(*),WORK(*),CWORK(*)
C
C+++++++++++++++++ USER AREA 3 +++
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS
C
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS
C
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++
C
C---- STATEMENT FUNCTION FOR ADDRESSING
 IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I)
C
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG
C
 IVERS = 2
 ICHKPR = 2
C
C+++++++++++++++++ USER AREA 4 +++
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1
C
 IUSED = 1
C
C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++
C
 IF (IUSED.EQ.0) RETURN
C
C---- FRONTEND CHECKING OF USER ROUTINE
 IF (IUCALL.EQ.0) RETURN
C
C+++++++++++++++++ USER AREA 5 +++
C
C THIS ROUTINE IS ENTERED REPEATEDLY FOR EACH PHASE IN A MULTIPHASE
C CALCULATION. BODY FORCES CAN BE SET FOR A PARTICULAR PHASE USING
C THE VARIABLE IPHASE. EG. IF (IPHASE.EQ.2) WOULD ALLOW BODY FORCES
C FOR THE SECOND PHASE.
C
C----ADD USER-DEFINED BODY FORCES.
C
C----EXAMPLE 1: LOCALISED MOMENTUM SOURCE, EG. PROPELLOR.
C
C----USE IPREC TO FIND ADDRESSES

ANL/TD/TM02-30 Page 119

C
C CALL IPREC('DUCT','BLOCK','CENTRES',IPT
C + ,ILEN,JLEN,KLEN,CWORK,IWORK)
C
C IST = ILEN/2 + 1
C IFN = IST
C JST = 1
C JFN = JLEN/2
C
C SMOM = 10.0
C DO 103 K = 1, KLEN
C DO 102 J = JST, JFN
C DO 101 I = IST,IFN
C INODE = IP(I,J,K)
C BX(INODE) = BX(INODE) + SMOM
C 101 CONTINUE
C 102 CONTINUE
C 103 CONTINUE
C
C----EXAMPLE 2: LOCALISED RESISTANCE
C
C----USE IPREC TO FIND ADDRESSES
C
C CALL IPREC('DUCT','BLOCK','CENTRES',IPT
C + ,ILEN,JLEN,KLEN,CWORK,IWORK)
C
C IST = ILEN/4 + 1
C IFN = 3*ILEN/4
C JST = 1
C JFN = JLEN
C
C RESIST = 1.0E+2
C DO 203 K = 1, KLEN
C DO 202 J = JST, JFN
C DO 201 I = IST,IFN
C INODE = IP(I,J,K)
C BPX(INODE) = BPX(INODE) - RESIST
C BPY(INODE) = BPY(INODE) - RESIST
C BPZ(INODE) = BPZ(INODE) - RESIST
C 201 CONTINUE
C 202 CONTINUE
C 203 CONTINUE
C
C----EXAMPLE 3: LOCALISED RESISTANCES (DISCONTINUOUS CHANGE)
C
C----USE IPREC TO FIND ADDRESSES
C
C CALL IPREC('DUCT','BLOCK','CENTRES',IPT
C + ,ILEN,JLEN,KLEN,CWORK,IWORK)
C
C IST1 = ILEN/4 + 1
C IFN1 = IST1 + ILEN/4 - 1
C IST2 = IFN1 + 1
C IFN2 = ILEN - 1
C
C DO 313 K = 1, KLEN
C DO 312 J = 1, JLEN
C
C RESIST = 1.0
C DO 311 I = IST1,IFN1
C INODE = IP(I,J,K)
C BPX(INODE) = BPX(INODE) - RESIST
C BPY(INODE) = BPY(INODE) - RESIST

ANL/TD/TM02-30 Page 120

C BPZ(INODE) = BPZ(INODE) - RESIST
C 311 CONTINUE
C
C RESIST = 10.0
C DO 321 I = IST2,IFN2
C INODE = IP(I,J,K)
C BPX(INODE) = BPX(INODE) - RESIST
C BPY(INODE) = BPY(INODE) - RESIST
C BPZ(INODE) = BPZ(INODE) - RESIST
C 321 CONTINUE
C
C 312 CONTINUE
C 313 CONTINUE
C
C***************** ADDED BY S. A. ************************************
C###
C Calculating gradients of the electric potential
C###

 CALL GETVAR('USRBF','SCAL ',IVAR)
 IPHASE = 1

 CALL SETWRK('USRBF','WORK ','GRADT ',3*NCELL,JGRADT)
 CALL GRADS('USRBF','SCAL ',IVAR,IPHASE,SCAL(1,1,1)
 + ,WORK(JGRADT),XP,YP,ZP,VOL,AREA
 + ,IBLK,IPVERT,IPNODN,IPFACN,IPNODF,IPNODB
 + ,IPFACB,WORK,IWORK,CWORK)

 CALL IPALL('*','*','BLOCK','CENTRES',IPT
 + ,NPT,CWORK,IWORK)

 DO 203 K = 1, NPT
 INODE = IPT(K)

C###
C In all internal cells body force is set equal to
C Fx = dFi/dz - 1 * U
C Fz = -dFi/dx - 1 * W
C###

 BX(INODE) = BX(INODE) + WORK(JGRADT+2*NCELL+INODE-1)
 BPX(INODE) = BPX(INODE) + (-1.0D+0)
 BZ(INODE) = BZ(INODE) + (-WORK(JGRADT+INODE-1))
 BPZ(INODE) = BPZ(INODE) + (-1.0D+0)
 203 CONTINUE
 CALL DELWRK('USRBF','WORK ','GRADT ')
C***
C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++
C
 RETURN
C
 END
 SUBROUTINE USRSRC(IEQN,ICALL,CNAME,CALIAS,AM,SP,SU,CONV,U,V,W,P,
 + VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,XP,YP,ZP,VOL,
 + AREA,VPOR,ARPOR,WFACT,IPT,IBLK,IPVERT,IPNODN,
 + IPFACN,IPNODF,IPNODB,IPFACB,WORK,IWORK,CWORK)
C###
C###
C Program for adding source term for electric potential
C###
C###
C

ANL/TD/TM02-30 Page 121

C**
C
C UTILITY SUBROUTINE FOR USER-SUPPLIED SOURCES
C
C >>> IMPORTANT <<<
C >>> <<<
C >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<
C >>> THE DESIGNATED USER AREAS <<<
C
C**
C
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES
C CUSR SCDF SCDS SCED SCENRG SCHF SCMOM SCPCE SCSCAL
C SCTE SCVF
C
C***
C CREATED
C 08/03/90 ADB
C MODIFIED
C 04/03/91 ADB ALTERED ARGUMENT LIST.
C 28/08/91 IRH NEW STRUCTURE
C 28/09/91 IRH CHANGE EXAMPLE + ADD COMMON BLOCKS
C 10/02/92 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT,
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3
C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.
C 07/12/93 NSW INCLUDE CONV IN ARGUMENT LIST AND CHANGE IVERS
C TO 4
C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D
C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE
C 08/03/94 NSW CORRECT SPELLING
C 09/08/94 NSW CORRECT SPELLING.
C MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA.
C INCLUDE COMMENT ON MASS SOURCES.
C 19/12/94 NSW CHANGE FOR CFX-F3D
C 02/07/97 NSW UPDATE FOR CFX-4
C
C***
C
C SUBROUTINE ARGUMENTS
C
C IEQN - EQUATION NUMBER
C ICALL - SUBROUTINE CALL
C CNAME - EQUATION NAME
C CALIAS - ALIAS OF EQUATION NAME
C AM - OFF DIAGONAL MATRIX COEFFICIENTS
C SU - SU IN LINEARISATION OF SOURCE TERM
C SP - SP IN LINEARISATION OF SOURCE TERM
C CONV - CONVECTION COEFFICIENTS
C U - U COMPONENT OF VELOCITY
C V - V COMPONENT OF VELOCITY
C W - W COMPONENT OF VELOCITY
C P - PRESSURE
C VFRAC - VOLUME FRACTION
C DEN - DENSITY OF FLUID
C VIS - VISCOSITY OF FLUID
C TE - TURBULENT KINETIC ENERGY
C ED - EPSILON
C RS - REYNOLD STRESSES
C T - TEMPERATURE
C H - ENTHALPY
C RF - REYNOLD FLUXES
C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)

