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1. Introduction 

Liquid metal free-surface flows provide an option of a renewable surface for heat 

absorption, removal of impurities, and eliminating the problems of erosion and thermal 

stresses [1], [2]. In a tokamak liquid metal flows through a strong magnetic field, which 

results in a magnetohydrodynamic (MHD) interaction. For a free-surface flow the MHD 

interaction may be even more important than for the duct flows in blankets, because the 

electromagnetic forces may significantly deform the free-surface and thus make it 

unfavourable for heat extraction. The MHD-related problems for the free-surface flows 

have been reviewed in [3]. Among the most important ones are the effects of nonuniform 

magnetic fields, inertia, surface tension, wettability and roughness of walls on both the 

jet/drop shape and trajectory. 

The main problems for the jet divertor are shown in Figure 1 and Figure 2 [4]. Particular 

issues related to some of the problems listed in these figures have already been tackled 

(Problem 1 in [5]-[7], 4 in [8], [9], 5 in [9], 6 in [4], 7 and 10 in [9], 9 in [10]). Once main 

fundamental aspects for each of these sub-problems are understood, the analysis will have 

been performed for a particular divertor design. 

The flow analysis in [4]-[8], [10] has been performed using the asymptotic model for 

high values of the Hartmann number, Ha, in the inertialess approximation, while in [9] 

inertial effects have been taken into account. The dimensionless parameters are defined in 

Sec. 5.1.2. In large-scale tokamaks the magnetic field is ~5-10T, which results in high or 

very high values of Ha and N, the interaction parameter (Table 1). Recently it has been 

suggested that the presence of liquid Li inside a plasma chamber might stabilize the 

plasma [11]. Thus a decision has been made in the US to test a free-surface device in 

smaller machines, such as NSTX or C-MOD [12]. In these machines the magnetic fields 

are lower (Table 1), and consequently the high-Ha analysis may not apply. 

Therefore, the decision has been made to attempt Direct Numerical Simulation (DNS) to 

model flows for lower magnetic fields. It should be emphasized that compared to the 

high-Ha flow model, DNS for MHD flows may be considered to be in its infancy, 
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although some initial progress has been made ([13]-[22], [44]). A general discussion of 

the difficulties with DNS modelling for fusion-related MHD flows and the 

recommendations for further model development are given in Sec. 7. 

Table 1 Dimensionless parameters and expected flow regimes for Li duct- and 

free-surface flows in various tokamaks (parameters have been 

estimated in [3], [5], [9]). 

 NSTX C-MOD LARGE-SCALE 
MACHINES 

Hartmann 
number 

~50-500 ~500-1000 ~103-105 

Interaction 
parameter 

0.1-1 ~50-104 ~103-105 

Flow regime Fully three-
dimensional, 
turbulent MHD 

Laminar; possibly 2-D 
turbulent MHD 

Laminar MHD 

Features MHD effects are 
weak; both bending 
and “flattening” of 
the jet may not be 
very expressed 
 

MHD effects are 
strong. However, both 
poloidal and radial 
field are about 10% of 
the toroidal one: 
bending of the jet may 
not be very expressed 
 

MHD effects are 
very strong. 
Although both 
poloidal and radial 
field are about 10% 
of the toroidal one, 
bending of the jet 
may be significant 

High-Ha 
model 
applicable? 

no yes yes, especially for 
this regime 

DNS 
applicable? 

Not without 
turbulence models, 
which do not exist at 
present 

Yes, but will require 
great computational 
power 

Not with current 
computational 
facilities, even those 
employing 
supercomputers 

For modelling ordinary hydrodynamic flows several commercial codes are available, 

such as CFX, FLUENT, FLOW-3D, etc. Although most of them do not model MHD 

flows automatically, they can be modified using user-defined subroutines to include the 

body forces, such as the Lorentz force, and couple the momentum equations with the 

other MHD equations. 
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We have decided to base the MHD code on CFX [23], which is a very flexible finite-

volume code widely used in the industrial applications of MHD. The user can introduce 

several scalar equations and even to modify the accuracy of the numerical scheme ([23], 

O. Widlund, private communication). 

The aims of this report are: to summarise the first steps in the development of the 

extension of CFX for modelling MHD flows, to present the results of testing the code on 

several benchmark problems, and to present the description of the code for further 

reference. 

2. Software 

The commercial fluid dynamics software package CFX 4.4 is used for solving MHD 

problems described below. Main features, options and commands relevant to the current 

study are described in Secs. 3 - 5. More details are given in [23]. CFX consists of the 

following modules: 

• Pre-processing tools 

- CFX-Build 4.4 

An MSC-Patran based geometry and grid generator. It is used for creating the 

computational domain, specifying patches (i. e. parts of the domain where the 

boundary conditions will be defined – such as walls, inlets, outlets, symmetry planes, 

pressure boundaries etc.) and generating grid. Grid generation tools allow creation of 

non-uniform grids, which enables one to resolve boundary layers where needed. 

- CFX-Setup 

This module is used for creating the command file, containing information about fluid 

properties, physical models, boundary conditions and solver data. 

- Fortran routines 
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Additional Fortran routines are used in order to implement the Magnetohydrodynamic 

flows and other extra features as described below. 

• Solver tools 

- CFX-Solver 

The basis of the code is a conservative finite-volume method. All variables are 

defined at the centre of control volumes, and the equations are integrated over each 

control volume to obtain discrete equations. The complete set of equations is solved 

by iterative method. Pressure-correction algorithm is used to ensure mass 

conservation. 

• Post-Processing tools 

- CFX-Analyse 4.4 

Graphic post-processor used for analysis and presentation of results obtained from the 

solver. 

In addition to CFX, the following software tools have been used: 

• Digital Fortran 

It is used for compilation of the user subroutines that are used by the CFX solver. 

• Matlab 

Although CFX Analyse provides a wide range of graphic functions, sometimes 

Matlab is used for visualising solution. 

3. Solution process 

The process of problem solution in CFX consists roughly of the following stages: 

• Pre-processing 
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- Problem formulation. 

- Geometry creation. 

The geometry is created using CFX-Build. First, all blocks forming the 

computational domain are created. Then patches (two-dimensional or three-

dimensional subdomains where the boundary conditions will be set) are specified. 

Finally, computational mesh is set up and the geometry file *. GEO containing the 

information about mesh points, patches and block gluing information is created. 

Simple geometries can be created using the command file. 

- Command file. 

The command file *. FC containing information about the model is created using 

CFX-Setup program or any text editor. 

- Fortran subroutines. 

Additional Fortran subroutines *.F are required in order to implement MHD model. 

They are also used for specifying variable boundary conditions, setting 

convergence criteria etc. 

• Solving 

All files created during the pre-processing stage are passed to the CFX-solver. It 

reserves the workspace, checks the validity of the information provided and runs 

the problem. During the solution process, some information about it can be 

displayed on dynamic graphs. Usually it is the residual values for each of the flow 

variables. It allows user to control the solution process and to see the progress of 

the solution. 

When the calculation is finished, CFX-Solver writes output data into the dump file 

*.DMP. Additional information about the solution process (e.g. summary of input 

data, residuals) and some statistics (e.g. drag on the walls, flow rates at all inlets 

and outlets etc.) are written to an output file *.FO. Additional information may be 
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included into the dump/output file using command file options and user 

subroutines. 

• Post-processing 

Data produced by CFX-Solver can be post-processed using CFX-Analyse or any 

other graphical tools. In the latter case, data should be written in required format. 

This can be achieved by using special options in the command file or user 

subroutines. CFX-Analyse is the built-in post-processing tool that allows user to 

create 2D plots, mesh plots, streamlines, contour plots, animations etc. It also has 

some simple calculation tools. 

4. Hardware 

All three-dimensional problems have been run on a Compaq Alpha Server DS20. It 

features 2 processors, 500 MHz each and 768 Mb RAM. Some two-dimensional 

problems have been solved using Pentium-3 (1GHz) with 1 Gb RAM. 

5. MHD flow modelling with CFX 

5.1 Formulation 

We will first discuss the set of governing equations and how these are implemented in the 

CFX. Since the magnetohydrodynamic features are not included in CFX by default, 

certain modifications are made in order to implement MHD into the CFX model. These 

include introduction of the Lorentz force into the momentum equation and solution of the 

electric potential equation using the additional scalar option available in CFX. By default, 

CFX deals with dimensional quantities. In order to use the non-dimensional formulation, 

appropriate coefficients should be introduced as discussed below. Different scales will be 

used for different problems, based on a particular flow, and these will be discussed 

separately when formulating the corresponding problem. Moreover, in the free-surface 

flows the dimensional model is used in some cases. Both transient flow and free-surface 

flow models are available in CFX. 
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5.1.1 Governing equations 

Consider the flow of a viscous, electrically conducting, incompressible fluid subject to a 

strong magnetic field yB ˆ
0

*

0 bB= . It is assumed throughout this study that the magnetic 

Reynolds number avRem 0µσ=  is small. This is not a necessary assumption, see the 

discussion in  [5]. 

Then the dimensional governing equations are the Navier-Stokes equation 

 **2******

*

*

)( Fvvv
v

+∇+−∇=∇⋅+ µρ
∂
∂

ρ p
t

, (1) 

the Ohm’s law 

 ( )***** Bvj ×+∇−= φσ , (2) 

and conservation of mass and current 

 0** =⋅∇ v , (3) 

 0** =⋅∇ j . (4) 

In the above, t* is time, v* is the fluid velocity, p* is pressure, φ* is the electric potential, 

*F  is the volumetric body force, j* is the electric current density, E* is the electric field, µ 

is the dynamic viscosity, σ is electric conductivity and ρ is fluid density. In MHD 

problems considered here, the body force includes the Lorentz force and gravity force: 

 **** gBjF ρ+×= , 

where g* is the gravity vector. Using expression (2) for the electric current, the body force 

can be rewritten as 

 ******** gBvvBF ρσφσ +××+×∇−= . (5) 
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Taking divergence of Eq. (2) and using Eq. (4), an equation governing the electric 

potential is obtained. It reads 

 )( ****2* Bv ×⋅∇=∇ φ . (6) 

Thus a set of equations (1), (3) and (6) for fluid velocity, electric potential and pressure 

has to be solved subject to appropriate boundary conditions. The Ohm’s law (2) is used 

for calculation of the electric current. 

5.1.2 Dimensionless equations 

The characteristic values of the length, the fluid velocity, time, the electric potential and 

the pressure are a, v0, a/v0, av0B0 and 2
00 Bvaσ , respectively. Then the non-dimensional 

equations governing the flow are 

 gBBvBvvv
v ˆ)( 221 δφ

∂
∂

+××+×∇−∇+−∇=



 ∇⋅+ −− Hap

t
N , (7) 

 )(2 Bv ×⋅∇=∇ φ , 0=⋅∇ v , (8-9) 

where ρνσ /0aBHa =  is the Hartmann number that expresses the ratio of the 

electromagnetic to the viscous force, 0
2
0 / vBaN ρσ=  is the interaction parameter, which 

expresses the ratio of the electromagnetic to the inertial force, 2
00/ Bvg σρδ =  is the 

parameter which expresses the ratio of the gravitational to the electromagnetic force; ĝ  is 

the unit vector in the direction of gravity. 

The electric current can be calculated from the non-dimensional form of the Ohm’s law 

 Bvj ×+∇−= φ . (10) 

The velocity scale, v0, depends on a particular problem. If gravity is important, we select 

 2

00 / Bgv σρ= , (11) 
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so that δ = 1. In case of the pressure-driven flow, the average duct velocity Q/a (Q is the 

flow rate) is chosen as the velocity scale. 

It is possible to model flows with three components of the magnetic field. In the 

following benchmark problems the field is supposed to have only one component in the 

direction of y. 

5.1.3 Boundary conditions 

The boundary condition for the fluid velocity at each wall is the no-slip condition 

 v = 0. (12) 

For an electrically insulating wall, 

 0ˆ =
∂
∂

=⋅
n

φ
nj  (13) 

at the wall. Here n̂  is the normal unit vector to the wall. Additional symmetry conditions 

are specified for each problem if needed. 

For a perfectly conducting wall, 

 φ = 0 at the wall. (14) 

5.1.4 Free surface flows 

CFX models free-surface flows by assuming that the surrounding medium is dynamically 

active. A liquid metal is surrounded by what is called "air" with certain values of density, 

ρ1, and dynamic viscosity, µ1. The "air" may be vacuum if both  ρ1 and µ1 tend to zero. 

For the coupled liquid metal-"air" system governing equations (7)-(9) (only Eqs. (7), (9) 

for "air" without the MHD terms) are solved for each phase with appropriate parameters. 

Free surface flow is modelled by volume of fluid method. In this case the boundary 

conditions at the free surface are satisfied automatically. Details of the two-phase model 

used are given in Sec. 5.2.3. 
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5.1.5 Surface tension 

At the interface between two fluids, there is a surface tension force. Physically this force 

acts directly on the surface. This is hard to achieve in CFX as the surface is always 

smeared out in some way by the discretisation. The model used in CFX-4 is based on the 

Continuum Surface Force model. This models the surface tension force as a force which 

exists throughout the flow based upon derivatives of volume fraction, but which has the 

same effect overall as the surface force, even when the surface is smeared. 

The model leads to an extra body force, *

SF , in the momentum equation given by: 

 rS

*** ∇= γκF , (15) 

where γ is the surface tension coefficient, r is the volume fraction of the first phase and κ* 

is the surface curvature defined by: 

 









⋅∇−










∇⋅= nn

n
n

n
ˆˆ

ˆ

ˆ

ˆ
1 ***κ . (16) 

Here r∇=n̂  is a unit vector normal to the free surface. 

In a non-dimensional form based on gravitational pressure scaling (to be used in 

Sec. 6.2.1 for a spreading drop problem), the surface tension body force is equal to 

 rBoS ∇= − κ1F , (17) 

where Bo is the non-dimensional Bond number 

 
γ
ρga

Bo
2

= . (18) 

If the variables are scaled as for the duct flows [9], then 

 rHaCaS ∇= −− κ21F , (17) 
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where Ca is the capillary number 

 
γ

ρν 0v
Ca = . 

This scaling will be used in Sec. 6.3 for modelling two-dimensional jet flow. For 

convenience, we introduce parameter 

21 −−= HaCaλ , 

which will be used in calculations. 

5.2 Implementation in CFX 

As has been mentioned above, CFX codes are built to work with dimensional equations. 

Thus equations (1) and (3) can be implemented directly by setting physical properties of 

the fluid in the command file. The “buoyant flow” option allows accounting for the 

gravity force. However, the electromagnetic force has to be introduced as a source term 

for the momentum equation. The treatment of the electromagnetic force is discussed 

below. 

Equation (6) can be solved treating the electric potential as a user-defined scalar governed 

by the steady version of a diffusion-convection equation with the source term )( Bv ×⋅∇  

calculated for each control volume. 

In order to use non-dimensional formulation given by Eqs. (7)-(9), appropriate non-

dimensional parameters should be used rather than actual viscosity, density etc. It follows 

from Eqs. (7), (1) that N-1 stands for fluid density while Ha-2 corresponds to fluid 

viscosity. The gravity vector for gravity-dominated problems should have length 1 

instead of 9.81, which can also be defined in CFX command language. 

The details of how to introduce the Lorentz force into the momentum equations and the 

source term into the electric potential equation are considered below separately for two-

dimensional and three-dimensional flows. 
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Note that the two-dimensional model in CFX always assumes that the co-ordinate z is the 

direction in which nothing changes. In fully developed flows and flows in ducts the z co-

ordinate is aligned with the axis of the duct. 

5.2.1 Boundary conditions 

There are several types of boundary conditions available in CFX. The following types 

have been used in this report: inlets, mass flow boundaries, pressure boundaries, walls. 

These are described below. Most of the boundary conditions can be specified in the 

command files. In more complicated problems, user subroutines are used. 

To specify a boundary where the appropriate boundary conditions will be applied, special 

subdomains must be created beforehand. These are called "patches" and can be either  

two-dimensional or three-dimensional. 

Thus, a boundary condition in CFX command file consists of a patch name where the 

condition holds, name of variable which is specified and the appropriate value of this 

variable. 

Inlet boundaries 

An inlet is a boundary where the values of variables are specified. Mathematically, this is 

known as a Dirichlet boundary condition. These values are set using the subcommand 

>>INLET BOUNDARIES in the command file. If variable profiles are required, they 

have to be specified using the user Fortran subroutine USRBCS. 

Default values of the flow variables are their ambient values. By default, the ambient 

values are 0 and can be overridden in the command file using command >>AMBIENT 

CONDITIONS. 

In problems considered in this report, the following flow variables must be set at inlet 

boundaries: normal velocity into domain, user scalar standing for electric potential where 

applicable, volume fraction in free-surface flows. 
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Mass flow boundaries 

Mass flow boundaries are used to model inflow and outflow boundaries where the total 

mass flow rate into or out of the domain is known, but the detailed velocity profile is not. 

These mass flow rates and other information are specified using the >>FLUX and 

>>INFLOW VARIABLES subcommands of >>MASS FLOW BOUNDARIES, which is 

a subcommand of >>MODEL BOUNDARY CONDITIONS. 

Mass flow boundaries are used at the entrance to the duct when the mass flow rate is 

known. It can also be used at the exit from the duct to model Neumann boundary 

conditions. In this case, fractional mass flow rate equal to 1 is specified  to indicate that 

all outgoing fluid flows through this outlet. 

If the flow is out of the domain, all variables except for pressure will satisfy Neumann 

boundary conditions. If the flow is into domain (negative mass flow rate is specified), 

Neumann boundary conditions are imposed on all flow variables except for user scalars 

and pressure. This, unfortunately, means that even if the velocity profile is not known and 

can be modelled by CFX using the specified flow rate, one still needs to specify correct 

values for the electric potential. It can be set in the command file if constant. Variable 

profiles must be set using the user routine USRBCS. 

Pressure boundaries 

They are used to model both inflow and outflow boundaries where the surface pressure is 

known, but the detailed velocity distribution is not. These can be used in duct flows to set 

a constant pressure drop instead of the flow rate. Fixed values of temperature and user 

scalars must be specified at pressure boundaries if the flow is into the solution domain. 

The pressure is specified at the pressure boundary using the command >>PRESSURE 

BOUNDARIES which is a subcommand of >>MODEL BOUNDARY CONDITIONS. 

Variable pressure profiles must be specified using the user subroutine USRBCS. 
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Wall boundaries 

Default conditions at solid walls are non-slip conditions for the velocity and zero 

Dirichlet conditions for user scalars. Alternatively, non-zero values or shear stress can be 

defined for the velocity. General type of boundary conditions can be set for user scalars. 

Command >>WALL BOUNDARIES is used for this purpose. User subroutine USRBCS 

can be used to set variable boundary conditions at solid walls. 

5.2.2 Transient flow 

Most of the problems considered in this report are the steady-state flows. However, in 

some cases time-dependent formulation of the problem helps to improve problem 

convergence. A steady-state calculation may be considered as a transient calculation with 

an infinite time step. If a time accurate simulation of the flow from its initial guess to its 

steady state solution indicates that the flow approaches the steady state solution in a very 

complex manner, then it is quite likely that an attempt to reach the steady state solution in 

a single, large time step will overshoot the mark and never recover. 

Therefore in some problems, particularly in free-surface flows, we kept the time-

dependent term in Eq. (7) and run the problem until the steady solution had been reached. 

5.2.3 Free-surface flow 

CFX offers several models for treating two-phase flows. The homogeneous model is the 

most appropriate one when considering free-surface flows. This model is based on the 

assumption that certain solution fields of each phase are identical (e.g. velocity, pressure) 

whilst still solving for distinct volume fractions. Hence, individual phase continuity 

equations can be solved to determine the volume fractions, while individual transport 

equations can be summed over all phases to give a single transport equation. 
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5.2.4 Convergence criteria 

The default convergence criterion for steady flows and transient flows with a fixed time 

step is a condition on the mass flow residual. It is set in the command file using 

subcommand MASS SOURCE TOLERANCE of the command PROGRAM CONTROL. 

It may be modified in a user-defined Fortran routine USRCVG. This subroutine returns a 

logical flag LCONVG. Setting LCONVG to .TRUE. indicates to the program that the 

flow is satisfactorily converged. 

The MASS SOURCE TOLERANCE is not used for transient flows using the adaptive 

time stepping option. In this case user has more control over the convergence and 

divergence criteria from the command language. The relevant parameters are set using 

the subcommands >>CONTROL PARAMETERS and >>CONVERGENCE TESTING 

ON VARIABLE of the >>TRANSIENT CONTROL command. Any variable can be 

chosen to test for convergence, not just the mass source residual. Convergence is obtained 

when the residual for the tested variable for the first phase satisfies the condition RES < 

MAX (RESMIN, MIN(RESMAX, RES5/REDUC)), where RES is the residual of the 

corresponding variable, RESMIN is the minimum required residual value, RESMAX is 

the maximum allowed residual value, REDUC is the residual reduction factor and RES5 

is the value of the variable's residual computed on the fifth iteration. 

5.2.5 2D flows 

In a two-dimensional approximation the description of the flow is considerably 

simplified. All quantities with the exception of φ are supposed to be independent of z. If 

laterally the flow is confined by perfectly conducting sidewalls located at z = ±L*, which 

are connected through a resistor, then the resulting electric field is given. In this case, 

sufficiently far from the sidewalls the electric current flows in the z-direction only, while 

the flow may be considered two-dimensional in the (x, y) plane. If the sidewalls are not 

connected, no electric field is present in the fluid and therefore both E and φ vanish. 
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Therefore, the potential equation (8) does not need to be solved. For a magnetic field 

ŷ)(xB  the electric current reduces to one component: 

 uBEj z += . (19) 

The Lorentz force only acts in x-direction, and is equal to 

 )())(( xBxuBEFL +−= , (20) 

and the resulting body force is 

 yxF ˆˆ))()(( 2
yx ggxuBxEB δδ ++−−= , (21) 

where gx and gy are the corresponding components of the gravity vector; E is a given 

constant, which is known and may be equal to zero depending on the problem. 

Thus two-dimensional problems are described by the following equations deduced from 

Eqs. (7)-(9): 

 xxy gBuBEuHa
x

p

y

u
v

x

u
u

t

u
N δ

∂
∂

++−∇+
∂
∂

−=







∂
∂

+
∂
∂

+ −− )(221 , (22) 

 yxy gvHa
y

p

y

v
v

x

v
u

t

v
N δ

∂
∂

+∇+
∂
∂

−=







∂
∂

+
∂
∂

+ −− 221 . (23) 

Body force defined by Eq. (21) can be implemented in CFX in a straightforward way. 

Since all the components of the body force are defined at the centre of the control 

volume, the source term for each control volume in the momentum equation will be equal 

to F multiplied by the volume of the respective cell. An example of implementing 

Lorentz force in case of an MHD jet is given in Appendix 2. 

In order to solve free-surface flows in CFX, similar equations but without the MHD terms 

governing the surrounding medium (e. g. air) should also be provided. 
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5.2.6 3D flows 

The situation is different in fully three-dimensional flows. In this case the electric 

potential equation (8) has to be solved which is coupled to the Navier-Stokes equation 

(7). There are non-zero three-dimensional electric currents induced by the magnetic field 

inside the fluid. These consist of the electric field -∇φ and the electromotive force v×B 

(see expression (10)).  The straightforward approach to the problem is to approximate the 

body force defined in the expression (26) at the centre of each cell and multiply this value 

by the volume of the cell. However, this approach fails in some cases and a more careful 

numerical treatment of the body force should be introduced in order to preserve global 

electric current conservation ([20]). 

Electric currents 

For fully three-dimensional flows, non-zero three-dimensional currents defined by 

Eq. (10) are present in the fluid. For a magnetic field yB ˆB= , applied in the y-direction, 

the three components of the electric current are 

 wB
x

j x −
∂
∂

−=
φ

,   
y

j y ∂
∂

−=
φ

,     uB
z

jz +
∂
∂

−=
φ

. (24) 

Values of the electric current at cell centres can be calculated easily in CFX using actual 

values of the velocity stored in arrays U and W, and the utility subroutine GRADS for 

calculation of the gradient of the electric potential. 

Electric potential equation 

The electric potential satisfies Eq. (8). The right-hand side of this equation can be written 

as 
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∂

+
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−=×⋅∇ )( Bv . (25) 
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The straightforward approach in introducing such a source term into the electric potential 

equation would involve using utility subroutine GRADV for calculation of the gradients 

of velocity components at the cell centre and then multiplying it by the volume of the 

corresponding cell. In Appendix 3, such an approach is used in user subroutine USRSRC 

for a fully developed flow in a duct with conducting Hartmann walls and insulating 

parallel walls. (Note that the source term in CFX appears at the same side of the equation 

as the diffusion term, therefore  -∇⋅(v×B) times cell volume is actually used). 

Lorentz force 

The Lorentz force in a vertical magnetic field has only two components: 

 BjF zx −= , BjF xz =  (26) 

with the electric current components determined from Eq. (24). Again, the 

straightforward approach illustrated in Appendix 3 is to evaluate the electric current at the 

cell centres as described above and to introduce it into the momentum equations. 

Integral approach 

However, in some cases the straightforward approach introduces considerable error. It 

happens especially on highly non-uniform or non-orthogonal grids. In such cases, more 

appropriate integration of the source term and the body force over each control volume 

should be used developed in [20]. It is briefly described below for orthogonal grids (from 

[20]). 

Electric potential equation 

The source term in the electric potential equation (8) is )( Bv ×⋅∇ . To specify the source 

term for the CFX solver, it has to be integrated over a control volume. Then 

 ∫∫ ⋅×=×⋅∇=⋅
AV

dAdVVS nBvBv ˆ)()( . (27) 
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Here V is the volume of the cell. Thus the source term can be approximated as 

 ∑ ⋅×=
f

fA
V

S nBv ˆ)(
1

, (28) 

where f denotes the 6 faces of the control volume, Af is the area of the corresponding face, 

and n̂  is the outward normal unit vector of the face. For an orthogonal grid, 

 [ ))()(())()((
1

−+−+ ×−×+×−×= yyyxxx AA
V

S BvBvBvBv  

 ]))()(( −+ ×−×+ zzzA BvBv . (28) 

In the above, Ax, Ay and Az are the areas of the cell faces in x, y and z directions, 

respectively; ±× x)( Bv , ±× y)( Bv  and ±× z)( Bv   are values of the vector at the faces in  

corresponding co-ordinate directions, + standing for face with higher x (y, z) and - 

standing for lower one. These values are interpolated from values at the adjacent cell 

centres using weight factors available in CFX. 

Lorentz force and electric current density 

The Lorentz force in the momentum equation (7) involves the electric current. For the 

problem to be consistent, the second term Bv ×  must be calculated in the way similar to 

the source term in the potential equation. To integrate this term over a control volume, 

one needs its values at the cell faces. These are interpolated using the weight factors 

available in CFX. 

Then term Bv ×  at the cell centre is evaluated as 

 ∑ ⋅×=×
f

ff A/ˆ)(
2

1
)( nBvBv . (30) 

Values of the vector Bv ×  at the cell faces are obtained in the same way as in Eq. (28). 
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The second term of the electric current, φ∇− , can be calculated directly using the 

subroutines provided by CFX for gradient calculation. It is modified slightly to include 

the case when the Neumann boundary conditions are required at the inlets/outlets. It also 

gives incorrect values near the walls, which should be recalculated correspondingly. 

Unlike the straightforward approach discussed in the previous section, here the electric 

current conservation is enforced, which gives more accurate results. 

5.2.7 Command file options 

Command files are used in CFX for specifying fluid properties, physical models, 

boundary conditions and solver data. It is a text file with the following structure: 

>>CFX4 

(Subcommands and Keywords) 

>>MODEL TOPOLOGY 

(Subcommands and Keywords) 

>>MODEL DATA 

(Subcommands and Keywords) 

>>SOLVER DATA 

(Subcommands and Keywords) 

>>CREATE GRID 

(Subcommands and Keywords) 

>>MODEL BOUNDARY CONDITIONS 

(Subcommands and Keywords) 

>>OUTPUT OPTIONS 

(Subcommands and Keywords) 

>>STOP 

Hereafter a brief review of options relevant to the problems considered in this report is 

given. 

Command CFX4 

This command specifies the major flow options, the list of the additional Fortran routines 

used and names of variables and phases. The following subcommands are available: 
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>> Options 

The following options are used in this study: 

TWO DIMENSIONS / THREE DIMENSIONS 

Specifies whether two-dimensional or three-dimensional model is used. If two 

dimensions option is chosen, then the grid must have only one grid step in the z-direction. 

NUMBER OF PHASES 

Specifies number of phases used. For a duct flow, only one phase (liquid metal) is used. 

For a free-surface flows, two phases are used - "air" and liquid metal. 

USER SCALAR EQUATIONS 

Additional scalars may be introduced in CFX. These satisfy a general 

diffusion/convection equation as discussed above. However, if the name of user scalar 

(defined as described below) starts with USRD, it is a dummy scalar and no equation is 

solved for it. Dummy scalars can be used for calculating additional variables, such as 

electric currents in three-dimensional flows, exact solutions in order to check whether the 

flow is fully developed at the entrance of the duct etc. 

RECTANGULAR GRID / BODY FITTED GRID 

Only rectangular grid has been used in this study. 

LAMINAR FLOW / TURBULENT FLOW / TURBULENT FLOW WITH WILCOX MODEL 

Only laminar flows have been considered in this study. 

ISOTHERMAL FLOW / HEAT TRANSFER 

Heat transfer option is switched on if the temperature equation needs to be solved. Only 

isothermal flows have been considered in this report. 
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COMPRESSIBLE FLOW / INCOMPRESSIBLE FLOW 

Only incompressible flows have been considered in this report. 

BUOYANT FLOW 

Buoyancy is switched on if the flow is non-isothermal of if the gravity force should be 

taken into account. In this case the gravity vector and the reference density should be 

defined using command BUOYANCY PARAMETERS. 

TRANSIENT FLOW / STEADY STATE 

The transient flow option is switched on when a time-dependent flow is considered. It can 

also be switched on for complex steady flows if convergence difficulties are experienced. 

We use the transient flow option for two-phase (free surface) flows. In duct flows, the 

flow is considered steady. 

>> User Fortran 

Here the list of the CFX Fortran subroutines used in the problem is given. 

>> Variable names 

Here the names of the variables used in the problem can be changed. For example, 

standard names for user scalars are USER SCALAR N, where N is the number of the 

scalar. Using a special name starting with USRD turns off the solution of the transport 

equation for the scalar and allows one to use it to store arbitrary information. An example 

of using the command is: 

    U VELOCITY 'AXIAL VELOCITY' 

    V VELOCITY 'VERTICAL VELOCITY' 

    W VELOCITY 'AZIMUTHAL VELOCITY' 

    USER SCALAR1 'USRD EXACT' 

    USER SCALAR2 'USRD B' 
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>> Phase names 

Using this command, one can introduce arbitrary names for the phases used in the 

problem. For example, in the free surface flow one can use command 

>>PHASE NAMES 

    PHASE1 'AIR' 

    PHASE2 'METAL' 

After that, names METAL and AIR can be used in all subsequent commands. 

 Command Model topology 

This command deals with the geometry of the problem. It allows to create and to modify 

simple geometries, patches and grids. 

