
Paper for the 16th Annual Midwest Computer Conference:

Need for Multiple Approaches in
Collaborative Software Development

David J. LePoire

DePaul University / Argonne National Laboratory
ANL 900:C-30, 9700 S. Cass Ave, Argonne IL, 60439

dlepoire@anl.gov / 630-252-5566

The submitted manuscript has been created by
the University of Chicago as Operator of
Argonne National Laboratory (“Argonne”) under
Contract No. W-31-109-ENG-38 with the U.S.
Department of Energy. The U.S. Government
retains for itself, and others acting on its behalf,
a paid-up, nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare
derivative works, distribute copies to the public,
and perform publicly and display publicly, by or
on behalf of the Government.

mailto:dlepoire@anl.gov

Paper for the 16th Annual Midwest Computer Conference:

Need for Multiple Approaches in
Collaborative Software Development*

David J. LePoire

DePaul University / Argonne National Laboratory
ANL 900:C-30, 9700 S. Cass Ave, Argonne IL, 60439

dlepoire@anl.gov / 630-252-5566

Abstract

The need to share software and reintegrate it into new applications presents a difficult but
important challenge. Component-based development as an approach to this problem is
receiving much attention in professional journals and academic curricula. However,
there are many other approaches to collaborative software development that might be
more appropriate. This paper reviews a few of these approaches and discusses criteria for
the conditions and contexts in which these alternative approaches might be more
appropriate. This paper complements the discussion of context-based development team
organizations and processes. Examples from a small development team that interacts
with a larger professional community are analyzed.

Problem

The need to share software and reintegrate it into new applications is a difficult but
important problem. The component-based model for collaborative software development
has serious limitations that depend on the context in which it is developed and used.
Component-based development is useful only if the components are reused. To be
reused, the components must be created at the correct granular level, be flexible enough
for customization, not be flexible that they require an inordinate number of specifications
or implement a resource-wasting general algorithm, and be communicated and accepted
by a community of developers. As software development proceeds, the decision must be
made to 1) look for already developed (internal or third-party) components, 2) develop
the customized code from scratch, or 3) develop a more general component that will
satisfy both the current project and potential future needs.

There is no single solution. The decision strongly depends on the context of the project,
the development teams, and their collaborative environment. The effort involved in the
first option includes research to find, evaluate, and estimate cost. Sometimes the
component is very rich and has a language of its own. If so, the development team
requires a learning curve to integrate the component. If the component is complex, the
compatibility of the component with the project might not be known until much research
and prototyping are done. If the team will likely reuse the component, it might make
sense to acquire and document the knowledge. The effort for custom development does
not include the learning period but does include more extensive development time,

mailto:dlepoire@anl.gov

without recovering this effort later in reuse. The effort for the general component
development includes both the development effort required to satisfy the project
requirements plus the effort necessary to generalize, document, and communicate the
component.

User interface components were the first components to be widely used and accepted by a
large community. Third-party vendors for Visual Basic led the development after the
innovative RAD interface development tool was released in the early 1990s. These
components can be relatively simple to use and create (e.g., specialized text boxes) or
very complex (e.g., graphics, report, and interactive mapping components). However, the
user interface components usually solve some set of common problems faced by software
developers and therefore have a wide market.

Components for modeling and web services are a bit more difficult to use and generate
because their functionality is not as defined and general. For example, in modeling
situations, there are many levels of assumptions and granularity levels. The application
of a general modeling component in an application that requires only a limited set of
features might generate unacceptable development overhead and also run-time behavior
that is not very efficient.

Approach

In a series of recent Association for Computing Machinery (ACM) Communications of
the ACM editorials in the “Business of Software” column, Phillip Armour (2000, 2001a,
2001b) has called for a multiplicity of approaches to be used by software development
teams. These approaches correspond to the level of knowledge that the team has. Based
on his “Levels of Ignorance” model, these teams are:

• Tactical teams: Everything is known (e.g., configuration management tasks).
• Problem-solving teams: The question is known, but the solution is not (e.g.,

software debugging).
• Creative teams: The questions are not known, but the process to derive the

questions is known.
• Learning teams: No process to derive the questions is known (i.e., the team “does

not have a suitably efficient way to find out they don’t know that they don’t know
something”).

He asserts that most software development projects are usually a mix of these teams for
different aspects of the project at different times. Processes should be developed for
moving from one level of ignorance to the next by capturing the mundane tasks. For
example, learning teams attempt to construct some common models and language to
develop a process to find the questions. Creative teams take this process and apply it to
the specific application to derive the appropriate questions. Problem-solving teams can
develop processes for handling a set of questions, and finally tactical teams can
implement the specific solutions.

