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Abstract

Fragmentation reactions offer a useful tool to study the spectroscopy of halo
nuclei, but the large extent of the halo wave function makes the reaction
theory more difficult. The\simple reaction models based on the eikonal ap-
proximation for the nuclear interaction or first-order perturbation theory for
the Coulomb interaction have systematic errors that we investigate here, com-
paring to the predictions of complete dynamical calculations. We find that
stripping probabilities are underpredicted by the eikonal model, leading to ex-
tracted spectroscopic strengths that are two large. In contrast, the Coulomb
excitation is overpredicted by the simple theory. We attribute this to a screen-
ing effect, as is well know in the Barkas effect on stopping powers. The errors
decrease with beam energy as E;l | and are not significant at beam energies
above 50 MeV/u. At lower beam energies, the effects should be taken into

account when extracting quantitative spectroscopic strengths.

I. INTRODUCTION

Reactions of halo nuclei have given valuable spectroscopic information, often deduced
with the help of simple reaction models such as the eikonal approximation [1-5] or first-
order perturbation theory, see e.g. [6~12]. However, there are some situations where these

models are not precise enough for the question under study. One such question is the



absolute spectroscopic factors associated with single-particle states in nuclei. Correlations
reduce the spectroscopic factors from unity, but the precise reduction is not easily measured.
While values close to one have been extracted from nuclear reaction experiments, electron
scattering measurements yield reductions of several tens of percent. Other cases where
accurate measurement are desired arise in the modeling of nuclear reactions in stars. A
prominent example is the break-up cross section of #B. The inverse process, the capture of
protons on "Be, has a crucial role in producing high energy neutrinos in the sun.

To assess the accuracy of the simple models, we have studied a Hamiltonian model that
can be solved numerical to high precision, and compared with the predictions of the eikonal
and the first-order perturbation theory. The Hamiltonian has the form of a three-particle
problem: we consider as active coordinates the positions of the projectile, the target, and
the halo nucleon. In the initial state, the nucleon is bound to a core to form the projectile
ground state. The interactions absorb the nucleon or leave it in an excited state. To make
the model tractable computationally, we assume that the projectile-target coordinate can be
treated by classical dynamics. Then the problem reduces to a time-dependent one-particle
dynamics, namely the evolution of the nucleon-core wave function in the external field of
the target. This demands that the time-dependent Schrédinger equation be solved in a full
three-dimensional representation of the nucleon-core wave function.

There are several computational methods available for solving the 3-D time-dependent
Schrodinger equation, In some contexts a three-dimensional grid representation is very effec-
tive [13,14]. For the problem under study here, however, we find that a spherical represen-
tation with a radial mesh is most efficient. Centering the coordinate system on the center
of mass of the projectile, the wave function can be accurately computed for the initial state.
The arena in which the wave function evolves can also be large, because the radial mesh can
easily extend to hundreds of femtometers. The spherical representation has been used by

several groups previously, including ourselves {15] and others [16,17].



II. TECHNICAL DETAILS OF THE CALCULATIONS

We summarize here the model we use; a more detailed description can be found in
ref. {18]. The only coordinates are the neutron’s position with respect to the core, r, and
the projectile-target coordinate R. For simplicity we assume a straight-line trajectory for
the core-target motion, R(t) = b + v¢. This leaves the neutron-core and neutron-target
potentials to be specified in the Hamiltonian. Again for simplicity we ignore spin-orbit
interactions, taking the neutron-core potential Unc to have a simple Woods-Saxon form,
Une(r) = -V, f(-’:fi), where f(z) = (1 + €®)~'. The mitial state of the neutron |0)
is an eigenstate of that potential. The neutron-target interaction is parameterized as a
conventional optical potential Uy,(r,,), which we have taken from the parameterization in
Ref. [19]. The core-target nuclear interaction is set to zero for convenience.

The immediate object of the reaction calculation is the neutron wave function in the
final state. In the eikonal approximation, valid when the target interaction has a very short
duration, the final state wave is obtained by a simple multiplicative factor. In the present

model, this is

Uy(r) = Sui(|b — ary]) [0) = exp _oo éi Unt(\/lb —ar 2 +2%)) |0), (1)
oo thv

where [0) is the initial ground state wave function, v is the projectile velocity, and o =
(A-1)/A, in terms of the projectile mass number A.

For the dynamic calculation we integrate the time-dependent Schridinger equation over
a finite time interval —T < t < T, where ¢ = 0 at closest approach and T is chosen large
enough to cover the duration of the interaction with the target. The strictly numerical
parameters associate with the wave function are radial mesh spacing Ar, the radius of the
spherical arena rp,,., and the cutoff angular momentum I, in the spherical representation.