For example, a single rectangular block with 250, 118 and 1 mesh divisions in the x, y 

and z directions, respectively, can be created by a command 

>>CREATE BLOCK 

    BLOCK NAME 'DUCT' 

    BLOCK DIMENSIONS 250 118 1 

Patches are created using command CREATE PATCH. For example, to create a 

two-dimensional pressure boundary at the top of the block DUCT, the following 

command could be used: 

>>CREATE PATCH 

    PATCH NAME 'TOP' 

    BLOCK NAME 'DUCT' 

    PATCH TYPE 'PRESSURE BOUNDARY' 

    HIGH J 

Here HIGH J keyword means that the patch will contain nodes of the block DUCT with 

the highest values of J. 
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When the geometry is created using the CFX-Build program, MODEL TOPOLOGY 

commands can be used in order to change names and types of patches. This is convenient 

for introducing user-defined names for patches and changing the boundary conditions (for 

example, at the entrance to the duct either mass flux, velocity or pressure can be given 

depending on the problem). The following command changes the pressure boundary 

defined in CFX-Build to inlet boundary. It also changes the name of the patch to 

ENTRANCE with is more convenient when defining the boundary conditions and using 

the post-processor. 

>>MODIFY PATCH 

    OLD PATCH NAME 'PRESS1' 

    NEW PATCH NAME 'ENTRANCE' 

    NEW PATCH TYPE 'INLET' 

Command Model data 

This command is used to specify properties of the fluids, physical and numerical models 

etc. 

>>Ambient variables 

PHASE NAME / ALL PHASES 

This option allows one to set the ambient variables for all phases at once or for each 

phase separately. 

After that, the list of variables being set and the corresponding values is entered. 

For example, to set the ambient medium to air, the following commands can be used: 

>>AMBIENT VARIABLES 

    PHASE NAME 'AIR' 

    VOLUME FRACTION 1.0000E+00 

  >>AMBIENT VARIABLES 

    PHASE NAME 'METAL' 

    VOLUME FRACTION 0.0000E+00 
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>>Body forces 

This option allows one to introduce simple body forces of type vCF R−=  into the 

momentum equation. Here C is a constant vector, and R is a diagonal matrix with 

constant elements; v is the fluid velocity. More sophisticated body forces are defined 

using the user subroutine USRBF. 

PATCH NAME 

Specifies the name of a three-dimensional patch where the body forces will act. 

PHASE NAME / ALL PHASES 

This option allows one to set the body forces acting on all phases or on a particular phase. 

For MHD flows, the Lorentz force will be acting on the liquid metal only, since the 

electrical conductivity of the air is much lower than that of the metal. 

BODY FORCE 

This is the component of the body force independent of v. In CFX the body force is 

represented in the following way: 

 vCF R−= , 

where C is the velocity-independent vector, R is the resistance constant, v is the velocity. 

Thus, this command allows to introduce a constant body force component B. If more 

complicated body force is used, it should be specified in subroutine USRBF. 

RESISTANCE CONSTANT 

Here the second component of the body force is specified, i.e. the factor in front of -v. 

Again, for more complicated cases USRBF subroutine should be used instead of this 

command. 
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>>Differencing scheme 

This option specifies which differencing scheme is chosen for the advection term. 

ALL EQUATIONS / <variable name> 

Specifies whether the differencing scheme applies to all equations or to a certain variable. 

NO CONVECTION / UPWIND / HYBRID / HIGHER UPWIND / QUICK / CENTRAL / CONDIF / 

CCCT / MIN-MOD / VAN LEER / SUPERBEE / NO MATRIX 

This keyword chooses the corresponding differencing scheme. The "no convection" 

option is used, for example, for the electric potential equation where no advection takes 

place, or in inertialess flows for the Navier-Stokes equations. 

>>Physical properties 

>>Buoyancy parameters 

This command allows one to introduce gravity force. We will consider only options 

relevant to isothermal flows considered in this report. 

PHASE NAME / ALL PHASES 

Shows whether the options apply to all phases or a particular phase only. 

GRAVITY VECTOR 

The three components of the gravity vector are specified here. The gravity vector is the 

same for all phases. 

>>Fluid parameters 

This subcommand is for specification of fluid properties. 

PHASE NAME / ALL PHASES 

Shows whether the options apply to all phases or a particular phase only. 
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VISCOSITY 

Fluid viscosity is specified by this command. 

DENSITY 

Fluid density is specified by this command. 

>>Multiphase parameters 

 >>Multiphase models 

This command sets the multiphase models used in the simulation. 

  >>Homogeneous 

This command sets all physical processes except heat transfer to be 

homogeneous (see description of the homogeneous model in chapter 5.2.3) 

  SURFACE SHARPENING ALGORITHM 

This keyword specifies whether the surface sharpening algorithm is employed. It 

is useful in transient free-surface flows, when the interface between two fluids is 

sharpened by modifying the volume fraction field after each time step. 

  SURFACE SHARPENING LEVEL 

There are four levels of surface sharpening available. The default level is level 2. 

  SURFACE TENSION MODEL 

This keyword invokes the surface tension model. If it is not included, there is no 

surface tension in the problem. 

  SURFACE TENSION COEFFICIENT 

This keyword is used to set a constant surface tension coefficient for the 

interface between the two phases. 
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  WALL CONTACT ANGLE IN DEGREES 

This keyword is used to set the wall contact angle as a real number between 0.0 

and 180.0. This is the angle that the interface makes to the wall, which by 

convention, is relative to the first phase. If the wall in contact with the first phase 

is hydrophobic then the wall contact angle will be greater than 90° and if the 

wall in contact with the first phase is hydrophilic the angle will be less than 90°. 

The contact angle has a default of 90°. 

 >>Momentum 

This command sets the model for the momentum equation to be homogeneous. It 

has same keyword as the >>Homogeneous command and therefore is not 

described in detail. 

 >>Phase description 

  PHASE NAME 

Name of the phase for which the description is given. 

  GAS / LIQUID / SOLID 

Thermodynamic phase of the fluid. 

  CONTINUOUS / DISPERSE 

Continuity of the phase. 

  MODIFY EMPTY CELL VELOCITY 

In flows where buoyancy and other forces act, cells with small volume fractions 

may attain large numerical values for velocities. The keyword MODIFY 

EMPTY CELL VELOCITY sets velocities to zero in cells with volume fractions 

below that specified by the keyword. 
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  MINIMUM VOLUME FRACTION 

In a multi-phase calculation, in order to avoid solving zero equations in parts of 

the domain where the phase is not present, the minimum value of the volume 

fraction for any phase is bounded below. By default, the bounding value is 1.0E-

10, but this can be changed using the MINIMUM VOLUME FRACTION 

keyword. 

>>Scalar parameters 

 >> Diffusivities 

Specifies diffusivity coefficients in additional scalar equations. For example, in the 

electric potential equation (8) the coefficient in front of the diffusive term is equal to 

unity. 

 PHASE NAME / ALL PHASES 

Specifies whether the diffusivity specified below applies to all phases or a certain 

phase. 

 USER SCALARn / ALL USER SCALARS / USER SCALARS 

Specifies user scalar diffusivities. One diffusivity can be defined for a certain scalar, 

all user scalars, or for all scalars using a list of data. 

>>Transient parameters 

 >> Adaptive time stepping 

This option allows CFX-4 to choose the time step from within a certain range. The 

time step chosen will depend on how well the simulation is converging. 

 NUMBER OF TIME STEPS 

Here an integer number is given specifying how many time steps are to be used. This 

includes time steps that fail because of lack of convergence. 
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 INITIAL TIME STEP 

Sets the initial time step in seconds. By default, the initial time step is taken from the 

restart file, if there is one. 

 MINIMUM TIME STEP 

Allows user to set a minimum possible time step, in seconds. 

 MAXIMUM TIME STEP 

Allows user to set a maximum possible time step, in seconds. 

 MULTIPLY TIME STEP BY 

Sets the factor by which the time step is increased when the time step increment 

interval has been reached, see below. 

 DIVIDE TIME STEP BY 

Sets the factor by which the time step is divided when a time step fails. 

 MINIMUM INTERVAL BETWEEN INCREMENTS 

Controls how many successful time steps in a row there must be before the time step 

is increased. 

 MAXIMUM NUMBER OF CONTIGUOUS INCREMENTS 

Controls the maximum number of times a time step can fail in a row before the run is 

stopped. 

 BACKWARD DIFFERENCE / CRANCK NICOLSON 

This keyword invokes a fully implicit Backward Euler differencing (default) or 

Crank-Nicolson (central) differencing in time. 
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 LINEAR TIME DIFFERENCING / QUADRATIC TIME DIFFERENCING 

This keyword sets a first-order time-stepping method (default) or a second-order 

time-stepping method. It is recommended that this is not used with CRANK 

NICOLSON but as an alternative to it. 

 INITIAL TIME 

This keyword used to set the initial time, in seconds. This is most often used in a 

restart job. The initial time is then taken from the restart file by default. Where the 

run is not a restart, the default initial time is zero. Using this keyword will overwrite 

the default. 

 MAXIMUM TIME 

Sets the final model time, in seconds, of the transient solution. The user control over 

the number of time steps performed, but since the time step varies, the final solution 

time is not known. This keyword means that the simulation will either stop after the 

NUMBER OF TIME STEPS have been performed, or if the current time step is at a 

time which is greater than or equal to the MAXIMUM TIME. 

 >> Extrapolation order 

A further advantage of adaptive time stepping is the inclusion of an extrapolation 

technique that improves the initial guess to the solution at each time step. This 

reduces the number of iterations required for convergence. The order of extrapolation 

is set to be first order by default, but can be changed using the 

>>EXTRAPOLATION ORDER command. For example, the second-order 

extrapolation would be recommended with second-order time differencing. 
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 >> Fixed time stepping 

 TIME STEPS / TIME VALUES 

Here the list of time steps or time values is given. For example, 10 * 0.1 means ten 

time steps, 0.1 seconds each. Maximum of 10000 time steps can be specified. 

 BACKWARD DIFFERENCE / CRANCK NICOLSON 

This keyword that invokes fully implicit Backward Euler differencing (default) or 

Crank-Nicolson (central) differencing in time. 

 LINEAR TIME DIFFERENCING / QUADRATIC TIME DIFFERENCING 

This keyword sets a first-order time-stepping method (default) or a second-order 

time-stepping method. It is recommended that this is not used with CRANK 

NICOLSON but as an alternative to it. 

 INITIAL TIME 

This keyword used to set the initial time, in seconds. This is most often used in a 

restart job. The initial time is then taken from the restart file by default. Where the 

run is not a restart, the default initial time is zero. Using this keyword will overwrite 

the default. 

>>Set initial guess 

>>Set constant guess 

PHASE NAME / ALL PHASES 

Specifies whether the initial guess is set for all phases or for a certain phase only. 

<variable name> 

Specifies variables (u, v, w, pressure, volume fraction, enthalpy, user scalar n) and their 

values used as the initial guess. 



ANL/TD/TM02-30  Page 36 

>>Sources 

This command allows one to specify extra source terms for any of the transport equations 

(u, v, w, pressure, volume fraction, enthalpy, user scalar n). Since these equations are 

obtained by integrating the appropriate conservation laws over a control volume the 

source terms have the form of the product of the source term and the volume of the 

control volume. Only constant source terms can be specified here. For more complicated 

cases user subroutine USRSRC should be used. 

The source term for variable φ is split into two parts as follows: 

 S = Su + Sp φ. (31) 

Thus, two numbers are specified for each source term. 

PATCH NAME 

Name of the two- or three-dimensional patches where the source term appears. In case of 

a two-dimensional patch, the source term is given per unit area of the corresponding cell. 

PHASE NAME / ALL PHASES 

Specifies whether the source term is set for all phases or for a certain phase only. 

TOTAL / PER UNIT VOLUNE AND MASS OF PHASE / PER UNIT MASS OF PHASE / PER UNIT 

VOLUME / PER UNIT MASS / PER UNIT AREA AND MASS OF PHASE / PER UNIT AREA OF 

PHASE / PER UNIT AREA 

This keyword specifies the way the source term is defined. Details can be found in CFX 

user guide. 

>>Title 

Here a title can be given to the problem that will appear in the output file. 
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Command Solver data 

>> False timesteps 

This command allows improving problem convergence by using the false time steps 

method. It can be used in transient problems together with real time stepping. It can also 

be combined with underrelaxation method. 

PHASE NAME / ALL PHASES 

Specifies whether false time steps apply to all phases or a particular phase. 

ALL EQUATIONS / <variable name> 

Specifies which equations should be integrated using false time steps and the 

corresponding values of the false time steps. 

>> Courant number false time steps 

One of the difficulties of using false time steps is that knowledge of the time scales of the 

problem is needed: Courant number false time steps avoid that difficulty by calculating 

the time scale from the grid size and the local velocity field. 

Different false time steps can be chosen for different equations when using Courant 

number false time steps. This is achieved by setting a multiple of the local Courant 

number time scale for each equation. 

PHASE NAME / ALL PHASES 

Specifies whether the following options will apply to all phases or one particular phase. 

ALL EQUATIONS / <variable name> 

By this keyword(s) the multiple of the local Courant number time scale is given for all 

equations or a list of variables. 
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IGNORE SPEED OF SOUND 

By default for fully compressible flows, the code uses the sum of velocity and the local 

speed of sound when calculating the Courant number time scale. This can be changed to 

just use the velocity, as for other flow types, by using this keyword. 

INITIAL FALSE TIMESTEP 

When the speed of sound is included, the Courant number time scale depends upon the 

reciprocal of velocity. For the standard initial guess of no flow, this can lead to problems 

on the first iteration. There is therefore a keyword INITIAL FALSE TIMESTEP for 

setting a suitable value to be used just on the first iteration. 

>> Equation solvers 

The set of linearised difference equations for a particular variable, one equation for each 

control volume in the flow, is passed to a simultaneous linear equation solver, which uses 

an iterative solution method. The alternative methods, available for this purpose, are 

specified within this command. 

PHASE NAME / ALL PHASES 

Specifies whether the following options will apply to all phases or one particular phase. 

<variable name> 

Specifies the variable for which the method is set. 

LINE SOLVER / STONE / BLOCK STONE / ICCG / AMG / GENERAL AMG 

These keywords set one of the following iteration methods: line relaxation, full field 

Stone's method, block Stone's method, preconditioned conjugate gradients, algebraic 

Multi-grid or general version of Algebraic Multi-grid. Usually the default method chosen 

by CFX works satisfactory, and there is no need to change the solver. 
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>> Pressure correction 

SIMPLE / SIMPLEC / PISO / NON ITERATIVE PISO 

By default, SIMPLE algorithm (Semi-Implicit Method for Pressure-Linked Equations) is 

used for updating pressure and correcting velocity components in order to ensure mass 

conservation. SIMPLEC is a modification of SIMPLE which differs in its derivation of a 

simplified momentum equation. In the so-called PISO algorithm, a second pressure-

correction equation is solved in order to improve the solution of the momentum equations 

while maintaining continuity. SIMPLE method has been used in this study. 

>> Program control 

MINIMUM NUMBER OF ITERATIONS 

Specifies minimum number of iterations performed by solver before the convergence 

testing is done. 

MAXIMUM NUMBER OF ITERATIONS 

Specifies maximum number of iterations performed by solver. 

MASS SOURCE TOLERANCE 

Specifies the convergence criterion in terms of mass residual. To use other convergence 

criteria, subroutine USRCVG should be used. 

>> Reduction factors 

On each "outer" iteration step, the set of linearised difference equations for a particular 

variable is solved using an iterative solution method. An exact solution is not required 

because this is just one step in the non-linear "outer" iteration. The computational effort 

in obtaining a reasonable solution to the set of equations is controlled using command 

>> Reduction factors and >>Sweeps information. 
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The residual in a particular cell is the amount by which the linear equation there is not 

satisfied. Residual reduction factor is the amount by which the residual should reduce 

compared to its initial value. 

PHASE NAME / ALL PHASES 

Specifies whether the reduction factors are given for all phases or a particular phase. 

<variable name> <factor> 

Specifies a variable and a corresponding reduction factor. By default, the reduction factor 

is 0.1 for pressure and 0.25 for all other variables. 

>> Sweeps information 

MAXIMUM NUMBER 

Specifies maximum number of inner iterations used for solving linearised equations on 

each "outer" iteration step. 

MINIMUM NUMBER 

Specifies minimum number of inner iterations used for solving linearised equations on 

each "outer" iteration step. 

>> Transient control 

The MASS SOURCE TOLERANCE is not used for transient flows using the adaptive 

time stepping option. In this case any variable can be chosen to test for convergence, not 

just the mass source residual. Convergence is obtained when the residual for the tested 

variable for the first phase satisfies the condition RES < MAX (RESMIN, 

MIN(RESMAX, RES5/REDUC)), where RES is the residual of the corresponding 

variable, RESMIN is the minimum required residual value, RESMAX is the maximum 

allowed residual value, REDUC is the residual reduction factor and RES5 is the value of 

the variable's residual computed on the fifth iteration. 
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>> Control parameters 

MINIMUM RESIDUAL VALUE 

Minimum required residual value for the variable specified by subcommand 

CONVERGENCE TESTING ON VARIABLE. 

MAXIMUM RESIDUAL VALUE 

Maximum allowed residual value for the variable specified by subcommand 

CONVERGENCE TESTING ON VARIABLE. 

REDUCTION FACTOR 

Residual reduction factor. 

DICERGENCE RATIO 

The time step solution is assumed to have diverged if any variable's residual increases to 

be greater than the specified DIVERGENCE RATIO multiplied by its minimum residual 

value to that point. The divergence test is only performed after 5 outer iterations in order 

to avoid possible zero residuals that might occur initially. 

 >>Convergence testing on variable 

<variable name> 

Specifies the variable to which the convergence testing will apply. 

>> Under relaxation factors 

PHASE NAME / ALL PHASES 

Specifies whether the command applies to all phases or a particular phase only. 

ALL EQUATIONS 

This keyword is used if the same underrelaxation factor is applied to all equations. 
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<variable name> <under-relaxation factor> 

This keyword specifies under-relaxation factors for particular variables. It also may be 

used for under-relaxation of body forces in momentum equations (names BFX, BFY, 

BFZ and BPX, BPY, BPZ are used for velocity-independent and velocity-dependent 

components of the body force - see Sec. 5.2.8 for definitions). 

Command Create grid 

In most of the problems presented in this study both geometry and computational mesh 

are created using pre-processing tools available in CFX. However, some simple 

geometries are created in command file using command >>Model Topology. In this case, 

computational mesh should be created using command Create Grid. Only simple 

rectangular grids are used in this study. 

>> Simple grid 

BLOCK NAME 

This keyword is used to specify block name on which the grid is being created. 

X START 

The starting value of x co-ordinate. 

Y START 

The starting value of y co-ordinate. 

Z START 

The starting value of z co-ordinate. 

DX 

Grid increment in x-direction. 
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DY 

Grid increment in y-direction. 

DZ 

Grid increment in z-direction. 

X 

A list of cell vertices in x direction (can be used instead of keywords X/Y/Z START with 

DX/DY/DZ). 

Y 

A list of cell vertices in y direction (can be used instead of keywords X/Y/Z START with 

DX/DY/DZ). 

Z 

A list of cell vertices in z direction (can be used instead of keywords X/Y/Z START with 

DX/DY/DZ). 

For example, the following command will create simple mesh with x ranging from 0 to 3 

with step 0.1, y ranging from -0.5 to 0.5 with step 0.1 and z ranging from -1 to 1 with step 

0.2. 

>>SIMPLE GRID 

BLOCK NAME 'BLOCK 1' 

X START 0.0 

Y START -0.5 

Z START -1.0 

DX 30 * 0.1 

DY 10 * 0.1 

DZ 10 * 0.2 

END 
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The same mesh can also be created in the following way: 

>>SIMPLE GRID 

BLOCK NAME 'BLOCK 1' 

X 0.0 TO 3.0 BY 0.1 

Y -0.5 TO 0.5 BY 0.1 

Z -1.0 TO 1.0 BY 0.2 

END 

Command Model boundary conditions 

This command is used to specify boundary conditions. If non-constant boundary 

conditions are needed, these are specified in user subroutine USRBCS. 

>> Inlet boundaries 

PATCH NAME 

This keyword specifies on which patch of type INLET boundary conditions are set. 

PHASE NAME / ALL PHASES 

Specifies whether same inlet boundary conditions apply to all phases, or only to a 

particular phase. 

<variable name> <value> 

Sets values for flow variables (velocities, pressure, user scalars, temperature etc.). 

>> Mass flow boundaries 

>> Flux 

PHASE NAME / ALL PHASES 

Specifies whether fluxes specified apply to all phases or a particular phase. 
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FLUXES 

This keyword sets fluxes for all mass flow patches. If several mass flow patch groups are 

created, then several values of mass flux must be specified - one for each group of 

patches. 

MASS FLOW SPECIFIED / FRACTIONAL MASS FLOW SPECIFIED 

Specifies whether absolute value of mass flux is given, or fraction of overall mass flux 

into domain. 

>> Inflow variables 

This command allows user to set constant values of flow variables on mass flow 

boundaries. 

PHASE NAME / ALL PHASES 

Specifies whether command applies to all phases or a particular phase. 

PATCH NAME 

Name of the mass flow patch where the flow variables are specified. 

VOLUME FRACTION 

Volume fraction can be specified on a mass flow boundary (for example, when a jet 

enters the domain, negative mass flux and volume fraction = 1 can be set at the 

corresponding patch). 

<variable name> <value> 

Allows user to set values of flow variables (velocities, user scalars, temperature etc.) at a 

mass flow boundary. However, values for the velocity components are only used if the 

flow is into the domain. 
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>> Pressure boundaries 

This command allows user to set constant values of flow variables on pressure 

boundaries. 

PHASE NAME / ALL PHASES 

Specifies whether command applies to all phases or a particular phase. 

PATCH NAME 

Name of the pressure patch where the flow variables are specified. 

PRESSURE 

Pressure is fixed on a pressure boundary. Two pressure boundaries, for example, can be 

used to model flow with given pressure drop. 

VOLUME FRACTION 

Volume fraction can be specified on a pressure boundary. 

<variable name> <value> 

Allows user to set values of some flow variables (user scalars, temperature etc.) at a mass 

flow boundary. Neumann boundary conditions, i.e. zero normal gradients, are imposed on 

velocity. 

>> Wall boundaries 

PHASE NAME / ALL PHASES 

Specifies whether the command applies to all phases or one particular phase. 

PATCH NAME 

Name of the patch of type WALL where the boundary conditions are being set. 
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U (V, W) VELOCITY 

Values of the three components of the velocity at the wall. 

TAUX (TAUY, TAUZ) 

Tangential stress at the wall. 

TEMPERATURE / HEAT FLUX / TEMPERATURE ABC 

Value of temperature or heat flux or general temperature boundary conditions at the wall. 

USER SCALAR n / USER SCALAR n FLUX / USER SCALAR n ABC 

Value of user scalar or its flux or general boundary conditions at the wall. 

Command Output options 

This command is used to control the way output data is produced. 

By default, CFX-4 will produce an unformatted, single precision dump file at the end of 

the simulation. This will contain adequate information to carry out a restart from the 

current run. It is possible to increase the information stored in the dump file, to make it a 

formatted file and to change the precision of the dump file. 

>> Dump file format 

UNFORMATTED / FORMATTED 

It is sometimes necessary to create a formatted dump file if the CFX-4 simulation is to be 

carried out on a different machine from the post-processing. In this case it is likely that 

the unformatted file will not be readable on the second machine, so a formatted file is 

necessary. 

NUMBER OF SIGNIFICANT FIGURES 

Sets the number of significant places in the output data if required. 
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SINGLE PRECISION / DOUBLE PRECISION 

Changes the precision of output data. 

>> Dump file options 

At the end of the simulation CFX-4 always dumps out everything that is necessary to do a 

restart. It is possible to dump out any selection of variables and other data to disk at any 

other stage in the simulation. 

PHASE NAME / ALL PHASES 

Specifies whether data for all phases or a particular phase should be written into the dump 

file. 

ITERATION 

Specifies iteration number on which data should be written. 

TIME STEP / EACH TIME STEP / TIME INTERVAL / TIME STEP INTERVAL 

Specifies time step (time) on which data should be written. Instead, time (step) interval 

can be specified. 

INITIAL GUESS 

Specifies that the initial guess should be included into the dump file (for transient flows). 

FINAL SOLUTION 

Specifies that the final solution should be included into the dump file (for transient 

flows). 
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ALL VARIABLES / ALL REAL DATA 

All real data consists of all the variables and properties as well as all the other real data 

that is required for a smooth restart to the flow simulation. Alternatively, all variables 

option can be used if values of flow variables are needed only. 

GEOMETRY DATA / NO GEOMETRY DATA 

GEOMETRY DATA consists of the grid and topological information. The geometry data 

is normally written to the first data group in the file, so that option NO GEOMETRY 

DATA can be used in order to save space. Otherwise it is included on each time step in 

transient calculations. 

5.2.8 Additional subroutines used 

Additional Fortran subroutines are used when an option cannot be specified via command 

file (for example, non-constant boundary conditions). All user subroutines used in a 

problem are written into a file M*.F (for example, m01.f). Flag IUSED should be set to 1 

in each subroutine. Every subroutine should also be listed in the command file under 

command >>USER FORTRAN. Hereafter only features relevant to this study are listed. 

User has access to the following variables: 

• U, V, W, P, VFRAC, T, SCAL 

Contain values of velocity components, pressure, volume fraction, temperature and user 

scalars. All these arrays have size (NNODE, NPHASE), where NNODE is the number of 

all nodes, including boundary nodes and dummy nodes; NPHASE is the number of 

phases. The size of the scalar array is (NNODE, NPHASE, NSCAL), where NSCAL is 

number of user scalars. 

• XP, YP, ZP, VOL, AREA, WFACT 

Contain geometry information: co-ordinated of nodes, volumes of cells, areas of cell 

faces, weight factors. 
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Other data is available such as topological information etc. There are also work arrays 

WORK, IWORK and CWORK that allow user to reserve workspace for additional data 

and to pass data between subroutines. 

Every cell in the computational domain can be referred to either by naming the block on 

which the cell resides and giving local co-ordinates (I, J, K) of the cell, or by its internal, 

1D, address, which lies between 1 and NNODE (NNODE is the number of all internal 

grid nodes - NCELL , including dummy cells around each block, plus the number of 

boundary nodes placed in the centre of each patch - NBDRY). 

Utility routines are available from all user subroutines. They perform such tasks as 

finding addresses of patches, finding variable numbers etc. The most commonly used 

utility routines are described below. 

All user subroutines contain clearly specified user areas where the modifications can be 

done. 

The following subroutines have been used in this study: USRBCS, USRBF, USRCVG, 

USRINT, USRSRC, USRTRN. A brief description of each subroutine is given below. 

Utility routines 

GETSCA 

This subroutine is used to find the number of a user scalar within the SCAL array. The 

alias name (CHARACTER*24) of the scalar is passed to the subroutine, and the number 

of the corresponding scalar is returned. 

GETVAR 

In most cases, the name of the variable is passed to subroutines (the CHARACTER*6 

name such as 'W     ', 'VFRAC ' etc.). However, sometimes the number of variable is 

required. Subroutine GETVAR returns the number of variable if its name is given. 



ANL/TD/TM02-30  Page 51 

GRADS 

GRADS may be used to compute the physical space gradients of a scalar variable. It 

creates a temporary array GRAD(NCELL,3) where values of three components of the 

gradient are stored for all internal cells of the computational domain. 

GRADV 

GRADV may be used to compute the physical space gradients of velocity. It creates three 

temporary arrays UGRAD, VGRAD and WGRAD of size (NCELL,3) where values of 

three components of the gradient for each velocity component are stored for all internal 

cells of the computational domain. 

IPALL 

This subroutine allows user to get addresses of several blocks or patches. User specifies 

the name of the block or patch, whether it is a block or a patch and whether the addresses 

of cell centres or vertices are required. In addition, the patch type has to be specified. The 

patch type and/or the patch or block name may be specified as ‘*’ which means all the 

patch types and/or all the names. An array IPT of size NPT is returned, which contains 

1D addresses of patch (block) cells. 

IPREC 

IPREC is used to return 1D addresses for all the centres or vertices in a rectangular group 

such as a block or patch. In contrast with IPALL, only one and only rectangular block or 

patch can be processed. The subroutine returns dimensions ILEN, JLEN and KLEN of 

the block/patch, and an array of corresponding 1D addresses. 

Subroutine USRBCS 

This subroutine enables user to specify more complicated boundary conditions. Simple 

boundary conditions can be set using the >>MODEL BOUNDARY CONDITIONS 

command. 
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User must set the flag IUBCSF to state whether the boundary conditions are to vary with 

iteration, time, or time and iteration (IUBCSF = 1, 2 or 3 respectively). Array VARBCS 

of size (NVAR, NPHASE, NCELL+1:NNODE) can be changed in order to set values of 

flow variables (NVAR is the total number of variables). User can also set coefficients in 

boundary conditions of general type, volume fractions, mass fluxes etc. 

Two sample user FORTRAN files are given in the Appendix. Subroutine USRBCS is 

used to set Hartmann profile and volume fraction at the inlet for the two-dimensional 

MHD jet. 

Subroutine USRBF 

This subroutine allows user to add body force to the momentum equations. Simple body 

forces of this type can be included using the >>BODY FORCES command. In this study 

subroutine USRBF is used for including Lorentz force into momentum equations. 

In order to enable the code to linearise the body force source term correctly, F is 

expressed in the form in CFX: 

 vCF R−= . 

In the above C is a vector, and R is a diagonal matrix; v is the fluid velocity. Arrays BX, 

BY and BZ of size NCELL are filled with the three components of the vector C for each 

internal cell of the computational domain. Similarly, arrays BPX, BPY and BPZ of the 

same size contain factors R. 

A sample user FORTRAN file for two-dimensional MHD jet is given in the Appendix 1. 

Subroutine USRBF is used to include body force BEuBF )( +−= into the momentum 

equation. In Appendix 2 the body force is three-dimensional as given by Eq. (5). 
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Subroutine USRCVG 

This is a general routine as it is called at the end of each iteration. The routine allows user 

to set custom convergence criteria, or to modify solution parameters during the iteration 

history. Simple convergence criteria can be set using the command >> SOLVER DATA. 

If the problem satisfies convergence criteria, flag LCONVG should be set to .TRUE. 

In the example given in the Appendix 2 subroutine USRCVG sets LCONVG = .TRUE. if 

ratio of the residual to the maximum value of velocity, volume fraction and pressure is 

less than 10-7. 

Subroutine USRINT 

This subroutine is used to overwrite the default initial conditions. Simple initial guess can 

be set using command >>INITIAL GUESS in the command file. Then USRINT can be 

used to overwrite or add initial conditions. Values of corresponding variables are changed 

directly in arrays U, V, W etc. 

In the sample Fortran file given in the Appendix 2 subroutine USRINT is used to set the 

initial (straight) shape of the jet and velocity equal to Hartmann profile everywhere inside 

the jet. 

Subroutine USRSRC 

This subroutine allows user to intervene and change the equations; in particular to add 

source terms into convection-diffusion equations. In this study subroutine USRSRC is 

used for specifying the source term in the electric potential equation in three-dimensional 

problems. It can also be used to include body forces into the momentum equations, 

instead of USRBF. In contrast to USRBF, the source term in USRSRC must be integrated 

over the control volume (in simple cases, the original source per volume must be 

multiplied by the volume of the cell). 
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In the sample of three-dimensional problem in Appendix 3, the source term S = ∇⋅(v×B) 

is added to the electric potential equation. 

Subroutine USRTRN 

Subroutine USRTRN is called after the initial guess and at the end of each time step. The 

routine can be used to monitor the calculation, or to produce special output for each time 

step. It may also be used at the end of the job to calculate additional quantities from the 

basic solution variables. In this study subroutine USRTRN is used for calculation of 

electric currents in three-dimensional problems and for calculation of additional data such 

as asymptotic or exact solutions of corresponding problems. 