ANL/TD/TM02-30 Page 122

C XP - X COORDINATES OF CELL CENTRES
C YP - Y COORDINATES OF CELL CENTRES
C ZP - Z COORDINATES OF CELL CENTRES
C VOL - VOLUME OF CELLS
C AREA - AREA OF CELLS
C VPOR - POROUS VOLUME
C ARPOR - POROUS AREA
C WFACT - WEIGHT FACTORS
C
C IPT - 1D POINTER ARRAY
C IBLK - BLOCK SIZE INFORMATION
C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES
C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS
C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS
C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS
C
C WORK - REAL WORKSPACE ARRAY
C IWORK - INTEGER WORKSPACE ARRAY
C CWORK - CHARACTER WORKSPACE ARRAY
C
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST
C BE SET BY THE USER IN THIS ROUTINE.
C
C NOTE THAT WHEN USING MASS SOURCES, THE FLOWS THROUGH MASS FLOW
C BOUNDARIES ARE UNCHANGED. THE USER SHOULD THEREFORE INCLUDE AT
C LEAST ONE PRESSURE BOUNDARY FOR SUCH A CALCULATION.
C
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE
C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4
C USER MANUAL.
C
C***
C
 DOUBLE PRECISION AM
 DOUBLE PRECISION SP
 DOUBLE PRECISION SU
 DOUBLE PRECISION CONV
 DOUBLE PRECISION U
 DOUBLE PRECISION V
 DOUBLE PRECISION W
 DOUBLE PRECISION P
 DOUBLE PRECISION VFRAC
 DOUBLE PRECISION DEN
 DOUBLE PRECISION VIS
 DOUBLE PRECISION TE
 DOUBLE PRECISION ED
 DOUBLE PRECISION RS
 DOUBLE PRECISION T
 DOUBLE PRECISION H
 DOUBLE PRECISION RF
 DOUBLE PRECISION SCAL
 DOUBLE PRECISION XP
 DOUBLE PRECISION YP
 DOUBLE PRECISION ZP
 DOUBLE PRECISION VOL
 DOUBLE PRECISION AREA
 DOUBLE PRECISION VPOR
 DOUBLE PRECISION ARPOR
 DOUBLE PRECISION WFACT
 DOUBLE PRECISION WORK
 DOUBLE PRECISION SMALL

ANL/TD/TM02-30 Page 123

 DOUBLE PRECISION SORMAX
 DOUBLE PRECISION TIME
 DOUBLE PRECISION DT
 DOUBLE PRECISION DTINVF
 DOUBLE PRECISION TPARM
 LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,
 + LPOROS,LTRANS
C
 CHARACTER*(*) CWORK
 CHARACTER CNAME*6,CALIAS*24
C
C+++++++++++++++++ USER AREA 1 +++
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES
 DOUBLE PRECISION THESRC
C
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++
C
 COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM,
 + /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE,
 + NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST,
 + NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/DEVICE/NREAD,
 + NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,/LOGIC/LDEN,LVIS,
 + LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,LPOROS,
 + LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL,/SGLDBL/IFLGPR,ICHKPR,
 + /SPARM/SMALL,SORMAX,NITER,INDPRI,MAXIT,NODREF,NODMON,
 + /TRANSI/NSTEP,KSTEP,MF,INCORE,/TRANSR/TIME,DT,DTINVF,TPARM
C
C+++++++++++++++++ USER AREA 2 +++
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS
C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE
C NO CONFLICT WITH NON-USER COMMON BLOCKS
C
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++
C
 DIMENSION AM(NCELL,6,NPHASE),SP(NCELL,NPHASE),SU(NCELL,NPHASE),
 + CONV(NFACE,NPHASE)
C
 DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE),
 + P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE),
 + VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE),
 + RS(NNODE,NPHASE,6),T(NNODE,NPHASE),H(NNODE,NPHASE),
 + RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL)
C
 DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3),
 + VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),IPT(*),
 + IBLK(5,NBLOCK),IPVERT(NCELL,8),IPNODN(NCELL,6),
 + IPFACN(NCELL,6),IPNODF(NFACE,4),IPNODB(NBDRY,4),
 + IPFACB(NBDRY),IWORK(*),WORK(*),CWORK(*)
C
C+++++++++++++++++ USER AREA 3 +++
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS
C
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS
C
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++
C
C---- STATEMENT FUNCTION FOR ADDRESSING
 IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I)
C
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG
C
 IVERS = 4
 ICHKPR = 2

ANL/TD/TM02-30 Page 124

C
C+++++++++++++++++ USER AREA 4 +++
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1
C
 IUSED = 1
C
C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++
C
 IF (IUSED.EQ.0) RETURN
C
C---- FRONTEND CHECKING OF USER ROUTINE
 IF (IUCALL.EQ.0) RETURN
C
C---- ADD TO SOURCE TERMS
 IF (ICALL.EQ.1) THEN
C
C+++++++++++++++++ USER AREA 5 +++
C
C---- EXAMPLE (HEAT SOURCE) ADD 100W PER UNIT VOLUME IN BLOCK
C 'BLOCK-NUMBER-2'
C
C USE IPREC TO FIND ADDRESSES
C
C CALL IPREC('BLOCK-NUMBER-2','BLOCK','CENTRES',IPT,ILEN,JLEN,KLEN,
C + CWORK,IWORK)
C
C FIND VARIABLE NUMBER FOR ENTHALPY
C CALL GETVAR('USRSRC','H ',IVAR)
C IF ENTHALPY EQUATION ADD SOURCE TERMS
C IF (IVAR.EQ.IEQN) THEN
C LOOP OVER PATCH
C DO 103 K = 1, KLEN
C DO 102 J = 1, JLEN
C DO 101 I = 1, ILEN
C USE STATEMENT FUNCTION IP TO GET ADDRESSES
C INODE = IP(I,J,K)
C ADD HEAT SOURCE
C SU(INODE,1)=SU(INODE,1)+100.0*VOL(INODE)
C 101 CONTINUE
C 102 CONTINUE
C 103 CONTINUE
C ENDIF
C
C---- END OF EXAMPLE

C***************** ADDED BY S. A. ************************************

C###
C Getting numer of the user scalar
C###

 CALL GETVAR('USRSRC','SCAL ',IVAR)
 IPHASE = 1

 IF (IVAR.EQ.IEQN) THEN

C###
C If it is electric potential equation, calculate source
C First, gradients of velocities are calculated
C###

 CALL SETWRK('USRSRC','WORK ','UGRAD ',3*NCELL,JUGRAD)
 CALL SETWRK('USRSRC','WORK ','VGRAD ',3*NCELL,JVGRAD)

ANL/TD/TM02-30 Page 125

 CALL SETWRK('USRSRC','WORK ','WGRAD ',3*NCELL,JWGRAD)

 CALL GRADV('USRSRC',IPHASE,U(1,IPHASE),V(1,IPHASE)
 + ,W(1,IPHASE),WORK(JUGRAD),WORK(JVGRAD)
 + ,WORK(JWGRAD),XP,YP,ZP,VOL,AREA
 + ,IBLK,IPVERT,IPNODN,IPFACN,IPNODF,IPNODB
 + ,IPFACB,WORK,IWORK,CWORK)
 CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK)

 DO 200 I=1,NPT
 INODE=IPT(I)
C###
C At all internal cells the source term is equal to
C S = - V * (-dW/dx + dU/dz)
C###
 THESRC =
 + (-WORK(JWGRAD+INODE-1))
 + +WORK(JUGRAD+2*NCELL+INODE-1)
 SU(INODE,1)=SU(INODE,1)-VOL(INODE)*THESRC
 200 CONTINUE
 CALL DELWRK('USRSRC','WORK ','UGRAD ')

 ENDIF

C***

C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++
 END IF
C
C---- OVERWRITE SOURCE TERMS
 IF (ICALL.EQ.2) THEN
C
C+++++++++++++++++ USER AREA 6 +++
C
C---- EXAMPLE (HEAT SOURCE) OVERWRITE WITH 100W PER UNIT VOLUME IN
C ALL INTERIOR CELLS
C
C CALL GETVAR('USRSRC','H ',IVAR)
C
C IF (IVAR.EQ.IEQN) THEN
C USE IPALL TO FIND 1D ADDRESSES OF ALL CELL CENTRES
C CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK)
C LOOP OVER ALL INTERIOR CELLS
C DO 200 I=1,NPT
C USE ARRAY IPT TO GET ADDRESS
C INODE=IPT(I)
C OVERWRITE SOURCE TERMS
C SU(INODE,1)=100.0*VOL(INODE)
C 200 CONTINUE
C ENDIF
C
C---- END OF EXAMPLE
C+++++++++++++++++ END OF USER AREA 6 ++++++++++++++++++++++++++++++++++
C
 END IF
C
 RETURN
C
 END
 SUBROUTINE USRTRN(U,V,W,P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,XP,
 + YP,ZP,VOL,AREA,VPOR,ARPOR,WFACT,CONV,IPT,IBLK,
 + IPVERT,IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,WORK,
 + IWORK,CWORK)

