
ELIST8: SIMULATING MILITARY DEPLOYMENTS IN JAVA

Charles N. Van Groningen, Dariusz Blachowicz, Mary Duffy Braun,
Kathy Lee Simunich, and Mary Ann Widing

Argonne National Laboratory
9700 South Cass Avenue, Bldg. 900

Argonne, IL 60439, USA

ABSTRACT

Planning for the transportation of large amounts of
equipment, troops, and supplies presents a complex
problem. Many options, including modes of
transportation, vehicles, facilities, routes, and timing,
must be considered. The amount of data involved in
generating and analyzing a course of action (e.g., detailed
information about military units, logistical infrastructures,
and vehicles) is enormous. Software tools are critical in
defining and analyzing these plans.

Argonne National Laboratory has developed ELIST
(Enhanced Logistics Intra-theater Support Tool), a
simulation-based decision support system, to assist
military planners in determining the logistical feasibility
of an intra-theater course of action. The current version of
ELIST (v.8) contains a discrete event simulation
developed using the Java programming language.
Argonne selected Java because of its object-oriented
framework, which has greatly facilitated entity and
process development within the simulation, and because it
fulfills a primary requirement for multi-platform
execution. This paper describes the model, including
setup and analysis, a high-level architectural design, and
an evaluation of Java.

KEY WORDS
Discrete simulation, military, deployment, transportation,
Java

1. INTRODUCTION

The military logistics community has successfully used
ELIST (v.7) to assist in planning analyses and training
exercises for a number of years [1]. Ongoing use of
ELIST7 has led to requests for more detail, more
capabilities, and increased flexibility and speed. ELIST7
runs at a fairly aggregate level in which individual
transports are not explicitly modeled; rather,
transportation capabilities are represented in short-ton-
miles/day. ELIST7 is primarily a C language tool and
uses formatted files for input.

ELIST (v.8) is a completely new system for modeling the
transportation of military cargo at the individual vehicle
level and requires a much more detailed simulation than
was required in ELIST7. The new version is intended to
make it easier to integrate ELIST8 with other models and
tools in the fort-to-foxhole logistical arena. ELIST8 uses
the Oracle database management system (DBMS) for data
persistence (rather than the flat files used in ELIST7) to
facilitate data sharing with other models. Because the
desired changes (especially to the simulation) were so
significant, modifying the existing ELIST7 would not
have been efficacious. Argonne National Laboratory
selected Java as the development language because (1) it
has object-oriented framework, which greatly facilitates
entity and process development within the simulation, and
(2) it fulfills a primary requirement for multi-platform
execution. One concern in using Java, however, was
scalability, which is discussed later.

2. MODEL

The model underlying the ELIST8 simulation is based on
many discussions with military logisticians. A
requirements document, which combines identified
requirements, experiences, and observations, provides the
basis for all technical design and implementation
decisions [2]. ELIST8 models the intra-theater
movements of personnel, equipment, and supplies by
limited transportation assets over a constrained
transportation infrastructure. The purpose of the system is
to aid planners in evaluating the potential success of a
theater leg of a transportation plan, analyzing vehicle and
facility requirements for a given plan, and identifying
possible bottlenecks in either the infrastructure or process.

Because users often require trade-offs between speed and
accuracy, the model has been designed so that different
degrees of detail can be applied to different portions of
the scenario data. Thus, the experienced analyst can focus
on specific aspects of the plan when time is limited. These
detail/aggregation choices are discussed later.

Six modes of transportation are modeled in ELIST: road
(including line haul operations), rail, water, air

(fixed-wing), helicopter, and pipeline. ELIST8 can model
either the home theater or a foreign theater.

The main inputs to the model are:

• Unit requirements (what entities are to be
moved),

• Vehicle characteristics,
• Network infrastructure, and
• Scenario parameters.

Figure 1 provides an overview of the types of movements
that personnel and cargo perform in ELIST8. The model
is more than just a simulation. It is an extensive set of
tools for setting up, analyzing the input data, and
analyzing the results. The simulation must be discussed
within the context of the data setup.