We also need to specify the algorithm for the time integration and its time step At. We
use a time propagator that is unitary with respect to the nucleon-core Hamiltonian, namely

the well-known finite difference expression [20],



1-iHAt/2

exp(~iHAt) ~ ﬁTH_At_ﬁ (2)

The neutron-target potential is included by a simple first-order integration, adding —il,,At
to the denominator of eq. (2.2). We also use a variable time step that is longer when the

projectile is far from the target. This is done by the transformation of the time variable ¢

t= % (\/(0/2)2 + B sinh(w) + (D/2)w) ,

and taking a uniform step in w. In this equation, b in the impact parameter, v is the beam

to variable w, [21]

velocity, and D is the distance of closed approach in a head-on collision. We have chosen
the radial step Ar = 0.2 fm, and a sphere radius .., between 50 and 200 fm. To calculate
breakup probabilities, it is sufficient to use Tmaz = 80 fm but to get realistic momentum
distributions one needs a larger radius. The integration is started with the projectile-target
y separation specified at some value yo = —v7, and the time integration is performed up
to a time +7. When there is no Coulomb interaction, it is sufficient to take —40 < y <40
fm. If Coulomb interactions are present, the integration should include distances going well
beyond the adiabatic cutoff distance, give by v /w, where w is the smallest excitation energy
in the halo nucleus. In practice, this requires extending the distance to a few hundred fm.
Concerning the decomposition into ! and m, we find that it is adequate to limit the
channels to ! < {,,,, = 12. For the s-wave halo orbital, the number of (Im) channels is 91
taking the scattering plane symmetry into account. This is about the most we are able to
handle within a reasonable computation time. For consistency, we include all contributing

terms in the multipole expansion of U,,,.

III. OBSERVABLES

All physical quantities are computed from the final state halo wave function, Uy(r) =
¥(r,T). The most important observables among the angle-integrated cross sections are

the neutron removal probability P_,,, the stripping probability Ps,,, and the diffractive



dissociation probability Ppig. These are defined
P_in= Ps + Poig

where

Psur(b) =1 — (T;[Wy),

Poin(b) = (¥;]%y) - ; |{n [T} 2, (3)
and where n sums over bound states of the halo nucleon in the projectile. Besides the
integrated diffraction probability, differential probability distributions in the final state are
measured and provide important information. To compute momentum distributions, we
project the final state wave function onto scattering states of the nucleon-core Hamiltonjan.

We define amplitudes Siim so that the wave function in momentum space is

1 .
W50 = £ 3 Yim(F) Suan(8) @
im
Thus the complete final state momentum distribution will be given by
& P(bk
T = 19007 = g5 1S Yin(h) Sun O, )

The amplitudes Sk, are calculated as overlaps of the final state wave function with the
scattering states |kim) = ¢ (r)Yim(#). Two components of the momentum distribution
are particularly interesting, namely, the angle-averaged distribution and the longitudinal

momentum distribution. The angle-integrated distribution, which we define as

T = TP ©)

is closely related to the decay-energy spectrum. As will be seen, it can reveal the location
of unbound single-particle resonances in the projectile. The longitudinal momentum distri-
bution provides information about the reaction dynamics, particularly related to the time

duration of the collision. It is given by

T w2r [*F 5| S Vi) S @

m l>| m|

where 8y is defined cos 8 = k,/k and the tilde on Sy indicates that the angular momentum

expansion is done in a coordinate system with the z-axis along the beam direction.
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1IV. NEUTRON HALOS

The example of ' Be, a typical neutron halo nucleus, is discussed in ref. (18]. Here the halo
neutron is in an s-orbital bound by E, = 0.5 MeV. Comparing the eikonal and the dynamic
calculations on the target 2C , we found that the eikonal reproduces the b-dependence of
the probabilities quite well, but underestimates them by an amount that depends largely on
the beam energy. The underprediction of the stripping is easy to understand qualitatively.
In the eikonal approximation, the absorptive potential of the target acts only on the halo
density in the immediate path. In the full dynamics, there is also a probability flux from the
halo wave function into the target region in response to earlier absorption and diffraction.
More quantitatively, one would expect from perturbation theory that the eikonal would to
converge to the full dynamics as

/v ~ EZM?

beam

for real potentials and
1/v? ~ 1/ Epom (8)

for absorptive potentials. Both the stripping and diffraction probabilities follow the depen-
dence of eq. (4.1) above Ejeam = 20 MeV/nucleon. Our numerical results are well fit by the
parameterization

Pcik/den =1- C/Ebeam

with C =~ 4.5 MeV.

Even if the probabilities are calculated to high accuracy, it is still difficult to determined
absolute spectroscopic strengths due to necessity to integrate over impact parameter with
a model of the core-target absorption. A less ambitious use of reaction theory is to apply
it only to relative spectroscopic strengths of different single-particle states. In ref. (18] we
also compared extracted spectroscopic strengths for different shell orbitals, finding that the

eikonal is an excellent approximation when used this way. For example, at a beam energy



of 40 MeV/nucleon, the difference in the probability ratios is only a few percent over the

range of bound state angular mormnenta from 0 to 2 and binding energies of 0.5 to 3.0 MeV.