In the two-dimensional problem in Appendix 2 subroutine USRTRN is used to assign 

values of the non-uniform magnetic field to a user scalar. In the three-dimensional 

problem in Appendix 3 USRTRN is used to calculate electric currents and the exact Hunt 

solution. 
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6. Benchmark problems 

The implementation of the CFX code for MHD flows developed here has been used to 

model various flows described below. Comparison with known exact and asymptotic 

solutions is given where possible in order to validate the implementation. 

6.1 Duct flows 

Fully developed flow in an arbitrary duct cross section can be computed relatively easily 

with CFX using mass flow- and pressure boundaries. The idea is to use a mass flow 

boundary at the inlet with the flow rate given and a pressure boundary with constant 

pressure at the outlet. If the pressure drop is given instead of the flow rate, two pressure 

boundaries are defined at the inlet and the outlet with fixed pressure values. 

The grid in the direction coincident with the channel axis need only contain the minimum 

of two cells in order for the pressure drop to be correctly predicted. 

6.1.1 Shercliff solution 

Fully developed flow in a square channel with electrically insulating walls is used as the 

first sample problems. It is compared with the analytical solution given by Shercliff [24]. 

Both the flow geometry and the co-ordinate system are shown in Figure 3 while the grid 

used is shown in Figure 4. The grid is non-uniform with grid points clustered at the walls 

in order to resolve the Hartmann- and parallel-layers. 

The results of calculations for a square duct are shown in Figure 5 - Figure 10. Excellent 

agreement has been achieved for both Ha = 100 and Ha = 200. Modelling the flow for 

Ha = 200 requires better resolution of the layers to achieve the same accuracy. 
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6.1.2 Hunt solution 

For a duct with electrically insulating walls the boundary layers do not carry a significant 

part of the flow. However, in many cases parallel layers do carry high-velocity jets. Thus, 

it is important to verify the code for such flow geometries. In order to ensure that the 

code implementation can be used in modelling such flows with high velocities in thin 

boundary layers, flow in a duct with perfectly conducting Hartmann walls and perfectly 

conducting/insulating parallel walls has been considered (see Figure 11). The exact 

solutions for such flows, and for some cases of thin conducting walls, have been obtained 

by Hunt [25]. 

Since we were interested only in comparison with analytical results, it was more 

convenient to normalise the flow using constant pressure gradient dp/dx = -1 instead of a 

fixed flow rate. 

Perfectly conducting walls 

When all walls of the duct are perfectly conducting, the overvelocities in the side layers 

are nor very high (Figure 12). The flow is almost constant in the middle of the duct with 

weak jets near the sidewalls. The electric potential is close to zero in the core region 

(Figure 13), also with peaks near the sidewalls. For Ha = 100 comparison with the exact 

solution (plotted using stars) shows very good agreement for both axial velocity and the 

potential (Figure 12 and Figure 13). 

Perfectly conducting Hartmann walls, electrically insulated parallel 

walls 

When the sidewalls are electrically insulating, the electric current induced in the core 

must vanish near the sidewalls (i. e. normal derivative of the electric potential at the wall 

vanishes, see Figure 14 and Figure 16). Thus the potential jump of order 1 is induced 

across the thin boundary layer and as a result velocity jets of order Ha1/2 appear (see 

Figure 15 and Figure 17). For Ha = 100 (Figure 14, Figure 15) agreement with the 

analytical results is perfect. However, for Ha = 200 (Figure 16, Figure 17) some minor 
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difference can be noticed. It can be explained by the fact that better resolution of 

boundary layers is generally required for higher Hartmann numbers. Therefore, higher 

aspect ratio of cells in computational domain is used. Current formulation of the body 

force and the source term in the electric potential equation assumes that these values are 

constant across the cell. However, for more precise calculations these values should result 

from integration of corresponding equations and should use variable values on the faces 

of each cell (see [20]). High non-uniformity of the grid makes this  inaccuracy more 

important, and as a result lower precision can be expected for high Hartmann numbers. 

6.1.3 Flow in an expansion 

As a next step we consider the two-dimensional flow in a sudden duct expansion (Figure 

18). This benchmark problem is an important test case because there are sharp inner 

corners, which may affect the accuracy of the numerical solution. A strong, uniform, 

transverse magnetic field is applied in y-direction. With velocity scale aQv /0 =  (average 

velocity in the duct region), where Q is the flow rate and a is the length scale, governing 

Eqs. (7)-(9) become 

 xvvv
v

ˆ)( 221 uHap
t

N −∇+−∇=



 ∇⋅+ −−

∂
∂

, (38) 

 0=⋅∇ v . (39) 

In the above, v = (u(x, y), v(x, y)) is the two-dimensional velocity field. The electric field 

is assumed to be zero, which corresponds to perfectly conducting, short-circuited 

sidewalls. 

In [26] the nature of the flow in the boundary layer formed at the junction x = 0 in a 

strong magnetic field and the effect of inertia has been studied with asymptotic and 

numerical methods. Here we compare the results with these in [26] and perform 

calculations for lower values of the interaction parameter. 
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Inertialess flow 

Consider first a symmetric 1:2 expansion. When no inertia is present, the fluid tends to 

flow from narrow a duct into the wider one in the shortest possible way. It is seen in 

Figure 19 that no separating zone is present, as expected, and the streamlines follow the 

form of the expansion. Upstream, the flow is fully developed with classical Hartmann 

profile. Near the junction, the flat Hartmann profile of the axial velocity component 

transforms into M-shaped profile in the direction of the field (Figure 20). This is a 

different effect from that causing jets in the parallel layers. Here high velocities near the 

points of expansion are caused by the necessity of fast flow redistribution at the junction 

and additional inflow into the top and the bottom parts of the wider duct. Perfect 

agreement between the CFX results and those in [26] have been achieved. Comparison 

for axial velocity component is shown in Figure 20. 

Figure 21 and Figure 22 show that the flow is fully developed except for the immediate 

vicinity of the junction, where a parallel layer is present [26]. The graph of pressure at the 

top wall of the wider duct (Figure 23) also shows that apart from a very thin boundary 

layer at x = 0 the pressure is almost a straight line from the point of the expansion. 

Inertial flow 

Now let us include inertial effects into the problem. Asymptotic analysis [26] shows that 

when N << Ha3/2 a layer of thickness N-1/3 is formed at the junction where the 

electromagnetic force is balanced by the inertial effects. Since it still does not ensure that 

the non-slip conditions are satisfied, an additional, viscous, sublayer is formed at the wall 

x = 0 where the balance of inertial and viscous forces takes place. 

For low values of N flow separation occurs. For example for N = 1 streamlines (Figure 

24) show that inertia prevents the fluid from following the duct shape as in the inertialess 

case. It needs larger distance in x-direction to fill the whole duct. As a result, stagnant 

zones are formed near the corners x = 0, y = ±1 where the viscous forces become 

important. Consequently, less fluid flows into the "shoulders" of the expansion at x = 0, 
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and the M-shaped profile is less pronounced at the junction (Figure 25) as compared to 

the inertialess case. 

Figure 26 shows pressure distribution along the top of the wider duct. Pressure is nearly 

constant near the corner where the stagnant zone is present (Figure 26). This follows by 

rising (adverse pressure gradient, which is the cause of separation), and then falling 

pressure. Even though the value of N is low, from Figure 26 and Figure 27 follows that it 

takes only approximately 0.7 characteristic lengths for pressure gradient to reach its fully 

developed value. Thus a comparatively weak field is sufficient to suppress separation in a 

two-dimensional duct expansion. 

Flow in an asymmetric duct 

Similar results hold for an asymmetric duct with expansion at one side of the duct (Figure 

28). The graphs for an asymmetric 1:2 expansion are shown in Figure 29-Figure 31. A 

stagnant zone is formed near the upper corner (Figure 29). Qualitatively, the flow 

behaves in the same way as that in a symmetric expansion cut along the symmetry line 

y = 0. Thus already for N = 1 the so-called Coanda effect is suppressed ([27], [28], [29]). 

6.1.4 Flow in a square duct in a non-uniform transverse magnetic 

field 

As a test problem for the three-dimensional flows consider a steady, three-dimensional 

flow of a viscous, electrically conducting, incompressible fluid in a straight, insulating, 

square duct in the z-direction (Figure 32). A strong transverse magnetic field yB ˆ)(zB=  

is applied in y-direction. We use a step-like field 

 zBBzB dd γtanh)1(5.0)1(5.0)( −++= , (51) 

where γ = 2 is the field gradient and Bd = 0.5 is the magnitude of the uniform magnetic 

field downstream. The profile of the magnetic field is shown in Figure 33.  The flow is 

supposed to be inertialess. Such a flow has been considered in [30] using asymptotic and 

numerical methods. 
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The flow is governed by Eqs. (7)-(9) without the gravity term (δ = 0). The average duct 

velocity is chosen as the velocity scale, so that the flow rate is equal to 4. 

Boundary conditions are the non-slip condition 

 v = 0  at n =  0, (52) 

and the electrically insulated walls condition 

 0=
∂
∂

n

φ
 at n = 0, (53) 

where n is the co-ordinate normal to a wall. 

Far upstream and far downstream the flow is fully developed, i. e. 

 0=
∂
∂

z

φ
, 0=

∂
∂

x

p
 as z → ± ∞. (54) 

Computational model 

The length of the computational domain in z-direction should be sufficiently high to 

enable flow to develop. On the other hand, the cost of computation increases dramatically 

with increasing number of mesh points, while high aspect ratio of the cell lengths affects 

the precision and the convergence speed of the problem. Therefore, the length of the duct 

sufficient for the flow to develop far from the non-uniform field region has been 

estimated using several preliminary runs with low resolution. The results show that for 

Ha = 200 a duct of length equal to 16 length scales is sufficiently long for the pressure 

and potential to satisfy conditions (54) and to reach their fully developed values. 

False time stepping has been used to reach convergent solution. False time steps equal to 

0.1 for the three components of velocity and 1.0 for electric potential and pressure have 

been used at the beginning of the run, and then increased as the residual decreased. In 

order to improve convergence of the inner iteration, the reduction factor for the electric 
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potential has been set to 0.01, and maximum number of inner iterations has been set to 50 

for the electric potential and to 100 for pressure. 

Non-uniform grid has been used in all three directions. It ensures sufficient resolution of 

the boundary layers in x and y directions, and reduces number of the mesh points in the 

z-direction by clustering mesh points near the region of changes of the field at z = 0. 

The development of the axial velocity profile is shown in Figure 34 and Figure 35. The 

flow profile is close to being fully developed already at 2=z  (Shercliff's flow, see 

[24]). In the region 3<z  three-dimensional currents circulate, which push the fluid to 

the sidewalls 1=x , and the M-shaped profile is formed (Figure 34 (c)-(g), Figure 35). 

The streamlines in the centreplane of the duct y = 0 are shown in Figure 36. The 

boundary for the three-dimensional currents may be detected from the graph for pressure 

(Figure 37). These currents cause transverse pressure difference in a duct cross-section. 

CFX is a very convenient tool for visualising the paths of the three-dimensional currents. 

In various three-dimensional flows the currents are usually shown either schematically or 

as a projection onto the plane transverse to the magnetic field (see e. g. [5], [31], [32]). 

the actual paths of three-dimensional currents in the present flow for y > 0 are shown in 

Figure 38. It is seen that the current paths are very complex and involve the core, and the 

Hartmann- and parallel layers. 

Paths shown in blue lines at z = -3 (loops 1) are in the fully developed flow region. The 

current flows in the cross-section z = const, being induced in the core, flowing in the 

parallel layers, and returning in the Hartmann layers. Closer to z = 0 the current path 

inclines in the direction of the flow (curves 2, 4). At z = 0, y = 0 there is a current loop 

that closes in the core only (curve 5). For y > 0 such a loop is also present, but of smaller 

size (curve 6). There are transitional lines, which flow around the recirculating core 

current zone, but involve either Hartmann or parallel layers (curves 3 and 7). 
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Now consider the flow for a higher Hartmann number. The results for Ha = 200 are 

shown in Figure 39 - Figure 43. Qualitatively they are similar to those for Ha = 50 but the 

three-dimensional effects are stronger. 

Overall the results are in agreement with those in [30] and [31]. 

6.2 Free-surface flows 

In free surface flows, interaction between two phases (liquid and "air") is studied. The 

homogeneous model available in CFX is used in this study for modelling free surface 

flows, and therefore equations for both media are solved. Thus, parameters of both metal 

and "air" should be provided. When comparing results with the asymptotic theory, finite 

physical properties of the surrounding air should be taken into account (see Table 2). 

Table 2 Physical properties of lithium and air ([33], [3], [34]) 

 Density, kg/m3 Kinematic 

viscosity, m2/s 

Dynamic viscosity, 

kg/(m⋅s) 

Lithium 500 9.0×10-7 4.5×10-4 

Air 1.209 1.49×10-5 1.8×10-5 

6.2.1  Spreading MHD drop 

As the first benchmark problem for the unsteady free-surface flow, we consider an 

inertialess, two-dimensional, gravity-dominated flow in a spreading drop of liquid metal 

subject to a strong vertical magnetic field (Figure 44). The reason is that for this unsteady 

flow an asymptotic, high-Ha solution is available ([35]). 

In dimensional form, the flow is governed a by two-dimensional version of Eqs. (1) and 

(3) with body force 

 yxF ˆˆ*2

0

* ρσ +−= uB . (32) 
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The boundary conditions are the non-slip condition at the solid wall 

 v* = 0  at y* = 0, (33) 

and the symmetry condition 

 0
*

*

=
∂
∂
x

v
, u* = 0  at x* = 0. (34) 

Since the air flow around the drop should also be take into account, the following 

boundary conditions hold for air far from the drop: 

 0
*

*

=
∂
∂

x

u
, v* = 0  as x* → ∞,  0

*

*

=
∂
∂
y

v
, u* = 0  as y* → ∞. (35) 

This means that if there is any air flow out/into the computational domain, it is fully 

developed. 

The initial conditions for the metal are zero velocities and the following shape of the 

drop: 
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where the characteristic length a is equal to 0.001 m in presented calculations. Physical 

data for lithium and air have been used (see Table 2). 

The asymptotic analysis presented in [35] shows that the shape of the drop at the time t* 

is described by the following formula: 
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The scaling of time is gBa ρσ /2

0 . In the following calculations B0 = 0.58 T and 

a = 0.0001 m have been chosen so that Ha = 50. 
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The shape of the drop after 0.185 s is presented in Figure 45. The liquid metal is shown in 

green, while air in blue. The intermediate colors show the smeared interface. The 

asymptotic solution is shown with the black line. The agreement is very good, taking into 

account fact that the asymptotic solution has been developed for high Hartmann numbers 

and for a dynamically passive surrounding medium with infinitely low density. 

The velocity field is stratified for both u and v in the core region (Figure 46 and Figure 

47). As the velocity components calculated with CFX refer to both air and liquid, there 

are non-zero velocities outside the asymptotic drop profile. As velocities are low, the air, 

however, is a mostly passive medium. Indeed, the pressure distribution repeats the shape 

of the drop (Figure 48), also in full agreement with the asymptotic solution [35]. 

6.3 MHD jet 

Consider a two-dimensional, steady flow of a liquid metal jet pouring from a nozzle in 

the presence of a transverse magnetic field (Figure 49). Due to the symmetry, only one 

half of the jet is considered. For sufficiently high jet velocity gravity can be neglected [9]. 

Thus, only effects of the inertia and the surface tension are considered. 

With velocity scale aQv /0 =  (average velocity in the duct region), where Q is the flow 

rate and a is the length scale, and the magnetic field yB ˆ)(xB= , Eqs. (7)-(9) governing 

the flow of the liquid metal become 

 xvvv
v

ˆ))()(()( 2221 ExBuxBHap
t

N +−∇+−∇=



 ∇⋅+ −−

∂
∂

, (40) 

 0=⋅∇ v , (41) 

where v = (u(x, y), v(x, y)). One also needs to consider equations governing the flow in 

the surrounding air. With the same scaling, the equations governing the air flow are 

 vvv
v 2

1

1 ( +−∇
∇⋅− p

t

∂
, (42) 



ANL/TD/TM02-30  Page 65 

 0=⋅∇ v . (43) 

In the above, the modified interaction parameter and the modified Hartmann number are 

defined as follows: 

 µ
νρ

ρν
HaaBHa ==

11

01 , ρ
ρ
σ

N
v

Ba
N ==

01

2

0
1 , (44) 

where ρ1, ν1 are the density and the kinematic viscosity of the air, respectively, and 

 1/ ρρρ = , 1/ µµµ =  (45) 

are the ratios of the density and the dynamic viscosity of the metal and the air. Real 

physical data for air and lithium have been used, therefore 

 25=ρ , 56.413=µ . (46) 

Since the homogeneous model is used in CFX for modelling the two-phase flow of metal 

and air, the velocity and pressure fields are shared by both phases (metal and air). 

Boundary conditions are the non-slip condition 

 v = 0 at solid walls. (47) 

Far upstream and downstream the flow is fully developed so that 

 const
x

p
=

∂
∂

, v = 0 as x → ±∞. (48) 

At the entrance to the duct, the flow rate 

 ∫ ==
1

0

1udyQ  (49) 

is given. 
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6.3.1  

First consider uniform magnetic field (  = 1) for E = Ha the 

x [9] ( 50). The only ef

of the free surface is minor flow redistribution near the exit of the duct. In the absence of 

solid walls, no viscous effects are present. Thus the velocity profile varies from the 

file in the jet region far from the 

exit from the duct (see 51). The pressure distribution is linear in the duct and 

Figure 52 Figure 53  for the parallel layer at the 

nozzle.

6.3.2  

When inertia is added (  = 1), the flow in the duct and the jet in the fully developed 

regions does not change. However, the character of the flow redistribution near the exit of 

uct changes. Due to inertia, pressure gradient is "carried" out of the duct region into 

the jet region ( 55). Therefore, the pressure reaches its constant value further 

Figure 56 red to the inertialess case (Figure ). Similarly, the 

velocity development length into the jet region is larger ( 57). The jet thickness, 

 

6.3.3 Inertialess flow in a non uniform field 

-uniform magnetic field. The magnetic 
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=
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inf xifxB

xif
xB

ζ
 (50) 

Here Binf is the induction of the uniform magnetic field as x → ∞, and ζ  is the gradient of 

the magnetic field equal to 2. Since the magnetic field in the jet region is lower than in 

the duct region, the Lorentz force becomes weaker. As a result, fluid accelerates and mass 

conservation requires jet to shrink. The asymptotic analysis [9] shows that the thickness 
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of the jet changes with distance as h(x) = B(x). It agrees very well with the numerical 

solution presented in Figure 59. The velocity in the core region increases as 1/B(x), also 

as predicted by the asymptotic theory of [9]. It is compared with the asymptotic solution 

in Figure 60 and a perfect agreement is seen. The discrepancy in the duct region is due to 

the insufficiently high value of the Hartmann number (Ha = 200). As Hartmann number 

tends to infinity, the asymptotic value u = 1 is expected. The streamlines near the exit 

region are shown in Figure 61. 
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7. Discussion and conclusions 

both duct  and free- -dimensional flows, convergence is relatively fast, usually 

-2 hours. Modelling the three dimensional flows takes far more time. 

Calculations for a three dimensional flow in a rectangular duct for Ha

96 hours to converge. This compares to about one minute of CPU time for the high Ha 

 

Computational time for the DNS model highly increases with the growth of the Hartmann 

Ha > 200 become very expensive. This is a general feature of the DNS, 

ot specific to the CFX. The question is for what flow conditions it is realistic to use 

DNS. Based on years of experience of using the high Hartmann number flow model and 

a short, one year experience with CFX we reached certain conclusions, which are 

discu

challenges in MHD modelling for various flow regimes. Then we discuss applicability of 

DNS and high Ha model to flows in various liquid metal systems for tokamaks.  

 Main problems  

Generally, while modelling flows in divertors and blankets of tokamaks one faces the 

 

1. Complex geometry of supplying/draining ducts 

 Nonuniform magnetic fields 

3.  

4. If walls are fully or partially conducting, global currents may circulate

5. 

walls and inside the flow domain. 

 Deformable free surface. 
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Some of these issues are illustrated best in the following examples (in both cases high-

Ha model has been used): 

Example 1: Flow in electrically coupled radial-toroidal-radial bends [36], [37]. 

A system of bends with common thin conducting walls is shown in Figure 62. The 

electric currents induced in one bend penetrate the other, change the whole flow pattern 

and affect the pressure drop. Although the bends are hydraulically decoupled, the whole 

system must be treated simultaneously. 

The position of various boundary layers is shown with the shaded areas. Some layers are 

being formed across the flow. If Direct Numerical Simulation (DNS) is were used to 

model this kind of flow, all these layers need to be resolved properly. Failure to do that 

would lead to wrong results both qualitative and quantitative.  

Similar problem arises if insulating dividing walls end within the flow region. 

Example 2: Flow in an insulating circular duct in a nonuniform field [5], [6] 

The second example is that of the flow in an electrically insulating circular duct in a 

nonuniform magnetic field varying in the flow direction. The isolines of the core pressure 

in the plane transverse to the field are shown in Figure 63. There are two prominent 

features concerning this flow. One is the formation of the flow-induced internal layer 

inside the core in the region –3 < x < 3. The other one is very high development length 

(the length of the flow affected by 3-D currents). In the example above it is about 20 duct 

diameters. For ARIES inlet pipes the development length is about 125 duct diameters.  

For this type of flow the following observations can be made:  

1. Not only the boundary layers but also the internal, curvilinear layer need to be 

resolved numerically. In the calculations in [5], [6] at least 128 points were 

needed in the flow direction (using a highly nonuniform grid) and 32 points in 

the transverse direction to get satisfactory results.  
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2. The computational domain needs to be very long to account for high 

development length 

3. Since the development length is high, the three-dimensional effects from 

different divertor/blanket elements (bend, manifold, jet, rivulet, draining duct) 

will overlap and thus the whole divertor will need to be modelled as a single 

piece. 

The question then is what is realistic to expect from DNS with current computational 

facilities (supercomputers included). 
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Table 3  Comparison of DNS and high-Ha model 

DNS HIGH-HA MODEL 

Advantages 
1. Takes into account all terms in the 

equations, including inertia 
2. Allows treatment of complex 

geometries and all three components 
of the field 

3. Commercial codes are available 
(CFX, FLUENT, FLOW-3D, etc.) 
which are relatively easy to use 

 
 

 
 
 

Disadvantages 

1. Very limited development history 
(almost no comparison with 
experiments) 

2. Has never been proved to have 
worked for high fields (max. Ha for 
3-D flows is between 100 and 500) 

3. Very slow 

 
1. Has been proved to work well for 

high fields: excellent agreement with 
the experiments within its range of 
applicability 

2. Most knowledge on liquid-metal 
MHD for fusion has been obtained 
using this model 

3. Allows treatment of complex 
geometries, including a three-
component field. 

4. Fast 
 
 
 

1. Currently does not take into 
account inertial effects (although 
some attempts are being made 
[42], [43])  

2. Does not work for very low 
Hartmann numbers 

3. More difficult and time 
consuming to modify than the 
commercial codes 

 

 

7.2 Comparison of the DNS and high-Ha flow model 

The advantages and disadvantages of DNS and high-Ha model are listed in Table 3. 

If one combines Table 3 with the expected flow regimes for various machines (Table 1), 

one can conclude that if high-Ha model is applicable (large tokamaks and C-MOD), it is 

a preferred option. It is sufficiently fast to expect that a complex geometry may be 

modelled as one piece (maybe a major part of a divertor or a blanket). The model has 

been under development for over 40 years; it has been tried, understood, and compared 
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with the experiments for duct flows. It also gives a great insight into the effects occurring 

within the flow. 

Concerning DNS, one can expect it to work for relatively low fields reaching the values 

of Ha of about 500-1000. Therefore, it is applicable for C-MOD. Calculations, however, 

will be costly. Indeed, perhaps the most comprehensive study of an MHD duct flow with 

DNS has been performed in [15]. The code has been specifically developed for the 

geometry studied, and thus was faster than the commercial codes. Nevertheless, to 

perform calculations presented in the paper required weeks of CPU time. 

Applying DNS to model flows in NSTX is very problematic. The reason is that the flow 

for N < 1 is likely to be highly turbulent. This is especially so for insulating walls, for 

which the parameter of transition to turbulence is not N but Re/Ha [38]. Thus successful 

flow modelling largely depends on the adequate turbulence models. Despite some initial 

attempts to develop such models for MHD flow for simple geometries [20], [39]-[41], 

[44] understanding of turbulent MHD is years away from now. Moreover, different 

turbulent models may be required for different divertor elements (fully developed duct 

flow, bends/expansions of ducts, free-surface flows, etc.) 

Taking into account what has been said in the above there is no reason to believe that 

within the next couple of years MHD flows for NSTX can be adequately modelled. As 

the flow regime in NSTX (turbulent MHD) stands alone among the other machines, from 

the point of view of understanding of free-surface MHD flows, more knowledge for 

large-scale tokamaks could be gained by testing the divertor in C-MOD. 

Despite the drawbacks, CFX (as, perhaps other codes) is a very convenient tool to study 

MHD flows. It is very flexible and allows great degree of user control. Therefore, its 

development ought to be continued, but at this stage it is best not to try to overextend the 

range of parameters by attempting to reach highest possible values of Ha or lowest 

possible values of N, as it is very easy to obtain wrong results.  

Let us provide an example. To obtain a steady flow CFX provides various possibilities. 

One is to use underrelaxation; another false time steps. For some flows for high values of 
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Ha calculations using underrelaxation converged to a solution, which looked very 

reasonable but failed the test with the exact solution (the solution in the core was not a 

constant; jets were of different thickness). The difference was small but increased with 

increasing Ha. No such problem has been observed while using false time steps. Thus 

flow modelling with CFX, as any other DNS code, requires a great degree of experience 

not only using the code itself, but with computational fluid dynamics, and above all high-

field magnetohydrodynamics. 

Comparison with the experiments and available analytical results is crucial at each step of 

the code development. DNS modelling may be considered as just one in a series of steps 

on the road towards understanding a particular flow. High-Ha models, exact solutions, 

and the physical insight must all be involved. Thus at this stage it seems to be best to use 

DNS to study fundamental flow problems and thus gain knowledge in the range of 

moderate values of Ha and N, and attempt modelling flows for C-MOD. 
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10. List of figures 

Figure 1 MHD problems in for the upper parts of the divertor. 

Figure 2 MHD problems in for the lower part of the divertor. 

Figure 3 Shercliff solution. Geometry and co-ordinate system. 

Figure 4 Shercliff solution. Grid used: (a) for Ha = 100; (b) for Ha = 200. 

Figure 5 Shercliff solution. Electric potential in the plane y = 0 for a square 

duct and for Ha = 100 (numerical solution - solid lines; exact solution - 

crosses). 

Figure 6 Shercliff solution. Axial velocity in the plane x = 0 for a square duct 

and for Ha = 100 (numerical solution - solid lines; exact solution - 

crosses). 

Figure 7 Shercliff solution. Axial velocity in the plane y = 0 for a square duct 

and for Ha = 100 (numerical solution - solid lines; exact solution - 

crosses). 

Figure 8 Shercliff solution. Electric potential at x = 0 for a square duct and for 

Ha = 200 (numerical solution - solid lines; exact solution - crosses). 

Figure 9 Shercliff solution. Axial velocity in the plane y = 0 for a square duct 

and for Ha = 200 (numerical solution - solid lines; exact solution - 

crosses). 

Figure 10 Shercliff solution. Axial velocity in the plane x = 0 for a square duct 

and for Ha = 200 (numerical solution - solid lines; exact solution - 

crosses). 
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Figure 11 Hunt solution. Geometry and co-ordinate system. 

Figure 12 Hunt solution for a square duct with perfectly conducting walls. Axial 

velocity in the plane y = 0 for Ha = 100 (numerical solution - solid 

lines; exact solution - stars). 

Figure 13 Hunt solution for a square duct with perfectly conducting walls.  

Electric potential in the plane y = 0 for Ha = 100 (numerical solution - 

solid lines; exact solution - stars). 

Figure 14 Hunt solution for a square duct with perfectly conducting Hartmann 

walls and electrically insulating parallel walls. Electric potential in the 

plane y = 0 for Ha = 100 (numerical solution - solid lines; exact 

solution - stars). 

Figure 15 Hunt solution for a square duct with perfectly conducting Hartmann 

walls and electrically insulating parallel walls. Axial velocity in the 

plane y = 0 for Ha = 100 (numerical solution - solid lines; exact 

solution - stars). 

Figure 16 Hunt solution for a square duct with perfectly conducting Hartmann 

walls and electrically insulating parallel walls. Electric potential in the 

plane y = 0 for Ha = 200 (numerical solution - solid lines; exact 

solution - stars). 

Figure 17 Hunt solution for a square duct with perfectly conducting Hartmann 

walls and electrically insulating parallel walls. Axial velocity in the 

plane y = 0 for Ha = 200 (numerical solution - solid lines; exact 

solution - stars). 

Figure 18 Flow in a duct with a 1:2 symmetric expansion in a transverse 

magnetic field. 



ANL/TD/TM02-30  Page 80 

Figure 19 Inertialess flow in a duct with an expansion. Streamlines for Ha = 200. 

Figure 20 Inertialess flow in a duct with an expansion. Velocity profiles in the 

duct (x = -3) and at the junction (x = 0) for Ha = 200. Solid lines - CFX 

numerical solution, stars - numerical solution obtained by a different 

method ([26]). 

Figure 21 Inertialess flow in a duct with an expansion. Core velocity (y = 0) for 

Ha = 200. 

Figure 22 Inertialess flow in a duct with an expansion. Pressure distribution for 

Ha = 200. 

Figure 23 Inertialess flow in a duct with an expansion. Pressure at the top of the 

wider duct (y = 1) for Ha = 200. 

Figure 24 Inertial flow in a duct with an expansion. Streamlines for Ha = 200, 

N = 1. 

Figure 25 Inertial flow in a duct with an expansion. Velocity profiles in the duct 

(x = -3) and at the junction (x = 0) for Ha = 200, N = 1. 

Figure 26 Inertial flow in a duct with an expansion. Pressure at the top of the 

wider duct (y = 1) for Ha = 200, N = 1. 

Figure 27 Inertial flow in a duct with an expansion. Pressure distribution for 

Ha = 200, N = 1. 

Figure 28 Flow in an asymmetric duct with an expansion in a transverse 

magnetic field. 
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Figure 29 Inertial flow in an asymmetric duct with an expansion. Streamlines 

for Ha = 200, N = 1. 

Figure 30 Inertial flow in an asymmetric duct with an expansion. Pressure 

distribution for Ha = 200, N = 1. 

Figure 31 Inertial flow in an asymmetric duct with an expansion. Pressure at the 

top of the wider duct (y = 1) for Ha = 200, N = 1. 

Figure 32 Flow in a square duct in a non-uniform transverse magnetic field. 

Figure 33 Flow in a square duct in a non-uniform transverse magnetic field. 

Magnetic field versus axial co-ordinate. 

Figure 34 Axial velocity profiles for inertialess flow in a square duct in a non-

uniform transverse magnetic field. Ha = 50. Line y = 0 and (a) z = -6; 

(b) z = -2; (c) z = -1; (d) z = -0.5; (e) z = 0; (f) z = 0.5; (g) z = 1; (h) z = 2; 

(i) z = 6. 

Figure 35 Axial velocity profiles in the inertialess flow in a square duct in a non-

uniform transverse magnetic field for Ha = 50. 

Figure 36 Streamlines in the inertialess flow in a square duct in a non-uniform 

transverse magnetic field in the plane y = 0 for Ha = 50. 

Figure 37 Pressure in the inertialess flow in a square duct in a non-uniform 

transverse magnetic field on the central line of the duct x = y = 0 

(broken line) and near the wall x = y = 1 (solid line). Ha = 50. 