ANL/TD/TM02-30 Page 126

C###
C###
C Program for calculation additional data sets
C###
C###
C
C**
C
C USER SUBROUTINE TO ALLOW USERS TO MODIFY OR MONITOR THE SOLUTION AT
C THE END OF EACH TIME STEP
C THIS SUBROUTINE IS CALLED BEFORE THE START OF THE RUN AS WELL AS AT
C THE END OF EACH TIME STEP
C
C >>> IMPORTANT <<<
C >>> <<<
C >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<
C >>> THE DESIGNATED USER AREAS <<<
C
C**
C
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES
C CUSR TRNMOD
C
C***
C CREATED
C 27/04/90 ADB
C MODIFIED
C 05/08/91 IRH NEW STRUCTURE
C 01/10/91 DSC REDUCE COMMENT LINE GOING OVER COLUMN 72.
C 29/11/91 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT,
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2
C 05/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3
C 03/07/92 DSC CORRECT COMMON MLTGRD.
C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.
C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D
C 22/08/94 NSW MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA
C 19/12/94 NSW CHANGE FOR CFX-F3D
C 02/07/97 NSW UPDATE FOR CFX-4
C 02/07/99 NSW INCLUDE NEW EXAMPLE FOR CALCULATING FLUX OF A
C SCALAR AT A PRESSURE BOUNDARY
C
C***
C
C SUBROUTINE ARGUMENTS
C
C U - U COMPONENT OF VELOCITY
C V - V COMPONENT OF VELOCITY
C W - W COMPONENT OF VELOCITY
C P - PRESSURE
C VFRAC - VOLUME FRACTION
C DEN - DENSITY OF FLUID
C VIS - VISCOSITY OF FLUID
C TE - TURBULENT KINETIC ENERGY
C ED - EPSILON
C RS - REYNOLD STRESSES
C T - TEMPERATURE
C H - ENTHALPY
C RF - REYNOLD FLUXES
C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)
C XP - X COORDINATES OF CELL CENTRES
C YP - Y COORDINATES OF CELL CENTRES
C ZP - Z COORDINATES OF CELL CENTRES
C VOL - VOLUME OF CELLS

ANL/TD/TM02-30 Page 127

C AREA - AREA OF CELLS
C VPOR - POROUS VOLUME
C ARPOR - POROUS AREA
C WFACT - WEIGHT FACTORS
C CONV - CONVECTION COEFFICIENTS
C
C IPT - 1D POINTER ARRAY
C IBLK - BLOCK SIZE INFORMATION
C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES
C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS
C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS
C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS
C
C WORK - REAL WORKSPACE ARRAY
C IWORK - INTEGER WORKSPACE ARRAY
C CWORK - CHARACTER WORKSPACE ARRAY
C
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST
C BE SET BY THE USER IN THIS ROUTINE.
C
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE
C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4
C USER MANUAL.
C
C**
C
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 DOUBLE PRECISION U
 DOUBLE PRECISION V
 DOUBLE PRECISION W
 DOUBLE PRECISION P
 DOUBLE PRECISION VFRAC
 DOUBLE PRECISION DEN
 DOUBLE PRECISION VIS
 DOUBLE PRECISION TE
 DOUBLE PRECISION ED
 DOUBLE PRECISION RS
 DOUBLE PRECISION T
 DOUBLE PRECISION H
 DOUBLE PRECISION RF
 DOUBLE PRECISION SCAL
 DOUBLE PRECISION XP
 DOUBLE PRECISION YP
 DOUBLE PRECISION ZP
 DOUBLE PRECISION VOL
 DOUBLE PRECISION AREA
 DOUBLE PRECISION VPOR
 DOUBLE PRECISION ARPOR
 DOUBLE PRECISION WFACT
 DOUBLE PRECISION CONV
 DOUBLE PRECISION WORK
 DOUBLE PRECISION SMALL
 DOUBLE PRECISION SORMAX
 DOUBLE PRECISION DTUSR
 DOUBLE PRECISION TIME
 DOUBLE PRECISION DT
 DOUBLE PRECISION DTINVF
 DOUBLE PRECISION TPARM
 DOUBLE PRECISION SGNWL
 LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,

ANL/TD/TM02-30 Page 128

 + LPOROS,LTRANS
C
 CHARACTER*(*) CWORK
C
C++++++++++++++++ USER AREA 1 +++
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES
 DOUBLE PRECISION SUMU, SUMP, ALFAN, CN, BETAN, GAMMAN, SGN
 DOUBLE PRECISION CS1, CS2, SN1, SN2, CH1, CH2, SH1, SH2
 DOUBLE PRECISION CSG, CHB, DN, EN, KN, DPN
 DOUBLE PRECISION FRAC1, FRAC2, FRAC3, FRAC4
 DOUBLE PRECISION E1, E2, E3, E4, EB, UN, PNC
C++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++
C
 COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM,
 + /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE,
 + NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST,
 + NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/CONC/NCONC,
 + /DEVICE/NREAD,NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,
 + /LOGIC/LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,
 + LAXIS,LPOROS,LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL,
 + /SGLDBL/IFLGPR,ICHKPR,/SPARM/SMALL,SORMAX,NITER,INDPRI,
 + MAXIT,NODREF,NODMON,/TIMUSR/DTUSR,/TRANSI/NSTEP,KSTEP,MF,
 + INCORE,/TRANSR/TIME,DT,DTINVF,TPARM
C
C++++++++++++++++ USER AREA 2 +++
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS
C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE
C NO CONFLICT WITH NON-USER COMMON BLOCKS
C
C++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++
C
 DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE),
 + P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE),
 + VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE),
 + RS(NNODE,NPHASE,6),T(NNODE,NPHASE),H(NNODE,NPHASE),
 + RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL)
 DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3),
 + VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),
 + CONV(NFACE,NPHASE),IPT(*),IBLK(5,NBLOCK),
 + IPVERT(NCELL,8),IPNODN(NCELL,6),IPFACN(NCELL,6),
 + IPNODF(NFACE,4),IPNODB(NBDRY,4),IPFACB(NBDRY),IWORK(*),
 + WORK(*),CWORK(*)
 DIMENSION SGNWL(6)
C
C++++++++++++++++ USER AREA 3 +++
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS
C
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS
C
C++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++
C
 DATA SGNWL/1.0D0,1.0D0,1.0D0,-1.0D0,-1.0D0,-1.0D0/
C
C---- STATEMENT FUNCTION FOR ADDRESSING
 IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I)
C
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG
C
 IVERS = 3
 ICHKPR = 2
C
C++++++++++++++++ USER AREA 4 +++
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1

ANL/TD/TM02-30 Page 129

C
 IUSED = 1
C
C++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++
C
 IF (IUSED.EQ.0) RETURN
C
C---- FRONTEND CHECKING OF USER ROUTINE
 IF (IUCALL.EQ.0) RETURN
C
C++++++++++++++++ USER AREA 5 +++
C
C---- EXAMPLE (SET TIME INCREMENT FOR NEXT TIME STEP)
C
C DTUSR = 0.1
C
C---- END OF EXAMPLE
C
C---- EXAMPLE (CALCULATE FLUX OF FIRST SCALAR AT A PRESSURE BOUNDARY)
C
C IPHASE = 1
C FLUX = 0.0
C USE IPALL TO FIND ADDRESSES OF BOUNDARY NODES ON PATCH PRESS1
C CALL IPALL('PRESS1','PRESS','PATCH','CENTRES'
C + ,IPT,NPT,CWORK,IWORK)
C LOOP OVER ALL BOUNDARY NODES
C DO 300 I=1,NPT
C USE ARRAY IPT TO GET ADDRESS
C INODE = IPT(I)
C IBDRY = INODE - NCELL
C IFACE = IPFACB(IBDRY)
C INDUM = IPNODB(IBDRY,2)
C NWL = IPNODB(IBDRY,4)
C FLUX = FLUX
C + + SGNWL(NWL)*CONV(IFACE,IPHASE)*SCAL(INDUM,IPHASE,1)
C 300 CONTINUE
C
C---- END OF EXAMPLE