A. Momentum distributions

As mentioned earlier, the energy distribution of the nucleon with respect to the core
provides information about the single-particle resonances. The distribution in ! Be is shown
in Fig. 7 of ref. [18]. One sees a broad peak at about 80 MeV/c and superimposed a very
narrow peak at 55 MeV/c, corresponding to a resonance energy of 1.8 MeV. The shape of
the distribution is very well described by the eikonal model. The narrow peak is due to a
d-wave resonance of the projectile potential. This resonance is seen experimentally, but at
a somewhat lower energy. It should be noted that models which neglect the final state core-
particle interaction (e.g. the transfer-to-continuum model [22]) will miss resonance peaks
such as found here. The broad peak is rather insensitive to beam energy and the details of
the target interaction.

We next turn to the longitudinal momentum distribution, which is interesting from
several perspectives. Of all the momentum distributions, it is least sensitive to the details of
the neutron-target interaction. In fact, to some approximation it just reflects the longitudinal
momentum content of the initial bound state. However, one feature of the longitudinal
momentum distribution, its asymmetry in the projectile frame, is due to the finite duration
of the collision and is completely beyond the scope of the eikonal approximation. This is
seen in Fig. 7 of ref. [18] for the diffractive breakup of 'Be. The distribution obtained from
the dynamic calculation is 10% broader than the eikonal predicts. It also has a pronounced
tail going to lower momenta with respect to the target, an effect that is entirely absent from
the eikonal result. The low-energy wing of the distribution can be attributed to processes
whereby the target drags the neutron down to a low-momentum state in its frame. This
process was first described with the time-dependent calculations of ref. {14]. We have also

discussed it in more detail in our ref. [18].



V. PROTON HALOS

We now turn to proton halos, taking as a test case the nucleus 7F, whose last proton is
a ds/; orbital bound by 0.6 MeV. To reproduce the experimental energies for the two bound
states in }F, different potential radii are used for the d- and the other partial waves in U,,.
The diffuseness and well depth are taken as @ = 0.67 fm and V = —54.477 MeV in all cases.
For the d-wave, the radius is taken as R, = 3.242 fm, which fits the separation energy S,=0.6
MeV of the 5/2* ground state of 1’F. For the s-wave and all other partial waves, the radius
is taken as R, = 3.074 fm. This reproduces the separation energy of 0.1 MeV of the 1/2+
excited state. This simplified Hamiltonian reproduces the measured radiative capture cross
section [23] to the ground of ''F fairly well. The capture rate to the 1/2+ state is somewhat
exaggerated at higher energies, roughly by 30% at 2-3 MeV. The nuclear interactions are
treated the same as before. The Coulomb interaction with the target is represented by the
non-relativistic E0, E1, and E2 multipole fields, with the full radial dependence (i.e., not
making the usual far-field approximation).

The results of dynamical calculations are compared to the eikonal approximation for
the nuclear induced breakup, and to first-order perturbation theory for Coulomb dis-
sociation. The eikonal calculation is performed for a straight-line trajectory at an ef-
fective impact parameter equal to the minimum distance on the Coulomb trajectory,
besf = DJ2 + W, where b is the actual impact parameter and D = ZZre?/E,,,.
The first-order Coulomb dissociation, on the other hand, is calculated on a Coulomb trajec-
tory, using the non-relativistic far-field form factors. The results for the diffractive breakup
at 10 MeV/n beam energy on a ***Pb target are shown in Fig. 1. The squares show the
results of the dynamic calculation without any significant approximation. The first-order
perturbation theory with the far-field Coulomb interaction is shown as a dashed line. Here
we have included only El and E2 multipoles in the Coulomb field; higher multipoles give
negligible contribution. One sees that the first-order Coulomb overestimates the probability.

The dynamic effect thus goes in opposite direction for the Coulomb and the nuclear inter-



action. This is very plausible; the interactions have opposite signs and one might expect
a screening effect with the Coulomb, which seems to be observed, However, the physics is
actually more subtle as we will see in the next section. At small impact parameter, the
nuclear interaction is significant and its antiscreening effect counterbalances the Coulomb
screening. We also compare with the eikonal model of the nuclear interaction, shown as the

solid line.