Figure 38 Electric current lines in the inertialess flow in a square duct in a non-

uniform transverse magnetic field for Ha = 50. 
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Figure 39 Axial velocity profiles in the inertialess flow in a square duct in a non-

uniform transverse magnetic field in the plane y = 0 for Ha = 200. 

Figure 40 Streamlines in the inertialess flow in a square duct in a non-uniform 

transverse magnetic field in the plane y = 0 for Ha = 200. 

Figure 41 Pressure in the inertialess flow in a square duct in a non-uniform 

transverse magnetic field on the central line of the duct x = y = 0 

(broken line) and near the wall x = y = 1 (solid line). Ha = 200. 

Figure 42 Electric current lines in the inertialess flow in a square duct in a non-

uniform transverse magnetic field in the plane y = 0 for Ha = 200. 

Figure 43 Pressure variation in the inertialess flow in a square duct in a non-

uniform transverse magnetic field in the plane y = 0 for Ha = 200. 

Figure 44 Liquid metal drop in a strong, vertical magnetic field. 

Figure 45 Liquid metal drop in a strong, vertical magnetic field after 0.185 s. 

Solid line - asymptotic solution. 

Figure 46 Liquid metal drop in a strong, vertical magnetic field. Horizontal 

velocity for both phases ("air" and liquid metal). Solid line - drop 

surface (asymptotic solution). 

Figure 47 Liquid metal drop in a strong, vertical magnetic field. Vertical velocity 

for both phases ("air" and liquid metal). Solid line - drop surface 

(asymptotic solution). 

Figure 48 Liquid metal drop in a strong, vertical magnetic field. Pressure for 

both phases ("air" and liquid metal). Solid line - drop surface 

(asymptotic solution). 



ANL/TD/TM02-30  Page 83 

Figure 49 Liquid metal jet in a strong, transverse magnetic field. 

Figure 50 Liquid metal jet in a strong, transverse magnetic field. Variation of jet 

thickness in a uniform field for E = -1, Ha = 200. 

Figure 51 Liquid metal jet in a strong, transverse magnetic field. Velocity profile 

in a uniform field for E = -1, Ha = 200. Velocity in the duct (solid line) 

and in the jet region (stars). 

Figure 52 Liquid metal jet in a strong, transverse magnetic field. Variation of 

pressure in a uniform field for E = -1, Ha = 200. 

Figure 53 Liquid metal jet in a strong, transverse magnetic field. Variation of 

pressure in a uniform field at y = 0 for E = -1, Ha = 200. 

Figure 54 Liquid metal jet in a strong, transverse magnetic field. Velocity in the 

core in a uniform field at y = 0 for E = -1, Ha = 200. 

Figure 55 Liquid metal jet in a strong, transverse magnetic field. Variation of 

pressure in a uniform field for E = -1, Ha = 200, N = 1. 

Figure 56 Liquid metal jet in a strong, transverse magnetic field. Variation of 

pressure in a uniform field at y = 0 for E = -1, Ha = 200, N = 1. 

Figure 57 Liquid metal jet in a strong, transverse magnetic field. Velocity in the 

core in a uniform field at y = 0 for E = -1, Ha = 200, N = 1. 

Figure 58 Liquid metal jet in a strong, transverse magnetic field. Variation of jet 

thickness for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2. Colour map represents 

the numerical solution, the solid black line shows the asymptotic 

solution. 
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Figure 59 Liquid metal jet in a strong, transverse magnetic field. Variation of 

pressure for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2. 

Figure 60 Liquid metal jet in a strong, transverse magnetic field. Core velocity 

in the jet (y = 0) for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2. Solid line 

corresponds to the numerical solution, stars to the asymptotic 

solution. 

Figure 61 Liquid metal jet in a strong, transverse magnetic field. Streamlines in 

the jet for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2. 

Figure 62 Flow in electrically coupled U-bends(from [36]). 

Figure 63 Flow in a circular insulating duct in a nonuniform magnetic field. 

Projection of lines of constant pressure onto the plane transverse to 

the field. The field is out of the plane of the figure; it varies between x 

= -1 and x = 1. Variable x is in the flow direction. Variable z is in the 

direction transverse to the magnetic field (duct axis is at z = 0).  

Hartmann and Roberts layers are not shown. Here Ha=7000. (from 

[5]). 
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11. Appendix 1: a sample of command file 

>>CFX4 
  >>SET LIMITS 
    LARGE 
    TOTAL INTEGER WORK SPACE 5000000 
    TOTAL CHARACTER WORK SPACE 2000 
    TOTAL REAL WORK SPACE 70000000 
    MAXIMUM NUMBER OF BLOCKS 10 
    MAXIMUM NUMBER OF PATCHES 100 
    MAXIMUM NUMBER OF INTER BLOCK BOUNDARIES 20 
  >>OPTIONS 
    TWO DIMENSIONS 
    RECTANGULAR GRID 
    CARTESIAN COORDINATES 
    LAMINAR FLOW 
    ISOTHERMAL FLOW 
    INCOMPRESSIBLE FLOW 
    TRANSIENT FLOW 
    USER SCALAR EQUATIONS 3 
    NUMBER OF PHASES 2 
  >>USER FORTRAN 
    USRBCS 
    USRBF 
    USRCVG 
    USRINT 
    USRTRN 
  >>VARIABLE NAMES 
    U VELOCITY 'U VELOCITY' 
    V VELOCITY 'V VELOCITY' 
    W VELOCITY 'W VELOCITY' 
    PRESSURE 'PRESSURE' 
    VOLUME FRACTION 'VOLUME FRACTION' 
    DENSITY 'DENSITY' 
    VISCOSITY 'VISCOSITY' 
    USER SCALAR1 'USRD B' 
    USER SCALAR2 'USRD EXACT U' 
    USER SCALAR3 'USRD EXACT H' 
  >>PHASE NAMES 
    PHASE1 'AIR' 
    PHASE2 'METAL' 
>>MODEL TOPOLOGY 
  >>MODIFY PATCH 
    OLD PATCH NAME 'INLET' 
    NEW PATCH NAME 'ENTRANCE' 
    NEW PATCH TYPE 'INLET' 
  >>MODIFY PATCH 
    OLD PATCH NAME 'OUTLET' 
    NEW PATCH NAME 'EXIT' 
    NEW PATCH TYPE 'MASS FLOW BOUNDARY' 
  >>MODIFY PATCH 
    OLD PATCH NAME 'USER3D DUCT' 
    NEW PATCH NAME 'ALLDUCT' 
    NEW PATCH TYPE 'USER3D' 
>>MODEL DATA 
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  >>AMBIENT VARIABLES 
    PHASE NAME 'AIR' 
    VOLUME FRACTION 1.0000E+00 
  >>AMBIENT VARIABLES 
    PHASE NAME 'METAL' 
    VOLUME FRACTION 0.0000E+00 
  >>DIFFERENCING SCHEME 
    ALL EQUATIONS 'NO CONVECTION' 
  >>TITLE 
    PROBLEM TITLE 'MHD JET' 
  >>PHYSICAL PROPERTIES 
    >>FLUID PARAMETERS 
      PHASE NAME 'AIR' 
      VISCOSITY 1.000E-06 
      DENSITY 1.0000E+00 
    >>FLUID PARAMETERS 
      PHASE NAME 'METAL' 
      VISCOSITY 2.5000E-05 
      DENSITY 1.0000E+00 
    >>MULTIPHASE PARAMETERS 
      >>PHASE DESCRIPTION 
        PHASE NAME 'AIR' 
        GAS 
        CONTINUOUS 
      >>PHASE DESCRIPTION 
        PHASE NAME 'METAL' 
        LIQUID 
        CONTINUOUS 
      >>MULTIPHASE MODELS 
        >>MOMENTUM 
          HOMOGENEOUS 
          SURFACE SHARPENING ALGORITHM 
    >>TRANSIENT PARAMETERS 
      >>FIXED TIME STEPPING 
        TIME STEPS 100* 1.00000E+00 
>>SOLVER DATA 
  >>PROGRAM CONTROL 
    MAXIMUM NUMBER OF ITERATIONS 1000 
    MINIMUM NUMBER OF ITERATIONS 100 
  >>UNDER RELAXATION FACTORS 
    U VELOCITY 8.000E-01 
    V VELOCITY 8.000E-01 
    PRESSURE 1.0000E+00 
    VOLUME FRACTION 1.0000E+00 
    VISCOSITY 1.0000E+00 
>>MODEL BOUNDARY CONDITIONS 
  >>INLET BOUNDARIES 
    PHASE NAME 'AIR' 
    PATCH NAME 'ENTRANCE' 
    VOLUME FRACTION 0.0000E+00 
  >>INLET BOUNDARIES 
    PHASE NAME 'METAL' 
    PATCH NAME 'ENTRANCE' 
    VOLUME FRACTION 1.0000E+00 
  >>PRESSURE BOUNDARIES 
    PHASE NAME 'METAL' 
    PATCH NAME 'PRESS FORCED' 
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    VOLUME FRACTION 0.0000E+00 
  >>PRESSURE BOUNDARIES 
    PHASE NAME 'AIR' 
    PATCH NAME 'PRESS FORCED' 
    VOLUME FRACTION 1.0000E+00 
>>OUTPUT OPTIONS 
  >>DUMP FILE OPTIONS 
    ALL PHASES 
    EACH TIME STEP 
    INITIAL GUESS 
    FINAL SOLUTION 
    ALL REAL DATA 
    NO GEOMETRY DATA 
>>STOP 

12. Appendix 2: a sample of source code, two-dimensional 

flow, MHD jet 

 SUBROUTINE USRINT(U,V,W,P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,CONV, 
     +                  XC,YC,ZC,XP,YP,ZP,VOL,AREA,VPOR,ARPOR,WFACT, 
     +                  DISWAL,IPT,IBLK,IPVERT,IPNODN,IPFACN,IPNODF, 
     +                  IPNODB,IPFACB,WORK,IWORK,CWORK) 
C##################################################################### 
C##################################################################### 
C         Program for setting initial data at the first time step 
C##################################################################### 
C##################################################################### 
C 
C********************************************************************** 
C 
C   UTILITY SUBROUTINE FOR USER-SUPPLIED INITIAL FIELD. 
C 
C********************************************************************** 
C 
C   THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINE 
C      CUSR  INIT 
C 
C********************************************************************** 
C   CREATED 
C      13/06/90 ADB 
C   MODIFIED 
C      07/08/91 IRH   NEW STRUCTURE 
C      10/09/91 IRH   CORRECTION TO IUSED 
C      26/09/91 IRH   ALTER ARGUMENT LIST 
C      01/10/91 DSC   REDUCE COMMENT LINE GOING OVER COLUMN 72. 
C      03/10/91 IRH   CORRECT COMMENTS 
C      28/01/92 PHA   UPDATE CALLED BY COMMENT, ADD RF ARGUMENT, 
C                     CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2 
C      03/06/92 PHA   ADD PRECISION FLAG AND CHANGE IVERS TO 3 
C      08/02/93 NSW   REMOVE REDUNDANT COMMENTS 
C      23/11/93 CSH   EXPLICITLY DIMENSION IPVERT ETC. 
C      03/02/94 PHA   CHANGE FLOW3D TO CFDS-FLOW3D, REMOVE COMMA 
C                     FROM BEGINNING OF DIMENSION STATEMENT 
C      03/03/94 FHW   CORRECTION OF SPELLING MISTAKE 
C      09/08/94 NSW   CORRECT SPELLING 
C                     MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA 
C      19/12/94 NSW   CHANGE FOR CFX-F3D 
C      30/01/95 NSW   INCLUDE NEW EXAMPLE 
C      02/07/97 NSW   UPDATE FOR CFX-4 



ANL/TD/TM02-30  Page 88 

C 
C********************************************************************** 
C 
C   SUBROUTINE ARGUMENTS 
C 
C     U      - U COMPONENT OF VELOCITY 
C     V      - V COMPONENT OF VELOCITY 
C     W      - W COMPONENT OF VELOCITY 
C     P      - PRESSURE 
C     VFRAC  - VOLUME FRACTION 
C     DEN    - DENSITY OF FLUID 
C     VIS    - VISCOSITY OF FLUID 
C     TE     - TURBULENT KINETIC ENERGY 
C     ED     - EPSILON 
C     RS     - REYNOLD STRESSES 
C     T      - TEMPERATURE 
C     H      - ENTHALPY 
C     RF     - REYNOLD FLUXES 
C     SCAL   - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 
C     CONV   - CONVECTION COEFFICIENTS 
C     XC     - X COORDINATES OF CELL CORNERS 
C     YC     - Y COORDINATES OF CELL CORNERS 
C     ZC     - Z COORDINATES OF CELL CORNERS 
C     XP     - X COORDINATES OF CELL CENTRES 
C     YP     - Y COORDINATES OF CELL CENTRES 
C     ZP     - Z COORDINATES OF CELL CENTRES 
C     VOL    - VOLUME OF CELLS 
C     AREA   - AREA OF CELLS 
C     VPOR   - POROUS VOLUME 
C     ARPOR  - POROUS AREA 
C     WFACT  - WEIGHT FACTORS 
C     DISWAL - DISTANCE OF CELL CENTRE FROM WALL 
C 
C     IPT    - 1D POINTER ARRAY 
C     IBLK   - BLOCK SIZE INFORMATION 
C     IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 
C     IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 
C     IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 
C     IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 
C     IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 
C     IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACES 
C 
C     WORK   - REAL WORKSPACE ARRAY 
C     IWORK  - INTEGER WORKSPACE ARRAY 
C     CWORK  - CHARACTER WORKSPACE ARRAY 
C 
C   SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 
C   BE SET  BY THE USER IN THIS ROUTINE. 
C 
C   LOGICAL VARIABLE LRDISK IN COMMON BLOCK IOLOGC INDICATES WHETHER 
C   THE RUN IS A RESTART AND CAN BE USED SO THAT INITIAL INFORMATION 
C   IS ONLY SET WHEN STARTING A RUN FROM SCRATCH. 
C 
C   NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE 
C   ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 
C   USER MANUAL. 
C 
C********************************************************************** 
      DOUBLE PRECISION U 
      DOUBLE PRECISION V 
      DOUBLE PRECISION W 
      DOUBLE PRECISION P 
      DOUBLE PRECISION VFRAC 
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      DOUBLE PRECISION DEN 
      DOUBLE PRECISION VIS 
      DOUBLE PRECISION TE 
      DOUBLE PRECISION ED 
      DOUBLE PRECISION RS 
      DOUBLE PRECISION T 
      DOUBLE PRECISION H 
      DOUBLE PRECISION RF 
      DOUBLE PRECISION SCAL 
      DOUBLE PRECISION CONV 
      DOUBLE PRECISION XC 
      DOUBLE PRECISION YC 
      DOUBLE PRECISION ZC 
      DOUBLE PRECISION XP 
      DOUBLE PRECISION YP 
      DOUBLE PRECISION ZP 
      DOUBLE PRECISION VOL 
      DOUBLE PRECISION AREA 
      DOUBLE PRECISION VPOR 
      DOUBLE PRECISION ARPOR 
      DOUBLE PRECISION WFACT 
      DOUBLE PRECISION DISWAL 
      DOUBLE PRECISION WORK 
      DOUBLE PRECISION TIME 
      DOUBLE PRECISION DT 
      DOUBLE PRECISION DTINVF 
      DOUBLE PRECISION TPARM 
      DOUBLE PRECISION FULL 
      DOUBLE PRECISION EMPTY 
      LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS, 
     +        LPOROS,LTRANS 
      LOGICAL LRDISK,LWDISK 
C 
      CHARACTER*(*) CWORK 
C 
C++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 
      DOUBLE PRECISION Ha, RO, SIGMA, AA, VISC, B0, ParInterC,YY,VEL 
C++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++ 
C 
      COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM, 
     +       /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE, 
     +       NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST, 
     +       NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/DEVICE/NREAD, 
     +       NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,/IOLOGC/LRDISK,LWDISK, 
     +       /LOGIC/LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN, 
     +       LAXIS,LPOROS,LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL, 
     +       /SGLDBL/IFLGPR,ICHKPR,/TRANSI/NSTEP,KSTEP,MF,INCORE, 
     +       /TRANSR/TIME,DT,DTINVF,TPARM 
C 
C++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 
C     THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 
C     NO CONFLICT WITH NON-USER COMMON BLOCKS 
C 
C++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++ 
C 
      DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE), 
     +          P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),TE(NNODE,NPHASE), 
     +          ED(NNODE,NPHASE),RS(NNODE,NPHASE,6),T(NNODE,NPHASE), 
     +          H(NNODE,NPHASE),RF(NNODE,NPHASE,4), 
     +          SCAL(NNODE,NPHASE,NSCAL),DEN(NNODE,NPHASE), 
     +          VIS(NNODE,NPHASE),CONV(NFACE,NPHASE) 



ANL/TD/TM02-30  Page 90 

      DIMENSION XC(NVERT),YC(NVERT),ZC(NVERT),XP(NNODE),YP(NNODE), 
     +          ZP(NNODE),VOL(NCELL),AREA(NFACE,3),VPOR(NCELL), 
     +          ARPOR(NFACE,3),WFACT(NFACE),DISWAL(NCELL) 
      DIMENSION IPT(*),IBLK(5,NBLOCK),IPVERT(NCELL,8),IPNODN(NCELL,6), 
     +          IPFACN(NCELL,6),IPNODF(NFACE,4),IPNODB(NBDRY,4), 
     +          IPFACB(NBDRY) 
      DIMENSION IWORK(NIWS),WORK(NRWS),CWORK(NCWS) 
C 
C+++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS 
C 
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 
C 
C++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++ 
C 
C---- STATEMENT FUNCTION FOR ADDRESSING 
      IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I) 
C 
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 
C 
      IVERS = 3 
      ICHKPR = 2 
C 
C++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++ 
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1 
C 
      IUSED = 1 
C 
C++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++ 
C 
      IF (IUSED.EQ.0) RETURN 
C 
C---- FRONTEND CHECKING OF USER ROUTINE 
      IF (IUCALL.EQ.0) RETURN 
C 
C++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++ 
C 
C---- AREA FOR INITIALISING VARIABLES U,V,W,P,VFRAC,TE,ED,RS,T,SCAL 
C     ONLY. 
C 
C---- EXAMPLE 1 (SET TEMPERATURE TO 300.0 EVERYWHERE) 
C 
C  USE IPALL TO FIND 1D ADDRESSES OF ALL CELL CENTRES 
C     CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK) 
C 
C     DO 100 IPHASE = 1, NPHASE 
C  LOOP OVER ALL INTERIOR CELLS 
C        DO 110 I=1,NPT 
C  USE ARRAY IPT TO GET ADDRESS 
C        INODE=IPT(I) 
C        T(INODE,IPHASE)=300.0 
C 110   CONTINUE 
C 100 CONTINUE 
C 
C---- END OF EXAMPLE 1 
C 
C---- EXAMPLE 2 (SET FIRST SCALAR TO 0.5 EVERYWHERE IF STARTING RUN 
C     FROM SCRATCH, BUT NOT ON A RESTART). 
C 
C     IF(.NOT.LRDISK) THEN 
C 
C  USE IPALL TO FIND 1D ADDRESSES OF ALL CELL CENTRES 
C     CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK) 
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C 
C     DO 100 IPHASE = 1, NPHASE 
C  LOOP OVER ALL INTERIOR CELLS 
C        DO 110 I=1,NPT 
C  USE ARRAY IPT TO GET ADDRESS 
C        INODE=IPT(I) 
C        SCAL(INODE,IPHASE,1)=0.5 
C 110   CONTINUE 
C 100 CONTINUE 
C 
C     END IF 
C 
C---- END OF EXAMPLE 2 
C 
C----TO SET UP THE INITIAL FIELD FOR REFERENCE EXAMPLE 29 
C 
C##################################################################### 
C         Setting initial data: 
C          shape and velocities of the jet 
C##################################################################### 
 
 
C##################################################################### 
C         If program restarts from previous dump file (LRDISK=.TRUE.), 
C          no initial data is set 
C##################################################################### 
 
      IF(.NOT.LRDISK) THEN 
 
 
      AA     = 1.D+00 
 
      Ha     = 200.D0 
 
      SIGMA  = 3.3434D+06 
      VISC   = 9.D-07 
      RO     = 500.D+00 
      B0     = DSQRT(RO*VISC/SIGMA)*Ha/AA 
      ParInter=Ha**2.D0*VISC/AA 
 
      write(6,*) '###### B0 = ',B0 
      write(6,*) '###### N  = ',ParInter 
 
      FULL = 1.0D0 
      EMPTY = 1.D-10 
 
C##################################################################### 
C         First, velocities are set to zero everywhere and 
C          all domain full of "air" (phase 1) 
C##################################################################### 
 
      CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK) 
 
      DO 101 K = 1,NPT 
        INODE = IPT(K) 
        VFRAC(INODE,1) = FULL 
        VFRAC(INODE,2) = EMPTY 
        U(INODE,1) = 0.D0 
        V(INODE,1) = 0.D0 
        U(INODE,2) = 0.D0 
        V(INODE,2) = 0.D0 
  101 CONTINUE 
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C##################################################################### 
C         On patch ALLDUCT (straight central subdomain) 
C          volume fraction of liquid metal (phase 2) is set to 1 
C          and Hartmann profile for velocity 
C##################################################################### 
 
      CALL IPALL('ALLDUCT','*','PATCH','CENTRES',IPT,NPT,CWORK,IWORK) 
 
      DO 102 K = 1,NPT 
        INODE = IPT(K) 
        VFRAC(INODE,1) = EMPTY 
        VFRAC(INODE,2) = FULL 
        YY = YP(INODE)/AA 
        IF ((YY.LE.1.D0).AND.(YY.GE.-1.D0)) THEN 
          VEL = Ha/(Ha-tanh(Ha))*(1.D0-DEXP(Ha*(YY-1.D0))* 
     +          (1.D0+DEXP(-2.D0*Ha*YY))/(1.D0+DEXP(-2.D0*Ha))) 
        ELSE 
          VEL = 0.D0 
        END IF 
        U(INODE,1) = VEL 
        U(INODE,2) = VEL 
  102 CONTINUE 
 
 
      ENDIF 
C 
C++++++++++++++++ END OF USER AREA 5 +++++++++++++++++++++++++++++++++ 
C 
      RETURN 
C 
      END 
      SUBROUTINE USRBF(IPHASE,BX,BY,BZ,BPX,BPY,BPZ,U,V,W,P,VFRAC,DEN, 
     +                 VIS,TE,ED,RS,T,H,RF,SCAL,XP,YP,ZP,VOL,AREA,VPOR, 
     +                 ARPOR,WFACT,IPT,IBLK,IPVERT,IPNODN,IPFACN,IPNODF, 
     +                 IPNODB,IPFACB,WORK,IWORK,CWORK) 
C##################################################################### 
C##################################################################### 
C         Program for setting body forces 
C##################################################################### 
C##################################################################### 
C 
C*********************************************************************** 
C 
C   UTILITY SUBROUTINE FOR USER-SUPPLIED BODY FORCES 
C 
C   >>> IMPORTANT                                                   <<< 
C   >>>                                                             <<< 
C   >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN  <<< 
C   >>> THE DESIGNATED USER AREAS                                   <<< 
C 
C*********************************************************************** 
C 
C   THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES 
C      BFCAL 
C 
C*********************************************************************** 
C   CREATED 
C      24/01/92  ADB 
C   MODIFIED 
C      03/06/92  PHA  ADD PRECISION FLAG AND CHANGE IVERS TO 2 
C      23/11/93  CSH  EXPLICITLY DIMENSION IPVERT ETC. 
C      03/02/94  PHA  CHANGE FLOW3D TO CFDS-FLOW3D 
C      03/03/94  FHW  CORRECTION OF SPELLING MISTAKE 
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C      23/03/94  FHW  EXAMPLES COMMENTED OUT 
C      09/08/94  NSW  CORRECT SPELLING 
C                     MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA 
C      19/12/94  NSW  CHANGE FOR CFX-F3D 
C      31/01/97  NSW  EXPLAIN USAGE IN MULTIPHASE FLOWS 
C      02/07/97  NSW  UPDATE FOR CFX-4 
C 
C*********************************************************************** 
C 
C   SUBROUTINE ARGUMENTS 
C 
C     IPHASE - PHASE NUMBER 
C 
C   * BX     - X-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE 
C   * BY     - Y-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE 
C   * BZ     - Z-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE 
C   * BPX    - 
C   * BPY    - COMPONENTS OF LINEARISABLE BODY FORCES. 
C   * BPZ    - 
C 
C  N.B. TOTAL BODY-FORCE IS GIVEN BY: 
C 
C        X-COMPONENT = BX + BPX*U 
C        Y-COMPONENT = BY + BPY*V 
C        Z-COMPONENT = BZ + BPZ*W 
C 
C     U      - U COMPONENT OF VELOCITY 
C     V      - V COMPONENT OF VELOCITY 
C     W      - W COMPONENT OF VELOCITY 
C     P      - PRESSURE 
C     VFRAC  - VOLUME FRACTION 
C     DEN    - DENSITY OF FLUID 
C     VIS    - VISCOSITY OF FLUID 
C     TE     - TURBULENT KINETIC ENERGY 
C     ED     - EPSILON 
C     RS     - REYNOLD STRESSES 
C     T      - TEMPERATURE 
C     H      - ENTHALPY 
C     SCAL   - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 
C     XP     - X COORDINATES OF CELL CENTRES 
C     YP     - Y COORDINATES OF CELL CENTRES 
C     ZP     - Z COORDINATES OF CELL CENTRES 
C     VOL    - VOLUME OF CELLS 
C     AREA   - AREA OF CELLS 
C     VPOR   - POROUS VOLUME 
C     ARPOR  - POROUS AREA 
C     WFACT  - WEIGHT FACTORS 
C 
C     IPT    - 1D POINTER ARRAY 
C     IBLK   - BLOCK SIZE INFORMATION 
C     IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 
C     IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 
C     IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 
C     IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 
C     IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 
C     IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS 
C 
C     WORK   - REAL WORKSPACE ARRAY 
C     IWORK  - INTEGER WORKSPACE ARRAY 
C     CWORK  - CHARACTER WORKSPACE ARRAY 
C 
C   SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 
C   BE SET  BY THE USER IN THIS ROUTINE. 
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C 
C   NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE 
C   ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 
C   USER MANUAL. 
C 
C*********************************************************************** 
C 
      DOUBLE PRECISION BX 
      DOUBLE PRECISION BY 
      DOUBLE PRECISION BZ 
      DOUBLE PRECISION BPX 
      DOUBLE PRECISION BPY 
      DOUBLE PRECISION BPZ 
      DOUBLE PRECISION U 
      DOUBLE PRECISION V 
      DOUBLE PRECISION W 
      DOUBLE PRECISION P 
      DOUBLE PRECISION VFRAC 
      DOUBLE PRECISION DEN 
      DOUBLE PRECISION VIS 
      DOUBLE PRECISION TE 
      DOUBLE PRECISION ED 
      DOUBLE PRECISION RS 
      DOUBLE PRECISION T 
      DOUBLE PRECISION H 
      DOUBLE PRECISION RF 
      DOUBLE PRECISION SCAL 
      DOUBLE PRECISION XP 
      DOUBLE PRECISION YP 
      DOUBLE PRECISION ZP 
      DOUBLE PRECISION VOL 
      DOUBLE PRECISION AREA 
      DOUBLE PRECISION VPOR 
      DOUBLE PRECISION ARPOR 
      DOUBLE PRECISION WFACT 
      DOUBLE PRECISION WORK 
      DOUBLE PRECISION SMALL 
      DOUBLE PRECISION SORMAX 
      DOUBLE PRECISION TIME 
      DOUBLE PRECISION DT 
      DOUBLE PRECISION DTINVF 
      DOUBLE PRECISION TPARM 
      LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS, 
     +        LPOROS,LTRANS 
C 
      CHARACTER*(*) CWORK 
C 
C+++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 
      DOUBLE PRECISION Ha, AA, UFORCE, GAM, E, EFIELD, BFIELD 
C 
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++ 
C 
      COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM, 
     +       /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE, 
     +       NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST, 
     +       NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/DEVICE/NREAD, 
     +       NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,/LOGIC/LDEN,LVIS, 
     +       LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,LPOROS, 
     +       LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL,/SGLDBL/IFLGPR,ICHKPR, 
     +       /SPARM/SMALL,SORMAX,NITER,INDPRI,MAXIT,NODREF,NODMON, 
     +       /TRANSI/NSTEP,KSTEP,MF,INCORE,/TRANSR/TIME,DT,DTINVF,TPARM 
C 
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C+++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 
C     THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 
C     NO CONFLICT WITH NON-USER COMMON BLOCKS 
C 
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++ 
C 
      DIMENSION BX(NCELL),BY(NCELL),BZ(NCELL),BPX(NCELL),BPY(NCELL), 
     +          BPZ(NCELL) 
C 
      DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE), 
     +          P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE), 
     +          VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE), 
     +          RS(NNODE,NPHASE,*),T(NNODE,NPHASE),H(NNODE,NPHASE), 
     +          RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL) 
C 
      DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3), 
     +          VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),IPT(*), 
     +          IBLK(5,NBLOCK),IPVERT(NCELL,8),IPNODN(NCELL,6), 
     +          IPFACN(NCELL,6),IPNODF(NFACE,4),IPNODB(NBDRY,4), 
     +          IPFACB(NBDRY),IWORK(*),WORK(*),CWORK(*) 
C 
C+++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS 
C 
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 
C 
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++ 
C 
C---- STATEMENT FUNCTION FOR ADDRESSING 
      IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I) 
C 
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 
C 
      IVERS = 2 
      ICHKPR = 2 
C 
C+++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++ 
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1 
C 
      IUSED = 1 
C 
C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++ 
C 
      IF (IUSED.EQ.0) RETURN 
C 
C---- FRONTEND CHECKING OF USER ROUTINE 
      IF (IUCALL.EQ.0) RETURN 
C 
C+++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++ 
C 
C  THIS ROUTINE IS ENTERED REPEATEDLY FOR EACH PHASE IN A MULTIPHASE 
C  CALCULATION. BODY FORCES CAN BE SET FOR A PARTICULAR PHASE USING 
C  THE VARIABLE IPHASE. EG. IF (IPHASE.EQ.2) WOULD ALLOW BODY FORCES 
C  FOR THE SECOND PHASE. 
C 
C----ADD USER-DEFINED BODY FORCES. 
C 
C----EXAMPLE 1: LOCALISED MOMENTUM SOURCE, EG. PROPELLOR. 
C 
C----USE IPREC TO FIND ADDRESSES 
C 
C     CALL IPREC('DUCT','BLOCK','CENTRES',IPT 
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C    +              ,ILEN,JLEN,KLEN,CWORK,IWORK) 
C 
C     IST = ILEN/2 + 1 
C     IFN = IST 
C     JST = 1 
C     JFN = JLEN/2 
C 
C     SMOM = 10.0 
C     DO 103 K = 1, KLEN 
C        DO 102 J = JST, JFN 
C           DO 101 I = IST,IFN 
C              INODE = IP(I,J,K) 
C              BX(INODE) = BX(INODE) + SMOM 
C 101       CONTINUE 
C 102    CONTINUE 
C 103 CONTINUE 
C 
C----EXAMPLE 2: LOCALISED RESISTANCE 
C 
C----USE IPREC TO FIND ADDRESSES 
C 
C     CALL IPREC('DUCT','BLOCK','CENTRES',IPT 
C    +              ,ILEN,JLEN,KLEN,CWORK,IWORK) 
C 
C     IST = ILEN/4 + 1 
C     IFN = 3*ILEN/4 
C     JST = 1 
C     JFN = JLEN 
C 
C     RESIST = 1.0E+2 
C     DO 203 K = 1, KLEN 
C        DO 202 J = JST, JFN 
C           DO 201 I = IST,IFN 
C              INODE = IP(I,J,K) 
C              BPX(INODE) = BPX(INODE) - RESIST 
C              BPY(INODE) = BPY(INODE) - RESIST 
C              BPZ(INODE) = BPZ(INODE) - RESIST 
C 201       CONTINUE 
C 202    CONTINUE 
C 203 CONTINUE 
C 
C----EXAMPLE 3: LOCALISED RESISTANCES (DISCONTINUOUS CHANGE) 
C 
C----USE IPREC TO FIND ADDRESSES 
C 
C     CALL IPREC('DUCT','BLOCK','CENTRES',IPT 
C    +              ,ILEN,JLEN,KLEN,CWORK,IWORK) 
C 
C     IST1 = ILEN/4 + 1 
C     IFN1 = IST1 + ILEN/4 - 1 
C     IST2 = IFN1 + 1 
C     IFN2 = ILEN - 1 
C 
C     DO 313 K = 1, KLEN 
C        DO 312 J = 1, JLEN 
C 
C           RESIST = 1.0 
C           DO 311 I = IST1,IFN1 
C              INODE = IP(I,J,K) 
C              BPX(INODE) = BPX(INODE) - RESIST 
C              BPY(INODE) = BPY(INODE) - RESIST 
C              BPZ(INODE) = BPZ(INODE) - RESIST 
C 311       CONTINUE 
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C 
C           RESIST = 10.0 
C           DO 321 I = IST2,IFN2 
C              INODE = IP(I,J,K) 
C              BPX(INODE) = BPX(INODE) - RESIST 
C              BPY(INODE) = BPY(INODE) - RESIST 
C              BPZ(INODE) = BPZ(INODE) - RESIST 
C 321       CONTINUE 
C 
C 312    CONTINUE 
C 313 CONTINUE 
 