C***************** ADDED BY S. A. ************************************
C###
C If not the first iteration,
C additional scalars are calculated
C###

 IF (NITER.GT.1) THEN

 IPHASE = 1
 CALL GETVAR('USRTRN','SCAL ',IT)

C###
C Calculate gradient of the electric potential
C###

 CALL SETWRK('USRTRN','WORK ','GRADT ',3*NCELL,JGRADT)
 CALL GRADS('USRTRN','SCAL ',IT,IPHASE,SCAL(1,1,1)
 + ,WORK(JGRADT),XP,YP,ZP,VOL,AREA
 + ,IBLK,IPVERT,IPNODN,IPFACN,IPNODF,IPNODB
 + ,IPFACB,WORK,IWORK,CWORK)
 CALL IPALL('*','*','BLOCK','CENTRES',IPT
 + ,NPT,CWORK,IWORK)

 DO 203 K = 1, NPT

ANL/TD/TM02-30 Page 130

 INODE=IPT(K)
C###
C Calculate electric current in x and y directions
C###
 SCAL(INODE,1,2)=-WORK(JGRADT+INODE-1)-W(INODE,1)
 SCAL(INODE,1,3)=-WORK(JGRADT+NCELL+INODE-1)
 203 CONTINUE
 CALL DELWRK('USRTRN','WORK ','GRADT ')

C###
C Exact solution for electric potential and velocity W
C (Hunt solution)
C###

 CALL GETVAR('USRTRN','SCAL ',IT)
 CALL GETSCA('USRD EXACT POT',IEP,CWORK)
 CALL GETSCA('USRD EXACT W',IW,CWORK)

 IPHS = 1

 AA = 1.0D0
 DD = 1.0D0
 HA = 200.0D0
 NTERMS = 10000
 PI = 3.14159265358979D0

 CALL IPALL('*','*','BLOCK','CENTRES',IPT
 + ,NPT,CWORK,IWORK)
 DO 110 K = 1, NPT
 INODE = IPT(K)
 X = -XP(INODE)
 YY = YP(INODE)
 SUMU = 0.D0
 SUMB = 0.D0
 SUMP = 0.D0
 SGN = 1.D0
 DO 210 N = 0,NTERMS
 ALFAN = (DFLOAT(N)+0.5D0)*PI/AA
 EN = 2.D0*SGN/AA/ALFAN/(ALFAN**2.+Ha**2.)
 BETAN = DSQRT(ALFAN/2.D0*(ALFAN+DSQRT(ALFAN**2.+Ha**2.)))
 GAMMAN = DSQRT(ALFAN/2.D0*(-ALFAN+DSQRT(ALFAN**2.+Ha**2.)))
 IF ((BETAN*(X+DD).LT.20.D0)
 * .AND.(-BETAN*(X-DD).LT.20.D0))THEN
 CS1 = DCOS(GAMMAN*(X+DD))
 CS2 = DCOS(GAMMAN*(X-DD))
 SN1 = DSIN(GAMMAN*(X+DD))
 SN2 = DSIN(GAMMAN*(X-DD))
 CH1 = DCOSH(BETAN*(X+DD))
 CH2 = DCOSH(BETAN*(X-DD))
 SH1 = DSINH(BETAN*(X+DD))
 SH2 = DSINH(BETAN*(X-DD))
 CSG = DCOS(2.D0*GAMMAN*DD)
 CHB = DCOSH(2.D0*BETAN*DD)
 CN = CH1*CS2 + CH2*CS1
 DN = -SH1*SN2 - SH2*SN1
 KN = CHB + CSG
 DPN = (BETAN*(SH2*SN1-SH1*SN2)+GAMMAN*(CH1*CS2-CH2*CS1))
 * /(BETAN**2.+GAMMAN**2.)
 FRAC1 = (CN - HA/ALFAN*DN)/KN
 FRAC3 = DPN*(Ha/ALFAN+ALFAN/HA)/KN
 ELSE
 E1 = DEXP(-BETAN*(X+DD))

ANL/TD/TM02-30 Page 131

 E2 = DEXP(BETAN*(X-DD))
 E3 = DEXP(-2.D0*BETAN*(X+DD))
 E4 = DEXP(2.D0*BETAN*(X-DD))
 EB = DEXP(-2.D0*BETAN*DD)
 CS1 = DCOS(GAMMAN*(X+DD))
 CS2 = DCOS(GAMMAN*(X-DD))
 SN1 = DSIN(GAMMAN*(X+DD))
 SN2 = DSIN(GAMMAN*(X-DD))
 CSG = DCOS(2.D0*GAMMAN*DD)

 CN = 0.5D0*(E2*CS2*(1.D0+E3)+E1*CS1*(E4+1.D0))
 DN = 0.5D0*(-E2*SN2*(1.D0-E3)-E1*SN1*(E4-1.D0))
 KN = 0.5D0*(1.D0+EB**2.) + EB*CSG
 DPN = (-BETAN*(E2*SN2*(1.D0+E3)+E1*SN1*(E4+1.D0))
 * + GAMMAN*(E2*CS2*(1.D0-E3)+E1*CS1*(E4-1.D0)))
 * /(BETAN**2.+GAMMAN**2.)/2.D0

 FRAC1 = (CN - HA/ALFAN*DN)/KN
 FRAC3 = DPN*(Ha/ALFAN+ALFAN/HA)/KN
 ENDIF
 UN = EN*(1.D0 - FRAC1)
 PN = EN*(FRAC3)
 SUMU = SUMU + UN*DCOS(ALFAN*YY)
 SUMP = SUMP + PN*DCOS(ALFAN*YY)
 SGN = -SGN
 210 CONTINUE
 VEL = SUMU*Ha**2.
 POT = SUMP*Ha**2.
 SCAL(INODE,1,IEP) = POT
 SCAL(INODE,1,IW) = VEL

 110 CONTINUE
 ENDIF
 write(6,*) '######### Subroutine USRTRN finished'
C***

C++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++
C
 RETURN

 END

 SUBROUTINE USRBCS(VARBCS,VARAMB,A,B,C,ACND,BCND,CCND,IWGVEL,
 + NDVWAL,FLOUT,NLABEL,NSTART,NEND,NCST,NCEN,U,V,W,
 + P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,XP,YP,ZP,
 + VOL,AREA,VPOR,ARPOR,WFACT,IPT,IBLK,IPVERT,
 + IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,WORK,IWORK,
 + CWORK)
C###
C###
C Program for setting boundary conditions
C###
C###
C
C***
C
C USER ROUTINE TO SET REALS AT BOUNDARIES.
C
C >>> IMPORTANT <<<
C >>> <<<
C >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<
C >>> THE DESIGNATED USER AREAS <<<

