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OOQP User Guide

by

E� Michael Gertz and Stephen J� Wright

Abstract

OOQP is an object�oriented software package for solving convex
quadratic programming problems �QP�� We describe the design of
OOQP� and document how to use OOQP in its default con�guration�
We further describe OOQP as a development framework� and outline
how to develop custom solvers that solve QPs with exploitable struc�
ture or use specialized linear algebra�






� Introduction

OOQP is a package for solving convex quadratic programming problems
�QPs�� These are optimization problems in which the objective function is
a convex quadratic function and the constraints are linear functions of a
vector of real variables� They have the following general form�

min
x

�

�
xTQx� cTx s�t� Ax � b� Cx � d� �
�

where Q is a symmetric positive semide�nite n � n matrix�� x � IR
n is a

vector of variables� A and C are matrices of dimensions ma�n and mc�n�
respectively� and c� b� and d are vectors of appropriate dimensions�

Many QPs that arise in practice are highly structured� That is� the ma	
trices that de�ne them have properties that can be exploited in designing
e�cient solution techniques� For example� they may be general sparse ma	
trices� diagonal� banded� or block	banded matrices� or low	rank matrices�
A simple and common instance of structure occurs in applications in which
the inequality constraints include simple upper or lower bounds on some
components of x� the rows of C de�ning these bounds each contain a single
nonzero element� A more extreme example of exploitable structure occurs
in the QPs that arise in support vector machines� In one formulation of this
problem� Q is dense but is a low	rank perturbation of a positive diagonal
matrix�

In addition to the wide variations in problem structure� there is wide
divergence in the ways in which the problem data and variables for a QP
can be stored on a computer� Part of this variation may be due to the
structure of the particular QP� it makes sense to store the problem data and
variables in a way that is natural to the application context in which the
QP arises� rather than shoehorning it into a form that is convenient for the
QP software� Variations in storage schemes arise also because of di�erent
storage conventions for sparse matrices� because of the ways that matrices
and vectors are represented on di�erent parallel platforms� and because large
data sets may necessitate specialized out	of	core storage schemes�

Algorithms for QP� as in many other areas of optimization� depend crit	
ically on linear algebra operations of various types� matrix factorizations�
updates� vector inner products and �saxpy� operations� Sophisticated soft	
ware packages may be used to implement the required linear algebra oper	
ation in a manner that is appropriate both to the problem structure and to
the underlying hardware platform�

One might expect this wide variation in structure and representation of
QPs to give rise to a plethora of algorithms� each appropriate to a speci�c






situation� Such is not the case� Algorithms such as gradient projection�
active set� and interior point all appear to function well in a wide variety of
circumstances� Interior	point methods in particular appear to be compet	
itive in terms of e�ciency on almost all problem types� provided they are
coded in a way that exploits the problem structure�

In OOQP� object�oriented programming techniques are used to implement
a primal	dual interior	point algorithm in terms of abstract operations on ab	
stract objects� Then� at a lower level of the code� the abstract operations
are specialized to particular problem formulations and data representations�
By reusing the top	level code across the whole space of applications� while
exploiting structure and hardware capabilities at the lower level to produce
tuned� concrete implementations of the abstract operations� users can pro	
duce e�cient� specialized QP solvers with a minimum of e�ort�

This distribution of OOQP contains code to fully implement a solver
for a number of standard OOQP formulations� including a version of the
formulation �
� that assumes Q� A� and C to be general sparse matrices�
The code in the distribution also provides a framework and examples for
users who wish to implement solvers that are tailored to speci�c structured
QPs and speci�c computational environments�

��� Di�erent Views of OOQP

In this section� we describe di�erent ways in which OOQP may be used�

Shrink	Wrapped Solution
 The OOQP distribution can be used as an
o�	the	shelf� shrink	wrapped solver for QPs of certain types� Users can sim	
ply install it and execute it on their own problem data� without paying
any attention to the structure of the code or the algorithms behind it� In
particular� there is an implementation for solving general QPs �of the form
�
� given in Section 
� in which the data matrices are sparse without any
assumed structure� �The linear algebra calculations in the distributed ver	
sion are performed with the codes MA
� ���� but we have also implemented
versions that use MA�� �
��� Oblio ���� and SuperLU ����� The distribution
also contains an implementation for computing a support vector machine
to solve a classi�cation problem� an implementation for solving the Huber
regression problem� and an implementation for solving a quadratic program
with simple bounds on a distributed platform� using PETSc ���� These
implementations each may be called via a command	line executable� using
ascii input �les for de�ning the data in a manner appropriate to the prob	
lem� Some of the implementations can also be called via the optimization
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modeling language AMPL or via MATLAB�
See the README �le in the distribution for further details on the special	

ized implementations included in the distribution�

Embeddable Solver
 Some users may wish to embed OOQP code into
their own applications� calling the QP solver as a subroutine� This mode
of use is familiar to users of traditional optimization software packages and
numerical software libraries such as NAG or IMSL� The OOQP distribution
supplies C and C�� interfaces that allow the users to �ll out the data
arrays for the formulation �
� themselves� then call the OOQP solver as a
subroutine�

Development Framework
 Some users may wish to take advantage of
the development framework provided by OOQP to develop QP solvers that
exploit the structure of speci�c problems� OOQP is an extensible C��
framework� and by de�ning their own specialized versions of the storage
schemes and the abstract operations used by the interior	point algorithm�
users may customize the package to work e�ciently on their own applica	
tions�

Users may also modify one of the default implementations in the distri	
bution by replacing the matrix and vector representations and the imple	
mentations of the abstract operations by their own variants� For example� a
user may wish to replace the code for factoring symmetric inde�nite matri	
ces �a key operation in the interior	point algorithms� with some alternative
sparse factorization code� Such replacements can be performed with relative
ease by using the default implementation as an exemplar�

Research Tool
 Researchers in interior point	methods for convex quadratic
programming problems may wish to modify the algorithms and heuristics
used in OOQP� They can do so by modifying the top	level code� which is
quite short and easy to understand� Because of the abstraction and layering
design features of OOQP� they will then be able to see the e�ect of their
modi�cations on the whole gamut of QP problem structures supported by
the code�

��� Obtaining OOQP

The OOQP Web page www�cs�wisc�edu��swright�ooqp� has instructions
on downloading the distribution� OOQP is also distributed by the Optimiza	
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tion Technology Center �OTC�� See the page www�ece�nwu�edu�OTC�software�
for information on obtaining OOQP and other OTC software�

Unpacking the distribution will create a single directory called OOQP�X�XX�
where X�XX is the revision number� For simplicity� we will refer to this direc	
tory simply as OOQP throughout this document� The OOQP directory contains
numerous �les and subdirectories� which are discussed in detail in this man	
ual� Whenever we refer to a particular directory in the text� we mean it
to be taken as a subdirectory of OOQP� For example� when we discuss the
directory src�QpGen� we mean OOQP�src�QpGen�

��� How to Read This Manual

This manual gives an overview of OOQP�its structure� the algorithm on
which it is based� the ways in which the solvers can be invoked� and its
utility as a development framework�

Section 
 is intended for those who wish to use the solver for general
sparse quadratic programs �formulation �
�� that is provided with the OOQP
distribution� It shows how to de�ne the problem and invoke the solver in
various contexts� Section � gives an overview of the OOQP development
framework� explaining the basics of the layered design and details of the
directory structure and make�le	based build process� Section � provides ad	
ditional details on the top layer of OOQP�the QP solver layer�for the ben	
e�t of those who wish to experiment with variations on the two primal	dual
interior	point algorithms supplied with the OOQP distribution� Section �
describes the operations that must be de�ned and implemented in order
to create a solver for a new problem formulation� Section � is a practical
tutorial on OOQP�s linear algebra layer� It describes the classes for vec	
tors and sparse and dense matrices for the bene�t of users who wish to use
these classes in creating solvers for their own problem formulations� Finally�
Section � is intended for advanced users who wish to specialize the linear
algebra operations of OOQP by adding new linear solvers or using di�erent
matrix and vector representations�

Users who simply wish to use OOQP as a shrink	wrapped solver for
quadratic programs formulated as general sparse problems �
� need read
only Section 
� Those interested in learning a little more about the design of
OOQP should read Sections ��
 and ��
� while those who wish to understand
the design and motivation more fully should read Sections ��
� �� �� and ��
in that order� Users who wish to implement a solver for their own QP
formulation should read Sections �� ��
� �� and � and then review Section �
with code in hand� Those who wish to install new linear solvers should read
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Sections 
� �� �� and then focus on Section ��

��� Other Resources

OOQP is distributed with additional documentation� In the top	level OOQP
directory� the �le README describes the contents of the distribution� This
�le includes the location of an html page that serves as an index of available
documentation and may be viewed through a browser such as Netscape�
This documentation includes the following items�

Online Reference Manual
 We have extensively documented the source
code � using the tool doxygen to create a set of html pages that serve as
a comprehensive reference manual to the OOQP development frame	
work� Details of the class hierarchy� the purposes of the individual
data structures and methods within each class� and the meanings of
various parameters are explained in these pages�

A Descriptive Paper
 The archival paper �

� by the authors of OOQP
contains further discussion of the motivation for OOQP� the structure
of the code� and the way in which the classes are reimplemented for
various specialized applications�

Manuals for Other Problem Formulations
 Specialized QP formulations
such as Svm� Huber� and QpBound have their own documentation�
The documents describe the problems solved and how the solvers may
be invoked�

OOQP Installation Guide
 This document describes how to build and
install OOQP�

Distribution Documents
 These include �les such as README that de	
scribe the contents of various parts of the distribution�

We also supply a number of sample problems and example programs in
the examples� subdirectory� A README �le in this subdirectory explains
its contents�

�



� Using the Default QP Formulation

The �general� quadratic programming formulation recognized by OOQP is
as follows�

min �
�
xTQx� cTx subject to �
�

Ax � b� d � Cx � f� l � x � u�

where Q is an n� n positive semide�nite matrix� A is an ma� n matrix� C
is an mc�n matrix� and all other quantities are vectors of appropriate size�
Some of the elements of l� u� d� and f may be in�nite in magnitude� that is�
some components of Cx and x may not have upper and lower bounds�

The subdirectory src�QpGen in the OOQP distribution� together with
the linear algebra subdirectories� contains code for solving problems formu	
lated as �
�� where Q� A� and C are general sparse matrices� In this section�
we describe the di�erent methods that can be used to de�ne the problem
data and� accordingly� di�erent ways in which the solver can be invoked� We
start with a command	line interface that can be used when the problem is
de�ned via a text �le �Section 
�
�� We then describe several other inter	
faces� calling OOQP as a function from a C program �Section 
�
�� calling
it from a C�� program �Section 
���� invoking OOQP as a solver from an
AMPL process �Section 
���� and invoking OOQP as a subroutine from a
MATLAB program �Section 
����

��� Command�Line Interface

When the problem is de�ned in quadratic MPS ��QPS�� format in an ascii
�le� the method of choice for solving the problem is to use an executable �le
that applies Mehrotra�s predictor	corrector algorithm �
�� with Gondzio�s
multiple corrections �
��� �The Installation Guide that is supplied with the
OOQP distribution describes how to create this executable �le� which is
named qpgen�sparse�gondzio�exe�� We also provide
qpgen�sparse�mehrotra�exe� an implementation of Mehrotra�s algorithm
that does not use Gondzio�s corrections� These executables take their inputs
from a text �le in QPS format that describes the problem�

The QPS format proposed by Maros and M�esz�aros �
�� is a modi�cation
of the standard and widely used MPS format for linear programming� The
format is somewhat awkward and limited in the precision to which it can
specify numerical data� We support it� however� because it is used by a
number of QP solvers and is well known to users of optimization software�
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A description of the MPS format� extracted from Murtagh �
��� can be
found at the NEOS Guide at

www�mcs�anl�gov�otc�Guide�

�search for �MPS��� The QPS format extends MPS by introducing a new
section of the input �le named QUADOBJ� which de�nes the matrix Q of the
quadratic objective speci�ed in the formulation �
�� This section� if present�
must appear after all other sections in the input �le� The format of this
section is the same as the format of the COLUMNS section except that only
the lower triangle of Q is stored� As in the COLUMNS section� the nonzeros
are speci�ed in column major order�

NAME Example

ROWS

N obj

G r�

L r�

COLUMNS

x� r� ��� r� ����

x� obj ���

x� r� ��� r� ���

x� obj ����

RHS

rhs� obj �	��

rhs� r� ��� r� 
��

BOUNDS

UP bnd� x� ����

QUADOBJ

x� x� ���

x� x� ���

x� x� ����

ENDATA

Figure 
� A sample QPS �le

Figure 
 shows a sample QPS �le� taken from Maros and M�esz�aros �
���
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This �le describes the following problem�

mimimize � � 
��x� � 
x� �
�
�
��x�� � �x�x� � 
�x���

subject to 
 � 
x� � x� � �
�� � �x� � 
x� � �

� � x� � 
�
� � x� � ��

���

If the �le �
� is named Example�qps and is stored in the subdirectory data�
and if the executable qpgen�sparse�gondzio�exe appears in the OOQP di	
rectory� then typing

qpgen�sparse�gondzio�exe ��data�Example�qps

will solve the problem and create the output �le OOQP�data�Example�out�

Solution for �Example �

Rows
 �� Columns
 �

PRIMAL VARIABLES

Name Value Lower Bound Upper Bound Multiplier

� x� ��
�������e��� �������e��� �������e��� 
�����

		e���

� x� 	���������e��� �������e��� ����
	��		e���

CONSTRAINTS

Inequality Constraints
 �

Name Value Lower Bound Upper Bound Multiplier

� r� ����������e��� �������e��� 	���������e���

� r� ����������e��� 
������e��� �������
��
e��


Objective value
 �������

Figure 
� Sample output from qpgen�sparse�gondzio�exe
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Figure 
 shows the contents of Example�out� The PRIMAL VARIABLES

are the components of the vector x in the formulation �
�� The output shows
that the optimal values are x� � ����
� and x� � ������ The bounds on
each component of x� if any were speci�ed� are also displayed� If neither
bound is active� the reported value of the Lagrange multiplier in the �nal
column should be close to zero� Otherwise� it may take a positive value
when the lower bound is active or a negative value when the upper bound
is active�

The CONSTRAINTS section shows the values of the vectors Ax and Cx at
the computed solution x� compares these values with their upper and lower
bounds in the case of Cx� and displays Lagrange multiplier information in
the �nal column� in a similar way to the PRIMAL VARIABLES section�

Note that the problem described in �
� contains no equality constraints
�that is� A is null�� so there is no Equality Constraints subsection in the
CONSTRAINTS section of this particular output �le�

��� Calling from a C Program

OOQP supplies an interface to the default solver for �
� that may be called
from a C program� This operation is performed by the function qpsolvesp�
which has the following prototype�

void

qpsolvesp� double c��� int nx�

int irowQ��� int nnzQ� int jcolQ��� double dQ���

double xlow��� char ixlow���

double xupp��� char ixupp���

int irowA��� int nnzA� int jcolA��� double dA���

double bA��� int my�

int irowC��� int nnzC� int jcolC��� double dC���

double clow��� int mz� char iclow���

double cupp��� char icupp���

double x��� double gamma��� double phi���

double y���

double z��� double lambda��� double pi���

int print�level� int � ierr ��

This function uses an old	fashioned calling convention in which each argu	
ment is a native type �for example� an int or an array of double�� While
calling such a function can be tedious because of the sheer number of argu	
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ments� it is straightforward in that the relationship of each argument to the
formulation �
� is fairly easy to understand�

Sparse matrices are represented by three data structures�two integer
vectors and one vector of doubles� all of the same length� For the �general�
matrix A� these data structures are irowA� jcolA and dA� The total number
of nonzeros in the sparse matrix A is nnzA� The k nonzero element of A

occurs at row irowA�k� and column jcolA�k� and has value dA�k�� Rows
and columns are numbered starting at zero�

For the symmetric matrix Q� only the elements of the lower triangle of
the matrix are speci�ed in irowQ� jcolQ� and dQ�

The elements of each matrix must be sorted into row	major order before
qpsolvesp is called� While this requirement places an additional burden on
the user� it reduces the memory requirements of the qpsolvesp procedure
signi�cantly� OOQP provides a routine doubleLexSort that the user may
call to sort the matrix elements in the correct order� To sort the elements
of the matrix A� this routine can be invoked as follows�

doubleLexSort� irowA� nnzA� jcolA� dA �

We now show the correspondence between the input variables to qpsolvesp
�which are not changed by the routine� and the formulation �
��

c is the linear term in the objective function� a vector of length nx�

nx is the number of primal variables� that is� the length of the vector
x in �
�� It is the length of the input vectors c� xlow� ixlow� xupp�
ixupp� x� gamma� and phi�

irowQ� jcolQ� dQ hold the nnzQ lower triangular elements of the quadratic
term of the objective function�

xlow� ixlow are the lower bounds on x� These contain the information in
the lower bounding vector l in �
�� If there is a bound on element
k of x �that is� lk � ���� then xlow�k� should be set to the value
of lk and ixlow�k� should be set to one� Otherwise� element k of
both arrays should be set to zero�

xupp� ixupp are the upper bounds on x� that is� the information in the
vector u in �
�� These should be de�ned in a similar fashion to
xlow and ixlow�

irowA� jcolA� dA are the nnzA nonzero elements of the matrix A of linear
equality constraints�







bA contains the right	hand	side vector b for the equality constraints in
�
�� The integer parameter my de�nes the length of this vector�

clow� iclow are the lower bounds of the inequality constraints�

cupp� icupp are the upper bounds of the inequality constraints�

print level controls the amount of output the solver prints to the termi	
nal� Larger values of print level cause more information to be
printed� The following values of print level are recognized�

� operate silently�

� 
� print information about each interior point iteration�

� 
�� print information from the linear solvers�

The remaining parameters are output parameters that hold the solution
to the QP� The variable x hold the value of interest to most users� that is� the
solution vector x in �
�� The parameter ierr indicates whether the solver
was successful� The solver will return a nonzero value in ierr if it was unable
to solve the problem� Negative values indicate that some error� such as an
out of memory error� was encountered� For a description of the termination
criteria of OOQP� and the positive values that might be returned in ierr�
see Section ����

The remaining output variables are vectors of Lagrange multipliers� the
array y contains the Lagrange multipliers for the equality constraints Ax �
b� while lambda and pi contain multipliers for the inequality constraints
Cx � d and Cx � f � respectively� The output variable z should satisfy

z � �� ��

The multipliers for the lower and upper bounds x � l and x � u� are
contained in gamma and phi� respectively� Among other requirements �see
our discussion of optimality conditions in the next section�� these vectors
should satisfy the following relationship on output�

c�Qx�ATy � CTz � � � � � ��

Because it is somewhat cumbersome to allocate storage for all the pa	
rameters of qpsolvesp individually� OOQP provides the following routine
to perform all necessary allocations�

void

newQpGenSparse� double �� c� int nx�







int �� irowQ� int nnzQ� int �� jcolQ� double �� dQ�

double �� xlow� char �� ixlow�

double �� xupp� char �� ixupp�

int �� irowA� int nnzA� int �� jcolA� double �� dA�

double �� b� int my�

int �� irowC� int nnzC� int �� jcolC� double �� dC�

double �� clow� int mz� char �� iclow�

double �� cupp� char �� icupp�

int � ierr ��

The following routine frees all this allocated storage�

void

freeQpGenSparse� double �� c�

int �� irowQ� int �� jcolQ� double �� dQ�

double �� xlow� char �� ixlow�

double �� xupp� char �� ixupp�

int �� irowA� int �� jcolA� double �� dA�

double �� b�

int �� irowC� int �� jcolC� double �� dC�

double �� clow� char �� iclow�

double �� cupp� char �� icupp ��

If newQpGenSparse succeeds� it returns ierr with a value of zero� Otherwise�
it sets ierr to a nonzero value and frees any memory that it may have
allocated to that point� We emphasize that users are not required to use
these two routines� users can allocate arrays as they choose�

The distribution also contains a variant of qpsolvesp that accepts sparse
matrices stored in the slightly more compact Harwell	Boeing sparse format
�see Du�� Erisman� and Reid ����� rather than the default sparse format
described above� In the Harwell	Boeing format� the nonzeros are stored in
row	major form� with jcolA�l� and dA�l� containing the column index and
value of the l nonzero element� respectively� The integer vector krowA�k�

indicates the index in jcolA and dA at which the �rst nonzero element for
row k is stored� its �nal element krowA�my��� points to the index in jcolA

and dA immediately after the last nonzero entry� See ��� and Section ���
below for further details� The Harwell	Boeing version of qpsolvesp has the
following prototype�

void

qpsolvehb� double c��� int nx�
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int krowQ��� int jcolQ��� double dQ���

double xlow��� char ixlow���

double xupp��� char ixupp���

int krowA��� int my� int jcolA��� double dA���

double bA���

int krowC��� int mz� int jcolC��� double dC���

double clow��� char iclow���

double cupp��� char icupp���

double x��� double gamma��� double phi���

double y���

double z��� double lambda��� double pi���

int print�level� int � ierr ��

The meaning of the parameters other than those that store the sparse ma	
trices is identical to the case of qpsolvesp�

The prototypes of the preceding routines are located in the header �le
cQpGenSparse�h� Most users will need to include the line

�include �cQpGenSparse�h�

in their program� This header �le is safe to include not only in a C program
but also in a C�� program� Users who need more control over the solver
than these functions provide should develop a C�� interface to the solver�

We refer users to the Installation Guide in the distribution for further
information on building the executable using the OOQP header �les and
libraries�

��� Calling from a C�� Program

When calling OOQP from a C�� code� the user must create several objects
and call several methods in sequence� The process is more complicated than
simply calling a C function� but also more �exible� By varying the classes of
the objects created� one can generate customized solvers for QPs of various
types� In this section� we focus on the default solver for the formulation �
��
The full sequence of calls for this case is shown in Figure �� In the remainder
of this section� we explain each call in this sequence in turn�

The �rst method call in this sequence initializes a new problem formula	
tion qp of class QpGenSparseMa��� which is a subclass of ProblemFormulation�
The de�nition of this class determines how the problem data will be stored�
how the problem variables will be stored and manipulated� and how lin	
ear systems will be solved� Our subclass QpGenSparseMa�� implements the
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QpGenSparseMa�� � qp

� new QpGenSparseMa��� nx� my� mz� nnzQ� nnzA� nnzC ��

QpGenData � prob

� �QpGenData � � qp��makeData� �� parameters here ����

QpGenVars � vars

� �QpGenVars �� qp��makeVariables� prob ��

QpGenResiduals � resid

� �QpGenResiduals �� qp��makeResiduals� prob ��

GondzioSolver � s � new GondzioSolver� qp� prob ��

s��monitorSelf���

int status � s��solve�prob�vars� resid��

Figure �� The basic sequence for calling OOQP

problem formulation �
�� where the sparse matrices de�ning the problem
are stored in sparse �not dense� matrices and that large linear systems that
de�ne steps of the interior	point method will be solved by using the MA��

package from the Harwell Subroutine Library�
In the next method call in Figure �� the makeData method in the object

qp created in the �rst call creates the vectors and matrices that contain
the problem data� In fact� qp contains di�erent versions of the makeData

method� which may be distinguished by their di�erent parameter lists� Users
whose matrix data is in row	major Harwell	Boeing sparse format may use
the following form of this call�

QpGenData � prob

� �QpGenData � � qp��makeData� c� krowQ� jcolQ� dQ�

xlow� ixlow� xupp� ixupp�

krowA� jcolA� dA� bA�

krowC� jcolC� dC�

clow� iclow� cupp� icupp��

�The meaning of the parameters is explained in Section 
�
 above�� In this
method� data structure references in prob are set to the actual arrays given
in the parameter list� This choice avoids copying of the data� but it requires
that these arrays not be deleted until after deletion of the object prob�
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For users whose data is in sparse triple format� a special version of
makeData named copyDataFromSparseTriple may be called as follows�

QpGenData � prob

� �QpGenData � � qp��copyDataFromSparseTriple�

c� irowQ� nnzQ� jcolQ� dQ�

xlow� ixlow� xupp� ixupp�

irowA� nnzA� jcolA� dA� bA�

irowC� nnzC� jcolC�

clow� iclow� cupp� icupp ��

�The meaning of the parameters is explained in Section 
�
�� In this method�
since the data objects in the argument list are actually copied into prob�
they may be deleted immediately after the method returns�

There distribution includes several other version of makeData that will
not be described here� In general� the preference is to �x references in prob

to point to existing arrays of data� rather than copying the data into prob�
The calls to makeVariables and makeResiduals in Figure � create the

objects that store the problem variables and the residuals that measure the
infeasibility of a given point with respect to the various optimality condi	
tions� The object vars contains both primal variables for �
� �including
x� and dual variables �Lagrange multipliers�� These variables are named
vars��x� vars��y� and so on� following the naming conventions described
in Section 
�
� The data and methods in the residuals class resids are
typically of interest only to optimization experts� When an approximate so	
lution to the problem �
� is found� all data elements in this object will have
small values� indicating that the point in question approximately satis�es
all optimality conditions�

The next step is to create the solver object for actually solving the QP�
This is performed by means of the following call�

GondzioSolver � s � new GondzioSolver� qp� prob ��

In our example� we then invoke the method s��monitorSelf�� to tell the
solver that it should print summary information to the screen as the solver
is operating� �If this line is omitted� the solver will operate quietly��

Finally� we invoke the algorithm to solve the problem by means of the
call s��solve�prob�vars� resid�� The return value from this routine will
be zero if the solver was able to compute an approximate solution� which
will be found in the object vars� The solver will return a nonzero value
if it was unable to solve the problem� Negative values indicate that some
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error� such as an out of memory error� was encountered� For a description
of the termination criteria of OOQP� and the positive values that might be
returned in ierr� see Section ����

One must include certain header �les to obtain the proper de�nitions of
the classes used� In general� a class de�nition is in a header �le with the
same name as the class� appended with a ��h�� For the example in Figure ��
the following lines serve to include all relevant header �les�

�include �QpGenData�h�

�include �QpGenVars�h�

�include �QpGenResiduals�h�

�include �GondzioSolver�h�

�include �QpGenSparseMa���h�

The OOQP Installation Guide explains how to build an executable using
the OOQP header �les and libraries�

��� Use in AMPL

OOQP may be invoked within AMPL� a modeling language for specifying
optimization problems� From within AMPL� one must �rst de�ne the model
and input the data� If the model happens to be a QP� then an option

solver command within the AMPL code can be used to ensure the use of
OOQP as the solver�

An AMPL model �le that may be used to describe a problem of the form
�
� without equalities Ax � b is as follows�

set I� set J�

set QJJ within �J�J�� set CIJ within �I�J��

param objadd� param g�J�� param Q�QJJ��

param clow�I�� param C�CIJ�� param cupp�I��

param xlow�J�� param xupp�J��

var x�j in J� �� xlow�j�  � xupp�j��

minimize total�cost
 objadd � sum�j in J� g�j� � x�j�

� ��� � sum��j�k� in QJJ� Q�j�k� � x�j� � x�k��

subject to ineq�i in I� 


clow�i�  � sum��i�j� in CIJ � C�i�j� � x�j�  � cupp�i� �
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The data for the QP is normally given in a separate AMPL data �le� which
for the problem ��� is as follows�

param objadd 
� 	 �

param
 J 
 g 
� col� ��� col� �� �

param
 QJJ 
 Q 
�

col� col� � col� col� �

col� col� � col� col� �� �

param xlow 
� col� � col� � �

param xupp 
� col� �� col� Infinity �

param
 I 
 clow 
� row� � row� �Infinity �

param cupp 
� row� Infinity row� 
 �

param
 CIJ 
 C 
�

row� col� � row� col� �

row� col� �� row� col� � �

Suppose the model �le was named example�mod and the data �le was named
example�dat� From within the AMPL environment� one would type the
following lines to solve the problem and view the solution�

model example�mod�

data example�dat�

option solver ooqp�ampl�

solve�

display x�

The following lines containing the optimal value of x would then be dis	
played�

x ��� 
�

col� ���
��

col� ��	��

�

��	 Use in MATLAB

OOQP may be invoked from within the MATLAB environment� Instructions
on how to obtain the necessary software may be found in the README�Matlab