C##################################################################### 
C         Setting body force for phase 2 (liquid metal) 
C##################################################################### 
 
      IF (IPHASE.EQ.2) THEN 
 
 E      = -1.D0 
       GAM    =  2.D0 
 
       CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK) 
 
       DO 203 K = 1, NPT 
         INODE = IPT(K) 
 
         IF (XP(INODE).GT.0.D0) THEN 
           BFIELD=1.D0-0.5D0*DTANH(GAM*XP(INODE)) 
         ELSE 
           BFIELD = 1.D0 
         ENDIF 
 
         UFORCE     =  -BFIELD**2.D0 
 
C##################################################################### 
C         In all internal cells body force is set equal to 
C           Fx = UFORCE * U - E * BFIELD 
C##################################################################### 
 
         BPX(INODE) = BPX(INODE) + UFORCE 
         BX(INODE)  = BX(INODE)  - E*BFIELD 
  203  CONTINUE 
 
      ENDIF 
C 
C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++ 
C 
      RETURN 
C 
      END 
      SUBROUTINE USRCVG(U,V,W,P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,XP, 
     +                  YP,ZP,VOL,AREA,VPOR,ARPOR,WFACT,CONV,IPT,IBLK, 
     +                  IPVERT,IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,CMETH, 
     +                  MNSL,MXSL,RDFC,RESOR,URFVAR,LCONVG,WORK,IWORK, 
     +                  CWORK) 
C##################################################################### 
C##################################################################### 
C         Program for setting initial data at the first time step 
C##################################################################### 
C##################################################################### 
C 
C*********************************************************************** 
C 
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C   THIS SUBROUTINE ALLOWS USERS TO MONITOR CONVERGENCE, ALTER 
C   UNDER RELAXATION FACTORS, REDUCTION FACTORS ETC 
C   AND WRITE SOLUTION DATA AS A FUNCTION OF ITERATION 
C 
C   >>> IMPORTANT                                                   <<< 
C   >>>                                                             <<< 
C   >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN  <<< 
C   >>> THE DESIGNATED USER AREAS                                   <<< 
C 
C*********************************************************************** 
C 
C   THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINE 
C         CUSR  CVGTST 
C 
C*********************************************************************** 
C   CREATED 
C      09/12/88  ADB 
C   MODIFIED 
C      08/08/91  IRH  NEW STRUCTURE 
C      03/09/91  IRH  ADD CONV TO ARGUMENT LIST 
C      23/09/91  IRH  ADD USEFUL COMMON BLOCKS 
C      29/11/91  PHA  UPDATE CALLED BY COMMENT, ADD RF ARGUMENT, 
C                     CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2 
C      03/06/92  PHA  ADD PRECISION FLAG AND CHANGE IVERS TO 3 
C      07/07/92  IRH  CORRECT EXAMPLE 
C      23/11/93  CSH  EXPLICITLY DIMENSION IPVERT ETC. 
C      03/02/94  PHA  CHANGE FLOW3D TO CFDS-FLOW3D 
C      03/03/94  FHW  CORRECTION OF SPELLING MISTAKE 
C      22/08/94  NSW  MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA 
C      19/12/94  NSW  CHANGE FOR CFX-F3D 
C      25/03/96  NSW  CORRECT MAXIMUM VELOCITY EXAMPLE 
C      02/07/97  NSW  UPDATE FOR CFX-4 
C 
C*********************************************************************** 
C 
C   SUBROUTINE ARGUMENTS 
C 
C     U      - U COMPONENT OF VELOCITY 
C     V      - V COMPONENT OF VELOCITY 
C     W      - W COMPONENT OF VELOCITY 
C     P      - PRESSURE 
C     VFRAC  - VOLUME FRACTION 
C     DEN    - DENSITY OF FLUID 
C     VIS    - VISCOSITY OF FLUID 
C     TE     - TURBULENT KINETIC ENERGY 
C     ED     - EPSILON 
C     RS     - REYNOLD STRESSES 
C     T      - TEMPERATURE 
C     H      - ENTHALPY 
C     RF     - REYNOLD FLUXES 
C     SCAL   - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 
C     XP     - X COORDINATES OF CELL CENTRES 
C     YP     - Y COORDINATES OF CELL CENTRES 
C     ZP     - Z COORDINATES OF CELL CENTRES 
C     VOL    - VOLUME OF CELLS 
C     AREA   - AREA OF CELLS 
C     VPOR   - POROUS VOLUME 
C     ARPOR  - POROUS AREA 
C     WFACT  - WEIGHT FACTORS 
C 
C     IPT    - 1D POINTER ARRAY 
C     IBLK   - BLOCK SIZE INFORMATION 
C     IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 
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C     IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 
C     IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 
C     IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 
C     IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 
C     IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACES 
C 
C     CMETH  - SOLUTION METHOD 
C     MNSL   - MINIMUM NUMBER OF SWEEPS 
C     MXSL   - MAXIMUM NUMBER OF SWEEPS 
C     RDFC   - REDUCTION FACTORS REQUIRED 
C     RESOR  - NON LINEAR RESIDUALS 
C     URFVAR - UNDER RELAXATION FACTORS 
C   * LCONVG - LOGICAL CONVERGENCE FLAG 
C 
C     WORK   - REAL WORKSPACE ARRAY 
C     IWORK  - INTEGER WORKSPACE ARRAY 
C     CWORK  - CHARACTER WORKSPACE ARRAY 
C 
C   SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 
C   BE SET  BY THE USER IN THIS ROUTINE. 
C 
C   NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE 
C   ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 
C   USER MANUAL. 
C 
C*********************************************************************** 
C 
      DOUBLE PRECISION U 
      DOUBLE PRECISION V 
      DOUBLE PRECISION W 
      DOUBLE PRECISION P 
      DOUBLE PRECISION VFRAC 
      DOUBLE PRECISION DEN 
      DOUBLE PRECISION VIS 
      DOUBLE PRECISION TE 
      DOUBLE PRECISION ED 
      DOUBLE PRECISION RS 
      DOUBLE PRECISION T 
      DOUBLE PRECISION H 
      DOUBLE PRECISION RF 
      DOUBLE PRECISION SCAL 
      DOUBLE PRECISION XP 
      DOUBLE PRECISION YP 
      DOUBLE PRECISION ZP 
      DOUBLE PRECISION VOL 
      DOUBLE PRECISION AREA 
      DOUBLE PRECISION VPOR 
      DOUBLE PRECISION ARPOR 
      DOUBLE PRECISION WFACT 
      DOUBLE PRECISION CONV 
      DOUBLE PRECISION RDFC 
      DOUBLE PRECISION RESOR 
      DOUBLE PRECISION URFVAR 
      DOUBLE PRECISION WORK 
      DOUBLE PRECISION SMALL 
      DOUBLE PRECISION SORMAX 
      DOUBLE PRECISION TIME 
      DOUBLE PRECISION DT 
      DOUBLE PRECISION DTINVF 
      DOUBLE PRECISION TPARM 
      LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS, 
     +        LPOROS,LTRANS 
      LOGICAL LCONVG 
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C 
      CHARACTER*(*) CMETH,CWORK 
C 
C+++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 
C 
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++ 
C 
      COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM, 
     +       /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE, 
     +       NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST, 
     +       NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/DEVICE/NREAD, 
     +       NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,/LOGIC/LDEN,LVIS, 
     +       LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,LPOROS, 
     +       LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL,/RESID/IRESID,NRESID, 
     +       /SGLDBL/IFLGPR,ICHKPR,/SPARM/SMALL,SORMAX,NITER,INDPRI, 
     +       MAXIT,NODREF,NODMON,/TRANSI/NSTEP,KSTEP,MF,INCORE, 
     +       /TRANSR/TIME,DT,DTINVF,TPARM 
C 
C+++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 
C     THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 
C     NO CONFLICT WITH NON-USER COMMON BLOCKS 
C 
C---- COMMON BLOCK FOR EXAMPLE IN USER AREA 6 
C     COMMON /UC1/ VELOLD 
C 
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++ 
C 
      DIMENSION CMETH(NVAR,NPHASE),MNSL(NVAR,NPHASE),MXSL(NVAR,NPHASE), 
     +          RDFC(NVAR,NPHASE),RESOR(NVAR,NPHASE),URFVAR(NVAR,NPHASE) 
      DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE), 
     +          P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE), 
     +          VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE), 
     +          RS(NNODE,NPHASE,6),T(NNODE,NPHASE),H(NNODE,NPHASE), 
     +          RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL) 
      DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3), 
     +          VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE), 
     +          CONV(NFACE,NPHASE),IPT(*),IBLK(5,NBLOCK), 
     +          IPVERT(NCELL,8),IPNODN(NCELL,6),IPFACN(NCELL,6), 
     +          IPNODF(NFACE,4),IPNODB(NBDRY,4),IPFACB(NBDRY),IWORK(*), 
     +          WORK(*),CWORK(*) 
C 
C+++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS 
C 
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 
C 
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++ 
C 
C---- STATEMENT FUNCTION FOR ADDRESSING 
      IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I) 
C 
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 
C 
      IVERS = 3 
      ICHKPR = 2 
C 
C+++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++ 
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1 
C 
      IUSED = 1 
C 
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C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++ 
C 
      IF (IUSED.EQ.0) RETURN 
C 
C---- FRONTEND CHECKING OF USER ROUTINE 
      IF (IUCALL.EQ.0) RETURN 
C 
C+++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++ 
C 
C---- EXAMPLE: (TEST ON MAX OF MASS RESIDUAL AND ENTHALPY RESIDUAL) 
C 
C      CALL GETVAR('USRCVG','P     ',IPRES) 
C      CALL GETVAR('USRCVG','H     ',IH) 
C 
C      URESM=0.0 
C      DO 10 IPHASE=1,NPHASE 
C      URESM=MAX(URESM,RESOR(IPRES,IPHASE),RESOR(IH,IPHASE)) 
C 10   CONTINUE 
C 
C      LCONVG = URESM .LT. 1.0E-5 
C 
C----END OF EXAMPLE 
C 
C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++ 
C 
C 
C+++++++++++++++++ USER AREA 6 +++++++++++++++++++++++++++++++++++++++++ 
C 
C---- EXAMPLE: MONITOR CHANGE IN MAXIMUM VELOCITY 
C              ADJUST UNDER RELAXATION ACCORDINGLY 
C 
C      VELMAX=0.0 
C      DO 20 IPHASE=1,NPHASE 
C  USE IPALL TO FIND 1D ADDRESSES OF ALL CELL CENTRES 
C      CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK) 
C  LOOP OVER ALL CELL CENTRE LOCATIONS IN FLOW DOMAIN 
C        DO 30 I=1,NPT 
C  USE ARRAY IPT TO GET ADDRESS 
C        INODE=IPT(I) 
C        VELMAX=MAX(VELMAX,ABS(U(INODE,IPHASE)),ABS(V(INODE,IPHASE)), 
C     +             ABS(W(INODE,IPHASE))) 
C 30     CONTINUE 
C 20   CONTINUE 
C 
C      IF (NITER.GT.1) THEN 
C        DVEL=(VELMAX-VELOLD)/VELMAX 
C        URFMIN=0.01 
C        URFMAX=0.8 
C        URF=(1.0-DVEL)*URFMAX+DVEL*URFMIN 
C        WRITE(NWRITE,100)NITER,DVEL,URF 
C        CALL GETVAR('USRCVG','U     ',IU) 
C        CALL GETVAR('USRCVG','V     ',IV) 
C        CALL GETVAR('USRCVG','W     ',IW) 
C        DO 40 IPHASE=1,NPHASE 
C        URFVAR(IU,IPHASE)=URF 
C        URFVAR(IV,IPHASE)=URF 
C        URFVAR(IW,IPHASE)=URF 
C 40     CONTINUE 
C      ENDIF 
C 
C      VELOLD=VELMAX 
C 
C----END OF EXAMPLE 
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C##################################################################### 
C         Setting convergence criterion 
C##################################################################### 
 
C##################################################################### 
C      Convergence test will first be performed after 150th iteration 
C##################################################################### 
 
       IF (NITER.GT.150) THEN 
 
       CALL GETVAR('USRCVG','P     ',IPRES) 
       CALL GETVAR('USRCVG','U     ',IU) 
       CALL GETVAR('USRCVG','V     ',IV) 
       CALL GETVAR('USRCVG','VFRAC ',IVFRAC) 
 
C##################################################################### 
C      Maximum values of flow variables are calculated 
C##################################################################### 
 
       VELMAX=0.0D0 
       VFRACMAX=0.0D0 
       PMAX=0.0D0 
       DO 20 IPHASE=1,NPHASE 
         CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK) 
         DO 30 I=1,NPT 
           INODE=IPT(I) 
           VELMAX=MAX(VELMAX,ABS(U(INODE,IPHASE)),ABS(V(INODE,IPHASE))) 
           VFRACMAX=MAX(VFRACMAX,ABS(VFRAC(INODE,IPHASE))) 
           PMAX=MAX(PMAX,ABS(P(INODE,IPHASE))) 
  30     CONTINUE 
  20   CONTINUE 
 
C##################################################################### 
C      Maximum values of residuals of flow variables are calculated 
C##################################################################### 
 
       VELRESM=0.0D0 
       VFRACRESM = 0.0D0 
       PRESM = 0.0D0 
       DO 10 IPHASE=1,NPHASE 
         VELRESM=MAX(VELRESM,RESOR(IU,IPHASE),RESOR(IV,IPHASE)) 
         VFRACRESM=MAX(VFRACRESM,RESOR(IVFRAC,IPHASE)) 
         PRESM=MAX(PRESM,RESOR(IPRES,IPHASE)) 
  10   CONTINUE 
 
C##################################################################### 
C   If ratio of RES/MAX. VALUE is less than 1E-7, problem converged 
C##################################################################### 
 
       LCONVG = (VELRESM/VELMAX.LT.1.0E-7).AND.(PRESM/PMAX.LT.1.0E-7) 
     +           .AND.(VFRACRESM/VFRACMAX.LT.1.0E-7) 
 
       IF (LCONVG) THEN 
         write(6,*) '##### Converged! #####' 
         write(6,*) '##### VMAX = ',VELMAX,' PMAX = ',PMAX, 
     +              ' VFRACMAX =',VFRACMAX 
         write(6,*) '##### VRES = ',VELRESM,' PRES = ',PRESM, 
     +              ' VFRACRES =',VFRACRESM 
       ENDIF 
 
       ENDIF 
C*********************************************************************** 
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C 
C+++++++++++++++++ END OF USER AREA 6 ++++++++++++++++++++++++++++++++++ 
C 
      RETURN 
C 
      END 
      SUBROUTINE USRBCS(VARBCS,VARAMB,A,B,C,ACND,BCND,CCND,IWGVEL, 
     +                  NDVWAL,FLOUT,NLABEL,NSTART,NEND,NCST,NCEN,U,V,W, 
     +                  P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,XP,YP,ZP, 
     +                  VOL,AREA,VPOR,ARPOR,WFACT,IPT,IBLK,IPVERT, 
     +                  IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,WORK,IWORK, 
     +                  CWORK) 
C##################################################################### 
C##################################################################### 
C         Program for setting boundary conditions 
C##################################################################### 
C##################################################################### 
C 
C*********************************************************************** 
C 
C  USER ROUTINE TO SET REALS AT BOUNDARIES. 
C 
C   >>> IMPORTANT                                                   <<< 
C   >>>                                                             <<< 
C   >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN  <<< 
C   >>> THE DESIGNATED USER AREAS                                   <<< 
C 
C*********************************************************************** 
C 
C  THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINE 
C    CUSR  SRLIST 
C 
C*********************************************************************** 
C   CREATED 
C      30/11/88 ADB 
C   MODIFIED 
C      08/09/90 ADB  RESTRUCTURED FOR USER-FRIENDLINESS. 
C      10/08/91 IRH  FURTHER RESTRUCTURING ADD ACND BCND CCND 
C      22/09/91 IRH  CHANGE ICALL TO IUCALL + ADD /SPARM/ 
C      10/03/92 PHA  UPDATE CALLED BY COMMENT, ADD RF ARGUMENT, 
C                    CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2 
C      03/06/92 PHA  ADD PRECISION FLAG AND CHANGE IVERS TO 3 
C      30/06/92 NSW  INCLUDE FLAG FOR CALLING BY ITERATION 
C                    INSERT EXTRA COMMENTS 
C      03/08/92 NSW  MODIFY DIMENSION STATEMENTS FOR VAX 
C      21/12/92 CSH  INCREASE IVERS TO 4 
C      02/08/93 NSW  INCORRECT AND MISLEADING COMMENT REMOVED 
C      05/11/93 NSW  INDICATE USE OF FLOUT IN MULTIPHASE FLOWS 
C      23/11/93 CSH  EXPLICITLY DIMENSION IPVERT ETC. 
C      01/02/94 NSW  SET VARIABLE POINTERS IN WALL EXAMPLE. 
C                    CHANGE FLOW3D TO CFDS-FLOW3D. 
C                    MODIFY MULTIPHASE MASS FLOW BOUNDARY TREATMENT. 
C      03/03/94 FHW  CORRECTION OF SPELLING MISTAKE 
C      02/07/94 BAS  SLIDING GRIDS - ADD NEW ARGUMENT IWGVEL 
C                    TO ALLOW VARIANTS OF TRANSIENT-GRID WALL BC 
C                    CHANGE VERSION NUMBER TO 5 
C      09/08/94 NSW  CORRECT SPELLING 
C                    MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA 
C      19/12/94 NSW  CHANGE FOR CFX-F3D 
C      02/02/95 NSW  CHANGE COMMON /IMFBMP/ 
C      02/06/97 NSW  MAKE EXAMPLE MORE LOGICAL 
C      02/07/97 NSW  UPDATE FOR CFX-4 
C      08/09/98 NSW  CORRECT SIZE OF WALL ARRAY IN COMMENT 
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C      22/05/00 NSW  INITIALISE IUBCSF 
C 
C*********************************************************************** 
C 
C   SUBROUTINE ARGUMENTS 
C 
C     VARBCS - REAL BOUNDARY CONDITIONS 
C     VARAMB - AMBIENT VALUE OF VARIABLES 
C     A      - COEFFICIENT IN WALL BOUNDARY CONDITION 
C     B      - COEFFICIENT IN WALL BOUNDARY CONDITION 
C     C      - COEFFICIENT IN WALL BOUNDARY CONDITION 
C     ACND   - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION 
C     BCND   - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION 
C     CCND   - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION 
C     IWGVEL - USAGE OF INPUT VELOCITIES (0 = AS IS,1 = ADD GRID MOTION) 
C     NDVWAL - FIRST DIMENSION OF ARRAY IWGVEL 
C     FLOUT  - MASS FLOW/FRACTIONAL MASS FLOW 
C     NLABEL - NUMBER OF DISTINCT OUTLETS 
C     NSTART - ARRAY POINTER 
C     NEND   - ARRAY POINTER 
C     NCST   - ARRAY POINTER 
C     NCEN   - ARRAY POINTER 
C     U      - U COMPONENT OF VELOCITY 
C     V      - V COMPONENT OF VELOCITY 
C     W      - W COMPONENT OF VELOCITY 
C     P      - PRESSURE 
C     VFRAC  - VOLUME FRACTION 
C     DEN    - DENSITY OF FLUID 
C     VIS    - VISCOSITY OF FLUID 
C     TE     - TURBULENT KINETIC ENERGY 
C     ED     - EPSILON 
C     RS     - REYNOLD STRESSES 
C     T      - TEMPERATURE 
C     H      - ENTHALPY 
C     RF     - REYNOLD FLUXES 
C     SCAL   - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 
C     XP     - X COORDINATES OF CELL CENTRES 
C     YP     - Y COORDINATES OF CELL CENTRES 
C     ZP     - Z COORDINATES OF CELL CENTRES 
C     VOL    - VOLUME OF CELLS 
C     AREA   - AREA OF CELLS 
C     VPOR   - POROUS VOLUME 
C     ARPOR  - POROUS AREA 
C     WFACT  - WEIGHT FACTORS 
C 
C     IPT    - 1D POINTER ARRAY 
C     IBLK   - BLOCK SIZE INFORMATION 
C     IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 
C     IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 
C     IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 
C     IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 
C     IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 
C     IPFACB - POINTER TO NODES FROM BOUNDARY FACES 
C 
C     WORK   - REAL WORKSPACE ARRAY 
C     IWORK  - INTEGER WORKSPACE ARRAY 
C     CWORK  - CHARACTER WORKSPACE ARRAY 
C 
C   SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 
C   BE SET  BY THE USER IN THIS ROUTINE. 
C 
C   NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE 
C   ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 



ANL/TD/TM02-30  Page 105 

C   USER MANUAL. 
C 
C*********************************************************************** 
      DOUBLE PRECISION VARBCS 
      DOUBLE PRECISION VARAMB 
      DOUBLE PRECISION A 
      DOUBLE PRECISION B 
      DOUBLE PRECISION C 
      DOUBLE PRECISION ACND 
      DOUBLE PRECISION BCND 
      DOUBLE PRECISION CCND 
      DOUBLE PRECISION FLOUT 
      DOUBLE PRECISION U 
      DOUBLE PRECISION V 
      DOUBLE PRECISION W 
      DOUBLE PRECISION P 
      DOUBLE PRECISION VFRAC 
      DOUBLE PRECISION DEN 
      DOUBLE PRECISION VIS 
      DOUBLE PRECISION TE 
      DOUBLE PRECISION ED 
      DOUBLE PRECISION RS 
      DOUBLE PRECISION T 
      DOUBLE PRECISION H 
      DOUBLE PRECISION RF 
      DOUBLE PRECISION SCAL 
      DOUBLE PRECISION XP 
      DOUBLE PRECISION YP 
      DOUBLE PRECISION ZP 
      DOUBLE PRECISION VOL 
      DOUBLE PRECISION AREA 
      DOUBLE PRECISION VPOR 
      DOUBLE PRECISION ARPOR 
      DOUBLE PRECISION WFACT 
      DOUBLE PRECISION WORK 
      DOUBLE PRECISION SMALL 
      DOUBLE PRECISION SORMAX 
      DOUBLE PRECISION TIME 
      DOUBLE PRECISION DT 
      DOUBLE PRECISION DTINVF 
      DOUBLE PRECISION TPARM 
      LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS, 
     +        LPOROS,LTRANS 
C 
      CHARACTER*(*) CWORK 
C 
C+++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 
      DOUBLE PRECISION AA, EMPTY, FULL, HA, YY, VEL 
C 
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++ 
C 
      COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM, 
     +       /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE, 
     +       NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST, 
     +       NRLIST,NTOPOL,/BCSOUT/IFLOUT,/CHKUSR/IVERS,IUCALL,IUSED, 
     +       /DEVICE/NREAD,NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN, 
     +       /IMFBMP/IMFBMP,JMFBMP,/LOGIC/LDEN,LVIS,LTURB,LTEMP,LBUOY, 
     +       LSCAL,LCOMP,LRECT,LCYN,LAXIS,LPOROS,LTRANS,/MLTGRD/MLEVEL, 
     +       NLEVEL,ILEVEL,/SGLDBL/IFLGPR,ICHKPR,/SPARM/SMALL,SORMAX, 
     +       NITER,INDPRI,MAXIT,NODREF,NODMON,/TRANSI/NSTEP,KSTEP,MF, 
     +       INCORE,/TRANSR/TIME,DT,DTINVF,TPARM,/UBCSFL/IUBCSF 
C 



ANL/TD/TM02-30  Page 106 

C+++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 
C     THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 
C     NO CONFLICT WITH NON-USER COMMON BLOCKS 
C 
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++ 
C 
      DIMENSION VARBCS(NVAR,NPHASE,NCELL+1:NNODE),VARAMB(NVAR,NPHASE), 
     +          A(4+NSCAL,NPHASE,NSTART:*),B(4+NSCAL,NPHASE,NSTART:*), 
     +          C(4+NSCAL,NPHASE,NSTART:*),FLOUT(*),ACND(NCST:*), 
     +          BCND(NCST:*),CCND(NCST:*),IWGVEL(NDVWAL,NPHASE) 
C 
      DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE), 
     +          P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE), 
     +          VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE), 
     +          RS(NNODE,NPHASE,6),T(NNODE,NPHASE),H(NNODE,NPHASE), 
     +          RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL) 
C 
      DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3), 
     +          VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),IPT(*), 
     +          IBLK(5,NBLOCK),IPVERT(NCELL,8),IPNODN(NCELL,6), 
     +          IPFACN(NCELL,6),IPNODF(NFACE,4),IPNODB(NBDRY,4), 
     +          IPFACB(NBDRY),IWORK(*),WORK(*),CWORK(*) 
C 
C+++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS 
C 
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 
C 
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++ 
C 
C---- STATEMENT FUNCTION FOR ADDRESSING 
      IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I) 
C 
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 
C 
      IVERS = 5 
      ICHKPR = 2 
C 
C+++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++ 
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1 
C     AND SET IUBCSF FLAG: 
C     BOUNDARY CONDITIONS NOT CHANGING                       IUBCSF=0 
C     BOUNDARY CONDITIONS CHANGING WITH ITERATION            IUBCSF=1 
C     BOUNDARY CONDITIONS CHANGING WITH TIME                 IUBCSF=2 
C     BOUNDARY CONDITIONS CHANGING WITH TIME AND ITERATION   IUBCSF=3 
C 
      IUSED = 1 
      IUBCSF = 0 
C 
C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++ 
C 
      IF (IUSED.EQ.0) RETURN 
C 
C---- FRONTEND CHECKING OF USER ROUTINE 
      IF (IUCALL.EQ.0) RETURN 
C 
C+++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++ 
C 
C---- AREA FOR SETTING VALUES AT INLETS, PRESSURE BOUNDARIES 
C     AND OUTLETS. (NOTE THAT THE MASS FLOW AT OUTLETS IS 
C     SPECIFIED IN USER AREA 7) 
C 
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C     IF USING A REYNOLDS STRESS OR FLUX MODEL, NOTE THAT AT INLETS 
C     IT IS IMPORTANT THAT THE USER SETS ALL COMPONENTS OF THE 
C     REYNOLDS STRESS AND FLUX AND THE TURBULENT KINETIC ENERGY 
C     AS WELL AS THE ENERGY DISSIPATION RATE. 
C 
C     SET THE VALUES IN VARBCS(NVAR,NPHASE,ILEN,JLEN,KLEN) 
C 
C---- EXAMPLE: SETTING A LINEAR T PROFILE ON INLET PATCH 'ENTRANCE' 
C              LEAVE OTHER VARIABLES AS SET IN COMMAND LANGUAGE 
C 
C--  INTERROGATE GETVAR FOR VARIABLE NUMBERS. 
C 
C     CALL GETVAR('USRBCS','T     ',IT) 
C 
C  SET IPHS = 1 FOR SINGLE PHASE FLOW. 
C 
C     IPHS = 1 
C 
C  USE IPREC TO FIND ADDRESSES 
C 
C     CALL IPREC('ENTRANCE','PATCH','CENTRES',IPT,ILEN,JLEN,KLEN, 
C    +           CWORK,IWORK) 
C 
C     XMAX=2.0 
C     XMIN=1.0 
C     TMAX=300.0 
C     TMIN=250.0 
C  LOOP OVER PATCH 
C     DO 103 K = 1, KLEN 
C        DO 102 J = 1, JLEN 
C           DO 101 I = 1, ILEN 
C  USE STATEMENT FUNCTION IP TO GET ADDRESSES 
C           INODE = IP(I,J,K) 
C  SET VARBCS 
C           F=(XP(INODE)-XMIN)/(XMAX-XMIN) 
C           VARBCS(IT,IPHS,INODE) = F*TMAX + (1.0-F)*TMIN 
C 101       CONTINUE 
C 102    CONTINUE 
C 103  CONTINUE 
C 
C----END OF EXAMPLE 
 
C##################################################################### 
C         Setting Hartmann profile at the entrance to the duct 
C##################################################################### 
 
      CALL GETVAR('USRBCS','U     ',IU) 
      CALL GETVAR('USRBCS','VFRAC ',IVFRAC) 
      CALL IPALL('ENTRANCE','*','PATCH','CENTRES',IPT,NPT,CWORK,IWORK) 
 
      IPHS = 1 
 
      AA     = 1.D+00 
      HA     = 200.0D0 
 
      FULL = 1.0D0 
      EMPTY = 1.D-10 
 
      CALL IPALL('ENTRANCE','*','PATCH','CENTRES',IPT 
     +              ,NPT,CWORK,IWORK) 
 
      DO 110 K = 1, NPT 
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        INODE  = IPT(K) 
        YY     = YP(INODE)/AA 
 
        IF ((YY.LE.1.D0).AND.(YY.GE.-1.D0)) THEN 
 
          VEL = Ha/(Ha-tanh(Ha))*(1.D0-DEXP(Ha*(YY-1.D0))* 
     +          (1.D0+DEXP(-2.D0*Ha*YY))/(1.D0+DEXP(-2.D0*Ha))) 
        ELSE 
          VEL = 0.D0 
        END IF 
 
C##################################################################### 
C   Volume fraction of metal is set to 1, velocity to Hartmann profile 
C##################################################################### 
 
        VARBCS(IVFRAC,1,INODE) = EMPTY 
        VARBCS(IVFRAC,2,INODE) = FULL 
        VARBCS(IU,1,INODE) = VEL 
        VARBCS(IU,2,INODE) = VEL 
 