VI. THE BARKAS EFFECT

The dynamic polarization from the Coulomb field is well-known in atomic stopping the-
ory. It was first recognized by Barkas et al. [24] in measurements of the range of 7+ and 7~
Although the pions were produced in emulsion under identical conditions (with the same
kinetic energy), it was found the range was larger for 7~ than for 7+. The effect is therefore
referred to as the Barkas effect ~ or the Z3-effect — for reasons that are discussed below.
The Barkas effect was later confirmed in stopping power measurements, as for example, of
protons and anti-protons [25], with anti-protons having the smaller stopping power. In the
Coulomb dissociation of a proton-halo nucleus, the dynamic polarization effect is expected
to lead to a reduction of the dissociation probabilities compared to first-order perturbation
theory. This expectation is based on the analogy with the reduced stopping powers of 7~
and anti-protons, where the Coulomb forces on the electrons in a solid are repulsive, just as
they are in the case of the Coulomb dissociation of a proton-halo nucleus.

However, at a quantitative level the effect is far from trivial to understand. It may be
analyzed in second-order perturbation theory [26], expanding the amplitude for a dipole
transition as

ag: = aff} + agl),Ez +.... (9)

(

Here aEII) is the first-order amplitude, and the second-order amplitude consists of a dipole fol-
lowed by a quadrupole transition, and vice versa. The resulting dipole excitation probability

is



Pg =~ |aJ]P +2 Re[agl)' agl)'m} + . (10)

The second term is of order Z2 in the charge Ze of the penetrating particle, and it has
been used to account for the atomic Barkas effect [25,27,28], or Z3-effect. In the Coulomb
dissociation of ’F one should also consider the effect on quadrupole transitions. The second-
order transitions would then consist of two successive dipole transitions, or two successive
quadrupole transitions. Note that the Z3 correction would vanish if the external quadrupole
field is neglected.

Naively, inside the adiabatic cutoff distance the dipole and quadrupole amplitudes depend

on target charge, beam velocity and impact parameter as

Zz
el by

and

VA
agy ~ .
v

Then the second-order probability from eq. (6.2) varies as

73

b3’ (11)
However, there are two terms in the second-order amplitude corresponding to the two time
orderings of the E1 and E2, and these tend to cancel. In fact, in the absence of any binding
potential, the excitation is by the recoil in elastic Coulomb scattering, for which the 23
and higher order terms cancel exactly. When the calculation is carried for the harmonic

oscillator model, there is found to be a partial cancelation, giving a net dependence as

ZS

falling off much more rapidly with beam velocity than eq. (6.3).
When we analyze the diffractive dissociation of the proton halo, we find 2 dependence
on beam energy that is intermediate between eq. (6.3) and (6.4). In order to separate the

Barkas Z2 effect from other approximations, we repeated the dynamical calculation with the
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opposite sign of the Coulomb form factors. The resulting Coulomb dissociation probability

is denoted by Péf))(b). Let us write the probability for the two signs as
P8y = PR») A [t=8], (13)

where Pég(b) is the first-order probability for distant collisions, A is a Z-even correction

factor given by

P + PG

and
_ Peb - PG (15)

& + P&
is the Barkas factor. We found that that 4 is close to one except at the lowest beam energy
and smallest impact parameters. In contrast, B is significant at all beam energies and impact
parameters. The correction factor B corresponding to the PLE) for a 28py, target is shown
in Fig. 2,

Here we will propose an empirical parameterization of the Barkas factor B based on the
above numerical findings. We have also calculated the B factor for a %8Ni target, verifying
that the target charge-dependence is well fit by Z®. However, the beam-energy dependence
is weaker than the Eb:if,f power given by Eq. (6.4). In fact, it is closer to a simple inverse
dependence, as we found earlier for the dynamic effects on the nuclear breakup [18].

The impact parameter dependence of the B factor is quite mild. We can parameterize

it by the functional form (b? + a2)~1/2, where a is an adjustable cutoff distance. We thus

adopt the parameterization

ZTe2 1
(16)
Ebea.m \/bsz -+ aza

where bgs; is the minimum projectile-target distance of a Coulomb trajectory. We found a

B(b, Eyearn) = C

fair fit to all the conditions except the 10 MeV/nucleon collisions with a parameterization

C= -1.68, and a = 20 fm in Eq. (6.8). This indicates that other higher-order processes
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become important at 10 MeV/u, consistent with the fact that the Z-even factor A also
becomes larger than one at this energy.

We thus have come to a good qualitative understanding of the Barkas effect in the
Coulomb dissociation of proton-halo nuclei. It is the most dominant higher-order process at
higher beam energies, large impact parameters, and for low-Z targets. At low beam energies
and for high-Z targets, other higher order processes become important. This is evidenced

by the fact that the simple Zp-scaling of the Barkas factor (6.8) breaks down and also that

the Z-even factor A becomes larger than one.
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Fig. 1. Diffractive breakup probability for 'F scattering on a 2®Pb target at 10 MeV /nuclecn.

Dashed line is the first-order Coulomb theory, and solid line is the nuclear eikonal theory. The
full dynamic calculation is shown by the squares.
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