2.1 Unit Requirements

The military units and their required activities originate
from the Time Phased Force Deployment Data (TPFDD).
This format is used by the U.S. Armed Forces to represent
deployment plans. TPFDDs include information on what,
when, and where units should move. Additional data were

needed for ELIST8, as well as for other models, so the
Expanded TPFDD (ETPFDD) was developed. The
ETPFDD contains an operational hierarchy, as well as a
compositional hierarchy, of unit data to define what must
be moved. Each unit can be composed of other units as
well as quantities of commodities. ELIST8 is primarily
concerned with commodities, which are the entities to be
moved through the simulation. Commodities can be
represented at multiple levels of aggregation. Users can
define many types of commodities, such as Personnel,
Aircraft Tonnage, Heavy Equipment Transport Items,
Ammunition Containers, and General Containers. Each
commodity has special movement rules and constraints,
which are also represented at various levels of detail. At
level 2, only aggregate weight is known (in short tons). At
level 3, weight and square-feet attributes exist. At level 4,
numbers of vehicles or containers are represented along
with their dimensions (weight, length, width, and height).
Finally, at level 6, each item has the dimensions of level 4
along with a unique ID. The analyst can specify the level
of detail to be modeled either by individual units or for
the entire scenario.

ELIST8 also defines when and where units must move.
Figure 2 shows how ELIST8 graphically displays the
movement of a military unit. The first row (3ATN) is the
parent record that links the next two rows. The second
record (3ATNC) is the cargo record, which must move
via sea. The third record (3ATNP) is the personnel record,
which must move via air. Each lozenge lists a location
where the unit must travel from/to on the given day. The
air records delay at their origin for 15 days because air
travel is much faster than sea travel. Once in the theater of
operations, units must undergo the full Reception Staging,
Onward Movement, and Integration (RSOI) activities. In
this example, the units must be received at their sea
(HNTS) and air (HNTK) ports and offloaded from the
strategic assets. They must stage at the given staging base
(HNTM) at which time they perform functions such as
reconfiguring the equipment (from transportation safe to
battle ready), “marrying-up” with the personnel and

Figure 2 "When and Where" of Unit Deployment
Airport

Seaport Staging
Area

Theater
Staging Base

Destination

Advanced
Party

Cargo

Cargo

Cargo &
Main Body

Main Body

Cargo is Offloaded
and Marshalled

Personnel are Offloaded
and Marshalled

Cargo is Set Up
or Transferred to
Alternate Mode

Units “Marry” and
Personnel Train
on Equipment

Figure 1 Overview of ELIST Movements

equipment (they had moved via different modes to the
theater), and performing final training activities for
personnel before a mission. The units then move to their
tactical positions via various modes of transportation
either specified in the requirements or chosen by the
simulation. Finally, the units merge into an integrated
force. Other optional activities can also occur, such as
follow-on movements and delivery of sustainment.

2.2 Vehicle Characteristics

ELIST8 contains data on every vehicle type that could be
used. The model uses information, such as payload, cargo
area dimensions, curb weight, average speed, and average
on- and offload times. ELIST8 uses a vehicle grouping
called an asset to specify preferences on how to move
specific commodities. An asset is a set of vehicle types
that will be used in the same way in the plan. Examples
are a set of heavy trucks or a set of tanker railcars.

Commodity asset rules list (in order of preference for
each commodity) the assets that can be used to transport
that commodity. Conditions based on lateness and
distance can be included in these rules. A specific
collection of vehicles is defined.

2.3 Network Infrastructure

A theater infrastructure is required for the area of
operations and must include all the nodes (i.e., ports,
staging areas, and destinations) referenced in the
ETPFDD. Links — roads, railways, waterways, and
pipelines — connect the nodes. All nodes have
geographic coordinates for mapping and distance
calculations. ELIST models infrastructure resources
primarily in four ways: rate resources, gate resources,
capacity resources, or discrete resources. A rate resource
is characterized by its ability to process a given amount of
cargo in a given time, for example, the capability to load
containers on railcars in containers/hour. The resource
represents the personnel and equipment involved. The
time consumed by an activity using a rate resource will be
at least as long as the amount that is being processed
divided by the rate. The activity, however, can take longer
than the time dictated by one resource, for example, when
multiple resources with different rate values are required.