ANL/TD/TM02-30 Page 132

C
C***
C
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINE
C CUSR SRLIST
C
C***
C CREATED
C 30/11/88 ADB
C MODIFIED
C 08/09/90 ADB RESTRUCTURED FOR USER-FRIENDLINESS.
C 10/08/91 IRH FURTHER RESTRUCTURING ADD ACND BCND CCND
C 22/09/91 IRH CHANGE ICALL TO IUCALL + ADD /SPARM/
C 10/03/92 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT,
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3
C 30/06/92 NSW INCLUDE FLAG FOR CALLING BY ITERATION
C INSERT EXTRA COMMENTS
C 03/08/92 NSW MODIFY DIMENSION STATEMENTS FOR VAX
C 21/12/92 CSH INCREASE IVERS TO 4
C 02/08/93 NSW INCORRECT AND MISLEADING COMMENT REMOVED
C 05/11/93 NSW INDICATE USE OF FLOUT IN MULTIPHASE FLOWS
C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.
C 01/02/94 NSW SET VARIABLE POINTERS IN WALL EXAMPLE.
C CHANGE FLOW3D TO CFDS-FLOW3D.
C MODIFY MULTIPHASE MASS FLOW BOUNDARY TREATMENT.
C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE
C 02/07/94 BAS SLIDING GRIDS - ADD NEW ARGUMENT IWGVEL
C TO ALLOW VARIANTS OF TRANSIENT-GRID WALL BC
C CHANGE VERSION NUMBER TO 5
C 09/08/94 NSW CORRECT SPELLING
C MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA
C 19/12/94 NSW CHANGE FOR CFX-F3D
C 02/02/95 NSW CHANGE COMMON /IMFBMP/
C 02/06/97 NSW MAKE EXAMPLE MORE LOGICAL
C 02/07/97 NSW UPDATE FOR CFX-4
C 08/09/98 NSW CORRECT SIZE OF WALL ARRAY IN COMMENT
C 22/05/00 NSW INITIALISE IUBCSF
C
C***
C
C SUBROUTINE ARGUMENTS
C
C VARBCS - REAL BOUNDARY CONDITIONS
C VARAMB - AMBIENT VALUE OF VARIABLES
C A - COEFFICIENT IN WALL BOUNDARY CONDITION
C B - COEFFICIENT IN WALL BOUNDARY CONDITION
C C - COEFFICIENT IN WALL BOUNDARY CONDITION
C ACND - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION
C BCND - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION
C CCND - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION
C IWGVEL - USAGE OF INPUT VELOCITIES (0 = AS IS,1 = ADD GRID MOTION)
C NDVWAL - FIRST DIMENSION OF ARRAY IWGVEL
C FLOUT - MASS FLOW/FRACTIONAL MASS FLOW
C NLABEL - NUMBER OF DISTINCT OUTLETS
C NSTART - ARRAY POINTER
C NEND - ARRAY POINTER
C NCST - ARRAY POINTER
C NCEN - ARRAY POINTER
C U - U COMPONENT OF VELOCITY
C V - V COMPONENT OF VELOCITY
C W - W COMPONENT OF VELOCITY
C P - PRESSURE

ANL/TD/TM02-30 Page 133

C VFRAC - VOLUME FRACTION
C DEN - DENSITY OF FLUID
C VIS - VISCOSITY OF FLUID
C TE - TURBULENT KINETIC ENERGY
C ED - EPSILON
C RS - REYNOLD STRESSES
C T - TEMPERATURE
C H - ENTHALPY
C RF - REYNOLD FLUXES
C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS)
C XP - X COORDINATES OF CELL CENTRES
C YP - Y COORDINATES OF CELL CENTRES
C ZP - Z COORDINATES OF CELL CENTRES
C VOL - VOLUME OF CELLS
C AREA - AREA OF CELLS
C VPOR - POROUS VOLUME
C ARPOR - POROUS AREA
C WFACT - WEIGHT FACTORS
C
C IPT - 1D POINTER ARRAY
C IBLK - BLOCK SIZE INFORMATION
C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES
C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS
C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS
C IPFACB - POINTER TO NODES FROM BOUNDARY FACES
C
C WORK - REAL WORKSPACE ARRAY
C IWORK - INTEGER WORKSPACE ARRAY
C CWORK - CHARACTER WORKSPACE ARRAY
C
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST
C BE SET BY THE USER IN THIS ROUTINE.
C
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE
C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4
C USER MANUAL.
C
C***
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 DOUBLE PRECISION VARBCS
 DOUBLE PRECISION VARAMB
 DOUBLE PRECISION A
 DOUBLE PRECISION B
 DOUBLE PRECISION C
 DOUBLE PRECISION ACND
 DOUBLE PRECISION BCND
 DOUBLE PRECISION CCND
 DOUBLE PRECISION FLOUT
 DOUBLE PRECISION U
 DOUBLE PRECISION V
 DOUBLE PRECISION W
 DOUBLE PRECISION P
 DOUBLE PRECISION VFRAC
 DOUBLE PRECISION DEN
 DOUBLE PRECISION VIS
 DOUBLE PRECISION TE
 DOUBLE PRECISION ED
 DOUBLE PRECISION RS
 DOUBLE PRECISION T
 DOUBLE PRECISION H
 DOUBLE PRECISION RF

ANL/TD/TM02-30 Page 134

 DOUBLE PRECISION SCAL
 DOUBLE PRECISION XP
 DOUBLE PRECISION YP
 DOUBLE PRECISION ZP
 DOUBLE PRECISION VOL
 DOUBLE PRECISION AREA
 DOUBLE PRECISION VPOR
 DOUBLE PRECISION ARPOR
 DOUBLE PRECISION WFACT
 DOUBLE PRECISION WORK
 DOUBLE PRECISION SMALL
 DOUBLE PRECISION SORMAX
 DOUBLE PRECISION TIME
 DOUBLE PRECISION DT
 DOUBLE PRECISION DTINVF
 DOUBLE PRECISION TPARM
 LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,
 + LPOROS,LTRANS
C
 CHARACTER*(*) CWORK
C
C+++++++++++++++++ USER AREA 1 +++
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES
 DOUBLE PRECISION SUMU, SUMP, ALFAN, CN, BETAN, GAMMAN, SGN
 DOUBLE PRECISION CS1, CS2, SN1, SN2, CH1, CH2, SH1, SH2
 DOUBLE PRECISION CSG, CHB, DN, EN, KN, DPN
 DOUBLE PRECISION FRAC1, FRAC2, FRAC3, FRAC4
 DOUBLE PRECISION E1, E2, E3, E4, EB, UN, PNC
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++
C
 COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM,
 + /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE,
 + NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST,
 + NRLIST,NTOPOL,/BCSOUT/IFLOUT,/CHKUSR/IVERS,IUCALL,IUSED,
 + /DEVICE/NREAD,NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,
 + /IMFBMP/IMFBMP,JMFBMP,/LOGIC/LDEN,LVIS,LTURB,LTEMP,LBUOY,
 + LSCAL,LCOMP,LRECT,LCYN,LAXIS,LPOROS,LTRANS,/MLTGRD/MLEVEL,
 + NLEVEL,ILEVEL,/SGLDBL/IFLGPR,ICHKPR,/SPARM/SMALL,SORMAX,
 + NITER,INDPRI,MAXIT,NODREF,NODMON,/TRANSI/NSTEP,KSTEP,MF,
 + INCORE,/TRANSR/TIME,DT,DTINVF,TPARM,/UBCSFL/IUBCSF
C
C+++++++++++++++++ USER AREA 2 +++
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS
C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE
C NO CONFLICT WITH NON-USER COMMON BLOCKS
C
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++
C
 DIMENSION VARBCS(NVAR,NPHASE,NCELL+1:NNODE),VARAMB(NVAR,NPHASE),
 + A(4+NSCAL,NPHASE,NSTART:*),B(4+NSCAL,NPHASE,NSTART:*),
 + C(4+NSCAL,NPHASE,NSTART:*),FLOUT(*),ACND(NCST:*),
 + BCND(NCST:*),CCND(NCST:*),IWGVEL(NDVWAL,NPHASE)
C
 DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE),
 + P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE),
 + VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE),
 + RS(NNODE,NPHASE,6),T(NNODE,NPHASE),H(NNODE,NPHASE),
 + RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL)
C
 DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3),
 + VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),IPT(*),
 + IBLK(5,NBLOCK),IPVERT(NCELL,8),IPNODN(NCELL,6),
 + IPFACN(NCELL,6),IPNODF(NFACE,4),IPNODB(NBDRY,4),

ANL/TD/TM02-30 Page 135

 + IPFACB(NBDRY),IWORK(*),WORK(*),CWORK(*)
C
C+++++++++++++++++ USER AREA 3 +++
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS
C
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS
C
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++
C
C---- STATEMENT FUNCTION FOR ADDRESSING
 IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I)
C
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG
C
 IVERS = 5
 ICHKPR = 2
C
C+++++++++++++++++ USER AREA 4 +++
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1
C AND SET IUBCSF FLAG:
C BOUNDARY CONDITIONS NOT CHANGING IUBCSF=0
C BOUNDARY CONDITIONS CHANGING WITH ITERATION IUBCSF=1
C BOUNDARY CONDITIONS CHANGING WITH TIME IUBCSF=2
C BOUNDARY CONDITIONS CHANGING WITH TIME AND ITERATION IUBCSF=3
C
 IUSED = 1
 IUBCSF = 0
C
C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++
C
 IF (IUSED.EQ.0) RETURN
C
C---- FRONTEND CHECKING OF USER ROUTINE
 IF (IUCALL.EQ.0) RETURN
C
C+++++++++++++++++ USER AREA 5 +++
C
C---- AREA FOR SETTING VALUES AT INLETS, PRESSURE BOUNDARIES
C AND OUTLETS. (NOTE THAT THE MASS FLOW AT OUTLETS IS
C SPECIFIED IN USER AREA 7)
C
C IF USING A REYNOLDS STRESS OR FLUX MODEL, NOTE THAT AT INLETS
C IT IS IMPORTANT THAT THE USER SETS ALL COMPONENTS OF THE
C REYNOLDS STRESS AND FLUX AND THE TURBULENT KINETIC ENERGY
C AS WELL AS THE ENERGY DISSIPATION RATE.
C
C SET THE VALUES IN VARBCS(NVAR,NPHASE,ILEN,JLEN,KLEN)
C
C---- EXAMPLE: SETTING A LINEAR T PROFILE ON INLET PATCH 'ENTRANCE'
C LEAVE OTHER VARIABLES AS SET IN COMMAND LANGUAGE
C
C-- INTERROGATE GETVAR FOR VARIABLE NUMBERS.
C
C CALL GETVAR('USRBCS','T ',IT)
C
C SET IPHS = 1 FOR SINGLE PHASE FLOW.
C
C IPHS = 1
C
C USE IPREC TO FIND ADDRESSES
C
C CALL IPREC('ENTRANCE','PATCH','CENTRES',IPT,ILEN,JLEN,KLEN,
C + CWORK,IWORK)