�



in the OOQP directory�
The prototype for the MATLAB function is as follows�

�x� gamma� phi� y� z� lambda� pi� � ���

ooqp� c� Q� xlow� xupp� A� dA� C� clow� cupp� doPrint �

This function will solve the general QP formulation �
�� re	expressed here
in MATLAB notation�

minimize
 c� � x � ��� � x� � Q � x

subject to
 A � x � dA

clow  � C � x  � cupp

xlow  � x  � xupp

This is the exactly the default QP formulation �
�� The vectors and matrix
objects in the argument list should be MATLAB matrices of appropriate
size� Upper or lower bounds that are absent should be set to inf or �inf�
respectively� �It is important to use these in�nite values rather than large
but �nite values��

The �nal parameter in the argument list� doPrint� is optional� If present�
it should be set to one of the strings �yes�� �on�� �no�� or �o��� If the value is
�yes� or �on�� then progress information will be printed while the algorithm
solves the problem� If doPrint is absent� the default value �o�� will be
assumed�

Help is also available within MATLAB� After you have followed the
instruction in README�Matlab and installed the MATLAB interface in the
local directory or on the MATLAB path� help can by obtained by typing
help ooqp at the MATLAB prompt�
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� Overview of the OOQP Development Frame�

work

In this section� we start by describing the layered design of OOQP� which
is the fundamental organizing principle for the classes that make it up�
We then discuss the directory structure of the OOQP distribution� and the
make�le	based build process that is used to construct executables�

��� The Three Layers of OOQP

OOQP has a layered design in which each layer is built from abstract oper	
ations de�ned by the layer below it� We sketch these layers and their chief
components in turn�

QP Solver Layer
 The top layer of OOQP contains the high	level algo	
rithms and heuristics for solving quadratic programming problems� OOQP
implements primal	dual interior	point algorithms� that are motivated by the
optimality �Karush	Kuhn	Tucker� conditions for a QP� We write these con	
ditions for the formulation �
� by introducing Lagrange multiplier vectors y
and z �for the equality and inequality constraints� respectively� and a slack
vector s to yield the following system�

c� Qx�AT y � CT z � �� ��a�

Ax� b � �� ��b�

Cx� s � d � �� ��c�

SZe � �� ��d�

s� z � �� ��e�

where S and Z are diagonal matrices whose diagonal elements are the com	
ponents of the vectors s and z� respectively� A primal	dual interior	point
algorithm �nds a solution to �
� by applying Newton	like methods to the
nonlinear system of equations formed by ��a�� ��b�� ��c�� and ��d�� con	
straining all iterates �xk� yk� zk� sk�� k � �� 
� 
� � � � to satisfy the bounds ��e�
strictly �that is� all components of zk and sk are strictly positive for all k��

OOQP implements the primal	dual interior point algorithm of Mehro	
tra �
�� for linear programming� and the variant proposed by Gondzio �
��
that includes higher	order corrections� See Section ��
 below� and the text
of Wright �
�� for further description of these methods�
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Problem Formulation Layer
 Algorithms in the QP solver layer are
built entirely from abstract operations de�ned in the problem formulation
layer� This layer consists of several classes each of which represents an object
of interest to a primal	dual interior	point algorithm� The major classes are
as follows�

Data Stores the data �Q�A�C� c� b� d� de�ning the QP �
�� in an economical
format suited to the speci�c structure of the data and the operations
needed to perform on it�

Variables Contains storage for the primal and dual variables �x� y� z� s� of
the problem� in a format suited to the speci�c structure of the prob	
lem� Also implements various methods associated with the variables�
including the computation of a maximum steplength� saxpy opera	
tions� and calculation of � � �sTz�	mC �

Residuals Contains storage for the residuals�the vectors that indicate in	
feasibility with respect to the KKT conditions�along with methods
to calculate these residuals from formulae such as ��a �d�� This class
also contains methods for performing the projection operations needed
by the Gondzio approach� calculating residual norms� and calculating
the current duality gap �see Section ��
�� for a discussion of the duality
gap��

LinearSystem Contain methods to factor the coe�cient matrix used in
the Newton	like iterations of the QP solver and methods that use the
information from the factorization to solve the linear systems for dif	
ferent right	hand sides� The systems that must be solved are described
in Section ��
�

To be concrete in our discussion� we have referred to the QP formula	
tion �
� given in the introduction� but the problem formulation layer pro	
vides abstract operations suitable to many di�erent problem formats� For
instance� the quadratic program that arises from classical support vector
machine problems is

min kwk� � 
eTu� subject to D�Vw � �e� � e� u� v � �� ���

where V is a matrix of empirical observations� D is a diagonal matrix whose
entries are �
� 
 is a positive scalar constant� and e is a constant vector
of all ones� In OOQP�s implementation of the solver for this problem� we
avoid expressing the problem in the form �
� by forming the matrices Q and







C explicitly� Rather� the problem formulation layer provides methods to
perform operations involving Q� C� and the other data objects that de�ne
the problem� The QP solver layer implements a solver by calling these
methods� rather than operating on the data and variables explicitly�

Since a solver for general problems of the form �
� is useful in many
circumstances� OOQP provides a solver for this formulation� as well as for
several specialized formulations such as ���� Users may readily specialize
the abstract operations in this layer and thereby create solvers that are
specialized to yet more problem formulations� Section � gives instructions
on how to develop specialized implementations of this class�

Linear Algebra Layer
 Many of the linear algebra operations and data
structures in OOQP are shared by several problem types� For instance�
regardless of the particular QP formulation� the Variable� Data� and Lin	
earSystems classes will need to perform saxpy� dot product� and norm calcu	
lations on vectors of doubles� Furthermore� most sparse problems will need
to store matrices in a Harwell	Boeing format� Reimplementing the linear
algebra operations in each of the problem	dependent classes would result
in an unacceptable explosion in code size and complexity� The solution we
implemented in OOQP is to de�ne another layer that provides the linear
algebra functionality needed by many di�erent problem formulations� An
added advantage is that by con�ning linear algebra to its own layer� we can
implement solvers for distributed platforms with little change in the code�

The linear algebra classes are somewhat a di�erent from the classes in
the QP solver and problem formulation layers� The two topmost layers of
OOQP consist of small� abstract interfaces with no behavior whatsoever�
We have provided concrete implementations based on these interfaces� but
even our concrete classes tend to contain only a small number of methods�
Hence� these classes are easy to understand and easy to override�

By contrast� implementations of linear algebra classes such as DoubleMatrix
and OoqpVector must supply a relatively large amount of behavior� This
complexity appears to be inevitable� The widely used BLAS library� which
is meant to contain only the most basic linear algebra operations� consists
of forty	nine families of functions and subroutines� As well as de�ning op	
erations� the linear algebra classes also have to handle the storage of their
component elements�

Our approach to the linear algebra classes is to identify and provide as
methods the basic operations that are used repeatedly in our implementa	
tions of the problem formulation layer� As much as possible� we use existing







packages such as BLAS �
��� LAPACK �
� and PETSc �
� �� �� to supply the
behavior needed to implement these methods� Since our goal is simplicity�
we provide only the functionality that we use� We are not striving for a
complete linear algebra package but for a package that may be conveniently
used in the setting of interior point optimization algorithms� For this reason�
many BLAS operations are not provided� and certain operations common
in interior	point algorithms� but rare elsewhere� are given equal status with
BLAS routines�

��� OOQP Directory Structure and Build Process

The OOQP installation process will generate compiled libraries in the direc	
tory lib and a directory named include containing header �les� These li	
braries and headers may be copied into a more permanent system	dependent
location� Users who wish to call OOQP code from within their own C or
C�� programs may use any build process they wish to compile and link
against the installed headers and libraries�

Users who wish to do more complex development with OOQP may �nd it
more convenient to work within the source directory src and use the OOQP
build system to compile their executables� OOQP has a modular directory
structure in which source and header �les that logically belong together are
placed in their own subdirectory of src� For example� code that implements
the solver for the formulation �
� can be found in src�QpGen� while code
that de�nes classes for dense matrices and dense linear equation solvers can
be found in src�DenseLinearAlgebra�

Any system of building executables in a complex project is necessar	
ily complex� This is especially true for object	oriented code� as the most
common methods for building executables are designed for use with proce	
dural �rather than object	oriented� languages� In OOQP� we have designed
a relatively simple process but one that requires some e�ort to learn and
understand� Users who intend to develop a customized solver for a new QP
formulation or to replace the linear algebra subsystem need to understand
something of this process� and this section is aimed primarily at them� Users
who do not have an interest in the details of the build process may safely
skip this section�

OOQP is built by using the GNU version of the standard Unix make util	
ity� GNU make is freely and widely available� yields predictable performance
across a wide variety of platforms� and has a number of useful features ab	
sent in many vendor	provided versions of make� In this section� we assume
that the user has a basic understanding of how to write make�les� which are
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the �les used as input to the make utility�
OOQP uses a configure script� generated by the GNU Autoconf utility�

to set machine	dependent variables within the make�les that appear in var	
ious subdirectories� In the top	level directory� OOQP� configure generates
the global make�le GNUmakefile from an input �le named GNUmakefile�in�
The user who wishes to modify this make�le should alter GNUmakefile�in
and then re	run configure to obtain a new GNUmakefile� rather than al	
tering GNUmakefile directly� �Users will seldom have cause to alter this
make�le or any other �le under the control of Autoconf but should be aware
of the fact that some make�les are generated in this way��

All subdirectories of the src that contain C�� code also contain a �le
named Makefile�inc� We give an example of such a �le from the directory
src�QpExample� which contains an example problem formulation based di	
rectly on �
�� In the src�QpExample directory� the Makefile�inc reads as
follows�

QPEXAMPLEDIR � !�srcdir��QpExample

QPEXAMPLEOBJ � "

!�QPEXAMPLEDIR��QpExampleData�o "

!�QPEXAMPLEDIR��QpExampleVars�o "

!�QPEXAMPLEDIR��QpExampleResids�o "

!�QPEXAMPLEDIR��QpExampleDenseLinsys�o "

!�QPEXAMPLEDIR��QpExampleDense�o

qpexample�dense�gondzio�OBJECTS � "

!�QPEXAMPLEDIR��QpExampleGondzioDriver�o "

!�QPEXAMPLEOBJ� "

!�libooqpgondzio�STATIC� "

!�libooqpdense�STATIC� !�libooqpbase�STATIC�

This �le contains three make�le variable de�nitions� specifying the subdirec	
tory name �QPEXAMPLEDIR�� the list of object �les speci�c to the SVM solver
�QPEXAMPLEOBJ�� and the full list of object �les that must be linked to create
the executable for the solver �qpexample dense gondzio OBJECTS�� Every
module of OOQP contains a similar Makefile�inc �le to de�ne variables rel	
evant to that module� �Another example is the variable libooqpgondzio STATIC�
used in the de�nition of qpexample dense gondzio OBJECTS� which is de	
�ned in src�QpSolvers�Makefile�inc�� Note that the variable srcdir in
this example refers to the OOQP source directory and does not need to be
de�ned in src�QpExample�Makefile�inc�
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Some subdirectories of the src that contain C�� code also contain a �le
named MakefileTargets�inc� This �le de�nes targets relevant to the build
process� An example of such a �le is src�QpExample�MakefileTargets�inc�
which is as follows�

qpexample�dense�gondzio�exe
 !�qpexample�dense�gondzio�OBJECTS�

!�CXX� �o !# !�CXXFLAGS� !�LDFLAGS� !�LIBS� "

!�qpexample�dense�gondzio�OBJECTS� !�BLAS� !�FLIBS�

The qpexample�dense�gondzio�exe target speci�es the dependency of the
executable on the object list that was de�ned in the corresponding Makefile�inc
�le�

In using Makefile�inc and MakefileTargets�inc �les� we separate
target de�nitions from variable de�nitions because unpredictable behavior
can occur if the targets are read before all variables are de�ned�

When a user invokes GNU make from the OOQP directory� the utility
ensures that

� all variables de�ned in �les named Makefile�inc in direct subdirec	
tories of the src directory are made available in the build�

� all targets de�ned in similarly located �les named MakefileTargets�inc
are also made available�

� direct subdirectories of the src directory that contain a �le that is
named Makefile�inc are placed on the path on which to search for
header ��h� �les�

Thus� when the GNU make utility is named gmake� one may build the exe	
cutable qpexample�dense�gondzio�exe by typing

gmake qpexample�dense�gondzio�exe

from the command line from within the OOQP directory�
The make�le system can also be used to perform dependency checking�

Typing

gmake depend

will cause the Unix makedepend utility to generate dependency information
for all source �les in direct subdirectories of the src directory that contain a
�le named Makefile�inc� This dependency information will then be used in
the next build to determine whether source �les are up	to	date with respect
to their included header �les�
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We emphasize that this process works only on direct subdirectories of
the src directory� Files named Makefile�inc in more deeply nested sub	
directories will not� without extra e�ort� be recognized� We deliberately
restricted the search to direct subdirectories of the source directory in order
to make the build process more predictable�

User	de�ned Makefile�inc and MakefileTargets�inc need be no more
complicated than the example �les given above� Some of the instances of
these �les that are included in the OOQP distribution contain more vari	
ables and targets than those shown above because they need to accomplish
additional tasks� Moreover� they may contain conditional statements to dis	
able certain targets� if these targets depend on external packages that are
not present on the computer at the time of the build� These advanced issues
may be ignored by all but developers of OOQP�

Finally� we mention that some external packages� such as PETSc� require
specializations to the global make�le� When building executables that use
these packages� one cannot use the default global make�le GNUmakefile� To
build the executable qpbound�petsc�mehrotra�exe� for instance� one must
type the following line�

gmake �f PetscMakefile qpbound�petsc�mehrotra�exe

We may include other such specialized make�les in the OOQP distribution
in the future� While inclusion of these �les is a minor inconvenience� we
consider it important to isolate changes to the global make�le in this manner�
so that miscon�guration of a certain package is less likely to cause problems
in an unrelated build�
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� Working with the QP Solver

In this section� we focus on the top layer of OOQP� the QP solver�

��� Primal�Dual Interior�Point Algorithms

We start by giving some details of the primal	dual interior	point algorithms
that are implemented in the Solver class in the OOQP distribution� By
design� the code that implements these algorithms is short� and one can see
the correspondence between the code and the algorithm description below�
Therefore� users who want to modify the basic algorithm will be able to do
so after reading this section�

A primal	dual algorithm seeks variables �x� y� z� s� that satisfy the opti	
mality conditions for the convex quadratic program �
�� introduced in Sec	
tion ��
 but repeated here for convenience�

c� Qx�AT y � CT z � �� ��a�

Ax� b � �� ��b�

Cx� s � d � �� ��c�

SZe � �� ��d�

s� z � �� ��e�

The complementarity measure � de�ned by

� � zT s	mc ���

�wheremc is the number of rows in C� is important in measuring the progress
of the algorithm� since it measures violation of the complementarity condi	
tion zT s � �� which is implied by ��d�� Infeasibility of the iterates with
respect to the equality constraints ��a�� ��b�� and ��c� also makes up part
of the indicator of nonoptimality�

The OOQP distribution contains implementations of two quadratic pro	
gramming algorithms� Mehrotra�s predictor	corrector method �
�� and Gondzio�s
modi�cation of this method that uses higher	order corrector steps �
��� �See
also �
�� Chapter 
�� for a discussion of both methods�� These algorithms
have proved to be the most e�ective methods for linear programming prob	
lems and in our experience are just as e�ective for convex quadratic pro	
gramming� Mehrotra�s algorithm can be speci�ed as follows�

Algorithm MPC �Mehrotra Predictor	Corrector�
Given starting point �x� y� z� s� with �z� s� � �� and parameter � � �
� ���
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repeat

Set � � zTs	mc�
Solve for �!xa��!ya��!za��!sa���

�
����
Q �AT �CT �
A � � �
C � � �I
� � S Z

�
����
�
����

!xa�

!ya�

!za�

!sa�

�
���� � �

�
����

rQ
rA
rC
ZSe

�
���� � ���

where

S � diag�s�� s�� � � � � smc�� ��a�

Z � diag�z�� z�� � � � � zmc�� ��b�

rQ � Qx� c�AT y � CT z� ��c�

rA � Ax� b� ��d�

rC � Cx� s� d� ��e�

Compute 
a� to be the largest value in ��� 
� such that

�z� s� � 
�!za� �!sa�� � ��

Set �a� � �z � 
a�!za��T �s� 
a�!sa��	mC�
Set � � ��a�	��� �
Solve for �!x�!y�!z�!s���

����
Q �AT �CT �
A � � �
C � � �I
� � S Z

�
����
�
����

!x
!y

!z
!s

�
���� � �

�
����

rQ
rA
rC

ZSe� ��e� !Za�!Sa�e

�
���� �
�
��

where !Za� and !Sa� are de�ned in an obvious way�
Compute 
max to be the largest value in ��� 
� such that

�z� s� � 
�!z�!s� � ��

Choose 
 � ��� 
max� according to Mehrotra�s step length heuristic�
Set
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�x� y� z� s�	 �x� y� z� s�� 
�!x�!y�!z�!s��

until the convergence or infeasibility test is satis�ed�

The direction obtained from �
�� can be viewed as an approximate
second	order step toward a point �x�� y�� z�� s�� at which the conditions
��a�� ��b�� and ��c� are satis�ed and� in addition� the pairwise products
z�i s

�
i are all equal to ��� The heuristic for � yields a value in the range

��� 
�� so the step usually produces a reduction in the average value of the
pairwise products from their current average of ��

Gondzio�s approach �
�� follows the Mehrotra algorithm in its compu	
tation of directions from ��� and �
��� It may then go on to enhance the
search direction further by solving additional systems similar to �
��� with
variations in the last mC components of the right	hand side� Successive
corrections attempt to increase the steplength 
 that can be taken along
the �nal direction� and to bring the pairwise products sizi whose values are
either much larger than or much smaller than the average into closer corre	
spondence with the average� The maximum number of corrected steps we
calculate is dictated by the ratio of the time taken to factor the coe�cient
matrix in �
�� to the time taken to use these factors to produce a solution
for a given right	hand side� When the marginal cost of solving for an ad	
ditional right	hand side is small relative to the cost of a fresh factorization�
and when the corrections appear to be improving the quality of the step
signi�cantly� we allow more correctors to be calculated� up to a limit of ��

The algorithms implemented in OOQP use the step length heuristic de	
scribed in Mehrotra �
�� Section ��� modi�ed slightly to ensure that the same
step lengths are used for both primal and dual variables�

��� Monitoring the Algorithm
 The Monitor Class

OOQP can be used both for solving a variety of stand	alone QPs and for
solving QP subproblems as part of a larger algorithm� Di�erent termination
criteria may be appropriate to each context� For a simple example� the
criteria used to declare success in the solution of a single QP would typically
be more stringent than the criteria for a QP subproblem in a nonlinear
programming algorithm� in which we can a�ord some inexactness in the
solution� Accordingly� we have designed OOQP to be �exible as to the
de�nition and application of termination criteria� and as to the way in which
the algorithm�s progress is monitored and communicated to the user� In


�



some instances� a short report on each interior	point iteration is desirable�
while in others� silence is more appropriate� In OOQP� an abstract Monitor
class monitors the algorithm�s progress� while an abstract Status class tests
the termination conditions� We describe the Monitor class in this section�
and the Status class in Section ��� below�

Our design assumes that each algorithm in the QP solver layer of the code
has its own natural way of monitoring the algorithm and testing termination�
Accordingly� the two derived Solver classes in the OOQP distribution each
contain a defaultMonitormethod to print out a single line of information to
the standard output stream at each iteration� along with a suitable message
at termination of the algorithm� The prototype of this method is as follows�

void Solver

defaultMonitor� Data � data� Variables � vars�

Residuals � resids�

int i� double mu�

int status�code� int stage �

The data argument contains the problem data� while vars and resids con	
tain the values of the variables and residuals at the current iterate� which
together depict the status of the algorithm� �See Sections ��
 and � for
further information about these objects�� The variable i is the current it	
eration number and mu is the complementarity measure ���� The integer
status code indicates the status of the algorithm at termination� if termi	
nation has occurred� see Section ��� below� The stage argument indicates
to defaultMonitor what type of information it should print� In our im	
plementations� the values stage�� and stage�� cause the routine to print
out a single line containing iteration number� the value of �� and the resid	
ual norm� The value stage�� is used after termination has occurred� and
additionally causes a message about the termination status to be printed�

One mechanism available to the user who wishes to alter the monitoring
procedure is to create a new subclass of Solver that contains an imple	
mentation of defaultMonitor that overrides the existing implementation�
This is the simplest way to proceed and will su�ce in many circumstances�
However� it has a disadvantage for users who work with several di�erent
implementations of Solver�versions that implement di�erent primal	dual
algorithms� for instance� or are customized to di�erent applications�in that
the new monitoring routine cannot be shared among the di�erent QP solvers�
A subclass of each QP solver that contains the overriding implementation
of defaultMonitor would need to be created� resulting in a number of new
leaves on the class tree� A second disadvantage is that some applications may
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require several monitor processes to operate at once� for example� one pro	
cess like the defaultMonitor described above that writes minimal output
to standard output� and another process that writes more detailed informa	
tion to a log �le� It is undesirable to create a new Solver subclass for each
di�erent set of monitor requirements�

In OOQP� we choose delegation� rather than subclassing� as our mech	
anism for customizing the monitor process� Delegation is a technique in
which the responsibility for taking some action normally associated with an
instance of a given class is delegated to some other object� In our case�
although the Solver class would normally be responsible for displaying
monitor information� we delegate responsibility to an associated instance
of the Monitor class� The Solver class contains methods for establishing
its defaultMonitor method as one of the monitor procedures called by the
code and for adding monitor procedures supplied by the user�

The abstract de�nition of the Monitor class can be found in the OOQP
distribution at src�Abstract�OOQPMonitor�h� along with the de�nitions of
several subclasses� The only method of interest in the Monitor class is the
doIt method� which causes the object to perform the operation that is its
sole reason for being� Making these objects instances of a class rather than
subroutines tends to be more natural in the C�� language and makes it
far simpler to handle any state information that instances of Monitor may
wish to keep between calls to doIt�

The doIt method has the following prototype� which is identical to the
defaultMonitor method described above�

void OoqpMonitor

doIt� Solver � solver� Data � data�

Variables � vars� Residuals � resids�

int i� double mu�

int status�code� int stage ��

Users who wish to implement their own monitor procedure should create a
subclass of OOQPMonitor� for example by making the following de�nition�

class myMonitor 
 public OOQPMonitor �

public


virtual void doIt� Solver � solver� Data � data�

Variables � vars� Residuals � resids�

int i� double mu�

int status�code� int level ��

��

�




and then implementing their own version of the doIt method� Their code
that creates the instance of the Solver class and uses it to solve the QP
should contain the following code fragments�

OoqpMonitor � usermon � new myMonitor�

���

qpsolver��monitorSelf���

qpsolver��addMonitor� usermon ��

The �rst statement creates an instance of the subclass myMonitor� The sec	
ond and third statements should appear after the instance qpsolver of the
Solver class has been created but before the method qpsolver��solve��

has been invoked� The call to monitorSelf statement ensures that the
defaultMonitor method is invoked at each interior	point iteration� while
the call to addMonitor ensures that the user	de�ned monitor is also in	
voked� Users who wish to invoke only their own monitor procedure and not
the defaultMonitor method can omit the second statement� The solver is
responsible for deleting any monitors give to it via the addMonitor method�

The default behavior for an instance of Solver is to display no monitor
information�

��� Checking Termination Conditions
 The Status Class

In OOQP� the defaultStatusmethod of the Solver class normally handles
termination tests� However� OOQP allows delegation of these tests to an in	
stance of the Status class� in much the same way as the monitor procedures
can be delegated as described above� Before describing how to replace the
OOQP termination tests� let us describe the termination tests that OOQP
uses by default�

The defaultStatusmethod of the Solver class uses termination criteria
similar to those of PCx ���� To discuss these criteria� we again refer to the
problem formulation �
� �discussed in Section ��
� and use �xk� yk� zk� sk� to

denote the primal	dual variables at iteration k� and �k
def
� �zk�Tsk	mC to

denote the corresponding value of �� Let rkQ� r
k
A� and rkC be the values of

the residuals at iteration k� and let gapk be the duality gap at iteration k�
which may be de�ned for formulation �
� by the formula �
�� below� We
de�ne the quantity �k as follows�

�k
def
�
k�rkQ� r

k
A� r

k
C�k� � gapk

k�Q�A�C� c� b� d�k�
�

�




where the denominator is simply the element of largest magnitude in all the
data quantities that de�ne the problem �
�� Note that �k � � if and only if
�xk� yk� zk� sk� is optimal�

Given parameters tol� and tolr �both of which have default value 
�����
we declare the termination status to be SUCCESSFUL TERMINATION when

�k � tol�� k�rkQ� r
k
A� r

k
C�k� � tolrk�Q�A�C� c� b� d�k�� �

�

We declare the status to be INFEASIBLE if

�k � 
��� and �k � 
�� min
��i�k

�i� �

�

�In fact� since this is not a foolproof test of infeasibility� the true meaning
of this status is �probably infeasible��� Status UNKNOWN is declared if the
algorithm appears to be making unacceptably slow progress� that is�

k � �� and min
��i�k

�i �





min

��i�k���
�i� �
��

or if the ratio of infeasibility to the value of � appears to be blowing up�
that is�

k�rkQ� r
k
A� r

k
C�k� � tolrk�Q�A�C� c� b� d�k� �
�a�

and k�rkQ� r
k
A� r

k
C�k�	�k � 
��k�r�Q� r

�
A� r

�
C�k�	��� �
�b�

We declare status MAX ITS EXCEEDED when the number of iterations exceeds
a speci�ed maximum� the default is 
��� If none of these conditions is
satis�ed� we declare the status to be NOT FINISHED�

Users who wish to alter the termination test may simply create a subclass
of Solver with their own implementation of defaultStatus� Alternatively�
they may create a subclass of the Status class� whose abstract de�nition
can be found in the �le src�Abstract�Status�h� The sole method in the
Status class is doIt� which has the following prototype�

int Status

doIt� Solver � solver� Data � data�

Variables � vars� Residuals � resids�

int i� double mu� int stage ��

The parameters to the doIt method have the same meaning as the cor	
respondingly named parameters of the OOQPMonitor

doIt method� The
return value of the Status

doItmethod determines whether the algorithm
continues or terminates� The possible values that may be returned are as
follows�
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enum TerminationCode