A gate resource also represents a capability specified as a
rate. This type of resource, however, does not have a
duration associated with its use. Road capacities, for
example, are represented using gate resources; a number
of vehicles may travel onto the road per hour.

A capacity resource is a nonconsumable resource that is
used in some fraction of the whole for the duration of an
activity. Its use, however, does not affect the duration of
the activity. An example is storage area at a port. Some

equipment is represented discretely. Cranes at a berth, for
example, are acquired for a ship-loading activity and
released when the activity is complete.

The main nodes modeled are seaports, airports, and
intersections. The basic node, an intersection, can
represent a staging area, a rail terminal, or any type of
intersection of links. Trucks, railcars, and helicopters can
be on- and offloaded at an intersection. Capabilities for
loading cargo to/from vehicles are modeled as rate
resources. These capabilities are broken into
infrastructure, materials handling equipment, and
personnel, giving analysts flexibility for storing the static
aspects of a terminal, such as ramp and dock capability,
separately from more dynamic capabilities, such as
personnel and equipment. From these values, a rate
resource is constructed for the simulation, which has a
capability that is the minimum of the three components.

Seaports have all the data associated with an intersection
node, plus the data for ship berthing and loading.

Aircraft parking areas at airports are explicitly modeled.
Only a limited number of aircraft can be processed at a
time because of restrictions on tarmac areas. All aircraft-
loading resources can operate anywhere within the
airport.

The primary attributes of infrastructure links used by the
simulation are length, rate of march, and rate of entry.
Limited link capacity is modeled by the rate at which
vehicles can start onto the link (rate of entry). Road and
rail links can also be limited by the size and weight of
vehicles that can traverse them.

2.4 Scenario Parameters

A scenario is a specific run of the model. The analyst can
specify a number of options and parameters to direct and
tune the simulation for each scenario. A few examples are
given. The simulation can either enforce the mode of
travel specified in the ETPFDD or select a mode on the
basis of the situation. The maximum time to wait for
additional cargo and the percentage of capacity preferred
prior to departure can be specified for various vehicle
types. The analyst can decide whether the storage area at
a node should constrain movement or the cargo should be
allowed simply to overflow. The preferred number of
railcars in a train can be input, and the analyst can decide
whether trucks must travel in serials (groups of vehicles).
Scenario parameters are stored in the database as are all
other ELIST8 data.

3. SIMULATION

The simulation is driven by discrete events; for a detailed
discussion, see [3]. Initially, scheduled events are unit

availability, ship arrivals, and plane arrivals. All of these
events have participant lists that contain unit component
entities. Whenever an activity is completed, the newly
idle unit components look in their required activity lists
and create and schedule new activities as appropriate.

Unit components keep detailed histories of each
completed activity as well as time spent queuing. This
information is available to the analyst. An example
history is provided below for a piece of equipment as it
moves through the activities required in the simulation
(Table 1). For each time, an activity provides information
on what actions occurred at a specific location.

Table 1 Example History of Equipment Movement

Day /Time Activity
54 23:03 Strategic Ship Arrival and Berthing

 (SAFAQIS -VKNP-PRT)
55 2:03 Off-load from Advantage Ship at Berth

 CONT-2
55 3:00 Any Mode Trip from SAFAQIS –VKNP

 PRT to TEBESSA -WSVC-CAP
55 3:00 Train On-loading (Railcars)
55 3:00 Waiting for Train for SAFAQIS-

 VKNP-PRT to TEBESSA -WSVC-CAP
 (Rail)

55 7:00 Train Departure (Railcars)
55 17:15 Train Arrival (Railcars) TEBESSA -WSVC-

CAP
55 17:15 Train Enter Node (Railcars)
55 17:44 Train Off-loading (Railcars)
25 6:45 Waiting for Marry-Up
61 2:45 Marry-up (Equipment and Personnel)
63 2:45 Road trip from TEBESSA -WSVC-CAP to

BIR EL ATER -BQWK-APT
63 2:45 Waiting for Serial for TEBESSA

 WSVC-CAP to BIR EL ATER –BQWK-
 APT (Convoy)

63 2:45 Road (Self: 1.0 vehicles) Departure in
 Convoy

63 5:46 Road (Self: 1.0 vehicles) Arrival BIR EL
ATER -BQWK-APT

63 5:46 Road (Self: 1.0 vehicles) Enter Node BIR
EL ATER -BQWK- APT

63 6:15 Final Delivery BIR EL ATER –BQWK-
 APT

3.1 Activity Objects

Activities are implemented as objects, each with an
“execute” method. Some activities can be considered as
compound activities and are represented as a single object
with multiple states. A trip with an asset, for example,
actually consists of a fixed series of subactivities — cargo
onload, travel, node entry or parking, and cargo offload
— with the asset, route, and participant data remaining
the same throughout.