ANL/TD/TM02-30 Page 136

C
C XMAX=2.0
C XMIN=1.0
C TMAX=300.0
C TMIN=250.0
C LOOP OVER PATCH
C DO 103 K = 1, KLEN
C DO 102 J = 1, JLEN
C DO 101 I = 1, ILEN
C USE STATEMENT FUNCTION IP TO GET ADDRESSES
C INODE = IP(I,J,K)
C SET VARBCS
C F=(XP(INODE)-XMIN)/(XMAX-XMIN)
C VARBCS(IT,IPHS,INODE) = F*TMAX + (1.0-F)*TMIN
C 101 CONTINUE
C 102 CONTINUE
C 103 CONTINUE
C
C----END OF EXAMPLE
C
C******************************* ADDED BY S. A. **********************

 CALL GETVAR('USRBCS','SCAL ',IT)
 CALL GETVAR('USRBCS','W ',IW)
 IPHS = 1

 AA = 1.0D0
 DD = 1.0D0
 HA = 200.0D0
 NTERMS = 10000
 PI = 3.14159265358979D0

C###
C At patch entrance of type inlet velocity profile
C and electric potential are set
C###

 CALL IPALL('ENTRANCE','*','PATCH','CENTRES',IPT
 + ,NPT,CWORK,IWORK)
 DO 110 K = 1, NPT
 INODE = IPT(K)
 X = -XP(INODE)
 YY = YP(INODE)
 SUMU = 0.D0
 SUMB = 0.D0
 SUMP = 0.D0
 SGN = 1.D0
 DO 210 N = 0,NTERMS
 ALFAN = (DFLOAT(N)+0.5D0)*PI/AA
 EN = 2.D0*SGN/AA/ALFAN/(ALFAN**2.+Ha**2.)
 BETAN = DSQRT(ALFAN/2.D0*(ALFAN+DSQRT(ALFAN**2.+Ha**2.)))
 GAMMAN = DSQRT(ALFAN/2.D0*(-ALFAN+DSQRT(ALFAN**2.+Ha**2.)))
 IF ((BETAN*(X+DD).LT.20.D0)
 * .AND.(-BETAN*(X-DD).LT.20.D0))THEN
 CS1 = DCOS(GAMMAN*(X+DD))
 CS2 = DCOS(GAMMAN*(X-DD))
 SN1 = DSIN(GAMMAN*(X+DD))
 SN2 = DSIN(GAMMAN*(X-DD))
 CH1 = DCOSH(BETAN*(X+DD))
 CH2 = DCOSH(BETAN*(X-DD))
 SH1 = DSINH(BETAN*(X+DD))
 SH2 = DSINH(BETAN*(X-DD))
 CSG = DCOS(2.D0*GAMMAN*DD)

ANL/TD/TM02-30 Page 137

 CHB = DCOSH(2.D0*BETAN*DD)
 CN = CH1*CS2 + CH2*CS1
 DN = -SH1*SN2 - SH2*SN1
 KN = CHB + CSG
 DPN = (BETAN*(SH2*SN1-SH1*SN2)+GAMMAN*(CH1*CS2-CH2*CS1))
 * /(BETAN**2.+GAMMAN**2.)
 FRAC1 = (CN - HA/ALFAN*DN)/KN
 FRAC3 = DPN*(Ha/ALFAN+ALFAN/HA)/KN
 ELSE
 E1 = DEXP(-BETAN*(X+DD))
 E2 = DEXP(BETAN*(X-DD))
 E3 = DEXP(-2.D0*BETAN*(X+DD))
 E4 = DEXP(2.D0*BETAN*(X-DD))
 EB = DEXP(-2.D0*BETAN*DD)
 CS1 = DCOS(GAMMAN*(X+DD))
 CS2 = DCOS(GAMMAN*(X-DD))
 SN1 = DSIN(GAMMAN*(X+DD))
 SN2 = DSIN(GAMMAN*(X-DD))
 CSG = DCOS(2.D0*GAMMAN*DD)

 CN = 0.5D0*(E2*CS2*(1.D0+E3)+E1*CS1*(E4+1.D0))
 DN = 0.5D0*(-E2*SN2*(1.D0-E3)-E1*SN1*(E4-1.D0))
 KN = 0.5D0*(1.D0+EB**2.) + EB*CSG
 DPN = (-BETAN*(E2*SN2*(1.D0+E3)+E1*SN1*(E4+1.D0))
 * + GAMMAN*(E2*CS2*(1.D0-E3)+E1*CS1*(E4-1.D0)))
 * /(BETAN**2.+GAMMAN**2.)/2.D0

 FRAC1 = (CN - HA/ALFAN*DN)/KN
 FRAC3 = DPN*(Ha/ALFAN+ALFAN/HA)/KN
 ENDIF
 UN = EN*(1.D0 - FRAC1)
 PN = EN*(FRAC3)
 SUMU = SUMU + UN*DCOS(ALFAN*YY)
 SUMP = SUMP + PN*DCOS(ALFAN*YY)
 SGN = -SGN
 210 CONTINUE
 VEL = SUMU*Ha**2.
 POT = SUMP*Ha**2.
 VARBCS(IT,1,INODE) = POT
 VARBCS(IW,1,INODE) = VEL

 110 CONTINUE

 write(6,*) '######### Subroutine USRBCS finished'
C***

C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++
C
C+++++++++++++++++ USER AREA 6 +++
C
C---- AREA FOR SETTING VALUES AT WALLS
C
C USE A(4+NSCAL,NPHASE,NNODE)
C WHERE NSCAL = NO. OF SCALARS, AND NPHASE = NO. OF PHASES.
C
C THE CONVENTION FOR VARIABLE NUMBERS IS DIFFERENT IN THIS ROUTINE
C FROM THAT IN THE REST OF THE PROGRAM. IT IS:
C
C IU = 1, IV = 2 , IW = 3, IT = 4, IS = 5
C
C---- EXAMPLE: SETTING FREE SLIP BOUNDARY CONDITIONS AT ALL WALLS
C AND SETTING T=300.0 AND SCALAR1 AND SCALAR2 =0.0
C ON WALL1. SET T=400.0 ON CONDUCTING SOLID BOUNDARY WALL2