�

SUCCESSFUL�TERMINATION � ��

NOT�FINISHED�

MAX�ITS�EXCEEDED�

INFEASIBLE�

UNKNOWN

��

The meanings of these return codes in the defaultStatus method are de	
scribed above� Users are advised to assign similar meanings in their special	
ized implementation�

Unlike the case of monitor procedures� it does not make sense to have
multiple status checks in operation during execution of the interior	point al	
gorithm� exactly one such check is required� Users who wish to use the
defaultStatus method supplied with the OOQP distributions need do
nothing� the default behavior of an instance of the Solver class is to call
this method� Users who wish to supply their own method can create their
own subclass of the Status class as follows�

class myStatus 
 public Status �

public


virtual void doIt� Solver � solver� Data � data�

Variables � vars� Residuals � resids�

int i� double mu� int stage ��

��

Then� they can invoke the useStatus method after creating their instance
of the Solver class� to indicate to the solver object that it should use the
user	de�ned status	checking method� The appropriate lines in the driver
code would be similar to the following�

MyStatus � userstat � new myStatus�

���

qpsolver��useStatus� userstat ��

The solver is responsible for deleting any Status objects given to it via the
useStatus method�
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� Creating a New QP Formulation

Users who wish to construct a solver for a class of QPs with a particular
structure not supported in the OOQP distribution may consider using the
framework to build a new solver that represents and manipulates the prob	
lem data and variables in an economical� natural� and e�cient way� In this
section� we describe the major classes that must be implemented in order to
develop a solver for a new problem formulation�

Most of the e�ort in developing a customized solver for a new class of
structured QPs is in reimplementing the classes in the problem formulation
layer� As described in Section �� this layer consists of �ve main classes�
Data� Variables� Residuals� LinearSystem� and ProblemFormulation�
that contain data structures to store the problem data� variables� and residu	
als� and methods to perform the operations that are required by the interior	
point algorithms�

As discussed in Section ��
� the core algebraic operation in an interior	
point solver is the solution of a Newton	like system of linear equations� For
formulation �
�� the general form of this system is as follows

�
����
Q �AT �CT �
A � � �
C � � �I
� � S Z

�
����
�
����

!x

!y
!z

!s

�
���� � �

�
����

rQ
rA
rC
rz�s

�
���� � �
��

where rQ� rA� and rC are de�ned in equations ��c�� ��d�� and ��e�� and rz�s
is chosen in a variety of ways� as described in Section �� Most of the objects
that populate a problem formulation layer can be found in this system� The
Variables in formulation �
� break down naturally into four components x�
y� z� and s� Likewise� there are naturally four components to the Residuals
of this formulation� For other problem formulations� such as SVM ���� this
partitioning of the variables is not natural� and a scheme more suited to the
particular formulation is used instead� However� to focus our discussion of
the implementation of the problem formulation layer in this section� we will
continue to refer to the particular formulation �
� and the system �
��� The
implementations of �
� discussed in this section may be found in the OOQP
distribution in directory src�QpExample�

In reimplementing the problem formulation layer for a new QP structure�
it may be helpful to make use of the classes from the linear algebra layer� As
mentioned in Section �� this layer contains classes for storing and operating
on dense matrices� sparse matrices� and vectors� These classes can be used
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as building blocks for implementing the more complex storage schemes and
arithmetic operations needed in the problem formulation layer�

We �rst elaborate on the use of the linear algebra layer and then describe
in some detail the process of implementing the �ve classes in the problem
formulation layer�

	�� Linear Algebra Operations

Most implementations of the problem formulation layer that appear in the
OOQP distribution �the QpGen� QpExample� QpBound� and Huber� and Svm

implementations� all are built using the objects in OOQP�s linear algebra
layer� The classes in this layer represent objects such as matrices and vectors�
and they provide methods that are especially useful for developing interior
point QP solvers� By basing our problem formulation layer on the abstract
operations of the linear algebra layer we gain another signi�cant advantage�
we can use the same problem formulation code for several quite varied rep	
resentations of vectors and matrices� For instance� the implementation of
the problem formulation layer for QPs with simple bounds is independent
of whether the Hessian matrix is represented as a dense array on a single
processor or as a sparse array distributed across several processors�

Use of OOQP�s linear algebra layer in implementing the problem for	
mulation layer is not mandatory� Users are free to de�ne their own matrix
and vector data structures and implement their own linear algebra opera	
tions �inner products� saxpys� factorizations� and so on� without referring to
OOQP�s linear algebra objects at all� The authors of OOQP recognize that
there is a learning curve associated with the use of the abstract operations in
OOQP�s linear algebra objects and that the implementation might proceed
more quickly if users de�ne their own linear algebra in terms of concrete
operations on concrete data�

For maximum e�ectiveness� we recommend a compromise approach� While
the base classes for our linear algebra layer are de�ned only in terms of ab	
stract operations� several of the classes �such as SimpleVector� may also
be used concretely� Users can start by de�ning their problem formulation
in terms of these simple classes but de�ne their own concrete operations on
the data� Later� they can replace their concrete operations by the abstract
methods supplied with these classes� Finally� having gained pro�ciency in
the use of these classes� they may then replace the entire class with a more
appropriate one� Section � is a short tutorial on the linear algebra layer that
can be consulted by those who wish to use the layer in this way�
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	�� Specializing the Problem Formulation Layer

We now detail how to implement the various classes in the problem formu	
lation layer�

�
�
� Specializing Data

The purpose of the Data class is to store the data de�ning the problem�
in some appropriate format� to provide methods for performing operations
with the data matrices �for example� matrix multiplications or insertion of
problem matrices into the larger matrices of the form ��� or �
���� for cal	
culating some norm of the data� for �lling the data structures with problem
data �read from a �le� for instance� or passed from a modeling language
or MATLAB�� for printing the data� and for generating random problem
instances for testing and benchmarking purposes�

Since both the data structures and the methods implemented in Data

depend so strongly on the structure of the problem� the parent class is
almost empty� It includes only two pure virtual functions� datanorm �of
type double� and print� whose implementation must appear in any derived
classes�

A derived class of Data for the formulation �
� in which the problem data
is dense would include storage for the vectors c� b� and d as arrays of doubles�
storage for A and C as two	dimensional arrays of doubles� and storage for
the lower triangle of the symmetric matrix Q� In our implementation of the
derived class QpExampleData� we have provided methods for multiplying by
the matrices Q� A� and C and for copying the data into a larger structures
such as the matrix in �
��� We �nd it convenient to provide methods like this
for manipulating the data in our QpExampleData class� rather than having
code from other problem formulation classes manipulate the data structures
directly� the extra generality that the added layer of encapsulation a�ords
has sometimes proven useful�

Consider now the two pure virtual functions datanorm and print� One
reasonable implementation of datanorm for the formulation �
� would simply
return the magnitude of of the largest element in the matrices Q� A� and C�
and the vectors c� b� and d that de�ne �
�� The implementation of print
might print the data objects Q� A� C� c� b� and d to standard output in some
useful format� Although not compulsory� we might also de�ne a routine
datarandom to generate an instance of �
�� given user	de�ned dimensions
n� mA� and mC � and possibly a desired level of sparsity for the matrices�
Naturally� this method should take care that Q is positive semide�nite�
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The derived Data class might also contain one or more implementations
of a datainput method that allow the user to de�ne the problem data� We
could� for instance� have one implementation of datainput that reads the
data in some simple format from ascii �les and another implementation that
reads a �le in MPS format� appropriately extended for quadratic program	
ming �Maros and M�esz�aros �
���� Since the MPS format allows for bounds
and for constraints of the form lc � Cx � uc� the latter implementation
generally would need to perform transformations to pose the problem in the
form �
�� �The data from a MPS �le is more naturally represented by our
�general� QP formulation �
���

�
�
� Specializing Variables

Instances of Variables class store the problem variables ��x� y� z� s� in the
case of �
�� in whatever format is appropriate to the problem structure�
The class includes a variety of methods essential in the implementation of
Algorithm MPC� Most of them de�ned as pure virtual functions� because
they strongly depend on the structure of the problem�

We now sketch the main methods for the Variables class� illustrating
each one by specifying its implementation for the formulation �
��

mu� Calculate the complementarity gap� � � zTs	mC �

mustep� Calculate the complementarity gap that would be obtained from
a step of length 
 along a speci�ed direction from the current point�
For �
�� given the search direction �!x�!y�!z�!s� �supplied in an
argument of type Variables� and a positive scalar 
� this method
would calculate

�z � 
!z�T �s� 
!s�	mC �

negate� Multiply the current set of variables by �
� For �
�� we would
replace �x� y� z� s� by ��x� y� z� s��

saxpy� Given another set of variables and a scalar� perform a saxpy opera	
tion with the current set of variables� For �
�� we would pass a second
instance of a Variables class containing �x�� y�� z�� s��� together with
the scalar 
 as arguments� and perform the replacement

�x� y� z� s�	 �x� y� z� s� � 
�x�� y�� z�� s���
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stepbound� Calculate the longest step in the range ��� 
� that can be
taken from the current point in a speci�ed direction without violat	
ing nonnegativity of the complementary variables� For �
�� the argu	
ment would be the direction �x�� y�� z�� s�� �stored in another instance of
theVariables class�� and this function would return the largest value
of 
 in ��� 
� such that the condition �z � 
z�� s� 
s�� � � is satis�ed�

findBlocking� Similar to stepbound but returns additional information�
This method identi�es separately the maximum steps that can be
taken in the primal and dual variables� identi�es the components of
the variable and step vectors that limit the step� and indicates whether
it was the primal component or the dual component that limited the
step� In the case of �
�� findBlocking would return the largest value
of 
p in ��� 
� such that s � 
ps

� � �� the values of sip and s�ip � where
ip is the component index for which sip � 
ps

�
ip
� �� the largest value

of 
d in ��� 
� such that z � 
dz
� � �� and the values of zid and z�id �

where id is the component index for which zid � 
dz
�
id
� �

interiorPoint� Set all components of the complementary variables to
speci�ed positive constants 
 and �� In the case of �
�� we would set
s	 
e and z 	 �e� where e is the vector whose elements are all 
�

shiftBoundVariables� Add speci�ed positive constants 
 and � to the
complementary variables� For �
�� this method would perform the
replacements s	 s� 
e and z 	 z � �e�

print� Print the variables in some intelligible problem	dependent format�

copy� Copy the data from one instance of the Variables class into another�

onenorm� infnorm� Compute the �� and �� norms of the variables� For
�
�� these quantities would be k�x� y� z� s�k� and k�x� y� z� s�k�� respec	
tively�

The usefulness of some of these methods in implementing Algorithm
MPC is obvious� For instance� saxpy is used to take a step along the even	
tual search direction� stepbound is used to compute 
a� and 
max� mustep is
used to compute �a� � The methods interiorPoint and shiftBoundVariables
can be used in the heuristic to determine the starting point� while findBlocking
plays an important role in Mehrotra�s heuristic for determining the step
length�
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�
�
� Specializing Residuals

The Residuals class calculates and stores the quantities that appear on
the right	hand side of the linear systems that are solved at each iteration
of the primal	dual method� These residuals can be partitioned into two
fundamental categories� the components arising from the linear equations in
the KKT conditions� and the components arising from the complementarity
conditions� For the formulation �
�� the components rQ� rA� and rC �which
arise from KKT linear equations ��c�� ��d�� and ��e�� belong to the former
class� while rz�s belongs to the latter� As above� we describe the roles of the
main methods in the Residuals class with reference to the formulation �
��

calcresids� Given a Data object and a Variables object� calculate the
residual components arising from the KKT linear equations� For �
��
this method calculates rQ� rA� and rC using the formulae ��c�� ��d��
and ��e�� respectively�

dualityGap� Calculate the duality gap� which we de�ne for the formulation
�
� as follows�

gapk
def
� �xk�TQxk � bTyk � cTxk � dT zk� �
��

See the discussion below for guidance in formulating an expression for
this parameter�

residualNorm� Calculate the norm of the components arising from the
KKT linear equations� For �
�� this method returns k�rQ� rA� rC�k for
some norm k 
 k�

clear r�r�� Zero the components arising from the KKT linear equations�
�Gondzio�s method requires the solution of linear equations in which
these residual components are replaced by zeros��

clear r�� Set the complementarity components to zero� In the case of �
��
for which the general form of the linear system is �
��� this operation
sets rz�s 	 �� �This operation is needed only in Gondzio�s algorithm��

add r� xz alpha� Given a scalar 
 and a Variables class� add a comple	
mentarity term and a constant to each of the complementarity com	
ponents of the residual vector� For �
�� given variables �x� y� z� s�� we
would set

rz�s 	 rz�s � ZSe� 
e�

��



where Z and S are the diagonal matrices constructed from the z and
s variables�

set r� xz alpha� As for add r� xz alpha� but overwrite the existing value
of rz�s� that is� set rz�s 	 ZSe� 
�

project r�� Perform the projection operation used in Gondzio�s method
on the rz�s component of the residual� using the scalars 
min and 
max�

As discussed in Section ���� the residualNorm and dualityGap func	
tions are used in termination and infeasibility tests� Users familiar with
optimization theory will recognize the concept of the duality gap and will
also recognize that the formula xTQx � bTy � cTx � dTz used in �
�� is
one of a number of expressions that are equivalent when the residuals rQ�
rA� and rC are all equal to zero� One such equivalent expression is the for	
mula sTz� used in the de�nition of � in the Variables class� We �nd it
useful� however� to use a de�nition of the duality gap from which the slack
variables have been eliminated and all the linear equalities in the KKT con	
ditions have been taken into account� Such a de�nition can be obtained
by starting with the de�nition of � and successively substituting from each
of the KKT conditions� For the case of �
�� we start with sT z� substitute
for s from the equation Cx � s � d � � �see ��c�� to obtain zT �Cx � d��
then substitute for CTz from c�Qx�AT y � CTz � � �see ��a�� to obtain
cTx � xTQx� xTAy � dTz� and �nally substitute for Ax from Ax � b � �
�see ��b�� to obtain the �nal expression�

In Algorithm MPC� the method set r� xz alpha is called with the cur	
rent Variables and 
 � � to calculate the right	hand side for the a�ne	
scaling system ���� Once � has been determined and the a�ne	scaling step
is known� add r� xz alpha is called with 
 � ��� and the Variables in	
stance that contains the a�ne	scaling step� to add the necessary terms to
the rz�s component to obtain the system �
���

�
�
� Specializing LinearSystem

As mentioned above� major algebraic operations at each interior	point iter	
ation are solutions of linear systems to obtain the predictor and corrector
steps� For the formulation �
�� these systems have the form �
��� Such sys	
tems need to be solved two to six times per iteration� for di�erent choices
of the right	hand side components but the same coe�cient matrix� Accord	
ingly� it makes sense to logically separate the factor method that operates

�




only on the matrix and the solve method that operates on a speci�c right	
hand side�

We use the term �factor� in a general sense� to indicate the part of the
solution process that is independent of the right�hand side� The factor

method could involve certain block	elimination operations on the coe�cient
matrix� together with an LU � LDLT � or Cholesky factorization of a re	
duced system� Alternatively� when we use an iterative solver� the factor

operation could involve computation of a preconditioner� The factor class
may need to include storage�for a permutation matrix� for triangular fac	
tors of a reduced system� or for a preconditioner�for use in subsequent
solve operations� We use the term �solve� to indicate that part of the so	
lution process depends on the speci�c right	hand side� Usually� the results
of applying methods from the factor class are used to facilitate or speed
the process� Depending on the algorithm we employ� the solve method
could involve triangular back	and	forward substitutions� matrix	vector mul	
tiplications� applications of a preconditioner� and�or permutation of vector
components�

Both factor and solve are pure virtual functions� their implementation
is left to the derived class because they depend entirely on the problem
structure� For problems with special structure� the factor method is the
one in OOQP that gives the most scope for exploitation of the structure
and for computational savings over naive strategies� The SVM formulation
is one case in which an appropriate implementation of the factor class yields
signi�cant savings over an implementation that is not aware of the structure�
Another instances in which an appropriate implementation of factor can
produce large computational savings include the case in which Q� A� and
C have a block	diagonal structure� as in optimal control problems� allowing
�
�a� to be reordered and solved with either a banded matrix factorization
routine or a discrete Riccati substitution �Rao� Wright� and Rawlings �

���

We now describe possible implementations of factor for the formulation
�
�� Direct factorization of the matrix in �
�� is not e�cient in general
as it ignores the signi�cant structure in this system�the fact that S and
Z are diagonal and the presence of a number of zero blocks� Since the
diagonal elements of Z and S are strictly positive� we can do a step of block
elimination to obtain the following equivalent system��

�� Q AT CT

A � �
C � �Z��S

�
��
�
�� !x

�!y
�!z

�
�� �

�
�� �rQ

�rA
�rC � Z��rz�s

�
�� � �
�a�

!s � Z����rz�s � S!y�� �
�b�

�




Application of a direct factorization code for symmetric inde�nite matrices
to this equivalent form is an e�ective strategy� The factor routine would
perform symmetric ordering� pivoting� and computation of the factors� while
solve would use these factors to solve �
�a� and then substitute into �
�b�
to recover !s�

Another possible approach is to perform another step of block elimina	
tion and obtain a further reduction to the form�

Q� CTZS��C AT

A �

� �
!x

�!y

�
�

�
�rQ � CTS���ZrC � rz�s�

�rA

�
�

�
��
The main operation in factor would then be to apply a symmetric inde�nite
factorization procedure to the coe�cient matrix in this system� while solve
would perform triangular substitutions to solve �
�� and then substitute
to recover !z and !s in succession� This variant is less appealing than
the approach based on �
�a�� however� since the latter approach allows the
factorization routine to compute its own pivot sequence� while in �
�� we
have partially imposed a pivot ordering on the system by performing the
additional step of block elimination� However� if the problem �
� contained
no equality constraints �that is� A and b null�� the approach �
�� might be
useful� as it would allow a symmetric positive de�nite factorization routine
to be applied to the matrix Q� CTZS��C�

Alternative implementations of the factor and solve classes for �
�
could apply iterative methods such as QMR �
�� 

� or GMRES �

� �see
also Kelley �
��� to the system �
�a�� Under this scenario� the role of the
factor routine is limited to choosing a preconditioner� Since some elements
of the diagonal matrix Z��S approach zero while others approach �� a
diagonal scaling that avoids the resulting ill conditioning should form part
of the preconditioning strategy�

�
�
� Specializing ProblemFormulation

Once a user has created new subclasses of Data� Variables� Residuals� and
LinearSystem appropriate to the new QP formulation� he or she must create
a subclass of ProblemFormulation to assemble a compatible set objects to
be used by a QP solver� Assembly might seem to be a simple task not
requiring the use of an additional assembly class� but in practice the process
of creating a compatible set of objects can become quite involved� as we now
discuss�

Consider our example QP formulation �
�� Even in this simple case� one
must create all vectors and matrices so that they have compatible sizes and
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so that they are able to copy or wrap the given problem data� The more
abstract and �exible a problem formulation is� the more options tend to
be present when the objects are created� If we wish to create a subclass
of Variables for our new QP formulation in which the code is indepen	
dent of whether the solver is executed on a uniprocessor platform or on a
multiprocessor platform with distributed data� we must make some other
arrangements to ensure that when the instance of Variables is created� the
storage for the variables is allocated and distributed in the appropriate way�
A traditional approach for managing this kind of complexity is to isolate the
code for creating a compatible set of components in a separate subroutine�
In OOQP� we use the same principle� isolating the code for managing the
complexity in the methods of a subclass of ProblemFormulation�

The abstract ProblemFormulation class has the following prototype�

class ProblemFormulation �

public


�� makeData will often take parameters�

�� virtual Data � makeData�� � ��

virtual Residuals � makeResiduals� Data � prob�in � � ��

virtual LinearSystem � makeLinsys� Data � prob�in � � ��

virtual Variables � makeVariables� Data � prob�in � � ��

virtual �ProblemFormulation�� ���

��

The makeVariablesmethod is responsible for creating an instance of a sub	
class of Variables that is appropriate for this problem structure and for
the computational platform� The other methods have similar purposes for
instances of the other subclasses in the problem formulation layer� An ad	
vantage to encapsulating the creation code in a ProblemFormulation class
is that it is not necessary to specify how many copies of each object need be
created� This additional �exibility is useful because di�erent QP algorithms
need di�erent numbers of instances of variable and residual classes�

Normally� an instance of ProblemFormulation will be given any pa	
rameters that it needs to build a compatible set of objects when it is cre	
ated� Take� for example� the class QpExampleDense� which is a subclass
of ProblemFormulation used to create objects for solving QPs of the form
�
� using dense linear algebra� A partial prototype for the QpExampleDense
class is as follows�

class QpExampleDense 
 public ProblemFormulation �

protected


��



int mNx� mMy� mMz�

public


QpExampleDense� int nx� int my� int mz ��

��

When a QpExampleDense is created by code of the form

QpExampleDense � qp � new QpExampleDense� nx� my� mz ��

it records the problem dimensions n� mA� and mC � allowing it subsequently
to create objects of the right size�

Note that the ProblemFormulation class does not contain the declara	
tion of an abstract makeData method� One normally needs additional infor	
mation to create Data objects� namely� the problem data itself� A makeData

method with no parameters is normally useless� on the other hand� no one
set of parameters would be useful for all formulations� Therefore� there is
no appropriate abstract de�nition of makeData�

��



� Using Linear Algebra Objects

This section takes the form of a tutorial on elements of OOQP�s linear
algebra layer� It is intended for those who wish to use these linear algebra
objects and operations concretely to de�ne a new problem formulation� We
have found these objects useful in implementing solvers for the problem
formulations supplied with the OOQP distribution� and we believe they will
also be useful to users who wish to implement solvers for their own special
QP formulations� Users are not� however� compelled to use the OOQP
linear algebra layer in implementing their own problem formulation layer�
they may write their own code to store the data objects and to perform the
linear algebra operations that are required by the interior	point algorithm�

The QP formulations and interior	point algorithms supplied with the
OOQP distribution are written in terms of linear algebra operations in ab	
stract classes� such as OoqpVector� GenMatrix� and SymMatrix� When we
speak of using linear algebra objects �concretely�� we mean accessing the
data contained in these objects directly� in a manner that depends explic	
itly on how the data is stored� A code development process using con	
crete objects and operations is as follows� The user starts by creating ob	
jects that are instances of speci�c concrete subclasses of the abstract lin	
ear algebra classes� and manipulates these objects accordingly� Then� the
user migrates to an abstract interface by systematically replacing the data	
structure	dependent code in the problem formulation with mathematical
operations from the abstract base classes� Finally� the user changes the
type declarations of the variables from the concrete classes to abstract base
classes such as OoqpVector� causing the compiler to disallow any remain	
ing data	structure	dependent code� This development process of migrating
from a working concrete QP formulation to an abstract QP formulation may
be simpler than trying to use the abstract interface on the �rst pass� The
material in this section will be helpful for users that follow this path�

We start in Section ��
 by describing the reference counting scheme used
to manage memory in OOQP� In Section ��
� we describe SimpleVector�
a class that can be used in place of arrays of double	precision numbers�
Section ��� describes classes for storing and manipulating dense matrices�
while Section ��� discusses classes for sparse matrices�

��� Reference Counting

Reference counting is a powerful technique for managing memory that helps
prevent objects from being deleted accidentally or more than once� The
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technique is not limited to C�� code and� despite its name� is unrelated
to the C�� concept of reference variables� Rather� the term means that
we maintain a count of all �owning references� to an object and delete the
object when this count becomes zero� An owning reference is a typically a
pointer to an object that is a data member of an instance of another class�
Consider� for instance� the following class�

class MyVariables 
 Variables �

SimpleVector � mV�

public


SimpleVector$ v���

SimpleVector � getV���

void copyV� SimpleVector$ w ��

MyVariables���

MyVariables� SimpleVector � v ��

�MyVariables���

��

Instances of MyVariableswould hold an owning reference to a SimpleVector
in the variable mV� In the reference counting scheme� the destructor for this
class would be as follows�

MyVariables

�MyVariables��

�

IotrRelease� $mV ��

��

Rather than deleting mV� the destructor signals that it is no longer holding a
reference to the object� so the reference count associated with this object is
decremented� In correct code� every object has at least one owning reference�
When the number of owning references has decreased to zero through calls
to IotrRelease� the reference counting scheme deletes the object�

Usually� objects are created in the constructors of other objects and are
released when the creating object no longer needs them� typically in the
destructor� For instance� the constructor

MyVariables

MyVariables��

�

mV � new SimpleVector����

�

��



creates a new SimpleVector object� and the corresponding destructor will
release the owning reference to this object when the MyVariables object is
�nished with it�

Another common scenario is that a pointer to an object may be passed
as a parameter to a method or constructor for another object� which may
then wish to establish its own owning reference for the parameter object�
This scenario arises in the following constructor�

MyVariables

MyVariables�SimpleVector � v�in �

�

mV � v�in�

IotrAddRef� $mV ��

�

The call to IotrAddRef informs the reference counting scheme that a new
owning reference to the SimpleVector has been established� so the counter
associated with this object is incremented� If IotrAddRef had not been
called� the reference counting scheme would assume that the object had
declined to establish a new owing reference�

When objects are passed into methods as C�� style reference variables�
rather than via pointers� owning references must not be established� For
instance� the method

void MyVariables

copy� SimpleVector$ w �

�

���

�

may not establish a new owing reference for its parameter w� A similar
convention exists for the return values of functions� A return value that is
a C�� style reference variable needs no special attention

SimpleVector$ MyVariables

v��

�

return �mV�

�

but if the return value is a pointer� then a new owning reference is always
established� and so the reference count must be incremented via a call to
IotrAddRef�

SimpleVector � MyVariables

getV��

��



�

IotrAddRef� $mV ��

return mV�

�

A typical program makes few calls to IotrAddRef and IotrRelease�
For the most part� one may simply call the IotrRelease function instead
of the C�� operator delete�

Finally� we mention that OOQP contains a SmartPointer class that
handles calls to IotrAddRef and IotrRelease automatically� This class
has proven useful to the OOQP developers and is present in the OOQP
distribution for others who wish to use it� We will not� however� describe it
further in this document�

��� Using SimpleVector

SimpleVector is a class whose instances may be used in place of arrays of
double precision numbers� It is a subclass of OOQP�s abstract base vector
class� OoqpVector� and all abstract operations of an OoqpVector are im	
plemented in SimpleVector� However� there is one important additional
feature� The operator �� has been de�ned for SimpleVector� which al	
lows indexing to be used to access individual elements in the SimpleVector
object� For example� the following piece of code involving SimpleVector

objects a� b� and c is legal� provided that these vectors have compatible
lengths�

void add� SimpleVector$ a� SimpleVector$ b� SimpleVector$ c �

�

for� int i � �� i  a��length��� i�� � �

c�i� � a�i� � b�i��

�

�

The elements of a SimpleVector may be passed to a legacy C routine
in the manner demonstrated in the following code fragment� which calls the
C routine norm on the elements of a�

extern �C�

double norm� double a��� int len ��

double mynorm� SimpleVector$ a �

�

return norm� a��elements��� a��length�� ��

��



�

�Indeed� in most cases� we could use the calling sequence

norm� $a���� a��length�� ��

but this call will fail for vectors of length zero��
SimpleVector objects may be created via calls to a constructor of the

following form�

�� Create a vector of length �

SimpleVector � a � new SimpleVector� � ��

When interfacing with non	OOQP code� however� it may be preferable to
invoke an alternative constructor that uses an existing array of doubles to
store the elements of the new SimpleVector instance� Use of this construc	
tor is demonstrated by the following code fragment�

double � v � new double����

SimpleVector � b � new SimpleVector� v� � ��

The array v will be used as the storage location for the elements of b and
will not be deleted when b is deleted�

We recommend that users always use operator new to create new in	
stances of SimpleVector� Creating SimpleVector on the stack is not sup	
ported and may cause unforeseen problems� In other words� users should
not create variables of type SimpleVector� but rather should create pointers
and references to instances of SimpleVector� as in the examples above�

��� Using DenseGenMatrix and DenseSymMatrix

DenseGenMatrix is a class that represents matrices stored as a dense ar	
ray in row	major order� DenseSymMatrix also stores matrix elements in a
dense array but represents symmetric �rather than general� matrices� Row
and columns indices for the matrices start at zero� following C and C��
conventions�

The indexing operator �� is de�ned appropriately for both DenseGenMatrix
and DenseSymMatrix� The following code fragment� for example� is legal�

int myFunc� DenseGenMatrix$ M �

�

for� int i � �� i  M�rows��� i�� � �

for� int j � �� j  M�columns��� j�� � M�i��j� � i � �� � j�

�

�

��



DenseSymMatrix stores its elements in the lower triangle of the matrix�
the result of accessing the upper triangle is unde�ned� An example of code
to �ll a DenseSymMatrix is the following�

int mySymFunc� DenseSymMatrix$ M �

�

for� int i � �� i  M�size��� i�� � �

for� int j � �� j  � i� j�� � M�i��j� � i � �� � j�

�

�

The elements of a dense matrix may be passed to legacy C code by
invoking the method elements� which returns a pointer to the full matrix
laid out in row major order� An example is as follows�

void myFactor� DenseGenMatrix$ M �

�

factor� M�elements��� M�rows��� M�columns�� ��

�

Both DenseGenMatrix or DenseSymMatrix provide the method mult�
which performs matrix	vector multiplication� For instance� if M is an instance
of either class� the function

void func�double beta� SimpleVector$ y�

double alpha� SimpleVector$ x�

�

M�mult� beta� y� alpha� x �

�

perform the computation y 	 �y � 
Mx� Similarly� transMult computes
y 	 �y � 
MTx�

These classes contain no member functions to factor the matrices� Users
may either program their own factorization on the elements of the ma	
trix or use one of the linear solvers from the OOQP distribution� For a
DenseSymMatrix an appropriate linear solver is DeSymIndefSolver� We
demonstrate the use of this solver in the following sample code� which solves
a linear system with a coe�cient matrix M �an instance of DenseSymMatrix�
and right	hand side x �an instance of SimpleVector�� The result is returned
in the SimpleVector object y�

void mySolve� SimpleVector$ y� DenseSymMatrix � M�

�




SimpleVector$ x �

�

DeSymIndefSolver � solver � new DeSymIndefSolver� M ��

solver��matrixChanged���

y�copyFrom� x ��

solver��solve� y ��

IotrRelease� $solver ��

�

The matrixChangedmethod performs an in	place factorization on the values
of M� overwriting the original values of this matrix with the values of its
factors� The solve method uses the factors to compute the solution to the
system�

If it is known that M is positive de�nite� the solver DeSymPSDSolver

should be used in place of DeSymIndefSolver� OOQP does not supply
linear solvers for instances of DenseGenMatrix�

A DenseGenMatrix may be created by using the operator new� The fol	
lowing code will create a DenseGenMatrix with �ve rows and three columns�

DenseGenMatrix � pgM � new DenseGenMatrix� �� � ��

Instances of DenseSymMatrix are necessarily square� so only one argument
is needed for the constructor� The following code creates a DenseSymMatrix
with �ve rows and columns�

DenseSymMatrix � psM � new DenseSymMatrix� � �

As in the SimpleVectorclass� other constructors can be invoked to use an
existing array of doubles as storage space for the new DenseGenMatrix or
DenseSymMatrix instances� as demonstrated in the following code fragment�

double � gen � new double�� � ��

double � sym � new double�� � ���

DenseGenMatrix � pgM � new DenseGenMatrix� gen� �� � ��

DenseSymMatrix � psM � new DenseSymMatrix� sym� � �

The arrays gen and sym will not be deleted when the matrices pgM and psM

are created or freed�

�




��� Using SparseGenMatrix and SparseSymMatrix

In many practical instances� the matrices used to formulate the QP are
large and sparse� General sparse matrices and sparse symmetric matrices
are represented by SparseGenMatrix and SparseSymMatrix� respectively�
Unlike their dense counterparts� SparseGenMatrix and SparseSymMatrix

cannot be used as drop	in replacements for an array of doubles because they
do not de�ne the indexing operator ���

The data elements of these matrices are stored in a standard compressed
format known as Harwell�Boeing format� In the SparseGenMatrix class�
the elements are stored in row	major order� and� as in the dense case� the
row and column indices start at zero� Harwell	Boeing format encodes the
matrix in three arrays�two arrays of integers and one array of doubles� For
an m � n general matrix containing len nonzero elements� these arrays are
represented by three data structures within the sparse matrix classes� as
follows�

int krowM�m����

int jcolM�len��

double M�len��

For each index i � �� 
� � � � � m � 
� the nonzero elements from row i are
stored in locations krowM�i� through krowM�i����� of the vector M� �Recall
that we index the rows and columns by �� 
� � � � � m� 
 and �� 
� � � � � n � 
�
respectively�� The column index of each nonzero is stored in the corre	
sponding location of jcolM� In other words� for any k between krowM�i�

and krowM�i����� �inclusive� the �i�jcolM�k�� element of the matrix is
stored in M�k��

For a symmetric matrix� an instance of SparseSymMatrix stores only
the nonzero elements in the lower triangle of the matrix� Otherwise the
format is identical to that described above for general matrices�

Perhaps the simplest way to understand the format is to study the follow	
ing code sample� which prints out the elements of the matrix in row	major
order�

for� int i � �� i  m� i�� � �

for� int k � krowM�i�� k  krowM�i���� k�� � �

cout   �Row
 �   i   �column
 �   jcolM�k�

  �value
 �   M�k�   endl�

�

�

��



As for the dense classes� the SparseGenMatrix and SparseSymMatrix

classes provide mult and transMult methods� which perform matrix	vector
multiplications�

No methods within the sparse matrix classes perform factorizations of
the matrices� Classes with this functionality are supplied elsewhere in the
OOQP distribution� however� The default sparse direct linear equation
solver in the OOQP distribution is the code MA
� from the Harwell Sparse
Library� wrapped in a way that makes it callable from C�� code� The fol	
lowing code fragment solves a system of linear equations involving a sparse
symmetric inde�nite matrix� On input� M contains the coe�cient matrix
while x contains the right	hand side� Neither M nor x is changed in the call�
but y is replaced by the solution of the linear system�

void mySparseSolve� SimpleVector$ y� SparseSymMatrix � M�

SimpleVector$ x �

�

Ma��Solver � solver � new Ma��Solver� M ��

solver��matrixChanged���

y�copyFrom� x ��

solver��solve� y ��

IotrRelease� $solver ��

�

Users are also free to supply their own sparse solvers� If the solver
accepts Harwell	Boeing format� the three arrays that encode the matrix can
be passed individually as arguments� as can the elements of the right	hand
side and the solution� If M is a SparseGenMatrix or SparseSymMatrix

object and x and y are SimpleVector objects� then the interface to the
user	supplied solve routine may be as follows�

mySparseSolver� M�krowM��� int m� M�jcolM��� M�M���

x�elements��� y�elements�� ��

In interior	point algorithms� one frequently must solve a sequence of
linear systems in which the matrices di�er from each other only in the diag	
onal elements� Consequently� we supply the methods fromGetDiagonal and
atPutDiagonal� whose function is to transfer the diagonal elements between
an instance of a sparse matrix class and an instance of the SimpleVector

class� For example� the following code copies diagonal elements ��� �� through

��



��� �� inclusive from the SparseSymMatrix object M into the SimpleVectorobject
d�

SimpleVector � getMe� SparseSymMatrix$ M �

�

SimpleVector � d � new SimpleVector����

M�fromGetDiagonal� 	� �d ��

return d�

�

To copy the elements from d into the diagonals of M� one would use a call of
the form

M�atPutDiagonal� 	� �d ��

which overwrites diagonal elements ��� �� through �� � r� � � r� with the
elements of d� where r is the number of elements in d�

Instances of SparseGenMatrix or SparseSymMatrix can be created by
�rst �lling the three arrays that encode the matrix in Harwell	Boeing format
and then calling a constructor� For general sparse matrices� this call has the
following form�

SparseGenMatrix � sgm

� new SparseGenMatrix� m� n� len� krowM� jcolM� M ��

where m and n are the number of rows and columns� respectively� len is the
number of nonzero elements� and krowM� jcolM� and M are the three arrays
discussed above� For sparse matrices� the corresponding call is

SparseSymMatrix � ssm

� new SparseSymMatrix� m� len� krowM� jcolM� M ��

We emphasize that the arrays krowM� jcolM� and M are not copied but rather
are used directly� They are not deleted when the sparse matrix instances
sgm or ssm are freed�

Alternative constructors can be used when a description of the matrix
is available in sparse triple format� In this simple format� the matrix is
encoded in two integer arrays and one double array� all of which have length
equal to the number of nonzeros in the matrix� �In the case of a symmetric
matrix� only the lower triangle of the matrix is stored�� By de�ning nnz to
be the number of stored nonzeros� and de�ning the three arrays as follows�

int irow�nnz��

int jcol�nnz��

double A�nnz��

��



we have for any k in the range ������nnz�� that the element at row irow�k�

and column jcol�k� has value A�k�� The elements in this format can be
sorted into row	major order by calling another routine from the OOQP
distribution� doubleLexSort� in the following way�

doubleLexSort� irow� nnz� jcol� A ��

Given the matrix in this form� with the arrays sorted into row	major
form� we can build an instance of SparseGenMatrix or SparseSymMatrix

by �rst calling a constructor with the matrix dimensions and the number of
non	zeros as arguments� as follows�

SparseGenMatrix � sgm � new SparseGenMatrix� m� n� nnz ��

SparseSymMatrix � ssm � new SparseSymMatrix� m� nnz ��

We can then call the method putSparseTriple� available in both classes�
to place the information in irow� jcol� and A into sgm or ssm� This call has
the following form�

sgm�putSparseTriple� irow� nnz� jcol� A� info ��

The output parameter info will be set to zero if sgm is large enough to hold
the elements in irow� jcol� and A� Otherwise it will be set to one�
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� Specializing Linear Algebra Objects

The solver supplied in the OOQP distribution for the formulation �
� with
sparse data uses the MA
� ��� sparse inde�nite linear equation solver from
the Harwell Subroutine Library to solve the systems of linear equations that
arise at each interior	point iteration� Some users may wish to replace MA
�
with a di�erent sparse solver� �Indeed� we implemented a number of di�erent
solvers during the development of OOQP�� Users also may want to make
other modi�cations to the linear algebra layer supplied with the distribution�
For example� it may be desirable to alter the representations of matrix and
vectors that are implemented in OOQP�s linear algebra layer� by creating
new subclasses of OoqpVector� SymMatrix� GenMatrix� and DoubleStorage�
One motivation for doing so might be to embed OOQP in an applications
code that de�nes its own specialized matrix and vector storage schemes�

In Section ��
� we describe the process of replacing MA
� by a new
linear solver� Section ��
 discusses the subclassing of objects in OOQP�s
linear algebra layer that may be carried out by users who wish to specialize
the representations of matrices and vectors�

��� Using a Di�erent Linear Equation Solver

The MA
� solver for symmetric inde�nite systems of linear equations is an
e�cient� freely available solver from the Harwell Subroutine Library that
is widely used to solve the linear systems that arise in the interior	point
algorithm applied to sparse QPs of the form �
�� By the nature of OOQP�s
design� however� an advanced user can substitute another solver without
much trouble� This section outlines the steps that must be taken to do so�
We focus on replacing a sparse linear solver because this operation is of
greater practical import than replacing a dense solver and because there are
a greater variety of sparse factorization codes than of dense codes�

�
�
� Creating a Subclass of DoubleLinearSolver

The �rst step is to create a subclass of the DoubleLinearSolver class� A
typical subclass will have the following prototype�

�include �DoubleLinearSolver�h�

�include �SparseSymMatrix�h�

�include �OoqpVector�h�

class MyLinearSolver 
 public DoubleLinearSolver �

��



SparseSymMatrix � mStorage�

public


MyLinearSolver� SparseSymMatrix � storage ��

virtual void diagonalChanged� int idiag� int extent ��

virtual void matrixChanged���

virtual void solve � OoqpVector$ vec ��

virtual �MyLinearSolver���

��

Each DoubleLinearSolver object is associated with a matrix� Therefore� a
typical constructor for a subclass MyLinearSolver of DoubleLinearSolver
would be as follows�

MyLinearSolver

MyLinearSolver� SparseSymMatrix � ssm �

�

IotrAddRef� $ssm ��

mMat � ssm� �� Here mMat is a data member of MyLinearSolver�

�

The call to IotrAddRef establishes an owning reference to the matrix �see
Section ��
�� It must be balanced by a call to IotrRelease in the destructor�
as follows�

MyLinearSolver

�MyLinearSolver��

�

IotrRelease� $mMat ��

�

When the linear solver is �rst created� the matrix with which it is associ	
ated will not typically contain any data of interest to the linear solver� Once
the contents of the matrix have been loaded� the interior	point algorithm
may call the matrixChanged method� which triggers a factorization of the
matrix� Subsequently� the algorithm performs one or more calls to the solve
method� each of which uses the matrix factors produced in matrixChanged

to solve the linear system for a single right	hand side�
Calls to matrixChanged typically occur once at each interior	point itera	

tion� It is assumed that the sparsity structure of the matrix does not change
between calls to matrixChanged� only the data values will be altered� This
assumption� which holds for all popular interior	point algorithms� allows
subclasses of DoubleLinearSolver to cache information about the spar	
sity structure of the matrix and its factors and to reuse this information
throughout the interior	point algorithm�

��



The diagonalChanged method supports those rare solvers that take a
di�erent action if only the diagonal elements of the matrix are changed �while
o�	diagonals are left untouched�� Most solvers cannot do anything interest	
ing in this case� a typical implementation of diagonalChanged simply calls
matrixChanged� as follows�

void MyLinearSolver

diagonalChanged� int idiag� int extent �

�

this��matrixChanged���

�

The implementation of matrixChanged and solve depends strongly on
the sparse linear system solver in use� as well as on the data format used
to store the sparse matrices� Section ��� describes the data format used by
our sparse matrix classes� The convention in OOQP is that sparse linear
solvers must not act destructively on the matrix data� In some instances�
this restriction requires a copy of part of the matrix data to be made before
factorization begins� Typically� however� this restriction is not too onerous
because the �ll	in that occurs during a typical factorization would make it
necessary to allocate additional storage in any case�

The opposite convention is in place for subclasses of DoubleLinearSolver
that operate on dense matrices� These invariably perform the factorization
in place� overwriting the matrix data� While having two di�erent conven	
tions is far from ideal� we felt it unwise to enforce unnecessary copying of
matrices in the dense case for the sake of conformity�

�
�
� Creating a Subclass of ProblemFormulation

Having de�ned and implemented a new subclass of DoubleLinearSolver�
the user must now arrange so that the new solver� rather than the default
linear solver� is created and used by the quadratic programming algorithm�

In Section ��
�� we described how subclasses of LinearSystem are used
to solve the linear systems arising in interior point algorithms� We give
speci�c examples of how an instance of LinearSystem designed to handle
our example QP formulation �
� assembles a matrix and right	hand side
of a system to be passed to a general	purpose linear solver� which would
normally be an instance of a subclass of DoubleLinearSolver� In this
manner� we have separated the problem	speci�c reductions and transforma	
tions� which are the responsibility of instances of LinearSystems� from the
solution of matrix equations� which are the responsibility of instances of
DoubleLinearSolver�

��



On the other hand� the nature and properties of the DoubleLinearSolver
will a�ect the e�ciency and feasibility of problem	speci�c reductions and
transformations� Moreover� when the LinearSystem assembles the matrix
equations to be solved� it must assemble the matrix in a format acceptable
to the linear solver� To ensure that a compatible set of objects is created�
the DoubleLinearSolver� the matrix it operates on� and LinearSystem are
created in the same routine�

As we discussed in Section ��
��� OOQP contains classes�speci�cally�
subclasses of ProblemFormulation�that exist for the express purpose of
creating a compatible set of objects for implementing solvers for QPs with
a given formulation� The makeLinsys methods of these classes is� naturally�
the place in which appropriate instances of subclasses of LinearSystem are
created� As we discussed in the earlier section� code for creating a compatible
collection of objects can become quite involved� so it is natural to collect this
code in one place� OOQP�s approach is to place this code in the methods
of subclasses of ProblemFormulation�

To use a new DoubleLinearSolver with an existing problem formu	
lation� one must create a new subclass of ProblemFormulation� Since
the code needed to implement a subclass of ProblemFormulation depends
strongly on the speci�c data structures of the problem formulation� it is
di�cult to give general instructions on how to write such code� How	
ever� we describe below the appropriate procedure for users who wish to
work with a sparse variant of the QpGen formulation �
�� changing only the
DoubleLinearSolver object and retaining the data structures and other
aspects of the formulation that are used in the default �MA
�	based� solver
supplied with the OOQP distribution� To accommodate such users� we have
created a subclass of ProblemFormulation called QpGenSparseSeq� which
holds the code common to all formulations of QpGen that uses sparse se	
quential linear algebra� Users can create a subclass of QpGenSparseSeq in
the following way�

class QpGenSparseMySolver 
 public QpGenSparseSeq �

public


QpGenSparseMySolver� int nx� int my� int mz�

int nnzQ� int nnzA� int nnzC ��

LinearSystem � makeLinsys� Data � prob�in ��

��

The constructor may be implemented by simply passing its arguments through
to the parent constructor�

��



QpGenSparseMySolver

QpGenSparseMySolver� int nx� int my� int mz�

int nnzQ� int nnzA� int nnzC � 


QpGenSparseSeq� nx� my� mz� nnzQ� nnzA� nnzC �

�

�

The implementation of the makeLinsys method is too solver	speci�c to be
handled by generic code� but the following code fragment� which is based on
the �le src�QpGen�QpGenSparseMa���C� may give a useful guide�

LinearSystem � QpGenSparseMySolver

makeLinsys� Data � prob�in �

�

QpGenData � prob � �QpGenData �� prob�in�

int n � nx � my � mz�

�� Include diagonal elements in the matrix� even if they are

�� zero� Enforce by inserting a diagonal of zeros�

SparseSymMatrix � Mat �

new SparseSymMatrix� n� n � nnzQ � nnzA � nnzC ��

SimpleVector � v � new SimpleVector�n��

v��setToZero���

Mat��setToDiagonal��v��

IotrRelease� $v ��

prob��putQIntoAt� �Mat� �� � ��

prob��putAIntoAt� �Mat� nx� ���

prob��putCIntoAt� �Mat� nx � my� � ��

�� The lower triangle is now � Q � �

�� � A C �

MyLinearSolver � solver � new MyLinearSolver� Mat ��

QpGenSparseLinsys � sys

� new QpGenSparseLinsys� this� prob�

la� Mat� solver ��

IotrRelease� $Mat ��

return sys�

�

�




We emphasize that users who wish to alter the MA
�	based implementation
of the solver for the sparse variant of �
� only by substituting another solver
with similar capabilities to MA
� will be able to use these examples directly�
by inserting the names they have chosen for their solver into these code
fragments�

��� Specializing the Representation of Vectors and Matrices

Although the OOQP linear algebra layer provides a comprehensive set of
linear algebra classes� as described in Section �� some users may wish to
use a di�erent set of data structures to represent vectors and matrices� This
could happen� for instance� when the user needs to embed OOQP in a larger
program with its own data structures already de�ned� The design of OOQP
is �exible enough to accommodate user	de�ned linear algebra classes� In
this section� we outline how such classes can be written and incorporated
into the code�

The vector and matrix classes need to provide methods that� for the most
part� represent simple linear algebra operations� such as inner products and
saxpy operations� The names are often self	explanatory� those that are spe	
ci�c to the needs of the interior	point algorithm are described in the class
documentation accompanying the OOQP distribution� We note� however�
that e�cient implementation of these operations can require a signi�cant
degree of expertise� especially when the data structures are complex� We
recommend that users search for an existing implementation that is com	
patible with their data storage needs before attempting to implement the
methods themselves� As a rule� it is easier to create OOQP vectors and
matrix classes that wrap existing libraries than to write e�cient code from
scratch�

To specialize the representation of vectors and matrices� one must create
subclasses of the following abstract classes�

OoqpVector
 Represents mathematical vectors�

GenMatrix
 Represents nonsymmetric and possibly nonsquare matrices as
mathematical operators�

SymMatrix
 Represents symmetric matrices as mathematical operators�

DoubleStorage
 Contains the concrete code for managing the data struc	
tures that hold the matrix data�

�




DoubleLinearSolver
 Solves linear systems with a speci�c type of matrix
as its coe�cient�

LinearAlgebraPackage
 Creates instances of vectors and matrices�

We have outlined how to create a new subclass of DoubleLinearSolver

in the preceding section� The remainder of this section will focus on the
other new subclasses� We will not describe the methods of these classes in
detail� because the majority of them are familiar mathematical operations�
We refer the reader to the class documentation accompanying the OOQP
distribution for a description of these methods�

The code in the problem formulation layer is implemented b using the
abstract linear algebra classes described above� Objects in the problem
formulation layer can be created by using instances of user	de�ned subclasses
to represent linear algebra objects� We have discussed in the preceding
section and in Section ��
�� the use of the ProblemFormulation class in
creating a compatible set of objects in the problem formulation layer� Users
who wish to specialize the representation of vectors and matrices will also
need to create at least one new subclass of ProblemFormulation�

The header �le src�Vector�OoqpVector�h de�nes the abstract vector
class� The header �les de�ning the other abstract classes may be found
in the subdirectory src�Abstract� As a rule� the �les needed to de�ne a
particular implementation of the linear algebra layer are given their own
subdirectory� Some existing implementations are located in the following
directories�

src�DenseLinearAlgebra�

src�SparseLinearAlgebra�

src�PetscLinearAlgebra�

Users may wish to refer to these implementations as sample code� Be	
cause DenseLinearAlgebra and SparseLinearAlgebra share the same vec	
tor implementation� SimpleVector� this code is located in its own directory�
named src�Vector� Several linear solvers have also been given their own
subdirectories below the directory src�LinearSolvers�

OOQP does not attempt to force matrices and vectors that are repre	
sented in signi�cantly di�erent ways to work together properly� For instance�
the distribution contains no method that multiplies a matrix stored across
several processors by a vector whose data is stored on a tape drive attached
to a single processor� Nor do we perform any compile	time checks that only
compatible linear algebra objects are used together in a particular implemen	
tation� Such checks would require heavy use of the C�� template facility�
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and we were wary of using templates because of the portability issues and
other costs that might arise� Rather� we endeavored to design our problem
formulation classes in a way that makes it di�cult to mix representations
of linear algebra objects accidentally� �We suggest that users who are modi	
fying the matrix and vector representations follow this design�� Commonly�
we downcast at the start of a method� For example� the following code frag	
ment downcasts from the abstract OoqpVector class to the MyVector class�
which the mult method in MySymMatrix is intended to use�

void MySymMatrix

mult � double beta� OoqpVector$ y�in�

double alpha� OoqpVector$ x�in �

�

MyVector $ y � �MyVector $� y�in�

MyVector $ x � �MyVector $� x�in�

�

Subclasses of DoubleStorage are responsible for the physical storage of
matrix data on a computer� The physical data structure might be as sim	
ple as a dense two	dimensional array� In a distributed	computing setting�
it could be much more complex� Instances of DoubleStorage are rarely
used in an abstract setting� The code will know precisely what type of
DoubleStorage is being used and what concrete data structures are be	
ing used to implement it� Thus� many of the methods of a subclass of
DoubleStorage will be data	structure speci�c�

By contrast� each subclass of DoubleStorage will be associated with
subclasses of GenMatrix and SymMatrix that are used primarily in an ab	
stract� data	structure	independent fashion� Subclasses of GenMatrix and
SymMatrix generally implement their methods by calling the structure	
speci�c methods of a subclass of DoubleStorage� By using this design
in OOQP� we were able to separate abstract mathematical manipulations
of matrices and vectors from details of their representation� Accordingly� in
creating their subclasses� users should feel free to implement any structure	
dependent methods they need in their implementation of the DoubleStorage
subclass� whereas their implementations of the GenMatrix and SymMatrix

subclasses should adhere more closely to the abstract interface�
We emphasize the following points for users who wish to create subclasses

from the matrix classes� Matrices in OOQP are represented in row	major
form� and row and column indices start at zero� Adherence to these con	
ventions will make it easier to refer to existing implementations in designing
new versions of the linear algebra layer� Symmetric matrices in OOQP
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store their elements in the lower triangle of whatever data structure is be	
ing used� For some linear algebra implementations� it might be desirable
to symmetrize the structure� explicitly storing all elements of the matrix�
despite the redundancy this entails� If this approach is chosen� one should
be careful to treat the matrix as if only the lower triangle were signi�cant�
as subtle bugs may arise otherwise�

Subclasses of OoqpVector represent mathematical vectors and should
adhere closely to the abstract vector interface� The methods of OoqpVector
typically operate on the entire vector� Access to individual elements of the
vector should be avoided�

Users who implement their own representation of vectors and matrices
will also need to specialize the LinearAlgebraPackage class� This class has
the following interface �see src�Abstract�LinearAlgebraPackage�h��

class LinearAlgebraPackage �

protected


LinearAlgebraPackage�� ���

virtual �LinearAlgebraPackage�� ���

public


virtual SymMatrix � newSymMatrix� int size� int nnz � � ��

virtual GenMatrix � newGenMatrix� int m� int n� int nnz � � ��

virtual OoqpVector � newVector� int n � � ��

�� Access the type name for debugging purposes�

virtual void whatami� char type���� � � ��

��

Instances of LinearAlgebraPackage do nothing more than create vectors
and matrices on request� Our reason for including this class in the OOQP
design is to provide a mechanism by which abstract code can create new
vectors and matrices that are compatible with existing objects� The code
cannot call the operator new on a type name and still remain abstract� Use
of LinearAlgebraPackage� on the other hand� allows users to create new
vectors and matrices� without referring to speci�c vector and matrix types�
by invoking the newVector� newSymMatrix� and newGenMatrix methods of
an instance of LinearAlgebraPackage�

Instances of LinearAlgebraPackage are never deleted� Because these
instances are small� the memory overhead is normally insigni�cant� How	
ever� it is customary to arrange so that each subclass of LinearAlgebraPackage
has at most one instance� as in the following code fragment�

class MyLinearAlgebraPackage 
 public LinearAlgebraPackage �

��



protected


DenseLinearAlgebraPackage�� ���

virtual �DenseLinearAlgebraPackage�� ���

public


static MyLinearAlgebraPackage � soleInstance���

�� ���

�

MyLinearAlgebraPackage � MyLinearAlgebraPackage

soleInstance��

�

static

MyLinearAlgebraPackage � la � new MyLinearAlgebraPackage�

return la�

�

The use of such a scheme is optional�
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