The multiple levels of processes are designed to store knowledge at the appropriate level
without impinging on creativity. The above analysis assumes that the project teams are
somewhat isolated when they work. In other situations, a loose confederation of software
teams might be collaborating (or competing) to develop software tools to facilitate
discrete functionality and further integration. In these situations, it becomes more
difficult to develop standardization and therefore know the questions. Without knowing
the questions, a greater flexibility is needed to address changing applications and
functions.

Other approaches for collaborative development include open sourcing of integrating
templates, wrapping legacy software packages with XML and database interfaces, and
constructing visual programming platforms. These approaches will be reviewed within
the context of the following set of criteria:

• Flexibility
• Software dissemination
• Support for collaboration
• Ability to support legacy software
• Development costs
• Quality assurance (QA)
• Maintenance issues (life-cycle development).

The open source approach does not necessarily mean that the source for a set of methods
is made available so others can contribute to the next version. It can also mean that a
template or example applications are developed with a set of components being
integrated together with scripting. These templates solve part of the problem of the
software sharing approach when it only involves components. The templates shorten the
learning curve by allowing the developers to search and slightly modify the templates
that most closely match their application without fully understanding the details of the
component methods and properties.

Wrapping legacy codes and adding the ability to communicate with them through
standard databases or XML enables quick exploration of potential uses while technology
flexibility is maintained. Existing engineering models have traditionally been developed
by using legacy languages such as FORTRAN. While they might be structured, they
typically are not object-oriented nor database driven, but instead are tightly integrated
with flat file data stores. This has led to a plethora of software that seems to solve very
similar problems. Organizations have begun to question this approach, and alternatives
have been explored to interconnect legacy models while their performance, user’s
satisfaction, and most importantly their QA, are maintained. The QA for many of these
codes is derived for the length of the code use and the variety of cases to which end-users
have applied them.

Some approaches for handling the wrapping of these software packages include parsing
out the separable modules and reintegrating them into a generic object framework.
Another compatible approach is to construct a metadatabase of the models’ needs along

with options for controlling the model options and assumptions. This last method leads
to a very generic wrapper that then can be easily specialized into objects or components
for different modeling needs. The metadatabase maintains the engineering models’
connection between the computation model and data. It also allows for a facilitated
construction of the user interface and ensuring consistency in data communication among
the integrated models.

Yet another technique for sharing software is by constructing a visual programming
interface that allows a predefined and limited connection of components. These
techniques have visual appeal for simplicity but usually eventually lead to cumbersome
limitations due to the assumptions that were integrated into the visual programming
platform. A tool from Sun for Java (JavaStudio) was highly hyped but dropped within
about a year due to lack of interest.

Results

These approaches were explored through concrete examples and context-specific
evaluations. These examples and discussions led to some general criteria to consider
when considering an appropriate approach to collaborative software development that
could be used within an information systems or software engineering curriculum or
development team guidelines (Table 1).

In the environmental field, modeling plays a critical role in connecting current data and
knowledge with predictions of future events and environmental states. Environmental
problems are quite challenging to solve because of the complex relationships among
many contributing factors, both natural and man-made (Constanza et al. 1993).
Moreover, these problems need to be addressed not only by environmental engineers and
regulators but also by concerned members of the public and nongovernmental
organizations. Their demands on environmental modeling often conflict because
predictions need to be accurate yet easily understood, communicated, and explored. The
increasing complexity of environmental codes also places a demand on the end user, who
must translate the real environmental problem into the conceptualization allowed by the
model and its options. Information on assumptions and options must be conveyed to the
user to ensure that the model is applied and interpreted correctly. Open communications
about the model, interface, and data components would enable software applications to be
more easily developed.

In a visual integration framework, development and testing are divided into two levels:
(1) development of modules and (2) end-user integration and implementation through a
single visual programming framework. This framework works as long as it is flexible
enough to meet various needs. However, it is very difficult to leverage new technology
within the framework, since the user-interface, data manipulation, and modeling
connections are already specified and implemented. This system can facilitate the
exploration of a specific environmental problem by a single end user but can cause
difficulties for a user community that is trying to follow a regulatory process. Also, the

burdens of model integration and application are on the end user. (Frames 1.1 and
GoldSim [Whelan et al. 1997; Whelan and Nicholson 2001] are examples of this type of
system.)

