
   1

Flow of a Two-Dimensional Liquid Metal Jet in a Strong Magnetic Field 

 

S. Molokov1, C. B. Reed2 

1Coventry University, School of Mathematical and Information Sciences, Priory Street, Coventry 

CV1 5FB, UK 

2Argonne National Laboratory, Technology Division, 9700 South Cass Avenue, Argonne, IL 

60439, USA 

 

Abstract 

Two-dimensional, steady flow of a liquid metal slender jet pouring from a nozzle in the presence 

of a transverse, nonuniform magnetic field is studied. The surface tension has been neglected, 

while gravity is shown to be not important. The main aim of the study is to evaluate the 

importance of the inertial effects. It has been shown that for gradually varying fields 

characteristic for the divertor region of a tokamak, inertial effects are negligible for N > 10, 

where N is the interaction parameter. Thus the inertialess flow model is expected to give good 

results even for relatively low magnetic fields and high jet velocity. Simple relations for the jet 

thickness and velocity have been derived. The results show that the jet becomes thicker if the 

field increases along the flow and thinner if it decreases.  
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1.  Introduction 

 

Liquid metal free-surface flows offer the potential to solve the lifetime issues limiting 

solid surface designs for tokamak reactors by eliminating the problems of erosion and thermal 

stresses [1], [2]. They also provide the possibility of absorbing impurities and possibly helium for 

removal outside of the plasma chamber. In the US ALPS divertor concept this role is fulfilled by 

a curtain of liquid metal jets [1].  

One of the most important problems for the liquid-metal divertors is the 

magnetohydrodynamic (MHD) interaction. When a liquid metal flows in a magnetic field, 

electric currents are induced. These currents in turn interact with the magnetic field and the 

resulting electromagnetic force induces a high MHD pressure drop and significant 

nonuniformities of the velocity profile. Although some experimental and theoretical work on the 

MHD jet flows has been performed, many issues still need to be resolved (see a review in [3]). 

Among the most important ones are the effects of nonuniform magnetic fields, inertia, surface 

tension, and gravity on both the jet cross-section and trajectory. 

The main aim of this paper is to study inertial effects in a steady jet flow in a nonuniform 

magnetic field. As an initial step two-dimensional flow of a slender jet in the presence of a 

nonuniform, transverse magnetic field is considered. Surface tension effects are neglected, while 

the effect of gravity is shown to be negligible. The assumption of two-dimensionality means that 

the flow is confined laterally by two perfectly conducting sidewalls. Away from the immediate 

vicinity of the sidewalls the flow is two-dimensional (cf. [4]).  

It should be emphasized that the jets in the divertor have a finite cross-section, and that 

the walls are either insulating or have a finite conductivity, so that this particular model flow has 

its  limitations in terms of direct applicability to real divertor flows. In such flows inertial effects 



   3

are difficult to analyse. In contrast, the geometry studied here presents an opportunity to get an 

assessment of the importance of inertial effects and to derive simple relations for the jet velocity 

and thickness, which may be used to verify numerical methods being developed for more realistic 

geometries. 

 

2.  Formulation 

 

Consider a steady flow of a viscous, electrically conducting, incompressible fluid in a jet 

pouring downward in the ∗x -direction (the direction of gravity) from a nozzle (Fig. 1). Here 

),,( ∗∗∗ zyx  is the Cartesian co-ordinate system. Dimensional quantities are denoted by letters 

with asterisks, while their dimensionless counterparts - with the same letters, but without the 

asterisks. For ∗x  < 0 the flow is between two parallel electrically insulating plates located at 

2/∗∗ ±= ay , while for ∗x  > 0 there is a free-surface flow. The location of the free surface is 

defined as follows: )( ∗∗∗ ±= xhy . The flow is supposed to be symmetric with respect to ∗y , and 

therefore flow for ∗y  > 0 only will be considered. 

The flow occurs in the presence of a strong, transverse magnetic field yB ˆ)/2(0
∗∗∗∗ = axBB , 

where ∗
0B  is the induction of the uniform magnetic field in the upstream region. The magnetic 

field is supposed to be uniform ( yB ˆ0
∗∗ = B ) within the duct region, and nonuniform within the jet 

region. This is not an essential assumption but rather a matter of convenience only. 

Laterally the flow is confined by perfectly conducting sidewalls located at ∗∗ ±= Lz , which 

are connected through a resistor, so that the resulting electric field ∗E  is supposed to be given 

(see the discussion below). In this case, sufficiently far from the sidewalls the electric current 
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flows in the ∗z -direction only, while the flow may be considered two-dimensional, in the 

),( ∗∗ yx -plane [4].    