  110  CONTINUE 
 
C*********************************************************************** 
 
 
C 
C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++ 
C 
C+++++++++++++++++ USER AREA 6 +++++++++++++++++++++++++++++++++++++++++ 
C 
C---- AREA FOR SETTING VALUES AT WALLS 
C 
C     USE A(4+NSCAL,NPHASE,NNODE) 
C     WHERE NSCAL = NO. OF SCALARS, AND NPHASE = NO. OF PHASES. 
C 
C     THE CONVENTION FOR VARIABLE NUMBERS IS DIFFERENT IN THIS ROUTINE 
C     FROM THAT IN THE REST OF THE PROGRAM. IT IS: 
C 
C     IU = 1, IV = 2 , IW = 3, IT = 4, IS = 5 
C 
C---- EXAMPLE: SETTING FREE SLIP BOUNDARY CONDITIONS AT ALL WALLS 
C              AND SETTING T=300.0 AND SCALAR1 AND SCALAR2 =0.0 
C              ON WALL1. SET T=400.0 ON CONDUCTING SOLID BOUNDARY WALL2 
C 
C-- SET POINTERS 
C 
C     IU = 1 
C     IV = 2 
C     IW = 3 
C     IT = 4 
C     IS = 5 
C 
C-- SET IPHS = 1 FOR SINGLE PHASE FLOW. 
C 
C     IPHS = 1 
C 
C  USE IPALL TO FIND 1D ADDRESSES OF A GROUP OF PATCH CENTRES 
C 
C     CALL IPALL('*','WALL','PATCH','CENTRES',IPT,NPT,CWORK,IWORK) 
C 
C  LOOP OVER GROUP OF PATCHES 
C     DO 200 I=1,NPT 
C  USE ARRAY IPT TO GET ADDRESS 



ANL/TD/TM02-30  Page 109 

C       INODE=IPT(I) 
C       A(IU,IPHS,INODE) = 0.0 
C       B(IU,IPHS,INODE) = 1.0 
C       C(IU,IPHS,INODE) = 0.0 
C 
C       A(IV,IPHS,INODE) = 0.0 
C       B(IV,IPHS,INODE) = 1.0 
C       C(IV,IPHS,INODE) = 0.0 
C 
C       A(IW,IPHS,INODE) = 0.0 
C       B(IW,IPHS,INODE) = 1.0 
C       C(IW,IPHS,INODE) = 0.0 
C 200   CONTINUE 
C 
C  USE IPREC TO FIND ADDRESSES OF SINGLE PATCH 
C 
C     CALL IPREC('WALL1','PATCH','CENTRES',IPT,ILEN,JLEN,KLEN, 
C    +           CWORK,IWORK) 
C  LOOP OVER PATCH 
C         DO 203 K = 1, KLEN 
C            DO 202 J = 1, JLEN 
C               DO 201 I = 1, ILEN 
C  USE STATEMENT FUNCTION IP TO GET ADDRESSES 
C               INODE = IP(I,J,K) 
C 
C               A(IT,IPHS,INODE) = 1.0 
C               B(IT,IPHS,INODE) = 0.0 
C               C(IT,IPHS,INODE) = 300.0 
C 
C               A(IS,IPHS,INODE) = 1.0 
C               B(IS,IPHS,INODE) = 0.0 
C               C(IS,IPHS,INODE) = 0.0 
C 
C               A(IS+1,IPHS,INODE) = 1.0 
C               B(IS+1,IPHS,INODE) = 0.0 
C               C(IS+1,IPHS,INODE) = 0.0 
C 
C 201           CONTINUE 
C 202        CONTINUE 
C 203    CONTINUE 
C 
C  USE IPALL TO FIND 1D ADDRESSES OF A GROUP OF PATCH CENTRES 
C 
C     CALL IPALL('WALL2','*','PATCH','CENTRES',IPT,NPT,CWORK,IWORK) 
C 
C  LOOP OVER GROUP OF PATCHES 
C     DO 300 I=1,NPT 
C  USE ARRAY IPT TO GET ADDRESS 
C       INODE=IPT(I) 
C       ACND(INODE) = 1.0 
C       BCND(INODE) = 0.0 
C       CCND(INODE) = 400.0 
C 300   CONTINUE 
C 
C----END OF EXAMPLE 
C 
C+++++++++++++++++ END OF USER AREA 6 ++++++++++++++++++++++++++++++++++ 
C 
C 
C+++++++++++++++++ USER AREA 7 +++++++++++++++++++++++++++++++++++++++++ 
C 
C----- DEFINE FLOW AT OUTLETS (MASS FLOW BOUNDARIES) 
C      (TO TEMPERATURES AND SCALARS AT MASS FLOW BOUNDARIES USE 
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C       USER AREA 5) 
C 
C     SET PARAMETER IFLOUT: 
C     IFLOUT = 1  ==> MASS FLOW SPECIFIED AT LABELLED OUTLETS. 
C     IFLOUT = 2  ==> FRACTIONAL MASS FLOW SPECIFIED AT LABELLED OUTLETS 
C     IFLOUT = 2 
C 
C     SET OUTLET FLOW RATES: 
C     FLOUT(LABEL) = MASS FLOW OUT OF OUTLETS LABELLED LABEL (IFLOUT=1). 
C     FLOUT(LABEL) = FRACTIONAL MASS FLOW OUT OF OUTLETS LABELLED LABEL 
C                    (IFLOUT=2). 
C     FOR MULTIPHASE FLOWS IT IS NECESSARY TO SET 
C     EITHER 
C                    FLOUT(LABEL) = TOTAL MASS FLOW 
C                    IFLOUT = 1 
C                    IMFBMP = 0 
C     OR 
C                    FLOUT(LABEL + (IPHASE-1)*NLABEL) FOR EACH PHASE 
C                    IFLOUT = 1 OR 2 
C                    IMFBMP = 1 
C 
C---- EXAMPLE: EQUIDISTRIBUTION OF FRACTIONAL MASS FLOW AMONGST OUTLETS 
C 
C     IFLOUT=2 
C     FRAC = 1.0 / MAX( 1.0, FLOAT(NLABEL) ) 
C     DO 300 ILABEL = 1, NLABEL 
C        FLOUT(ILABEL) = FRAC 
C300  CONTINUE 
C 
C----END OF EXAMPLE 
C 
C+++++++++++++++++ END OF USER AREA 7 ++++++++++++++++++++++++++++++++++ 
C 
      RETURN 
C 
      END 
      SUBROUTINE USRTRN(U,V,W,P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,XP, 
     +                  YP,ZP,VOL,AREA,VPOR,ARPOR,WFACT,CONV,IPT,IBLK, 
     +                  IPVERT,IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,WORK, 
     +                  IWORK,CWORK) 
C##################################################################### 
C##################################################################### 
C         Program for calculation additional data sets 
C##################################################################### 
C##################################################################### 
C 
C********************************************************************** 
C 
C   USER SUBROUTINE TO ALLOW USERS TO MODIFY OR MONITOR THE SOLUTION AT 
C   THE END OF EACH TIME STEP 
C   THIS SUBROUTINE IS CALLED BEFORE THE START OF THE RUN AS WELL AS AT 
C   THE END OF EACH TIME STEP 
C 
C   >>> IMPORTANT                                                   <<< 
C   >>>                                                             <<< 
C   >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN  <<< 
C   >>> THE DESIGNATED USER AREAS                                   <<< 
C 
C********************************************************************** 
C 
C   THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES 
C      CUSR  TRNMOD 
C 
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C*********************************************************************** 
C   CREATED 
C      27/04/90  ADB 
C   MODIFIED 
C      05/08/91  IRH  NEW STRUCTURE 
C      01/10/91  DSC  REDUCE COMMENT LINE GOING OVER COLUMN 72. 
C      29/11/91  PHA  UPDATE CALLED BY COMMENT, ADD RF ARGUMENT, 
C                     CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2 
C      05/06/92  PHA  ADD PRECISION FLAG AND CHANGE IVERS TO 3 
C      03/07/92  DSC  CORRECT COMMON MLTGRD. 
C      23/11/93  CSH  EXPLICITLY DIMENSION IPVERT ETC. 
C      03/02/94  PHA  CHANGE FLOW3D TO CFDS-FLOW3D 
C      22/08/94  NSW  MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA 
C      19/12/94  NSW  CHANGE FOR CFX-F3D 
C      02/07/97  NSW  UPDATE FOR CFX-4 
C      02/07/99  NSW  INCLUDE NEW EXAMPLE FOR CALCULATING FLUX OF A 
C                     SCALAR AT A PRESSURE BOUNDARY 
C 
C*********************************************************************** 
C 
C   SUBROUTINE ARGUMENTS 
C 
C     U      - U COMPONENT OF VELOCITY 
C     V      - V COMPONENT OF VELOCITY 
C     W      - W COMPONENT OF VELOCITY 
C     P      - PRESSURE 
C     VFRAC  - VOLUME FRACTION 
C     DEN    - DENSITY OF FLUID 
C     VIS    - VISCOSITY OF FLUID 
C     TE     - TURBULENT KINETIC ENERGY 
C     ED     - EPSILON 
C     RS     - REYNOLD STRESSES 
C     T      - TEMPERATURE 
C     H      - ENTHALPY 
C     RF     - REYNOLD FLUXES 
C     SCAL   - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 
C     XP     - X COORDINATES OF CELL CENTRES 
C     YP     - Y COORDINATES OF CELL CENTRES 
C     ZP     - Z COORDINATES OF CELL CENTRES 
C     VOL    - VOLUME OF CELLS 
C     AREA   - AREA OF CELLS 
C     VPOR   - POROUS VOLUME 
C     ARPOR  - POROUS AREA 
C     WFACT  - WEIGHT FACTORS 
C     CONV   - CONVECTION COEFFICIENTS 
C 
C     IPT    - 1D POINTER ARRAY 
C     IBLK   - BLOCK SIZE INFORMATION 
C     IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 
C     IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 
C     IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 
C     IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 
C     IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 
C     IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS 
C 
C     WORK   - REAL WORKSPACE ARRAY 
C     IWORK  - INTEGER WORKSPACE ARRAY 
C     CWORK  - CHARACTER WORKSPACE ARRAY 
C 
C   SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 
C   BE SET  BY THE USER IN THIS ROUTINE. 
C 
C   NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE 
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C   ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 
C   USER MANUAL. 
C 
C********************************************************************** 
C 
C 
      DOUBLE PRECISION U 
      DOUBLE PRECISION V 
      DOUBLE PRECISION W 
      DOUBLE PRECISION P 
      DOUBLE PRECISION VFRAC 
      DOUBLE PRECISION DEN 
      DOUBLE PRECISION VIS 
      DOUBLE PRECISION TE 
      DOUBLE PRECISION ED 
      DOUBLE PRECISION RS 
      DOUBLE PRECISION T 
      DOUBLE PRECISION H 
      DOUBLE PRECISION RF 
      DOUBLE PRECISION SCAL 
      DOUBLE PRECISION XP 
      DOUBLE PRECISION YP 
      DOUBLE PRECISION ZP 
      DOUBLE PRECISION VOL 
      DOUBLE PRECISION AREA 
      DOUBLE PRECISION VPOR 
      DOUBLE PRECISION ARPOR 
      DOUBLE PRECISION WFACT 
      DOUBLE PRECISION CONV 
      DOUBLE PRECISION WORK 
      DOUBLE PRECISION SMALL 
      DOUBLE PRECISION SORMAX 
      DOUBLE PRECISION DTUSR 
      DOUBLE PRECISION TIME 
      DOUBLE PRECISION DT 
      DOUBLE PRECISION DTINVF 
      DOUBLE PRECISION TPARM 
      DOUBLE PRECISION SGNWL 
      LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS, 
     +        LPOROS,LTRANS 
C 
      CHARACTER*(*) CWORK 
C 
C++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 
      DOUBLE PRECISION BFIELD, GAM 
C 
C++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++ 
C 
      COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM, 
     +       /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE, 
     +       NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST, 
     +       NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/CONC/NCONC, 
     +       /DEVICE/NREAD,NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN, 
     +       /LOGIC/LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN, 
     +       LAXIS,LPOROS,LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL, 
     +       /SGLDBL/IFLGPR,ICHKPR,/SPARM/SMALL,SORMAX,NITER,INDPRI, 
     +       MAXIT,NODREF,NODMON,/TIMUSR/DTUSR,/TRANSI/NSTEP,KSTEP,MF, 
     +       INCORE,/TRANSR/TIME,DT,DTINVF,TPARM 
C 
C++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 
C     THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 
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C     NO CONFLICT WITH NON-USER COMMON BLOCKS 
C 
C++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++ 
C 
      DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE), 
     +          P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE), 
     +          VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE), 
     +          RS(NNODE,NPHASE,6),T(NNODE,NPHASE),H(NNODE,NPHASE), 
     +          RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL) 
      DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3), 
     +          VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE), 
     +          CONV(NFACE,NPHASE),IPT(*),IBLK(5,NBLOCK), 
     +          IPVERT(NCELL,8),IPNODN(NCELL,6),IPFACN(NCELL,6), 
     +          IPNODF(NFACE,4),IPNODB(NBDRY,4),IPFACB(NBDRY),IWORK(*), 
     +          WORK(*),CWORK(*) 
      DIMENSION SGNWL(6) 
C 
C++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS 
C 
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 
C 
C++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++ 
C 
      DATA SGNWL/1.0D0,1.0D0,1.0D0,-1.0D0,-1.0D0,-1.0D0/ 
C 
C---- STATEMENT FUNCTION FOR ADDRESSING 
      IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I) 
C 
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 
C 
      IVERS = 3 
      ICHKPR = 2 
C 
C++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++ 
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1 
C 
      IUSED = 1 
C 
C++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++ 
C 
      IF (IUSED.EQ.0) RETURN 
C 
C---- FRONTEND CHECKING OF USER ROUTINE 
      IF (IUCALL.EQ.0) RETURN 
C 
C++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++ 
C 
C---- EXAMPLE (SET TIME INCREMENT FOR NEXT TIME STEP) 
C 
C     DTUSR = 0.1 
C 
C---- END OF EXAMPLE 
C 
C---- EXAMPLE (CALCULATE FLUX OF FIRST SCALAR AT A PRESSURE BOUNDARY) 
C 
C     IPHASE = 1 
C     FLUX = 0.0 
C  USE IPALL TO FIND ADDRESSES OF BOUNDARY NODES ON PATCH PRESS1 
C     CALL IPALL('PRESS1','PRESS','PATCH','CENTRES' 
C    +          ,IPT,NPT,CWORK,IWORK) 
C  LOOP OVER ALL BOUNDARY NODES 
C     DO 300 I=1,NPT 
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C  USE ARRAY IPT TO GET ADDRESS 
C       INODE = IPT(I) 
C       IBDRY = INODE - NCELL 
C       IFACE = IPFACB(IBDRY) 
C       INDUM = IPNODB(IBDRY,2) 
C       NWL   = IPNODB(IBDRY,4) 
C       FLUX  = FLUX 
C    +        + SGNWL(NWL)*CONV(IFACE,IPHASE)*SCAL(INDUM,IPHASE,1) 
C 300 CONTINUE 
C 
C---- END OF EXAMPLE 
C##################################################################### 
C         Calculating additional data: 
C          shape and velocities of the jet (asymptotic solution) 
C          in all internal cells  
C##################################################################### 
      CALL GETSCA('USRD B',IB,CWORK) 
      CALL GETSCA('USRD EXACT U',IW,CWORK) 
      CALL GETSCA('USRD EXACT H',IH,CWORK) 
 
      GAM = 2.D0 
 
      CALL IPALL('*','*','BLOCK','CENTRES',IPT 
     +              ,NPT,CWORK,IWORK) 
      DO 110 K = 1, NPT 
 
        INODE  = IPT(K) 
 
         IF (XP(INODE).GT.0.D0) THEN 
           BFIELD=1.D0-0.5D0*DTANH(GAM*XP(INODE)) 
         ELSE 
           BFIELD = 1.D0 
         ENDIF 
 
        SCAL(INODE,1,IW)=1.D0/BFIELD 
        SCAL(INODE,1,IB)=BFIELD 
 
        SCAL(INODE,2,IW)=1.D0/BFIELD 
        SCAL(INODE,2,IB)=BFIELD 
 
        IF (YP(INODE).GT.BFIELD) THEN 
          SCAL(INODE,1,IH)=0.D0 
          SCAL(INODE,2,IH)=0.D0 
        ELSE 
          SCAL(INODE,1,IH)=1.D0 
          SCAL(INODE,2,IH)=1.D0 
        ENDIF 
 
  110 CONTINUE 
 
C##################################################################### 
C         Calculating additional data: 
C          shape and velocities of the jet (asymptotic solution) 
C          on all patches  
C##################################################################### 
 
      CALL IPALL('*','*','PATCH','CENTRES',IPT 
     +              ,NPT,CWORK,IWORK) 
      DO 210 K = 1, NPT 
 
        INODE  = IPT(K) 
 
         IF (XP(INODE).GT.0.D0) THEN 
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           BFIELD=1.D0-0.5D0*DTANH(GAM*XP(INODE)) 
         ELSE 
           BFIELD = 1.D0 
         ENDIF 
 
        SCAL(INODE,1,IW)=1.D0/BFIELD 
        SCAL(INODE,1,IB)=BFIELD 
 
        SCAL(INODE,2,IW)=1.D0/BFIELD 
        SCAL(INODE,2,IB)=BFIELD 
 
        IF (YP(INODE).GT.BFIELD) THEN 
          SCAL(INODE,1,IH)=0.D0 
          SCAL(INODE,2,IH)=0.D0 
        ELSE 
          SCAL(INODE,1,IH)=1.D0 
          SCAL(INODE,2,IH)=1.D0 
        ENDIF 
 
  210 CONTINUE 
 
 
C********************************************************************** 
C 
C++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++ 
C 
      RETURN 
C 
      END 

 

13. Appendix 3: a sample of source code, three-dimensional 

flow, Hunt solution 

 SUBROUTINE USRBF(IPHASE,BX,BY,BZ,BPX,BPY,BPZ,U,V,W,P,VFRAC,DEN, 
     +                 VIS,TE,ED,RS,T,H,RF,SCAL,XP,YP,ZP,VOL,AREA,VPOR, 
     +                 ARPOR,WFACT,IPT,IBLK,IPVERT,IPNODN,IPFACN,IPNODF, 
     +                 IPNODB,IPFACB,WORK,IWORK,CWORK)C 
C##################################################################### 
C##################################################################### 
C         Program for setting body forces 
C##################################################################### 
C##################################################################### 
C***********************************************************************C 
C   UTILITY SUBROUTINE FOR USER-SUPPLIED BODY FORCES                  C 
C   >>> IMPORTANT                                                   <<< 
C   >>>                                                             <<< 
C   >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN  <<< 
C   >>> THE DESIGNATED USER AREAS                                   <<< 
C 
C*********************************************************************** 
C 
C   THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES 
C      BFCAL 
C 
C*********************************************************************** 
C   CREATED 
C      24/01/92  ADB 
C   MODIFIED 
C      03/06/92  PHA  ADD PRECISION FLAG AND CHANGE IVERS TO 2 
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C      23/11/93  CSH  EXPLICITLY DIMENSION IPVERT ETC. 
C      03/02/94  PHA  CHANGE FLOW3D TO CFDS-FLOW3D 
C      03/03/94  FHW  CORRECTION OF SPELLING MISTAKE 
C      23/03/94  FHW  EXAMPLES COMMENTED OUT 
C      09/08/94  NSW  CORRECT SPELLING 
C                     MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA 
C      19/12/94  NSW  CHANGE FOR CFX-F3D 
C      31/01/97  NSW  EXPLAIN USAGE IN MULTIPHASE FLOWS 
C      02/07/97  NSW  UPDATE FOR CFX-4 
C 
C*********************************************************************** 
C 
C   SUBROUTINE ARGUMENTS 
C 
C     IPHASE - PHASE NUMBER 
C 
C   * BX     - X-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE 
C   * BY     - Y-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE 
C   * BZ     - Z-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE 
C   * BPX    - 
C   * BPY    - COMPONENTS OF LINEARISABLE BODY FORCES. 
C   * BPZ    - 
C 
C  N.B. TOTAL BODY-FORCE IS GIVEN BY: 
C 
C        X-COMPONENT = BX + BPX*U 
C        Y-COMPONENT = BY + BPY*V 
C        Z-COMPONENT = BZ + BPZ*W 
C 
C     U      - U COMPONENT OF VELOCITY 
C     V      - V COMPONENT OF VELOCITY 
C     W      - W COMPONENT OF VELOCITY 
C     P      - PRESSURE 
C     VFRAC  - VOLUME FRACTION 
C     DEN    - DENSITY OF FLUID 
C     VIS    - VISCOSITY OF FLUID 
C     TE     - TURBULENT KINETIC ENERGY 
C     ED     - EPSILON 
C     RS     - REYNOLD STRESSES 
C     T      - TEMPERATURE 
C     H      - ENTHALPY 
C     SCAL   - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 
C     XP     - X COORDINATES OF CELL CENTRES 
C     YP     - Y COORDINATES OF CELL CENTRES 
C     ZP     - Z COORDINATES OF CELL CENTRES 
C     VOL    - VOLUME OF CELLS 
C     AREA   - AREA OF CELLS 
C     VPOR   - POROUS VOLUME 
C     ARPOR  - POROUS AREA 
C     WFACT  - WEIGHT FACTORS 
C 
C     IPT    - 1D POINTER ARRAY 
C     IBLK   - BLOCK SIZE INFORMATION 
C     IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 
C     IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 
C     IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 
C     IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 
C     IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 
C     IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS 
C 
C     WORK   - REAL WORKSPACE ARRAY 
C     IWORK  - INTEGER WORKSPACE ARRAY 
C     CWORK  - CHARACTER WORKSPACE ARRAY 
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C 
C   SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 
C   BE SET  BY THE USER IN THIS ROUTINE. 
C 
C   NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE 
C   ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 
C   USER MANUAL. 
C 
C*********************************************************************** 
C 
      DOUBLE PRECISION BX 
      DOUBLE PRECISION BY 
      DOUBLE PRECISION BZ 
      DOUBLE PRECISION BPX 
      DOUBLE PRECISION BPY 
      DOUBLE PRECISION BPZ 
      DOUBLE PRECISION U 
      DOUBLE PRECISION V 
      DOUBLE PRECISION W 
      DOUBLE PRECISION P 
      DOUBLE PRECISION VFRAC 
      DOUBLE PRECISION DEN 
      DOUBLE PRECISION VIS 
      DOUBLE PRECISION TE 
      DOUBLE PRECISION ED 
      DOUBLE PRECISION RS 
      DOUBLE PRECISION T 
      DOUBLE PRECISION H 
      DOUBLE PRECISION RF 
      DOUBLE PRECISION SCAL 
      DOUBLE PRECISION XP 
      DOUBLE PRECISION YP 
      DOUBLE PRECISION ZP 
      DOUBLE PRECISION VOL 
      DOUBLE PRECISION AREA 
      DOUBLE PRECISION VPOR 
      DOUBLE PRECISION ARPOR 
      DOUBLE PRECISION WFACT 
      DOUBLE PRECISION WORK 
      DOUBLE PRECISION SMALL 
      DOUBLE PRECISION SORMAX 
      DOUBLE PRECISION TIME 
      DOUBLE PRECISION DT 
      DOUBLE PRECISION DTINVF 
      DOUBLE PRECISION TPARM 
      LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS, 
     +        LPOROS,LTRANS 
C 
      CHARACTER*(*) CWORK 
C 
C+++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 
C 
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++ 
C 
      COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM, 
     +       /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE, 
     +       NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST, 
     +       NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/DEVICE/NREAD, 
     +       NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,/LOGIC/LDEN,LVIS, 
     +       LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,LPOROS, 
     +       LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL,/SGLDBL/IFLGPR,ICHKPR, 
     +       /SPARM/SMALL,SORMAX,NITER,INDPRI,MAXIT,NODREF,NODMON, 
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     +       /TRANSI/NSTEP,KSTEP,MF,INCORE,/TRANSR/TIME,DT,DTINVF,TPARM 
C 
C+++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 
C     THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 
C     NO CONFLICT WITH NON-USER COMMON BLOCKS 
C 
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++ 
C 
      DIMENSION BX(NCELL),BY(NCELL),BZ(NCELL),BPX(NCELL),BPY(NCELL), 
     +          BPZ(NCELL) 
C 
      DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE), 
     +          P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE), 
     +          VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE), 
     +          RS(NNODE,NPHASE,*),T(NNODE,NPHASE),H(NNODE,NPHASE), 
     +          RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL) 
C 
      DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3), 
     +          VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),IPT(*), 
     +          IBLK(5,NBLOCK),IPVERT(NCELL,8),IPNODN(NCELL,6), 
     +          IPFACN(NCELL,6),IPNODF(NFACE,4),IPNODB(NBDRY,4), 
     +          IPFACB(NBDRY),IWORK(*),WORK(*),CWORK(*) 
C 
C+++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS 
C 
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 
C 
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++ 
C 
C---- STATEMENT FUNCTION FOR ADDRESSING 
      IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I) 
C 
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 
C 
      IVERS = 2 
      ICHKPR = 2 
C 
C+++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++ 
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1 
C 
      IUSED = 1 
C 
C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++ 
C 
      IF (IUSED.EQ.0) RETURN 
C 
C---- FRONTEND CHECKING OF USER ROUTINE 
      IF (IUCALL.EQ.0) RETURN 
C 
C+++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++ 
C 
C  THIS ROUTINE IS ENTERED REPEATEDLY FOR EACH PHASE IN A MULTIPHASE 
C  CALCULATION. BODY FORCES CAN BE SET FOR A PARTICULAR PHASE USING 
C  THE VARIABLE IPHASE. EG. IF (IPHASE.EQ.2) WOULD ALLOW BODY FORCES 
C  FOR THE SECOND PHASE. 
C 
C----ADD USER-DEFINED BODY FORCES. 
C 
C----EXAMPLE 1: LOCALISED MOMENTUM SOURCE, EG. PROPELLOR. 
C 
C----USE IPREC TO FIND ADDRESSES 
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C 
C     CALL IPREC('DUCT','BLOCK','CENTRES',IPT 
C    +              ,ILEN,JLEN,KLEN,CWORK,IWORK) 
C 
C     IST = ILEN/2 + 1 
C     IFN = IST 
C     JST = 1 
C     JFN = JLEN/2 
C 
C     SMOM = 10.0 
C     DO 103 K = 1, KLEN 
C        DO 102 J = JST, JFN 
C           DO 101 I = IST,IFN 
C              INODE = IP(I,J,K) 
C              BX(INODE) = BX(INODE) + SMOM 
C 101       CONTINUE 
C 102    CONTINUE 
C 103 CONTINUE 
C 
C----EXAMPLE 2: LOCALISED RESISTANCE 
C 
C----USE IPREC TO FIND ADDRESSES 
C 
C     CALL IPREC('DUCT','BLOCK','CENTRES',IPT 
C    +              ,ILEN,JLEN,KLEN,CWORK,IWORK) 
C 
C     IST = ILEN/4 + 1 
C     IFN = 3*ILEN/4 
C     JST = 1 
C     JFN = JLEN 
C 
C     RESIST = 1.0E+2 
C     DO 203 K = 1, KLEN 
C        DO 202 J = JST, JFN 
C           DO 201 I = IST,IFN 
C              INODE = IP(I,J,K) 
C              BPX(INODE) = BPX(INODE) - RESIST 
C              BPY(INODE) = BPY(INODE) - RESIST 
C              BPZ(INODE) = BPZ(INODE) - RESIST 
C 201       CONTINUE 
C 202    CONTINUE 
C 203 CONTINUE 
C 
C----EXAMPLE 3: LOCALISED RESISTANCES (DISCONTINUOUS CHANGE) 
C 
C----USE IPREC TO FIND ADDRESSES 
C 
C     CALL IPREC('DUCT','BLOCK','CENTRES',IPT 
C    +              ,ILEN,JLEN,KLEN,CWORK,IWORK) 
C 
C     IST1 = ILEN/4 + 1 
C     IFN1 = IST1 + ILEN/4 - 1 
C     IST2 = IFN1 + 1 
C     IFN2 = ILEN - 1 
C 
C     DO 313 K = 1, KLEN 
C        DO 312 J = 1, JLEN 
C 
C           RESIST = 1.0 
C           DO 311 I = IST1,IFN1 
C              INODE = IP(I,J,K) 
C              BPX(INODE) = BPX(INODE) - RESIST 
C              BPY(INODE) = BPY(INODE) - RESIST 
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C              BPZ(INODE) = BPZ(INODE) - RESIST 
C 311       CONTINUE 
C 
C           RESIST = 10.0 
C           DO 321 I = IST2,IFN2 
C              INODE = IP(I,J,K) 
C              BPX(INODE) = BPX(INODE) - RESIST 
C              BPY(INODE) = BPY(INODE) - RESIST 
C              BPZ(INODE) = BPZ(INODE) - RESIST 
C 321       CONTINUE 
C 
C 312    CONTINUE 
C 313 CONTINUE 
C 
C***************** ADDED BY S. A. ************************************ 
C##################################################################### 
C         Calculating gradients of the electric potential 
C##################################################################### 
 
 
      CALL GETVAR('USRBF','SCAL  ',IVAR) 
      IPHASE = 1 
 
      CALL SETWRK('USRBF','WORK  ','GRADT ',3*NCELL,JGRADT) 
      CALL GRADS('USRBF','SCAL  ',IVAR,IPHASE,SCAL(1,1,1) 
     +             ,WORK(JGRADT),XP,YP,ZP,VOL,AREA 
     +             ,IBLK,IPVERT,IPNODN,IPFACN,IPNODF,IPNODB 
     +             ,IPFACB,WORK,IWORK,CWORK) 
 
      CALL IPALL('*','*','BLOCK','CENTRES',IPT 
     +              ,NPT,CWORK,IWORK) 
    
      DO 203 K = 1, NPT 
        INODE = IPT(K) 
 
C##################################################################### 
C         In all internal cells body force is set equal to 
C           Fx = dFi/dz  - 1 * U 
C           Fz = -dFi/dx - 1 * W 
C##################################################################### 
 