ANL/TD/TM02-30 Page 138

C
C-- SET POINTERS
C
C IU = 1
C IV = 2
C IW = 3
C IT = 4
C IS = 5
C
C-- SET IPHS = 1 FOR SINGLE PHASE FLOW.
C
C IPHS = 1
C
C USE IPALL TO FIND 1D ADDRESSES OF A GROUP OF PATCH CENTRES
C
C CALL IPALL('*','WALL','PATCH','CENTRES',IPT,NPT,CWORK,IWORK)
C
C LOOP OVER GROUP OF PATCHES
C DO 200 I=1,NPT
C USE ARRAY IPT TO GET ADDRESS
C INODE=IPT(I)
C A(IU,IPHS,INODE) = 0.0
C B(IU,IPHS,INODE) = 1.0
C C(IU,IPHS,INODE) = 0.0
C
C A(IV,IPHS,INODE) = 0.0
C B(IV,IPHS,INODE) = 1.0
C C(IV,IPHS,INODE) = 0.0
C
C A(IW,IPHS,INODE) = 0.0
C B(IW,IPHS,INODE) = 1.0
C C(IW,IPHS,INODE) = 0.0
C 200 CONTINUE
C
C USE IPREC TO FIND ADDRESSES OF SINGLE PATCH
C
C CALL IPREC('WALL1','PATCH','CENTRES',IPT,ILEN,JLEN,KLEN,
C + CWORK,IWORK)
C LOOP OVER PATCH
C DO 203 K = 1, KLEN
C DO 202 J = 1, JLEN
C DO 201 I = 1, ILEN
C USE STATEMENT FUNCTION IP TO GET ADDRESSES
C INODE = IP(I,J,K)
C
C A(IT,IPHS,INODE) = 1.0
C B(IT,IPHS,INODE) = 0.0
C C(IT,IPHS,INODE) = 300.0
C
C A(IS,IPHS,INODE) = 1.0
C B(IS,IPHS,INODE) = 0.0
C C(IS,IPHS,INODE) = 0.0
C
C A(IS+1,IPHS,INODE) = 1.0
C B(IS+1,IPHS,INODE) = 0.0
C C(IS+1,IPHS,INODE) = 0.0
C
C 201 CONTINUE
C 202 CONTINUE
C 203 CONTINUE
C
C USE IPALL TO FIND 1D ADDRESSES OF A GROUP OF PATCH CENTRES
C

ANL/TD/TM02-30 Page 139

C CALL IPALL('WALL2','*','PATCH','CENTRES',IPT,NPT,CWORK,IWORK)
C
C LOOP OVER GROUP OF PATCHES
C DO 300 I=1,NPT
C USE ARRAY IPT TO GET ADDRESS
C INODE=IPT(I)
C ACND(INODE) = 1.0
C BCND(INODE) = 0.0
C CCND(INODE) = 400.0
C 300 CONTINUE
C
C----END OF EXAMPLE
C
C+++++++++++++++++ END OF USER AREA 6 ++++++++++++++++++++++++++++++++++
C
C
C+++++++++++++++++ USER AREA 7 +++
C
C----- DEFINE FLOW AT OUTLETS (MASS FLOW BOUNDARIES)
C (TO TEMPERATURES AND SCALARS AT MASS FLOW BOUNDARIES USE
C USER AREA 5)
C
C SET PARAMETER IFLOUT:
C IFLOUT = 1 ==> MASS FLOW SPECIFIED AT LABELLED OUTLETS.
C IFLOUT = 2 ==> FRACTIONAL MASS FLOW SPECIFIED AT LABELLED OUTLETS
C IFLOUT = 2
C
C SET OUTLET FLOW RATES:
C FLOUT(LABEL) = MASS FLOW OUT OF OUTLETS LABELLED LABEL (IFLOUT=1).
C FLOUT(LABEL) = FRACTIONAL MASS FLOW OUT OF OUTLETS LABELLED LABEL
C (IFLOUT=2).
C FOR MULTIPHASE FLOWS IT IS NECESSARY TO SET
C EITHER
C FLOUT(LABEL) = TOTAL MASS FLOW
C IFLOUT = 1
C IMFBMP = 0
C OR
C FLOUT(LABEL + (IPHASE-1)*NLABEL) FOR EACH PHASE
C IFLOUT = 1 OR 2
C IMFBMP = 1
C
C---- EXAMPLE: EQUIDISTRIBUTION OF FRACTIONAL MASS FLOW AMONGST OUTLETS
C
C IFLOUT=2
C FRAC = 1.0 / MAX(1.0, FLOAT(NLABEL))
C DO 300 ILABEL = 1, NLABEL
C FLOUT(ILABEL) = FRAC
C300 CONTINUE
C
C----END OF EXAMPLE
C
C+++++++++++++++++ END OF USER AREA 7 ++++++++++++++++++++++++++++++++++
C
 RETURN
C
 END

ANL/TD/TM02-30 Page 140

Figure 1 MHD problems in for the upper parts of the divertor.

Main Thermal, Fluid, and MHD Problems

Associated W ith a Jet Divertor

1. Pressure drop in the supplying duct
due to a nonuniform field and
bending of the duct

2. Transition from duct flow to
manifold flow (the manifold problem)

3. Transition from manifold flow to
nozzle flow

4. Transition from duct flow to jet flow
(the nozzle problem) and the
meniscus effect

5. Non-uniform field effects and jet
stability

6. Heat transfer analysis, including
thermocapillary convection

nozzle

jet

meniscus

heat
flux

6

5
jet

jet

3

4

2
manifold

supply duct

1

nozzle

A)

Figure 2 MHD problems in for the lower part of the divertor.

Main Thermal, Fluid, and MHD Problems
Associated With a Jet Divertor (cont.)

7. Impact of a jet on a liquid metal
surface

8. Impact of a jet on a solid wall

9. LM film or rivulet

10. The problem of draining

7

jet
jet

collector

draining
duct

B
B

8

LM film (wettable sidewalls)
or rivulet (non-wettable sidewalls)

sidewalls

9

10

free
surface

free
surface

to the draining
system

B) C)

ANL/TD/TM02-30 Page 141

Figure 3 Shercliff solution. Geometry and co-ordinate system.

y

x

y = -1

y = 1

B

x = -1 x = 1

z

Figure 4 Shercliff solution. Grid used: (a) for Ha = 100; (b) for Ha = 200.

(a)

x = -1 x = 1

y = -1

y = 1

ANL/TD/TM02 30 Page 142

(b)

Figure 5 Shercliff solution. Electric potential in the plane y = 0 for a square

duct and for Ha = 100 (numerical solution - solid lines; exact solution -

crosses).

x = -1 x = 1

y = -1

y = 1

ANL/TD/TM02-30 Page 143

Figure 6 Shercliff solution. Axial velocity in the plane x = 0 for a square duct

and for Ha = 100 (numerical solution - solid lines; exact solution -

crosses).

Figure 7 Shercliff solution. Axial velocity in the plane y = 0 for a square duct

and for Ha = 100 (numerical solution - solid lines; exact solution -

crosses).

ANL/TD/TM02-30 Page 144

Figure 8 Shercliff solution. Electric potential at x = 0 for a square duct and for

Ha = 200 (numerical solution - solid lines; exact solution - crosses).

Figure 9 Shercliff solution. Axial velocity in the plane y = 0 for a square duct

and for Ha = 200 (numerical solution - solid lines; exact solution -

crosses).

ANL/TD/TM02-30 Page 145

Figure 10 Shercliff solution. Axial velocity in the plane x = 0 for a square duct

and for Ha = 200 (numerical solution - solid lines; exact solution -

crosses).

Figure 11 Hunt solution. Geometry and co-ordinate system.

y

x

y = -1

y = 1

B

x = -1 x = 1

z

Parallel walls

Hartmann walls

ANL/TD/TM02-30 Page 146

Figure 12 Hunt solution for a square duct with perfectly conducting walls. Axial

velocity in the plane y = 0 for Ha = 100 (numerical solution - solid

lines; exact solution - stars).

Figure 13 Hunt solution for a square duct with perfectly conducting walls.

Electric potential in the plane y = 0 for Ha = 100 (numerical solution -

solid lines; exact solution - stars).

ANL/TD/TM02-30 Page 147

Figure 14 Hunt solution for a square duct with perfectly conducting Hartmann

walls and electrically insulating parallel walls. Electric potential in the

plane y = 0 for Ha = 100 (numerical solution - solid lines; exact

solution - stars).

Figure 15 Hunt solution for a square duct with perfectly conducting Hartmann

walls and electrically insulating parallel walls. Axial velocity in the

plane y = 0 for Ha = 100 (numerical solution - solid lines; exact

solution - stars).

ANL/TD/TM02-30 Page 148

Figure 16 Hunt solution for a square duct with perfectly conducting Hartmann

walls and electrically insulating parallel walls. Electric potential in the

plane y = 0 for Ha = 200 (numerical solution - solid lines; exact

solution - stars).

Figure 17 Hunt solution for a square duct with perfectly conducting Hartmann

walls and electrically insulating parallel walls. Axial velocity in the

plane y = 0 for Ha = 200 (numerical solution - solid lines; exact

solution - stars).

ANL/TD/TM02-30 Page 149

Figure 18 Flow in a duct with a 1:2 symmetric expansion in a transverse

magnetic field.

y

x

y = -1

y = 1

B

Flow

y = -0.5

y = 0.5

Figure 19 Inertialess flow in a duct with an expansion. Streamlines for Ha = 200.

