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Abstract

The issue of magnetic orientation transitions in thin �lms combines interesting physics and importance for appli-
cations. We study the magnetic transition and phase diagram of a 0.1�m thick (YLaGd)3(FeGa)5O12 �lms grown
on GGG substrate by liquid phase epitaxy. Observed transitions are compared with those in BiGa:TmIG thin
�lms, studied in previous work by one of the authors. A general picture of orientation transitions in thin �lms of
substituted YIG is discussed.
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1. Orientational phase transitions (OPT) are an at-
tractive experimental object because in their vicinity
the magnetic anisotropy energy goes to zero, thus en-
abling an investigation of the smaller interactions in
the system, which otherwise are masked in magnetic
crystals [1,2].
In this paper the OPTs in thin iron garnet �lms are

investigated. Their application in industry propels in-
terest in the physical processes inherent to such �lms.
While spin reorientations are common in the ortho-
ferrites, they are rare in bulk rare-earth iron garnets.
However that does not mean that OPTs are irrelevant
in the garnet �lms, because in the �lm geometry the
dipole-dipole interactions start to play a de�ning role.
2. Single crystal magnetic �lms of cubic structure

with the �lm normal n parallel to the h111i axis of the
material are studied. Magnetocrystalline anisotropy in
the �lm is a sum of a cubic-symmetry term that fa-
vors magnetization M pointing in one of the eight
h111i directions and the uniaxial growth anisotropy en-
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ergy that favors M jjnjjh111i. The energy of the �lm
can be written as a sum of cubic and uniaxial growth
anisotropy energies, and dipole-dipole interaction en-
ergy or \shape anisotropy" energy (details in [3]):

E =Ec +Eu +Edd (1)

The last term leads to versatile domain structures
which depend on the �lm thickness d, domain wall
width Æ, and the ratio of the demagnetization energy
constant Kd = 2�M2

s to the constants Kc and Ku

of cubic and uniaxial magnetocrystalline anisotropy
energies.
The �rst observation of the spontaneous OPTs

in the garnet �lms was made in [3,4]. It was dis-
covered that magnetization of the single crystal
Tm2:14Bi0:80Fe3:1Ga1:9O12 �lms rotates from in-plane
to the normal direction through two second-order
transitions at T1 = 100K and T2 = 125K. Exter-
nal magnetic �eld Hkh111i decreases the transition
temperatures.
In contrast, a pure YIG �lms exhibit no OPT in

the temperature interval 4K - 300K. A question arises,
whether there is any fundamental di�erence between
the physics of di�erently substituted YIG �lms? Ana-
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lyzing Eqn.(1)the only term favoring M being aligned
parallel to the �lm plane is the dipole-dipole interac-
tion. It is known that for the simpler uniaxial case
(Kc = 0) the magnetization is indeed lying in the plane
if two conditions are met [5]:

Q=
Ku

2�M2
< 1; d < d� � Æ (2)

The quality factor Q and critical thickness d� are func-
tions of temperature and if e.g. Q(T ) = 1 at some tem-
perature, a phase transition with rotation of M out
of plane will occur. The cubic anisotropy term should
complicate the analysis and may lead to the appear-
ance of several transitions in correspondence with the
experiments [3,4].
A possible way to test this scenario is to decrease

the value of Q or �lm thickness d and observe an in-
creasing of transition temperatures. In accord with
this idea a very thin (YLaGd)3(FeGa)5O12 �lm grown
by liquid phase epitaxy on a [111] oriented gadolinium-
gallium garnet (GGG) single crystal substrate was
studied. This composition was chosen to make the uni-
axial anisotropy constant Ku as small as possible. The
thickness of the �lm was d � 0:1�m, the sample was a
disk of 5mm in diameter. The conditions required by
Eqn.(2) were satis�ed for this �lm with Q << 1
We measured magnetic susceptibility �(H) at the

5MHz and the soft FMRmode frequency
(H) (Fig 1).
In the temperature range from 77K to 450K no spon-
taneous OPTs were observed in accord with what was
stated above. To move towards our goal the sample was
put into a magnetic �eldHknkh111i that promotes ori-
entation transition between in-plane and out of plane
phases. In our experiments the direction ofH and h111i
coincided within a 30 accuracy. Experimental �(H) de-
pendencies are shown on Fig. 1. The sharp dips mark

Fig. 1. Magnetic �eld dependence of the FMR frequency 
(H)

(upper curve) and 
(H) = 1=
p

1 + 4��(H) (middle curve) at

T = 293K. Lower curve: 
(H;T = 125K) near H�.

Fig. 2. Phase diagram of a thin YIG �lm inHkh111i. Only pos-

itive values of �eld are shown. Inset shows how phase boundary

curves near T� � 465K. Tc is the Curie temperature.

the phase transitions atH = �H� andH = 0 (see [6]).
The transition at H� is identi�ed as the �eld for

which the sample enters into the monodomain state
with Mkh111i. This transition is observed as a mini-
mum on the 
(H) curve (Fig. 1). The absence of hys-
teresis con�rms the second-order nature of the transi-
tion. The transition at H = 0 is seen very clearly and
happens without hysteresis. Experimentally it must be
identi�ed as a second-order transition.
After performing the measurements of �(H;T ) at

many temperatures an (H � T ) phase diagram of the
�lm can be constructed (Fig. 2). The H�(T ) line sepa-
rates the monodomainMkh111i state forH > H� from
the multi-domain state with tilted M for H < H�.
3. The H�(T ) curve has a sharp turn near T� �

465K (see inset in Fig.2). It's overall behavior for T <

T� is similar that observed in [3,4]. The large values
of T1 would be in accord with the arguments about
the consequences of lowering Ku and d. Application of
the magnetic �eld merely enables one to reveal those
large T1 while not going above room temperature. How-
ever this analogy is far from complete. In particular
the sharp turn of H�(T ) for T� approaching Tc(see in-
set)and it's subsequent behavior has no analog in previ-
ous �lms [3,4]. The di�erences may be the consequences
of T1;2 being close to the Curie temperature Tc of the
material where changes in the magnitude of M must
be accounted for. Full understanding of the H�(T ) be-
havior in YIG �lms calls for more investigations.
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