        BX(INODE)  = BX(INODE)  +  WORK(JGRADT+2*NCELL+INODE-1) 
        BPX(INODE) = BPX(INODE) + (-1.0D+0) 
        BZ(INODE)  = BZ(INODE)  + (-WORK(JGRADT+INODE-1)) 
        BPZ(INODE) = BPZ(INODE) + (-1.0D+0) 
  203 CONTINUE 
      CALL DELWRK('USRBF','WORK  ','GRADT ') 
C*********************************************************************** 
C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++ 
C 
      RETURN 
C 
      END 
      SUBROUTINE USRSRC(IEQN,ICALL,CNAME,CALIAS,AM,SP,SU,CONV,U,V,W,P, 
     +                  VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,XP,YP,ZP,VOL, 
     +                  AREA,VPOR,ARPOR,WFACT,IPT,IBLK,IPVERT,IPNODN, 
     +                  IPFACN,IPNODF,IPNODB,IPFACB,WORK,IWORK,CWORK) 
C##################################################################### 
C##################################################################### 
C         Program for adding source term for electric potential 
C##################################################################### 
C##################################################################### 
C 
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C********************************************************************** 
C 
C   UTILITY SUBROUTINE FOR USER-SUPPLIED SOURCES 
C 
C   >>> IMPORTANT                                                   <<< 
C   >>>                                                             <<< 
C   >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN  <<< 
C   >>> THE DESIGNATED USER AREAS                                   <<< 
C 
C********************************************************************** 
C 
C   THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES 
C      CUSR  SCDF  SCDS  SCED  SCENRG  SCHF  SCMOM  SCPCE  SCSCAL 
C      SCTE  SCVF 
C 
C*********************************************************************** 
C   CREATED 
C      08/03/90  ADB 
C   MODIFIED 
C      04/03/91  ADB  ALTERED ARGUMENT LIST. 
C      28/08/91  IRH  NEW STRUCTURE 
C      28/09/91  IRH  CHANGE EXAMPLE + ADD COMMON BLOCKS 
C      10/02/92  PHA  UPDATE CALLED BY COMMENT, ADD RF ARGUMENT, 
C                     CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2 
C      03/06/92  PHA  ADD PRECISION FLAG AND CHANGE IVERS TO 3 
C      23/11/93  CSH  EXPLICITLY DIMENSION IPVERT ETC. 
C      07/12/93  NSW  INCLUDE CONV IN ARGUMENT LIST AND CHANGE IVERS 
C                     TO 4 
C      03/02/94  PHA  CHANGE FLOW3D TO CFDS-FLOW3D 
C      03/03/94  FHW  CORRECTION OF SPELLING MISTAKE 
C      08/03/94  NSW  CORRECT SPELLING 
C      09/08/94  NSW  CORRECT SPELLING. 
C                     MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA. 
C                     INCLUDE COMMENT ON MASS SOURCES. 
C      19/12/94  NSW  CHANGE FOR CFX-F3D 
C      02/07/97  NSW  UPDATE FOR CFX-4 
C 
C*********************************************************************** 
C 
C   SUBROUTINE ARGUMENTS 
C 
C     IEQN   - EQUATION NUMBER 
C     ICALL  - SUBROUTINE CALL 
C     CNAME  - EQUATION NAME 
C     CALIAS - ALIAS OF EQUATION NAME 
C     AM     - OFF DIAGONAL MATRIX COEFFICIENTS 
C     SU     - SU IN LINEARISATION OF SOURCE TERM 
C     SP     - SP IN LINEARISATION OF SOURCE TERM 
C     CONV   - CONVECTION COEFFICIENTS 
C     U      - U COMPONENT OF VELOCITY 
C     V      - V COMPONENT OF VELOCITY 
C     W      - W COMPONENT OF VELOCITY 
C     P      - PRESSURE 
C     VFRAC  - VOLUME FRACTION 
C     DEN    - DENSITY OF FLUID 
C     VIS    - VISCOSITY OF FLUID 
C     TE     - TURBULENT KINETIC ENERGY 
C     ED     - EPSILON 
C     RS     - REYNOLD STRESSES 
C     T      - TEMPERATURE 
C     H      - ENTHALPY 
C     RF     - REYNOLD FLUXES 
C     SCAL   - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 
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C     XP     - X COORDINATES OF CELL CENTRES 
C     YP     - Y COORDINATES OF CELL CENTRES 
C     ZP     - Z COORDINATES OF CELL CENTRES 
C     VOL    - VOLUME OF CELLS 
C     AREA   - AREA OF CELLS 
C     VPOR   - POROUS VOLUME 
C     ARPOR  - POROUS AREA 
C     WFACT  - WEIGHT FACTORS 
C 
C     IPT    - 1D POINTER ARRAY 
C     IBLK   - BLOCK SIZE INFORMATION 
C     IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 
C     IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 
C     IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 
C     IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 
C     IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 
C     IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS 
C 
C     WORK   - REAL WORKSPACE ARRAY 
C     IWORK  - INTEGER WORKSPACE ARRAY 
C     CWORK  - CHARACTER WORKSPACE ARRAY 
C 
C   SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 
C   BE SET  BY THE USER IN THIS ROUTINE. 
C 
C   NOTE THAT WHEN USING MASS SOURCES, THE FLOWS THROUGH MASS FLOW 
C   BOUNDARIES ARE UNCHANGED. THE USER SHOULD THEREFORE INCLUDE AT 
C   LEAST ONE PRESSURE BOUNDARY FOR SUCH A CALCULATION. 
C 
C   NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE 
C   ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 
C   USER MANUAL. 
C 
C*********************************************************************** 
C 
      DOUBLE PRECISION AM 
      DOUBLE PRECISION SP 
      DOUBLE PRECISION SU 
      DOUBLE PRECISION CONV 
      DOUBLE PRECISION U 
      DOUBLE PRECISION V 
      DOUBLE PRECISION W 
      DOUBLE PRECISION P 
      DOUBLE PRECISION VFRAC 
      DOUBLE PRECISION DEN 
      DOUBLE PRECISION VIS 
      DOUBLE PRECISION TE 
      DOUBLE PRECISION ED 
      DOUBLE PRECISION RS 
      DOUBLE PRECISION T 
      DOUBLE PRECISION H 
      DOUBLE PRECISION RF 
      DOUBLE PRECISION SCAL 
      DOUBLE PRECISION XP 
      DOUBLE PRECISION YP 
      DOUBLE PRECISION ZP 
      DOUBLE PRECISION VOL 
      DOUBLE PRECISION AREA 
      DOUBLE PRECISION VPOR 
      DOUBLE PRECISION ARPOR 
      DOUBLE PRECISION WFACT 
      DOUBLE PRECISION WORK 
      DOUBLE PRECISION SMALL 
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      DOUBLE PRECISION SORMAX 
      DOUBLE PRECISION TIME 
      DOUBLE PRECISION DT 
      DOUBLE PRECISION DTINVF 
      DOUBLE PRECISION TPARM 
      LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS, 
     +        LPOROS,LTRANS 
C 
      CHARACTER*(*) CWORK 
      CHARACTER CNAME*6,CALIAS*24 
C 
C+++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 
      DOUBLE PRECISION THESRC 
C 
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++ 
C 
      COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM, 
     +       /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE, 
     +       NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST, 
     +       NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/DEVICE/NREAD, 
     +       NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN,/LOGIC/LDEN,LVIS, 
     +       LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS,LPOROS, 
     +       LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL,/SGLDBL/IFLGPR,ICHKPR, 
     +       /SPARM/SMALL,SORMAX,NITER,INDPRI,MAXIT,NODREF,NODMON, 
     +       /TRANSI/NSTEP,KSTEP,MF,INCORE,/TRANSR/TIME,DT,DTINVF,TPARM 
C 
C+++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 
C     THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 
C     NO CONFLICT WITH NON-USER COMMON BLOCKS 
C 
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++ 
C 
      DIMENSION AM(NCELL,6,NPHASE),SP(NCELL,NPHASE),SU(NCELL,NPHASE), 
     +          CONV(NFACE,NPHASE) 
C 
      DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE), 
     +          P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE), 
     +          VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE), 
     +          RS(NNODE,NPHASE,6),T(NNODE,NPHASE),H(NNODE,NPHASE), 
     +          RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL) 
C 
      DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3), 
     +          VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),IPT(*), 
     +          IBLK(5,NBLOCK),IPVERT(NCELL,8),IPNODN(NCELL,6), 
     +          IPFACN(NCELL,6),IPNODF(NFACE,4),IPNODB(NBDRY,4), 
     +          IPFACB(NBDRY),IWORK(*),WORK(*),CWORK(*) 
C 
C+++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS 
C 
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 
C 
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++ 
C 
C---- STATEMENT FUNCTION FOR ADDRESSING 
      IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I) 
C 
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 
C 
      IVERS = 4 
      ICHKPR = 2 
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C 
C+++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++ 
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1 
C 
      IUSED = 1 
C 
C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++ 
C 
      IF (IUSED.EQ.0) RETURN 
C 
C---- FRONTEND CHECKING OF USER ROUTINE 
      IF (IUCALL.EQ.0) RETURN 
C 
C---- ADD TO SOURCE TERMS 
      IF (ICALL.EQ.1) THEN 
C 
C+++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++ 
C 
C---- EXAMPLE (HEAT SOURCE) ADD 100W PER UNIT VOLUME IN BLOCK 
C     'BLOCK-NUMBER-2' 
C 
C  USE IPREC TO FIND ADDRESSES 
C 
C     CALL IPREC('BLOCK-NUMBER-2','BLOCK','CENTRES',IPT,ILEN,JLEN,KLEN, 
C    +           CWORK,IWORK) 
C 
C  FIND VARIABLE NUMBER FOR ENTHALPY 
C     CALL GETVAR('USRSRC','H     ',IVAR) 
C  IF ENTHALPY EQUATION ADD SOURCE TERMS 
C     IF (IVAR.EQ.IEQN) THEN 
C  LOOP OVER PATCH 
C     DO 103 K = 1, KLEN 
C       DO 102 J = 1, JLEN 
C         DO 101 I = 1, ILEN 
C  USE STATEMENT FUNCTION IP TO GET ADDRESSES 
C         INODE = IP(I,J,K) 
C  ADD HEAT SOURCE 
C         SU(INODE,1)=SU(INODE,1)+100.0*VOL(INODE) 
C 101     CONTINUE 
C 102   CONTINUE 
C 103  CONTINUE 
C     ENDIF 
C 
C---- END OF EXAMPLE 
 
C***************** ADDED BY S. A. ************************************ 
 
C##################################################################### 
C         Getting numer of the user scalar 
C##################################################################### 
 
      CALL GETVAR('USRSRC','SCAL  ',IVAR) 
      IPHASE = 1 
  
      IF (IVAR.EQ.IEQN) THEN 
 
C##################################################################### 
C         If it is electric potential equation, calculate source 
C         First, gradients of velocities are calculated 
C##################################################################### 
 
      CALL SETWRK('USRSRC','WORK  ','UGRAD ',3*NCELL,JUGRAD) 
      CALL SETWRK('USRSRC','WORK  ','VGRAD ',3*NCELL,JVGRAD) 
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      CALL SETWRK('USRSRC','WORK  ','WGRAD ',3*NCELL,JWGRAD) 
 
      CALL GRADV('USRSRC',IPHASE,U(1,IPHASE),V(1,IPHASE) 
     +          ,W(1,IPHASE),WORK(JUGRAD),WORK(JVGRAD) 
     +          ,WORK(JWGRAD),XP,YP,ZP,VOL,AREA 
     +          ,IBLK,IPVERT,IPNODN,IPFACN,IPNODF,IPNODB 
     +          ,IPFACB,WORK,IWORK,CWORK) 
        CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK) 
 
        DO 200 I=1,NPT 
         INODE=IPT(I) 
C##################################################################### 
C         At all internal cells the source term is equal to 
C         S = - V * (-dW/dx + dU/dz) 
C##################################################################### 
         THESRC =  
     +       (-WORK(JWGRAD+INODE-1)) 
     +        +WORK(JUGRAD+2*NCELL+INODE-1) 
         SU(INODE,1)=SU(INODE,1)-VOL(INODE)*THESRC 
  200   CONTINUE 
      CALL DELWRK('USRSRC','WORK  ','UGRAD ') 
 
      ENDIF 
 
C*********************************************************************** 
 
C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++ 
      END IF 
C 
C---- OVERWRITE SOURCE TERMS 
      IF (ICALL.EQ.2) THEN 
C 
C+++++++++++++++++ USER AREA 6 +++++++++++++++++++++++++++++++++++++++++ 
C 
C---- EXAMPLE (HEAT SOURCE) OVERWRITE WITH 100W PER UNIT VOLUME IN 
C                           ALL INTERIOR CELLS 
C 
C    CALL GETVAR('USRSRC','H     ',IVAR) 
C 
C    IF (IVAR.EQ.IEQN) THEN 
C  USE IPALL TO FIND 1D ADDRESSES OF ALL CELL CENTRES 
C     CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK) 
C  LOOP OVER ALL INTERIOR CELLS 
C     DO 200 I=1,NPT 
C  USE ARRAY IPT TO GET ADDRESS 
C      INODE=IPT(I) 
C  OVERWRITE SOURCE TERMS 
C      SU(INODE,1)=100.0*VOL(INODE) 
C 200 CONTINUE 
C     ENDIF 
C 
C---- END OF EXAMPLE 
C+++++++++++++++++ END OF USER AREA 6 ++++++++++++++++++++++++++++++++++ 
C 
      END IF 
C 
      RETURN 
C 
      END 
      SUBROUTINE USRTRN(U,V,W,P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,XP, 
     +                  YP,ZP,VOL,AREA,VPOR,ARPOR,WFACT,CONV,IPT,IBLK, 
     +                  IPVERT,IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,WORK, 
     +                  IWORK,CWORK) 
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C##################################################################### 
C##################################################################### 
C         Program for calculation additional data sets 
C##################################################################### 
C##################################################################### 
C 
C********************************************************************** 
C 
C   USER SUBROUTINE TO ALLOW USERS TO MODIFY OR MONITOR THE SOLUTION AT 
C   THE END OF EACH TIME STEP 
C   THIS SUBROUTINE IS CALLED BEFORE THE START OF THE RUN AS WELL AS AT 
C   THE END OF EACH TIME STEP 
C 
C   >>> IMPORTANT                                                   <<< 
C   >>>                                                             <<< 
C   >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN  <<< 
C   >>> THE DESIGNATED USER AREAS                                   <<< 
C 
C********************************************************************** 
C 
C   THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES 
C      CUSR  TRNMOD 
C 
C*********************************************************************** 
C   CREATED 
C      27/04/90  ADB 
C   MODIFIED 
C      05/08/91  IRH  NEW STRUCTURE 
C      01/10/91  DSC  REDUCE COMMENT LINE GOING OVER COLUMN 72. 
C      29/11/91  PHA  UPDATE CALLED BY COMMENT, ADD RF ARGUMENT, 
C                     CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2 
C      05/06/92  PHA  ADD PRECISION FLAG AND CHANGE IVERS TO 3 
C      03/07/92  DSC  CORRECT COMMON MLTGRD. 
C      23/11/93  CSH  EXPLICITLY DIMENSION IPVERT ETC. 
C      03/02/94  PHA  CHANGE FLOW3D TO CFDS-FLOW3D 
C      22/08/94  NSW  MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA 
C      19/12/94  NSW  CHANGE FOR CFX-F3D 
C      02/07/97  NSW  UPDATE FOR CFX-4 
C      02/07/99  NSW  INCLUDE NEW EXAMPLE FOR CALCULATING FLUX OF A 
C                     SCALAR AT A PRESSURE BOUNDARY 
C 
C*********************************************************************** 
C 
C   SUBROUTINE ARGUMENTS 
C 
C     U      - U COMPONENT OF VELOCITY 
C     V      - V COMPONENT OF VELOCITY 
C     W      - W COMPONENT OF VELOCITY 
C     P      - PRESSURE 
C     VFRAC  - VOLUME FRACTION 
C     DEN    - DENSITY OF FLUID 
C     VIS    - VISCOSITY OF FLUID 
C     TE     - TURBULENT KINETIC ENERGY 
C     ED     - EPSILON 
C     RS     - REYNOLD STRESSES 
C     T      - TEMPERATURE 
C     H      - ENTHALPY 
C     RF     - REYNOLD FLUXES 
C     SCAL   - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 
C     XP     - X COORDINATES OF CELL CENTRES 
C     YP     - Y COORDINATES OF CELL CENTRES 
C     ZP     - Z COORDINATES OF CELL CENTRES 
C     VOL    - VOLUME OF CELLS 
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C     AREA   - AREA OF CELLS 
C     VPOR   - POROUS VOLUME 
C     ARPOR  - POROUS AREA 
C     WFACT  - WEIGHT FACTORS 
C     CONV   - CONVECTION COEFFICIENTS 
C 
C     IPT    - 1D POINTER ARRAY 
C     IBLK   - BLOCK SIZE INFORMATION 
C     IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 
C     IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 
C     IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 
C     IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 
C     IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 
C     IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS 
C 
C     WORK   - REAL WORKSPACE ARRAY 
C     IWORK  - INTEGER WORKSPACE ARRAY 
C     CWORK  - CHARACTER WORKSPACE ARRAY 
C 
C   SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 
C   BE SET  BY THE USER IN THIS ROUTINE. 
C 
C   NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE 
C   ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 
C   USER MANUAL. 
C 
C********************************************************************** 
C 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DOUBLE PRECISION U 
      DOUBLE PRECISION V 
      DOUBLE PRECISION W 
      DOUBLE PRECISION P 
      DOUBLE PRECISION VFRAC 
      DOUBLE PRECISION DEN 
      DOUBLE PRECISION VIS 
      DOUBLE PRECISION TE 
      DOUBLE PRECISION ED 
      DOUBLE PRECISION RS 
      DOUBLE PRECISION T 
      DOUBLE PRECISION H 
      DOUBLE PRECISION RF 
      DOUBLE PRECISION SCAL 
      DOUBLE PRECISION XP 
      DOUBLE PRECISION YP 
      DOUBLE PRECISION ZP 
      DOUBLE PRECISION VOL 
      DOUBLE PRECISION AREA 
      DOUBLE PRECISION VPOR 
      DOUBLE PRECISION ARPOR 
      DOUBLE PRECISION WFACT 
      DOUBLE PRECISION CONV 
      DOUBLE PRECISION WORK 
      DOUBLE PRECISION SMALL 
      DOUBLE PRECISION SORMAX 
      DOUBLE PRECISION DTUSR 
      DOUBLE PRECISION TIME 
      DOUBLE PRECISION DT 
      DOUBLE PRECISION DTINVF 
      DOUBLE PRECISION TPARM 
      DOUBLE PRECISION SGNWL 
      LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS, 
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     +        LPOROS,LTRANS 
C 
      CHARACTER*(*) CWORK 
C 
C++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 
      DOUBLE PRECISION SUMU, SUMP, ALFAN, CN, BETAN, GAMMAN, SGN 
      DOUBLE PRECISION CS1, CS2, SN1, SN2, CH1, CH2, SH1, SH2 
      DOUBLE PRECISION CSG, CHB, DN, EN, KN, DPN 
      DOUBLE PRECISION FRAC1, FRAC2, FRAC3, FRAC4 
      DOUBLE PRECISION E1, E2, E3, E4, EB, UN, PNC 
C++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++ 
C 
      COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM, 
     +       /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE, 
     +       NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST, 
     +       NRLIST,NTOPOL,/CHKUSR/IVERS,IUCALL,IUSED,/CONC/NCONC, 
     +       /DEVICE/NREAD,NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN, 
     +       /LOGIC/LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN, 
     +       LAXIS,LPOROS,LTRANS,/MLTGRD/MLEVEL,NLEVEL,ILEVEL, 
     +       /SGLDBL/IFLGPR,ICHKPR,/SPARM/SMALL,SORMAX,NITER,INDPRI, 
     +       MAXIT,NODREF,NODMON,/TIMUSR/DTUSR,/TRANSI/NSTEP,KSTEP,MF, 
     +       INCORE,/TRANSR/TIME,DT,DTINVF,TPARM 
C 
C++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 
C     THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 
C     NO CONFLICT WITH NON-USER COMMON BLOCKS 
C 
C++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++ 
C 
      DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE), 
     +          P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE), 
     +          VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE), 
     +          RS(NNODE,NPHASE,6),T(NNODE,NPHASE),H(NNODE,NPHASE), 
     +          RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL) 
      DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3), 
     +          VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE), 
     +          CONV(NFACE,NPHASE),IPT(*),IBLK(5,NBLOCK), 
     +          IPVERT(NCELL,8),IPNODN(NCELL,6),IPFACN(NCELL,6), 
     +          IPNODF(NFACE,4),IPNODB(NBDRY,4),IPFACB(NBDRY),IWORK(*), 
     +          WORK(*),CWORK(*) 
      DIMENSION SGNWL(6) 
C 
C++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS 
C 
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 
C 
C++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++ 
C 
      DATA SGNWL/1.0D0,1.0D0,1.0D0,-1.0D0,-1.0D0,-1.0D0/ 
C 
C---- STATEMENT FUNCTION FOR ADDRESSING 
      IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I) 
C 
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 
C 
      IVERS = 3 
      ICHKPR = 2 
C 
C++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++ 
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1 
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C 
      IUSED = 1 
C 
C++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++ 
C 
      IF (IUSED.EQ.0) RETURN 
C 
C---- FRONTEND CHECKING OF USER ROUTINE 
      IF (IUCALL.EQ.0) RETURN 
C 
C++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++ 
C 
C---- EXAMPLE (SET TIME INCREMENT FOR NEXT TIME STEP) 
C 
C     DTUSR = 0.1 
C 
C---- END OF EXAMPLE 
C 
C---- EXAMPLE (CALCULATE FLUX OF FIRST SCALAR AT A PRESSURE BOUNDARY) 
C 
C     IPHASE = 1 
C     FLUX = 0.0 
C  USE IPALL TO FIND ADDRESSES OF BOUNDARY NODES ON PATCH PRESS1 
C     CALL IPALL('PRESS1','PRESS','PATCH','CENTRES' 
C    +          ,IPT,NPT,CWORK,IWORK) 
C  LOOP OVER ALL BOUNDARY NODES 
C     DO 300 I=1,NPT 
C  USE ARRAY IPT TO GET ADDRESS 
C       INODE = IPT(I) 
C       IBDRY = INODE - NCELL 
C       IFACE = IPFACB(IBDRY) 
C       INDUM = IPNODB(IBDRY,2) 
C       NWL   = IPNODB(IBDRY,4) 
C       FLUX  = FLUX 
C    +        + SGNWL(NWL)*CONV(IFACE,IPHASE)*SCAL(INDUM,IPHASE,1) 
C 300 CONTINUE 
C 
C---- END OF EXAMPLE 
 
C***************** ADDED BY S. A. ************************************ 
C##################################################################### 
C         If not the first iteration, 
C          additional scalars are calculated 
C##################################################################### 
 
      IF (NITER.GT.1) THEN 
 
      IPHASE = 1 
      CALL GETVAR('USRTRN','SCAL  ',IT) 
 
C##################################################################### 
C         Calculate gradient of the electric potential 
C##################################################################### 
 
      CALL SETWRK('USRTRN','WORK  ','GRADT ',3*NCELL,JGRADT) 
      CALL GRADS('USRTRN','SCAL  ',IT,IPHASE,SCAL(1,1,1) 
     +             ,WORK(JGRADT),XP,YP,ZP,VOL,AREA 
     +             ,IBLK,IPVERT,IPNODN,IPFACN,IPNODF,IPNODB 
     +             ,IPFACB,WORK,IWORK,CWORK) 
      CALL IPALL('*','*','BLOCK','CENTRES',IPT 
     +              ,NPT,CWORK,IWORK) 
    
      DO 203 K = 1, NPT 



ANL/TD/TM02-30  Page 130 

        INODE=IPT(K) 
C##################################################################### 
C         Calculate electric current in x and y directions 
C##################################################################### 
        SCAL(INODE,1,2)=-WORK(JGRADT+INODE-1)-W(INODE,1) 
        SCAL(INODE,1,3)=-WORK(JGRADT+NCELL+INODE-1) 
  203 CONTINUE 
      CALL DELWRK('USRTRN','WORK  ','GRADT ') 
 
C##################################################################### 
C         Exact solution for electric potential and velocity W 
C           (Hunt solution) 
C##################################################################### 
 
      CALL GETVAR('USRTRN','SCAL  ',IT) 
      CALL GETSCA('USRD EXACT POT',IEP,CWORK) 
      CALL GETSCA('USRD EXACT W',IW,CWORK) 
  
      IPHS = 1 
       
      AA     = 1.0D0 
      DD     = 1.0D0 
      HA     = 200.0D0 
      NTERMS = 10000 
      PI     = 3.14159265358979D0 
       
  
      CALL IPALL('*','*','BLOCK','CENTRES',IPT 
     +              ,NPT,CWORK,IWORK) 
      DO 110 K = 1, NPT 
          INODE  = IPT(K) 
          X      = -XP(INODE) 
          YY     = YP(INODE) 
          SUMU  = 0.D0 
   SUMB  = 0.D0 
   SUMP  = 0.D0 
          SGN   = 1.D0 
          DO 210 N = 0,NTERMS 
            ALFAN  = (DFLOAT(N)+0.5D0)*PI/AA 
            EN     = 2.D0*SGN/AA/ALFAN/(ALFAN**2.+Ha**2.) 
            BETAN  = DSQRT( ALFAN/2.D0*(ALFAN+DSQRT(ALFAN**2.+Ha**2.))) 
            GAMMAN = DSQRT( ALFAN/2.D0*(-ALFAN+DSQRT(ALFAN**2.+Ha**2.))) 
            IF ((BETAN*(X+DD).LT.20.D0) 
     *         .AND.(-BETAN*(X-DD).LT.20.D0))THEN 
              CS1 = DCOS( GAMMAN*(X+DD)) 
       CS2 = DCOS( GAMMAN*(X-DD)) 
       SN1 = DSIN( GAMMAN*(X+DD)) 
       SN2 = DSIN( GAMMAN*(X-DD)) 
       CH1 = DCOSH(  BETAN*(X+DD)) 
       CH2 = DCOSH(  BETAN*(X-DD)) 
       SH1 = DSINH(  BETAN*(X+DD)) 
       SH2 = DSINH(  BETAN*(X-DD)) 
       CSG = DCOS(2.D0*GAMMAN*DD) 
       CHB = DCOSH(2.D0*BETAN*DD) 
              CN =  CH1*CS2 + CH2*CS1 
              DN = -SH1*SN2 - SH2*SN1 
       KN =  CHB + CSG 
              DPN = (BETAN*(SH2*SN1-SH1*SN2)+GAMMAN*(CH1*CS2-CH2*CS1)) 
     *              /(BETAN**2.+GAMMAN**2.) 
              FRAC1 = (CN - HA/ALFAN*DN)/KN 
              FRAC3 = DPN*(Ha/ALFAN+ALFAN/HA)/KN 
            ELSE 
              E1   = DEXP( -BETAN*(X+DD) ) 
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       E2   = DEXP(  BETAN*(X-DD) ) 
       E3   = DEXP( -2.D0*BETAN*(X+DD) ) 
       E4   = DEXP(  2.D0*BETAN*(X-DD) ) 
              EB   = DEXP( -2.D0*BETAN*DD) 
       CS1 = DCOS( GAMMAN*(X+DD)) 
       CS2 = DCOS( GAMMAN*(X-DD)) 
       SN1 = DSIN( GAMMAN*(X+DD)) 
              SN2 = DSIN( GAMMAN*(X-DD)) 
              CSG = DCOS(2.D0*GAMMAN*DD) 
 
              CN  = 0.5D0*(E2*CS2*(1.D0+E3)+E1*CS1*(E4+1.D0)) 
              DN  = 0.5D0*(-E2*SN2*(1.D0-E3)-E1*SN1*(E4-1.D0)) 
              KN  = 0.5D0*(1.D0+EB**2.) + EB*CSG 
              DPN = (-BETAN*( E2*SN2*(1.D0+E3)+E1*SN1*(E4+1.D0) ) 
     *             + GAMMAN*(E2*CS2*(1.D0-E3)+E1*CS1*(E4-1.D0) ) ) 
     *              /(BETAN**2.+GAMMAN**2.)/2.D0 
         
              FRAC1 = (CN - HA/ALFAN*DN)/KN 
              FRAC3 = DPN*(Ha/ALFAN+ALFAN/HA)/KN 
            ENDIF          
            UN     = EN*(1.D0 - FRAC1) 
            PN     = EN*(FRAC3) 
            SUMU   = SUMU + UN*DCOS( ALFAN*YY ) 
            SUMP   = SUMP + PN*DCOS( ALFAN*YY ) 
            SGN    = -SGN 
  210      CONTINUE 
           VEL   = SUMU*Ha**2. 
    POT   = SUMP*Ha**2. 
           SCAL(INODE,1,IEP) = POT 
           SCAL(INODE,1,IW) = VEL 
  
  110  CONTINUE 
           ENDIF 
           write(6,*) '######### Subroutine USRTRN finished' 
C***********************************************************************       
       