ANL/TD/TM02-30 Page 150

Figure 20 Inertialess flow in a duct with an expansion. Velocity profiles in the

duct (x = -3) and at the junction (x = 0) for Ha = 200. Solid lines - CFX

numerical solution, stars - numerical solution obtained in ([26]).

Figure 21 Inertialess flow in a duct with an expansion. Core velocity (y = 0) for

Ha = 200.

ANL/TD/TM02-30 Page 151

Figure 22 Inertialess flow in a duct with an expansion. Pressure distribution for

Ha = 200.

Figure 23 Inertialess flow in a duct with an expansion. Pressure at the top of the

wider duct (y = 1) for Ha = 200.

ANL/TD/TM02-30 Page 152

Figure 24 Inertial flow in a duct with an expansion. Streamlines for Ha = 200,

N = 1.

Figure 25 Inertial flow in a duct with an expansion. Velocity profiles in the duct

(x = -3) and at the junction (x = 0) for Ha = 200, N = 1.

ANL/TD/TM02-30 Page 153

Figure 26 Inertial flow in a duct with an expansion. Pressure at the top of the

wider duct (y = 1) for Ha = 200, N = 1.

Figure 27 Inertial flow in a duct with an expansion. Pressure distribution for

Ha = 200, N = 1.

ANL/TD/TM02-30 Page 154

Figure 28 Flow in an asymmetric duct with an expansion in a transverse

magnetic field.

y

x

y = 2

B

Flow

y = 0

y = 1

Figure 29 Inertial flow in an asymmetric duct with an expansion. Streamlines

for Ha = 200, N = 1.

ANL/TD/TM02-30 Page 155

Figure 30 Inertial flow in an asymmetric duct with an expansion. Pressure

distribution for Ha = 200, N = 1.

Figure 31 Inertial flow in an asymmetric duct with an expansion. Pressure at the

top of the wider duct (y = 1) for Ha = 200, N = 1.

ANL/TD/TM02-30 Page 156

Figure 32 Flow in a square duct in a non-uniform transverse magnetic field.

y

x

y = -1

y = 1

x = -1x = 1

z

Figure 33 Flow in a square duct in a non-uniform transverse magnetic field.

Magnetic field versus axial co-ordinate.

ANL/TD/TM02-30 Page 157

Figure 34 Axial velocity profiles for inertialess flow in a square duct in a non-

uniform transverse magnetic field. Ha = 50. Line y = 0 and (a) z = -6;

(b) z = -2; (c) z = -1; (d) z = -0.5; (e) z = 0; (f) z = 0.5; (g) z = 1; (h) z = 2;

(i) z = 6.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

ANL/TD/TM02-30 Page 158

Figure 35 Axial velocity profiles in the inertialess flow in a square duct in a non-

uniform transverse magnetic field for Ha = 50.

ANL/TD/TM02-30 Page 159

Figure 36 Streamlines in the inertialess flow in a square duct in a non-uniform

transverse magnetic field in the plane y = 0 for Ha = 50.

Figure 37 Pressure in the inertialess flow in a square duct in a non-uniform

transverse magnetic field on the central line of the duct x = y = 0

(broken line) and near the wall x = y = 1 (solid line). Ha = 50.

ANL/TD/TM02-30 Page 160

Figure 38 Electric current lines in the inertialess flow in a square duct in a non-

uniform transverse magnetic field for Ha = 50.

(1)

(2) (3)
(4)

(6) (5)

(7)

ANL/TD/TM02-30 Page 161

Figure 39 Axial velocity profiles in the inertialess flow in a square duct in a non-

uniform transverse magnetic field in the plane y = 0 for Ha = 200.

ANL/TD/TM02-30 Page 162

Figure 40 Streamlines in the inertialess flow in a square duct in a non-uniform

transverse magnetic field in the plane y = 0 for Ha = 200.

Figure 41 Pressure in the inertialess flow in a square duct in a non-uniform

transverse magnetic field on the central line of the duct x = y = 0

(broken line) and near the wall x = y = 1 (solid line). Ha = 200.

ANL/TD/TM02-30 Page 163

Figure 42 Electric current lines in the inertialess flow in a square duct in a non-

uniform transverse magnetic field in the plane y = 0 for Ha = 200.

ANL/TD/TM02-30 Page 164

Figure 43 Pressure variation in the inertialess flow in a square duct in a non-

uniform transverse magnetic field in the plane y = 0 for Ha = 200.

Figure 44 Liquid metal drop in a strong, vertical magnetic field.

x

y

B

y = 0

ANL/TD/TM02-30 Page 165

Figure 45 Liquid metal drop in a strong, vertical magnetic field after 0.185 s.

Solid line - asymptotic solution.

ANL/TD/TM02-30 Page 166

Figure 46 Liquid metal drop in a strong, vertical magnetic field. Horizontal

velocity for both phases ("air" and liquid metal). Solid line - drop

surface (asymptotic solution).

ANL/TD/TM02-30 Page 167

Figure 47 Liquid metal drop in a strong, vertical magnetic field. Vertical velocity

for both phases ("air" and liquid metal). Solid line - drop surface

(asymptotic solution).

ANL/TD/TM02-30 Page 168

Figure 48 Liquid metal drop in a strong, vertical magnetic field. Pressure for

both phases ("air" and liquid metal). Solid line - drop surface

(asymptotic solution).

ANL/TD/TM02-30 Page 169

Figure 49 Liquid metal jet in a strong, transverse magnetic field.

y

x

y = 0 y = 1

B

Flow

Figure 50 Liquid metal jet in a strong, transverse magnetic field. Variation of jet

thickness in a uniform field for E = -1, Ha = 200.

ANL/TD/TM02-30 Page 170

Figure 51 Liquid metal jet in a strong, transverse magnetic field. Velocity profile

in a uniform field for E = -1, Ha = 200. Velocity in the duct (solid line)

and in the jet region (stars).

Figure 52 Liquid metal jet in a strong, transverse magnetic field. Variation of

pressure in a uniform field for E = -1, Ha = 200.

ANL/TD/TM02-30 Page 171

Figure 53 Liquid metal jet in a strong, transverse magnetic field. Variation of

pressure in a uniform field at y = 0 for E = -1, Ha = 200.

Figure 54 Liquid metal jet in a strong, transverse magnetic field. Velocity in the

core in a uniform field at y = 0 for E = -1, Ha = 200.

ANL/TD/TM02-30 Page 172

Figure 55 Liquid metal jet in a strong, transverse magnetic field. Variation of

pressure in a uniform field for E = -1, Ha = 200, N = 1.

Figure 56 Liquid metal jet in a strong, transverse magnetic field. Variation of

pressure in a uniform field at y = 0 for E = -1, Ha = 200, N = 1.

ANL/TD/TM02-30 Page 173

Figure 57 Liquid metal jet in a strong, transverse magnetic field. Velocity in the

core in a uniform field at y = 0 for E = -1, Ha = 200, N = 1.

-30 Page

Figure Liquid metal jet in a strong, transverse magnetic field. Variation of jet

thickness for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2. Colour map represents

the numerical solution, the solid black line shows the asymptotic

solution.

ANL/TD/TM02-30 Page 175

Figure 59 Liquid metal jet in a strong, transverse magnetic field. Variation of

pressure for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2.

ANL/TD/TM02-30 Page 176

Figure 60 Liquid metal jet in a strong, transverse magnetic field. Core velocity

in the jet (y = 0) for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2. Solid line

corresponds to the numerical solution, stars to the asymptotic

solution.

Figure 61 Liquid metal jet in a strong, transverse magnetic field. Streamlines in

the jet for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2.

ANL/TD/TM02-30 Page 177

Figure 62 Flow in electrically coupled U-bends(from [36]).

ANL/TD/TM02-30 Page 178

Figure 63 Flow in a circular insulating duct in a nonuniform magnetic field.

Projection of lines of constant pressure onto the plane transverse to

the field. The field is out of the plane of the figure; it varies between

x = -1 and x = 1. Variable x is in the flow direction. Variable z is in the

direction transverse to the magnetic field (duct axis is at z = 0).

Hartmann and Roberts layers are not shown. Here Ha = 7000. (from

[5]).

x

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

z

0.0

0.2

0.4

0.6

0.8

1.0