The subclass capability and interface construct of Java
were very effective in implementing the different
activities of the simulation, primarily because of the many
similarities among the transport activities for different
modes, different cargo types, trips with or without cargo,
and trips with or without assets.

3.2 Event and Asset Managers

An event manager object handles the scheduling and
execution of events. Events generate priorities on the
basis of the delivery times required by participants. The
simulation can either be run to a specific time or be run
and stopped as desired.

An asset manager object oversees the allocation of assets
to activities. Vehicles are chosen on the basis of
commodity-asset preference rules, specific cargo
dimensions, current location of the cargo and the vehicle
(if fully tracked), and service area of the vehicle’s asset
pool. When an asset vehicle completes a trip, and there is
a queue for the asset, it is either assigned immediately, if
needed at its current location, or sent by the asset manager
to the location of the highest priority event in the queue. If
no queue exists, the asset is sent to its home node.

3.3 Results

Many reporting options are available to assist the analyst
in evaluating the success of a plan, identifying
bottlenecks, and analyzing asset usage. The success of the
plan depends on the on-time arrival of all units at their
final destinations.

Summary arrival results can be viewed in total short-tons
for the entire scenario or by cargo type or destination.
Figure 3 shows a sample delivery graph. The graph areas
plot the arrival of cargo through the various locations in
the theater. These can be compared with the requirement

Figure 3 Sample Delivery Graph of Short Tons vs Time

lines. When the delivery is above the requirement, the
cargo is early; when it is below the requirement, the cargo
is late.

A query facility allows specification of groups of units on
the basis of name, location, delivery, and many other
factors. These groups or individuals can then be reported
and graphed. For example, all units traveling to a certain
destination or all units not yet arrived could be reported.

Usage-over-time data are saved for all network and asset
resources and all queues. The user interface allows easy
selection (for reporting) from among all queues,
destinations, seaports and airports, road links, routes,
assets, asset pools, etc.

4. SYSTEM ARCHITECTURE

Because ELIST8 is a complex system, various conceptual
levels have been designed to manage this complexity
(Figure 4). First, all object representations have been
separated from the user interface and persistent
representations. User interface items are applied
consistently in their own layers, making each model
object cleaner and more maintainable. For example, if
requirements called for changing the interface, the
underlying representation would not be affected, nor
would it affect the simulation code or the interfaces with
other external models. In ELIST8, the persistence
mechanisms were moved into a separate layer to reduce
the redundancy of database calls in each object and to
hide the implementation of saving the data from each
object. As a result, each object has a very thin persistence
layer, mapping its attributes to relational tables. This
capability not only increases productivity in development,
but also significantly enhances system maintainability.

Finally, this layer now gives the option to port to other
databases (relational or object based) with limited impact
on base objects.

All interactions with external models are encapsulated
within their own layer, allowing easy plug-and-play
functionality. For example, High Level Architecture
(HLA) has been integrated into ELIST8 in a separate
layer, allowing the model to run either inside the Analysis
of Mobility Platform HLA Federation or as a stand-alone
system.

5. DEVELOPMENT OF ELIST IN JAVA

The new version of ELIST was developed in Java for
several reasons. Java offers the advantages of an object
oriented programming language. Java provides the
platform independence required and native support for a
number of required and potentially useful capabilities.
The JDBC (Java Database Connectivity) toolkit supports
multiple DBMSs. Graphical user interface, networking
and Internet, and multi-threading capabilities are all
available within the base Java, allowing the team to
exploit new technologies as required. Two disadvantages,
however, were identified. First, the language was
“immature,” and changes in Java’s ongoing development
might affect Argonne’s effort. Second, the execution
speed of this semi-interpreted language might hamper
acceptance of the system, although it was assumed that
the execution speed would be resolved in time.