       
C++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++ 
C 
      RETURN 
 
      END 
 
      SUBROUTINE USRBCS(VARBCS,VARAMB,A,B,C,ACND,BCND,CCND,IWGVEL, 
     +                  NDVWAL,FLOUT,NLABEL,NSTART,NEND,NCST,NCEN,U,V,W, 
     +                  P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,XP,YP,ZP, 
     +                  VOL,AREA,VPOR,ARPOR,WFACT,IPT,IBLK,IPVERT, 
     +                  IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,WORK,IWORK, 
     +                  CWORK) 
C##################################################################### 
C##################################################################### 
C         Program for setting boundary conditions 
C##################################################################### 
C##################################################################### 
C 
C*********************************************************************** 
C 
C  USER ROUTINE TO SET REALS AT BOUNDARIES. 
C 
C   >>> IMPORTANT                                                   <<< 
C   >>>                                                             <<< 
C   >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN  <<< 
C   >>> THE DESIGNATED USER AREAS                                   <<< 
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C 
C*********************************************************************** 
C 
C  THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINE 
C    CUSR  SRLIST 
C 
C*********************************************************************** 
C   CREATED 
C      30/11/88 ADB 
C   MODIFIED 
C      08/09/90 ADB  RESTRUCTURED FOR USER-FRIENDLINESS. 
C      10/08/91 IRH  FURTHER RESTRUCTURING ADD ACND BCND CCND 
C      22/09/91 IRH  CHANGE ICALL TO IUCALL + ADD /SPARM/ 
C      10/03/92 PHA  UPDATE CALLED BY COMMENT, ADD RF ARGUMENT, 
C                    CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2 
C      03/06/92 PHA  ADD PRECISION FLAG AND CHANGE IVERS TO 3 
C      30/06/92 NSW  INCLUDE FLAG FOR CALLING BY ITERATION 
C                    INSERT EXTRA COMMENTS 
C      03/08/92 NSW  MODIFY DIMENSION STATEMENTS FOR VAX 
C      21/12/92 CSH  INCREASE IVERS TO 4 
C      02/08/93 NSW  INCORRECT AND MISLEADING COMMENT REMOVED 
C      05/11/93 NSW  INDICATE USE OF FLOUT IN MULTIPHASE FLOWS 
C      23/11/93 CSH  EXPLICITLY DIMENSION IPVERT ETC. 
C      01/02/94 NSW  SET VARIABLE POINTERS IN WALL EXAMPLE. 
C                    CHANGE FLOW3D TO CFDS-FLOW3D. 
C                    MODIFY MULTIPHASE MASS FLOW BOUNDARY TREATMENT. 
C      03/03/94 FHW  CORRECTION OF SPELLING MISTAKE 
C      02/07/94 BAS  SLIDING GRIDS - ADD NEW ARGUMENT IWGVEL 
C                    TO ALLOW VARIANTS OF TRANSIENT-GRID WALL BC 
C                    CHANGE VERSION NUMBER TO 5 
C      09/08/94 NSW  CORRECT SPELLING 
C                    MOVE 'IF(IUSED.EQ.0) RETURN' OUT OF USER AREA 
C      19/12/94 NSW  CHANGE FOR CFX-F3D 
C      02/02/95 NSW  CHANGE COMMON /IMFBMP/ 
C      02/06/97 NSW  MAKE EXAMPLE MORE LOGICAL 
C      02/07/97 NSW  UPDATE FOR CFX-4 
C      08/09/98 NSW  CORRECT SIZE OF WALL ARRAY IN COMMENT 
C      22/05/00 NSW  INITIALISE IUBCSF 
C 
C*********************************************************************** 
C 
C   SUBROUTINE ARGUMENTS 
C 
C     VARBCS - REAL BOUNDARY CONDITIONS 
C     VARAMB - AMBIENT VALUE OF VARIABLES 
C     A      - COEFFICIENT IN WALL BOUNDARY CONDITION 
C     B      - COEFFICIENT IN WALL BOUNDARY CONDITION 
C     C      - COEFFICIENT IN WALL BOUNDARY CONDITION 
C     ACND   - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION 
C     BCND   - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION 
C     CCND   - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION 
C     IWGVEL - USAGE OF INPUT VELOCITIES (0 = AS IS,1 = ADD GRID MOTION) 
C     NDVWAL - FIRST DIMENSION OF ARRAY IWGVEL 
C     FLOUT  - MASS FLOW/FRACTIONAL MASS FLOW 
C     NLABEL - NUMBER OF DISTINCT OUTLETS 
C     NSTART - ARRAY POINTER 
C     NEND   - ARRAY POINTER 
C     NCST   - ARRAY POINTER 
C     NCEN   - ARRAY POINTER 
C     U      - U COMPONENT OF VELOCITY 
C     V      - V COMPONENT OF VELOCITY 
C     W      - W COMPONENT OF VELOCITY 
C     P      - PRESSURE 
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C     VFRAC  - VOLUME FRACTION 
C     DEN    - DENSITY OF FLUID 
C     VIS    - VISCOSITY OF FLUID 
C     TE     - TURBULENT KINETIC ENERGY 
C     ED     - EPSILON 
C     RS     - REYNOLD STRESSES 
C     T      - TEMPERATURE 
C     H      - ENTHALPY 
C     RF     - REYNOLD FLUXES 
C     SCAL   - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 
C     XP     - X COORDINATES OF CELL CENTRES 
C     YP     - Y COORDINATES OF CELL CENTRES 
C     ZP     - Z COORDINATES OF CELL CENTRES 
C     VOL    - VOLUME OF CELLS 
C     AREA   - AREA OF CELLS 
C     VPOR   - POROUS VOLUME 
C     ARPOR  - POROUS AREA 
C     WFACT  - WEIGHT FACTORS 
C 
C     IPT    - 1D POINTER ARRAY 
C     IBLK   - BLOCK SIZE INFORMATION 
C     IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 
C     IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 
C     IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 
C     IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 
C     IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 
C     IPFACB - POINTER TO NODES FROM BOUNDARY FACES 
C 
C     WORK   - REAL WORKSPACE ARRAY 
C     IWORK  - INTEGER WORKSPACE ARRAY 
C     CWORK  - CHARACTER WORKSPACE ARRAY 
C 
C   SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 
C   BE SET  BY THE USER IN THIS ROUTINE. 
C 
C   NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE 
C   ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 
C   USER MANUAL. 
C 
C*********************************************************************** 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DOUBLE PRECISION VARBCS 
      DOUBLE PRECISION VARAMB 
      DOUBLE PRECISION A 
      DOUBLE PRECISION B 
      DOUBLE PRECISION C 
      DOUBLE PRECISION ACND 
      DOUBLE PRECISION BCND 
      DOUBLE PRECISION CCND 
      DOUBLE PRECISION FLOUT 
      DOUBLE PRECISION U 
      DOUBLE PRECISION V 
      DOUBLE PRECISION W 
      DOUBLE PRECISION P 
      DOUBLE PRECISION VFRAC 
      DOUBLE PRECISION DEN 
      DOUBLE PRECISION VIS 
      DOUBLE PRECISION TE 
      DOUBLE PRECISION ED 
      DOUBLE PRECISION RS 
      DOUBLE PRECISION T 
      DOUBLE PRECISION H 
      DOUBLE PRECISION RF 
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      DOUBLE PRECISION SCAL 
      DOUBLE PRECISION XP 
      DOUBLE PRECISION YP 
      DOUBLE PRECISION ZP 
      DOUBLE PRECISION VOL 
      DOUBLE PRECISION AREA 
      DOUBLE PRECISION VPOR 
      DOUBLE PRECISION ARPOR 
      DOUBLE PRECISION WFACT 
      DOUBLE PRECISION WORK 
      DOUBLE PRECISION SMALL 
      DOUBLE PRECISION SORMAX 
      DOUBLE PRECISION TIME 
      DOUBLE PRECISION DT 
      DOUBLE PRECISION DTINVF 
      DOUBLE PRECISION TPARM 
      LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP,LRECT,LCYN,LAXIS, 
     +        LPOROS,LTRANS 
C 
      CHARACTER*(*) CWORK 
C 
C+++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 
      DOUBLE PRECISION SUMU, SUMP, ALFAN, CN, BETAN, GAMMAN, SGN 
      DOUBLE PRECISION CS1, CS2, SN1, SN2, CH1, CH2, SH1, SH2 
      DOUBLE PRECISION CSG, CHB, DN, EN, KN, DPN 
      DOUBLE PRECISION FRAC1, FRAC2, FRAC3, FRAC4 
      DOUBLE PRECISION E1, E2, E3, E4, EB, UN, PNC 
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++ 
C 
      COMMON /ALL/NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM, 
     +       /ALLWRK/NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE,/ADDIMS/NPHASE, 
     +       NSCAL,NVAR,NPROP,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST, 
     +       NRLIST,NTOPOL,/BCSOUT/IFLOUT,/CHKUSR/IVERS,IUCALL,IUSED, 
     +       /DEVICE/NREAD,NWRITE,NRDISK,NWDISK,/IDUM/ILEN,JLEN, 
     +       /IMFBMP/IMFBMP,JMFBMP,/LOGIC/LDEN,LVIS,LTURB,LTEMP,LBUOY, 
     +       LSCAL,LCOMP,LRECT,LCYN,LAXIS,LPOROS,LTRANS,/MLTGRD/MLEVEL, 
     +       NLEVEL,ILEVEL,/SGLDBL/IFLGPR,ICHKPR,/SPARM/SMALL,SORMAX, 
     +       NITER,INDPRI,MAXIT,NODREF,NODMON,/TRANSI/NSTEP,KSTEP,MF, 
     +       INCORE,/TRANSR/TIME,DT,DTINVF,TPARM,/UBCSFL/IUBCSF 
C 
C+++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 
C     THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 
C     NO CONFLICT WITH NON-USER COMMON BLOCKS 
C 
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++ 
C 
      DIMENSION VARBCS(NVAR,NPHASE,NCELL+1:NNODE),VARAMB(NVAR,NPHASE), 
     +          A(4+NSCAL,NPHASE,NSTART:*),B(4+NSCAL,NPHASE,NSTART:*), 
     +          C(4+NSCAL,NPHASE,NSTART:*),FLOUT(*),ACND(NCST:*), 
     +          BCND(NCST:*),CCND(NCST:*),IWGVEL(NDVWAL,NPHASE) 
C 
      DIMENSION U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE), 
     +          P(NNODE,NPHASE),VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE), 
     +          VIS(NNODE,NPHASE),TE(NNODE,NPHASE),ED(NNODE,NPHASE), 
     +          RS(NNODE,NPHASE,6),T(NNODE,NPHASE),H(NNODE,NPHASE), 
     +          RF(NNODE,NPHASE,4),SCAL(NNODE,NPHASE,NSCAL) 
C 
      DIMENSION XP(NNODE),YP(NNODE),ZP(NNODE),VOL(NCELL),AREA(NFACE,3), 
     +          VPOR(NCELL),ARPOR(NFACE,3),WFACT(NFACE),IPT(*), 
     +          IBLK(5,NBLOCK),IPVERT(NCELL,8),IPNODN(NCELL,6), 
     +          IPFACN(NCELL,6),IPNODF(NFACE,4),IPNODB(NBDRY,4), 
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     +          IPFACB(NBDRY),IWORK(*),WORK(*),CWORK(*) 
C 
C+++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS 
C 
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 
C 
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++ 
C 
C---- STATEMENT FUNCTION FOR ADDRESSING 
      IP(I,J,K) = IPT((K-1)*ILEN*JLEN+ (J-1)*ILEN+I) 
C 
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 
C 
      IVERS = 5 
      ICHKPR = 2 
C 
C+++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++ 
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1 
C     AND SET IUBCSF FLAG: 
C     BOUNDARY CONDITIONS NOT CHANGING                       IUBCSF=0 
C     BOUNDARY CONDITIONS CHANGING WITH ITERATION            IUBCSF=1 
C     BOUNDARY CONDITIONS CHANGING WITH TIME                 IUBCSF=2 
C     BOUNDARY CONDITIONS CHANGING WITH TIME AND ITERATION   IUBCSF=3 
C 
      IUSED = 1 
      IUBCSF = 0 
C 
C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++ 
C 
      IF (IUSED.EQ.0) RETURN 
C 
C---- FRONTEND CHECKING OF USER ROUTINE 
      IF (IUCALL.EQ.0) RETURN 
C 
C+++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++ 
C 
C---- AREA FOR SETTING VALUES AT INLETS, PRESSURE BOUNDARIES 
C     AND OUTLETS. (NOTE THAT THE MASS FLOW AT OUTLETS IS 
C     SPECIFIED IN USER AREA 7) 
C 
C     IF USING A REYNOLDS STRESS OR FLUX MODEL, NOTE THAT AT INLETS 
C     IT IS IMPORTANT THAT THE USER SETS ALL COMPONENTS OF THE 
C     REYNOLDS STRESS AND FLUX AND THE TURBULENT KINETIC ENERGY 
C     AS WELL AS THE ENERGY DISSIPATION RATE. 
C 
C     SET THE VALUES IN VARBCS(NVAR,NPHASE,ILEN,JLEN,KLEN) 
C 
C---- EXAMPLE: SETTING A LINEAR T PROFILE ON INLET PATCH 'ENTRANCE' 
C              LEAVE OTHER VARIABLES AS SET IN COMMAND LANGUAGE 
C 
C--  INTERROGATE GETVAR FOR VARIABLE NUMBERS. 
C 
C     CALL GETVAR('USRBCS','T     ',IT) 
C 
C  SET IPHS = 1 FOR SINGLE PHASE FLOW. 
C 
C     IPHS = 1 
C 
C  USE IPREC TO FIND ADDRESSES 
C 
C     CALL IPREC('ENTRANCE','PATCH','CENTRES',IPT,ILEN,JLEN,KLEN, 
C    +           CWORK,IWORK) 
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C 
C     XMAX=2.0 
C     XMIN=1.0 
C     TMAX=300.0 
C     TMIN=250.0 
C  LOOP OVER PATCH 
C     DO 103 K = 1, KLEN 
C        DO 102 J = 1, JLEN 
C           DO 101 I = 1, ILEN 
C  USE STATEMENT FUNCTION IP TO GET ADDRESSES 
C           INODE = IP(I,J,K) 
C  SET VARBCS 
C           F=(XP(INODE)-XMIN)/(XMAX-XMIN) 
C           VARBCS(IT,IPHS,INODE) = F*TMAX + (1.0-F)*TMIN 
C 101       CONTINUE 
C 102    CONTINUE 
C 103  CONTINUE 
C 
C----END OF EXAMPLE 
C 
C******************************* ADDED BY S. A. ********************** 
 
      CALL GETVAR('USRBCS','SCAL  ',IT) 
      CALL GETVAR('USRBCS','W     ',IW) 
      IPHS = 1 
       
      AA     = 1.0D0 
      DD     = 1.0D0 
      HA     = 200.0D0 
      NTERMS = 10000 
      PI     = 3.14159265358979D0 
       
C##################################################################### 
C         At patch entrance of type inlet velocity profile 
C            and electric potential are set 
C##################################################################### 
 
      CALL IPALL('ENTRANCE','*','PATCH','CENTRES',IPT 
     +              ,NPT,CWORK,IWORK) 
      DO 110 K = 1, NPT 
          INODE  = IPT(K) 
          X      = -XP(INODE) 
          YY     = YP(INODE) 
          SUMU  = 0.D0 
   SUMB  = 0.D0 
   SUMP  = 0.D0 
          SGN   = 1.D0 
          DO 210 N = 0,NTERMS 
            ALFAN  = (DFLOAT(N)+0.5D0)*PI/AA 
            EN     = 2.D0*SGN/AA/ALFAN/(ALFAN**2.+Ha**2.) 
            BETAN  = DSQRT( ALFAN/2.D0*(ALFAN+DSQRT(ALFAN**2.+Ha**2.))) 
            GAMMAN = DSQRT( ALFAN/2.D0*(-ALFAN+DSQRT(ALFAN**2.+Ha**2.))) 
            IF ((BETAN*(X+DD).LT.20.D0) 
     *         .AND.(-BETAN*(X-DD).LT.20.D0))THEN 
              CS1 = DCOS( GAMMAN*(X+DD)) 
       CS2 = DCOS( GAMMAN*(X-DD)) 
       SN1 = DSIN( GAMMAN*(X+DD)) 
       SN2 = DSIN( GAMMAN*(X-DD)) 
       CH1 = DCOSH(  BETAN*(X+DD)) 
       CH2 = DCOSH(  BETAN*(X-DD)) 
       SH1 = DSINH(  BETAN*(X+DD)) 
       SH2 = DSINH(  BETAN*(X-DD)) 
       CSG = DCOS(2.D0*GAMMAN*DD) 
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       CHB = DCOSH(2.D0*BETAN*DD) 
              CN =  CH1*CS2 + CH2*CS1 
              DN = -SH1*SN2 - SH2*SN1 
       KN =  CHB + CSG 
              DPN = (BETAN*(SH2*SN1-SH1*SN2)+GAMMAN*(CH1*CS2-CH2*CS1)) 
     *              /(BETAN**2.+GAMMAN**2.) 
              FRAC1 = (CN - HA/ALFAN*DN)/KN 
              FRAC3 = DPN*(Ha/ALFAN+ALFAN/HA)/KN 
            ELSE 
              E1   = DEXP( -BETAN*(X+DD) ) 
       E2   = DEXP(  BETAN*(X-DD) ) 
       E3   = DEXP( -2.D0*BETAN*(X+DD) ) 
       E4   = DEXP(  2.D0*BETAN*(X-DD) ) 
              EB   = DEXP( -2.D0*BETAN*DD) 
       CS1 = DCOS( GAMMAN*(X+DD)) 
       CS2 = DCOS( GAMMAN*(X-DD)) 
       SN1 = DSIN( GAMMAN*(X+DD)) 
              SN2 = DSIN( GAMMAN*(X-DD)) 
              CSG = DCOS(2.D0*GAMMAN*DD) 
 
              CN  = 0.5D0*(E2*CS2*(1.D0+E3)+E1*CS1*(E4+1.D0)) 
              DN  = 0.5D0*(-E2*SN2*(1.D0-E3)-E1*SN1*(E4-1.D0)) 
              KN  = 0.5D0*(1.D0+EB**2.) + EB*CSG 
              DPN = (-BETAN*( E2*SN2*(1.D0+E3)+E1*SN1*(E4+1.D0) ) 
     *             + GAMMAN*(E2*CS2*(1.D0-E3)+E1*CS1*(E4-1.D0) ) ) 
     *              /(BETAN**2.+GAMMAN**2.)/2.D0 
         
              FRAC1 = (CN - HA/ALFAN*DN)/KN 
              FRAC3 = DPN*(Ha/ALFAN+ALFAN/HA)/KN 
            ENDIF          
            UN     = EN*(1.D0 - FRAC1) 
            PN     = EN*(FRAC3) 
            SUMU   = SUMU + UN*DCOS( ALFAN*YY ) 
            SUMP   = SUMP + PN*DCOS( ALFAN*YY ) 
            SGN    = -SGN 
  210      CONTINUE 
           VEL   = SUMU*Ha**2. 
    POT   = SUMP*Ha**2. 
              VARBCS(IT,1,INODE) = POT 
              VARBCS(IW,1,INODE) = VEL 
  
  110  CONTINUE 
 
           write(6,*) '######### Subroutine USRBCS finished' 
C*********************************************************************** 
 
C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++ 
C 
C+++++++++++++++++ USER AREA 6 +++++++++++++++++++++++++++++++++++++++++ 
C 
C---- AREA FOR SETTING VALUES AT WALLS 
C 
C     USE A(4+NSCAL,NPHASE,NNODE) 
C     WHERE NSCAL = NO. OF SCALARS, AND NPHASE = NO. OF PHASES. 
C 
C     THE CONVENTION FOR VARIABLE NUMBERS IS DIFFERENT IN THIS ROUTINE 
C     FROM THAT IN THE REST OF THE PROGRAM. IT IS: 
C 
C     IU = 1, IV = 2 , IW = 3, IT = 4, IS = 5 
C 
C---- EXAMPLE: SETTING FREE SLIP BOUNDARY CONDITIONS AT ALL WALLS 
C              AND SETTING T=300.0 AND SCALAR1 AND SCALAR2 =0.0 
C              ON WALL1. SET T=400.0 ON CONDUCTING SOLID BOUNDARY WALL2 
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C 
C-- SET POINTERS 
C 
C     IU = 1 
C     IV = 2 
C     IW = 3 
C     IT = 4 
C     IS = 5 
C 
C-- SET IPHS = 1 FOR SINGLE PHASE FLOW. 
C 
C     IPHS = 1 
C 
C  USE IPALL TO FIND 1D ADDRESSES OF A GROUP OF PATCH CENTRES 
C 
C     CALL IPALL('*','WALL','PATCH','CENTRES',IPT,NPT,CWORK,IWORK) 
C 
C  LOOP OVER GROUP OF PATCHES 
C     DO 200 I=1,NPT 
C  USE ARRAY IPT TO GET ADDRESS 
C       INODE=IPT(I) 
C       A(IU,IPHS,INODE) = 0.0 
C       B(IU,IPHS,INODE) = 1.0 
C       C(IU,IPHS,INODE) = 0.0 
C 
C       A(IV,IPHS,INODE) = 0.0 
C       B(IV,IPHS,INODE) = 1.0 
C       C(IV,IPHS,INODE) = 0.0 
C 
C       A(IW,IPHS,INODE) = 0.0 
C       B(IW,IPHS,INODE) = 1.0 
C       C(IW,IPHS,INODE) = 0.0 
C 200   CONTINUE 
C 
C  USE IPREC TO FIND ADDRESSES OF SINGLE PATCH 
C 
C     CALL IPREC('WALL1','PATCH','CENTRES',IPT,ILEN,JLEN,KLEN, 
C    +           CWORK,IWORK) 
C  LOOP OVER PATCH 
C         DO 203 K = 1, KLEN 
C            DO 202 J = 1, JLEN 
C               DO 201 I = 1, ILEN 
C  USE STATEMENT FUNCTION IP TO GET ADDRESSES 
C               INODE = IP(I,J,K) 
C 
C               A(IT,IPHS,INODE) = 1.0 
C               B(IT,IPHS,INODE) = 0.0 
C               C(IT,IPHS,INODE) = 300.0 
C 
C               A(IS,IPHS,INODE) = 1.0 
C               B(IS,IPHS,INODE) = 0.0 
C               C(IS,IPHS,INODE) = 0.0 
C 
C               A(IS+1,IPHS,INODE) = 1.0 
C               B(IS+1,IPHS,INODE) = 0.0 
C               C(IS+1,IPHS,INODE) = 0.0 
C 
C 201           CONTINUE 
C 202        CONTINUE 
C 203    CONTINUE 
C 
C  USE IPALL TO FIND 1D ADDRESSES OF A GROUP OF PATCH CENTRES 
C 
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C     CALL IPALL('WALL2','*','PATCH','CENTRES',IPT,NPT,CWORK,IWORK) 
C 
C  LOOP OVER GROUP OF PATCHES 
C     DO 300 I=1,NPT 
C  USE ARRAY IPT TO GET ADDRESS 
C       INODE=IPT(I) 
C       ACND(INODE) = 1.0 
C       BCND(INODE) = 0.0 
C       CCND(INODE) = 400.0 
C 300   CONTINUE 
C 
C----END OF EXAMPLE 
C 
C+++++++++++++++++ END OF USER AREA 6 ++++++++++++++++++++++++++++++++++ 
C 
C 
C+++++++++++++++++ USER AREA 7 +++++++++++++++++++++++++++++++++++++++++ 
C 
C----- DEFINE FLOW AT OUTLETS (MASS FLOW BOUNDARIES) 
C      (TO TEMPERATURES AND SCALARS AT MASS FLOW BOUNDARIES USE 
C       USER AREA 5) 
C 
C     SET PARAMETER IFLOUT: 
C     IFLOUT = 1  ==> MASS FLOW SPECIFIED AT LABELLED OUTLETS. 
C     IFLOUT = 2  ==> FRACTIONAL MASS FLOW SPECIFIED AT LABELLED OUTLETS 
C     IFLOUT = 2 
C 
C     SET OUTLET FLOW RATES: 
C     FLOUT(LABEL) = MASS FLOW OUT OF OUTLETS LABELLED LABEL (IFLOUT=1). 
C     FLOUT(LABEL) = FRACTIONAL MASS FLOW OUT OF OUTLETS LABELLED LABEL 
C                    (IFLOUT=2). 
C     FOR MULTIPHASE FLOWS IT IS NECESSARY TO SET 
C     EITHER 
C                    FLOUT(LABEL) = TOTAL MASS FLOW 
C                    IFLOUT = 1 
C                    IMFBMP = 0 
C     OR 
C                    FLOUT(LABEL + (IPHASE-1)*NLABEL) FOR EACH PHASE 
C                    IFLOUT = 1 OR 2 
C                    IMFBMP = 1 
C 
C---- EXAMPLE: EQUIDISTRIBUTION OF FRACTIONAL MASS FLOW AMONGST OUTLETS 
C 
C     IFLOUT=2 
C     FRAC = 1.0 / MAX( 1.0, FLOAT(NLABEL) ) 
C     DO 300 ILABEL = 1, NLABEL 
C        FLOUT(ILABEL) = FRAC 
C300  CONTINUE 
C 
C----END OF EXAMPLE 
C 
C+++++++++++++++++ END OF USER AREA 7 ++++++++++++++++++++++++++++++++++ 
C 
      RETURN 
C 
      END 
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Figure 1 MHD problems in for the upper parts of the divertor. 

Main Thermal, Fluid, and MHD Problems 

Associated W ith a Jet Divertor

1. Pressure drop in the supplying duct 
due to a nonuniform field and 
bending of the duct

2. Transition from duct flow to 
manifold flow (the manifold problem)

3. Transition from manifold flow to 
nozzle flow 

4. Transition from duct flow to jet flow 
(the nozzle problem) and the 
meniscus effect

5. Non-uniform field effects and jet 
stability

6. Heat transfer analysis, including 
thermocapillary convection
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Figure 2 MHD problems in for the lower part of the divertor. 

Main Thermal, Fluid, and MHD Problems 
Associated With a Jet Divertor (cont.)

7. Impact of a jet on a liquid metal 
surface

8. Impact of a jet on a solid wall

9. LM film or rivulet

10.  The problem of draining
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Figure 3 Shercliff solution. Geometry and co-ordinate system. 
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Figure 4 Shercliff solution. Grid used: (a) for Ha = 100; (b) for Ha = 200. 
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(b)  

Figure 5 Shercliff solution. Electric potential in the plane y = 0 for a square 

duct and for Ha = 100 (numerical solution - solid lines; exact solution - 

crosses). 
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Figure 6 Shercliff solution. Axial velocity in the plane x = 0 for a square duct 

and for Ha = 100 (numerical solution - solid lines; exact solution - 

crosses). 

 

Figure 7 Shercliff solution. Axial velocity in the plane y = 0 for a square duct 

and for Ha = 100 (numerical solution - solid lines; exact solution - 

crosses). 
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Figure 8 Shercliff solution. Electric potential at x = 0 for a square duct and for 

Ha = 200 (numerical solution - solid lines; exact solution - crosses). 

 

Figure 9 Shercliff solution. Axial velocity in the plane y = 0 for a square duct 

and for Ha = 200 (numerical solution - solid lines; exact solution - 

crosses). 
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Figure 10 Shercliff solution. Axial velocity in the plane x = 0 for a square duct 

and for Ha = 200 (numerical solution - solid lines; exact solution - 

crosses). 

 

Figure 11 Hunt solution. Geometry and co-ordinate system. 
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Figure 12 Hunt solution for a square duct with perfectly conducting walls. Axial 

velocity in the plane y = 0 for Ha = 100 (numerical solution - solid 

lines; exact solution - stars). 

 

Figure 13 Hunt solution for a square duct with perfectly conducting walls.  

Electric potential in the plane y = 0 for Ha = 100 (numerical solution - 

solid lines; exact solution - stars). 
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Figure 14 Hunt solution for a square duct with perfectly conducting Hartmann 

walls and electrically insulating parallel walls. Electric potential in the 

plane y = 0 for Ha = 100 (numerical solution - solid lines; exact 

solution - stars). 

 

Figure 15 Hunt solution for a square duct with perfectly conducting Hartmann 

walls and electrically insulating parallel walls. Axial velocity in the 

plane y = 0 for Ha = 100 (numerical solution - solid lines; exact 

solution - stars). 
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Figure 16 Hunt solution for a square duct with perfectly conducting Hartmann 

walls and electrically insulating parallel walls. Electric potential in the 

plane y = 0 for Ha = 200 (numerical solution - solid lines; exact 

solution - stars). 

 

Figure 17 Hunt solution for a square duct with perfectly conducting Hartmann 

walls and electrically insulating parallel walls. Axial velocity in the 

plane y = 0 for Ha = 200 (numerical solution - solid lines; exact 

solution - stars). 
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Figure 18 Flow in a duct with a 1:2 symmetric expansion in a transverse 

magnetic field. 

y

x

y = -1

y = 1

B

Flow

y = -0.5

y = 0.5

 

Figure 19 Inertialess flow in a duct with an expansion. Streamlines for Ha = 200. 
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Figure 20 Inertialess flow in a duct with an expansion. Velocity profiles in the 

duct (x = -3) and at the junction (x = 0) for Ha = 200. Solid lines - CFX 

numerical solution, stars - numerical solution obtained in ([26]). 

 

Figure 21 Inertialess flow in a duct with an expansion. Core velocity (y = 0) for 

Ha = 200. 
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Figure 22 Inertialess flow in a duct with an expansion. Pressure distribution for 

Ha = 200. 

 

Figure 23 Inertialess flow in a duct with an expansion. Pressure at the top of the 

wider duct (y = 1) for Ha = 200. 
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Figure 24 Inertial flow in a duct with an expansion. Streamlines for Ha = 200, 

N = 1. 

 

Figure 25 Inertial flow in a duct with an expansion. Velocity profiles in the duct 

(x = -3) and at the junction (x = 0) for Ha = 200, N = 1. 
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Figure 26 Inertial flow in a duct with an expansion. Pressure at the top of the 

wider duct (y = 1) for Ha = 200, N = 1. 

 

Figure 27 Inertial flow in a duct with an expansion. Pressure distribution for 

Ha = 200, N = 1. 
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Figure 28 Flow in an asymmetric duct with an expansion in a transverse 

magnetic field. 
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Figure 29 Inertial flow in an asymmetric duct with an expansion. Streamlines 

for Ha = 200, N = 1. 
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Figure 30 Inertial flow in an asymmetric duct with an expansion. Pressure 

distribution for Ha = 200, N = 1. 

 

Figure 31 Inertial flow in an asymmetric duct with an expansion. Pressure at the 

top of the wider duct (y = 1) for Ha = 200, N = 1. 
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Figure 32 Flow in a square duct in a non-uniform transverse magnetic field. 
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Figure 33 Flow in a square duct in a non-uniform transverse magnetic field. 

Magnetic field versus axial co-ordinate. 
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Figure 34 Axial velocity profiles for inertialess flow in a square duct in a non-

uniform transverse magnetic field. Ha = 50. Line y = 0 and (a) z = -6; 

(b) z = -2; (c) z = -1; (d) z = -0.5; (e) z = 0; (f) z = 0.5; (g) z = 1; (h) z = 2; 

(i) z = 6. 
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Figure 35 Axial velocity profiles in the inertialess flow in a square duct in a non-

uniform transverse magnetic field for Ha = 50. 
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Figure 36 Streamlines in the inertialess flow in a square duct in a non-uniform 

transverse magnetic field in the plane y = 0 for Ha = 50. 

 

Figure 37 Pressure in the inertialess flow in a square duct in a non-uniform 

transverse magnetic field on the central line of the duct x = y = 0 

(broken line) and near the wall x = y = 1 (solid line). Ha = 50. 
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Figure 38 Electric current lines in the inertialess flow in a square duct in a non-

uniform transverse magnetic field for Ha = 50. 
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Figure 39 Axial velocity profiles in the inertialess flow in a square duct in a non-

uniform transverse magnetic field in the plane y = 0 for Ha = 200. 
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Figure 40 Streamlines in the inertialess flow in a square duct in a non-uniform 

transverse magnetic field in the plane y = 0 for Ha = 200. 

 

Figure 41 Pressure in the inertialess flow in a square duct in a non-uniform 

transverse magnetic field on the central line of the duct x = y = 0 

(broken line) and near the wall x = y = 1 (solid line). Ha = 200. 

 



ANL/TD/TM02-30  Page 163 

Figure 42 Electric current lines in the inertialess flow in a square duct in a non-

uniform transverse magnetic field in the plane y = 0 for Ha = 200. 
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Figure 43 Pressure variation in the inertialess flow in a square duct in a non-

uniform transverse magnetic field in the plane y = 0 for Ha = 200. 

 

Figure 44 Liquid metal drop in a strong, vertical magnetic field. 
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Figure 45 Liquid metal drop in a strong, vertical magnetic field after 0.185 s. 

Solid line - asymptotic solution. 
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Figure 46 Liquid metal drop in a strong, vertical magnetic field. Horizontal 

velocity for both phases ("air" and liquid metal). Solid line - drop 

surface (asymptotic solution). 
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Figure 47 Liquid metal drop in a strong, vertical magnetic field. Vertical velocity 

for both phases ("air" and liquid metal). Solid line - drop surface 

(asymptotic solution). 
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Figure 48 Liquid metal drop in a strong, vertical magnetic field. Pressure for 

both phases ("air" and liquid metal). Solid line - drop surface 

(asymptotic solution). 
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Figure 49 Liquid metal jet in a strong, transverse magnetic field. 
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Figure 50 Liquid metal jet in a strong, transverse magnetic field. Variation of jet 

thickness in a uniform field for E = -1, Ha = 200.  
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Figure 51 Liquid metal jet in a strong, transverse magnetic field. Velocity profile 

in a uniform field for E = -1, Ha = 200. Velocity in the duct (solid line) 

and in the jet region (stars). 

 

Figure 52 Liquid metal jet in a strong, transverse magnetic field. Variation of 

pressure in a uniform field for E = -1, Ha = 200. 
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Figure 53 Liquid metal jet in a strong, transverse magnetic field. Variation of 

pressure in a uniform field at y = 0 for E = -1, Ha = 200. 

 

Figure 54 Liquid metal jet in a strong, transverse magnetic field. Velocity in the 

core in a uniform field at y = 0 for E = -1, Ha = 200. 
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Figure 55 Liquid metal jet in a strong, transverse magnetic field. Variation of 

pressure in a uniform field for E = -1, Ha = 200, N = 1. 

 

Figure 56 Liquid metal jet in a strong, transverse magnetic field. Variation of 

pressure in a uniform field at y = 0 for E = -1, Ha = 200, N = 1. 
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Figure 57 Liquid metal jet in a strong, transverse magnetic field. Velocity in the 

core in a uniform field at y = 0 for E = -1, Ha = 200, N = 1. 
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Figure  Liquid metal jet in a strong, transverse magnetic field. Variation of jet 

thickness for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2. Colour map represents 

the numerical solution, the solid black line shows the asymptotic 

solution. 
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Figure 59 Liquid metal jet in a strong, transverse magnetic field. Variation of 

pressure for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2. 
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Figure 60 Liquid metal jet in a strong, transverse magnetic field. Core velocity 

in the jet (y = 0) for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2. Solid line 

corresponds to the numerical solution, stars to the asymptotic 

solution. 

 

Figure 61 Liquid metal jet in a strong, transverse magnetic field. Streamlines in 

the jet for E = -1, Ha = 200, B∞∞ = 0.5, ζζ = 2. 
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Figure 62 Flow in electrically coupled U-bends(from [36]). 
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Figure 63 Flow in a circular insulating duct in a nonuniform magnetic field. 

Projection of lines of constant pressure onto the plane transverse to 

the field. The field is out of the plane of the figure; it varies between 

x = -1 and x = 1. Variable x is in the flow direction. Variable z is in the 

direction transverse to the magnetic field (duct axis is at z = 0).  

Hartmann and Roberts layers are not shown. Here Ha = 7000. (from 

[5]). 
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