Quite a large set of tools is being developed to further separate the roles of modelers and
integrators and the four components (data, models, interface, and connection). Some
model integration tools include the Argonne National Laboratory (ANL) DIAS system
(Sydelko et al. 1999) and the U.S. Environmental Protection Agency (EPA) MIMS
system. These tools offer a system of utilities for model integration and data
communication. The DIAS tool is based on the concept of using models to provide
methods for a higher-level conceptualization of an object. This allows both new
development and the wrapping of existing models. However, there are many other ways
to accomplish this wrapping and object integration with commercial tools (J2EE,
ColdFusion [Forta 1998], Microsoft [MS] .NET [Hollis and Lhotka 2001]) that might not
supply the same utility support but allow a flexible integration with commercial
components.

One commercial system that seems to have a good approach to using templates as an
integrator of components is the Environmental Systems Research Institute ArcIMS
system (ESRI 2001), an Internet-based system for supplying geographic information
system (GIS) maps and data. The main map-rendering application is deployed on a
server. The developer works with this service and is supplied with a default set of tools
to develop a user interface for the manipulation and display of the maps. The interface
components are object-oriented but written in a client scripting language (JavaScript).
This allows the component provider (ESRI) to provide a flexible template to the
integrator to customize the user interface for the end user. The ArcIMS services are
based on the ESRI MapObjects; however, the package also supports connectors to these
components via a series of techniques (e.g., servlets, ASP, ColdFusion) and generates
template applications in Javascripting of the components. The Javascript is organized so
that the end user can quickly explore the template and customize the application without
a deep understanding of the component model. This ability to see the source code that
integrates the components has led to rapid application development with this set of tools
without a large training investment.

To demonstrate the leveraging of existing codes through wrapping and communication
through XML and databases, an environmental code for determining environmental risks
was wrapped, used for a slightly different purpose, and connected to a new user interface
that included GIS and visualization components (LePoire et al. 2001). Furthermore, the
results can be made accessible on the Internet through a simple web browser interface,
giving users easy access to the model, data, and visualizations. This technique allowed a
quicker response and more flexibility than the traditional component development
approach, because all the inputs and outputs of the model were available through a
standard database connection. The wrapping was performed on the FORTRAN code and
placed into a Visual Basic object as a DLL. Connections between the Visual Basic object
and the other applications were made through ColdFusion scripting.

Variations of this technique were used to connect two existing environmental risk
assessment codes. Data dissemination through an XML web service into codes was also
demonstrated.

Discussion

Four different approaches to collaborative software development have been explored,
including the component-based model. The model for matching a software process to a
software development team’s needs was used as a template for making a similar
matching between the collaborative model and the team.

This work resulted in identifying two dimensions of the software: flexibility and
integration level. Flexibility relates to the amount of standardization that can be
supported in the application domain. If the domain is not mature, innovation and
prototyping can be facilitated with templates and customizable scripting for final
integration. Lower-level functionality can be wrapped with the latest technology,
supported with database or XML connections. If the domain is more mature, with
standards, then the integration can be accomplished with a visual programming interface.
The lower-level functions can be captured in components. However, this more stable
technique is not only affected by domain maturity but also by technology maturity.

A review of uses of these techniques in the domain of environmental risk analysis has
shown the advantages and disadvantages of the techniques. Experience has demonstrated
the need to try to match the collaborative software development done by disparate
organizations in this maturing domain.

References

Armour, P.G., 2000, “The Five Orders of Ignorance,” Communications of the ACM, Vol.
43, No. 10, October.

Armour, P.G., 2001(a), “The Laws of Software Process,” Communications of the ACM,
Vol. 44, No. 1, January.

Armour, P.G., 2001(b), “Matching Process to Types of Teams,” Communications of the
ACM, Vol. 44, No. 7, July.

Constanza, R., et al., 1993, “Modeling Complex Ecological Economic Systems,”
BioScience 43, Sept.

ESRI, 2001, ArcIMS 3, Redlands, Calif., http://www.esri.com/software/arcims/, accessed
Sept. 2001.

Forta, B., 1998, The ColdFusion Web Application Construction Kit, Que, Indianapolis,
Ind.

Hollis, B., and R. Lhotka, 2001, VB.NET Programming with the Public Beta, Wrox Press,
Birmingham, U.K., Feb.

LePoire, D.J., et al., 2001, OpenLink: A Flexible Integration System for Environmental
Risk Analysis and Management,” ANL/EAD/TM-114, Argonne National Laboratory,
Argonne, Ill., Oct.