The overall feeling of the team toward Java has been
positive, but there have been problems. No single
environment satisfied everyone. The team used several
environments, including VisualAge for Java (IBM), Forte
(Sun Microsystems), and JBuilder (free, Foundation

ELIST User

Oracle
ETPFDD
Database

Oracle
ELIST

Database

Java JDBC

Object
Persistence

Memory
Objects/Methods

User Interface
Objects/Methods

Map Display
Objects/methods

Vector and
Raster

Map Data

Report/Graph
Server

External C++
Libraries

Interaction with
External Models

External
Model(s)

High Level
Architecture

ELIST User ELIST User

Oracle
ETPFDD
Database

Oracle
ETPFDD
Database

Oracle
ELIST

Database

Oracle
ELIST

Database

Java JDBC

Object
Persistence

Memory
Objects/Methods

User Interface
Objects/Methods

Map Display
Objects/Methods

Vector and
Raster

Map Data
Vector and

Raster
Map Data

Report/Graph
Server

External C++
Libraries

Interaction with
External Models

External
Model(s)

High Level
Architecture

Figure 4 System Architecture

version from Borland/Inprise), or external editors in
conjunction with Sun’s Java (virtual machine) and jdb
(debugger).

The immaturity of Java required the team to spend time
on “work-a-rounds,” especially in relation to the Swing
user interface classes. The Java Developer Connection
site (http://developer.java.sun.com/index.html) (Bug
Parade) was beneficial in identifying Java problems and
solutions, and the work-a-rounds did not consume a
significant amount of development time. These problems,
which were most prevalent during the first couple of years
of development, have decreased significantly in recent
years.

The speed of execution and memory constraints continued
to be a concern. The team has been very careful in
limiting how memory is used because Java has a fixed
heap size of 1.5 GB. The deployment of JDK1.3 and the
Just In Time (JIT) compiler greatly alleviated the speed
concerns. As an illustration, a relatively large scenario
that consists of 20,000 units (approximately 300,000
personnel and 3 million short tons of equipment and
supplies) using three modes (road, rail, and water) was
simulated in slightly more than 30 minutes on a Sun
Ultra 10 workstation.

6. CONCLUSION

The ELIST8 simulation is a critical piece of an extensive
system that includes import, export, visual editing, and
error checking of vehicle data, asset and commodity data,
network data, ETPFDD data, and scenario parameters.
Mapping and query capabilities are included and continue
to be enhanced. The capabilities provided by this
expanding collection of tools assist military logistics
personnel with both data management and analysis tasks.
By providing greater ease and speed for modifying and
analyzing the plans, these tools enable examination of
more “what if” scenarios and facilitate the logistical
planning process.

Overall, Java was found to be scalable, allowing not only
complex class/object interactions but scaling to tens of
thousands of objects. Since the distribution of the JIT,
concerns regarding the speed of execution have
disappeared.

7. ACKNOWLEDGMENT

This work was supported under a military
interdepartmental purchase request from the
U.S. Department of Defense, Military Traffic
Management Command Transportation Engineering
Agency (MTMCTEA), through the U.S. Department of
Energy contract W-31-109-ENG-109.

REFERENCES

[1] C. Macal, C. Van Groningen, and M. Braun,
Simulation of transportation movements over constrained
infrastructure networks, Proc. 1995 Simulation Multi-
Conference, Phoenix, AZ, (4):97-102, April 27, 1995.

[2] M.D. Braun and C.N. Van Groningen, ELIST 8
transportation model, ANL/DIS/02-1, Argonne National
Laboratory, Argonne, IL, Feb. 2002.

[3] M. Braun, G. Lurie, K. Simunich, C. Van Groningen,
H. Vander Zee, and M. Widing, ELIST8: A simulation
system for transportation logistics planning support, Proc.
2000 Summer Computer Simulation Conference,
Vancouver, BC, July 16-20, 2000.

	3.1 Activity Objects
	3.2 Event and Asset Managers
	
	
	3.3 Results