Sydelko, P.J., et al., 1999, “A Dynamic Object-Oriented Architecture Approach to
Ecosystem Modeling and Simulation,” Proceedings of the 1999 American Society of
Photogammetry and Remote Sensing (ASPRS) Annual Conference, Portland, Ore., May
19-21.

Whelan, G., et al., 1997, Concepts of a Framework for Risk Analysis in Multimedia
Environmental Systems, report by Pacific Northwest National Laboratory, Richland,
Wash., Oct.

Whelan, G., and T. Nicholson (editors), 2001, Proceedings of the Environmental
Software Systems Compatibility and Linkage Workshop, Draft, Pacific Northwest
National Laboratory, Richland, Wash., June.

TABLE 1 Criteria for Collaborative Software Approaches

Criteria

Component-Based

Database, XML, and
Wrapping

Templates and
Scripting

Visual

Programming
Framework

Description

Functionality is built from the
bottom up. Although the
component can support
multiple interfaces, the
granularity requirements can
not be easily changed.

Development and testing are
divided into three levels:
modules, integration, and end
use. This approach allows
module reuse and swapping and
provides the ability to develop
flexible end-user interfaces and
data management.

Templates are developed for a
set of basic functions. These
examples can be customized
by using standard scripting
languages.

Development and
testing are divided
into two levels: (1)
modules and (2) end-
user integration and
implementation
through a single
visual programming
framework.

Maintainability

Customization must be done to
ensure proper communication
between components. While
the components and
integrations are maintained
separately, the integrator is
dependent on the component
developer to supply
appropriate interfaces.

Modules are maintained by the
developers. Standards are agreed
upon and followed in module and
data specification. Integration
can be done in a number of ways,
depending on the requirements.

This is easy to script but
difficult to document since a
function might be
implemented throughout
many files.

The framework must
have one specified
standard. All codes
must go through the
standard to be
incorporated.

Dissemination

Modules can be distributed with the integrated application. Later
modules can be maintained on distributed servers.

The templates can be
distributed, but the
customization is difficult to
share.

Framework and
modules are installed
separately.

Validation and
verification
(V&V) and QA

Each module maintains its own V&V. Applications are connected
to the modules by integrators who ensure assumptions are
appropriately compatible for the application V&V.

Templates can be subject to
QA. The customization is
more difficult to test.

Modules can be
V&V'd, but V&V of
the integration
process is up to the
end user.

Flexibility

Components can be
interchanged if their interfaces
are compatible. However,
specializing components might
result in large performance
losses.

Modules can be added,
substituted, and modified with
flexible connections to other
modules. This practice allows for
flexibility in both the module
level and the integration level.

Great flexibility is achieved
because the source code is
available and is functional
without modification.

Modules can be
added as long as they
fit the framework's
fixed structure.
Modules cannot be
flexibly integrated
for other potential
integrating
frameworks.

Use of legacy
software

Components could be
developed from wrapped
software; however, it is
difficult to divide functionality
of existing codes without
access to the source code.

Legacy code can be "wrapped"
for use with other codes. Some
functions can be called
separately. A modularized
version of the model would be
more flexible.

Scripting can be used to
connect components or
wrapped legacy codes.

It is difficult to
incorporate legacy
code without a large
effort to modularize
it to conform to the
framework's fixed
structure.

Support for
cooperation

Development is very efficient
if the scope of functions and
integration applications are
well known.

Modules and data can be shared
for different applications.
Different applications can be
constructed with the shared
modules to accommodate the
different requirements of the
agencies.

Templates can be a good way
to share code in a rapidly
changing environment.

All agencies can
develop their own
modules, but they
must conform to the
framework structure.
It may be difficult to
construct one
structure to satisfy
the needs of all
agencies and
organizations.

Development costs

Development is efficient when
the components will be reused
in similar situations. This
occurs when the problems are
well defined.

Modularization and structural
flexibility lead to efficient reuse
and development of modules
while maintaining an efficient
user interface.

Development costs are small
at first, but the maintenance
and dissemination of
customized templates lead to
inefficiencies.

Modularization leads
to more efficiency,
but effort can be
expended on
conforming the
modules to a
structure that is not
efficient and
effective.

	Paper for the 16th Annual Midwest Computer Conference:
	Need for Multiple Approaches in
	Collaborative Software Development
	David J. LePoire

	Paper for the 16th Annual Midwest Computer Conference:
	Need for Multiple Approaches in
	Collaborative Software Development*
	David J. LePoire

	Abstract
	Problem
	Approach
	Results
	Discussion
	References