The characteristic values of the length, the fluid velocity, the electric current density, the 

electric field and the pressure are 2/∗a , ∗∗∗ = aQv /0  (average velocity in the duct region), 

∗∗σ 00 Bv , ∗∗
00Bv  and 2

00
∗∗∗σ Bva , respectively. In the above, σ, ρ, ν are the electrical conductivity, 

density and kinematic viscosity of the fluid, ∗Q  is the flow rate. Then the steady, dimensionless, 

two-dimensional, inductionless equations governing the flow are [3]: 
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where u and v are the x- and y- components of the fluid velocity, respectively, p is the pressure, jz 

is the z-component of current, 2/1
0 )/( ρνσ= ∗∗BaHa  is the Hartmann number, which expresses the 

ratio of the electromagnetic to the viscous force, ∗∗∗ ρσ= 0
2

0 / vBaN  is the interaction parameter, 

which expresses the ratio of the electromagnetic to the inertial force, 2
00/ ∗∗σρ=δ Bvg  is the 

parameter, which expresses the ratio of the gravitational to the electromagnetic force. In fact, 

parameter δ equals (FrN)-1 [3], where gavFr ∗∗= /2
0  is the Froude number. Typical values of 

dimensionless parameters are given in Table 1, from which follows that δ is much lower than 

other terms in the momentum equation, and thus in the following gravity is neglected. 

 The symmetry conditions are: 

 0/ =∂∂ yu ,    v = 0    at y = 0. (1e,f) 
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The boundary conditions at the duct wall are the no-slip- conditions: 

 u = v = 0     at y = 1. (1g,h) 

The boundary conditions at the free surface are the kinematic and the dynamic boundary 

conditions: 

 'uhv = ,  0ˆ][ =⋅nS     at y = h(x), (1i,j) 

where [S] is the jump of the stress tensor across the free surface, 2/12 )'1/()ˆˆ'(ˆ hh +−= yxn  is the 

normal unit vector to the free surface pointing into the fluid (Fig. 1), and ‘ = d/dx. In Eq. (1j) 

surface tension term has been neglected. 

Far upstream the flow is fully developed, which requires 

 constant→∂∂ xp ,   0→v    as −∞→x . (1k,l) 

Finally, the solution is normalized using the condition of a fixed flow rate: 

 ∫ =
1

0

1udy    for x < 0,   and   ∫ =
)(

0

1
xh

udy    for x > 0. (1m,n) 

 

3.  High-Ha flow model 

 

In this section the problem defined by Eqs. (1) is analysed for high values of Ha and for 

sufficiently high values of N. The restriction on N is determined by the requirement that the flow 

remains laminar. Since no experimental data for transition to turbulence in a jet exist, we base the 

restriction on N on the available data for the duct flow. Therefore, we require that N/Ha > 0.004 

[5]. As follows from Table 1 this condition holds for all the three values of the field, and 

therefore the flow is expected to be laminar. 



   6

 In the following all the flow variables denote their core values. Terms O(Ha-1) are neglected.  

In a sufficiently strong magnetic field the flow region splits into the following subregions 

(Fig. 1): the cores C1, C2, the Hartmann layers H1, H2 of thickness O(Ha-1) at the wall and the 

free surface, respectively, and the internal parallel layer S at x = 0 of thickness O(Ha-1/2). The 

analysis shows that layer S is passive, and is not considered here. There are also corner layers at  

x = 0, y = ±1 (also being passive; not shown in the Fig. 1) with dimensions )()( 11 −− × HaOHaO .  

 The Hartmann layers H1, H2 provide matching conditions for the variables in cores C1 and 

C2. In the duct region (C1) this is the non-penetration condition (1h). In the jet region the 

Hartmann layer H2 vanishes to O(1). As a result for the core C2 the kinematic condition (1i) 

holds, while the dynamic condition (1j) reduces to 

 p = 0    at y = h(x). (2) 

The constant pressure of the surrounding medium is set to zero. 

 

3.1 Cores C1, C2 

The analysis for both cores goes along the same lines. In the cores the flow is inviscid. The 

inertial term xuuN ∂∂− /1  in Eq. (1b) is retained, while all other inertial terms in Eqs. (1b,c) are 

neglected. This requires that the jet is slender (h’ << 1) (see Appendix in [6]). Substituting Eq. 

(1a) into the truncated version of Eq. (1b) and using Eqs. (1c,d,f)  yields: 

 [ ] )(')()()()()(' 1 xuxuNxBxBxuExp −−+−= ,    v = yu’(x), (3a,b) 

where both u and p are functions of x only. 

 In the duct region the non-penetration condition (1h) holds. Then Eqs. (3a,b) and (1m) give 

the solution for the core C1 as follows: 



   7

 v = 0,    u = 1,    xEp )1( +−= , (4a-c) 

i.e. the Hartmann profile holds up to the junction. It should be noted that for E = -1 the pressure 

gradient is O(Ha-1) and is neglected since we are interested in O(1) terms only.  

For the jet region applying the kinematic condition (1i) to the core variables and using  

Eq. (1n) gives: 

 u(x) = h-1(x). (5) 

Applying condition (2) yields p = 0 in the whole jet region, while Eqs. (3a) and (5) give the 

following first-order nonlinear differential equation for h: 

 [ ])()(' 2 xBEhxBNhh +=     for x > 0. (6) 

This equation is to be solved numerically using the boundary condition h(0) = 1.  

 

4. Results 

4.1 Flow in a uniform field (B = 1)  

If the field is uniform, Eq. (6) yields a solution for the jet in an implicit form as follows: 

 { }111 1)1/()(ln −−− −+++= hEhEENx     for x > 0. (7) 

The interaction parameter N simply scales the x-co-ordinate. 

Variation of the jet thickness with xN for several values of E is shown in Fig. 2.  

The case E = -1, which approximates duct/jet flows of finite cross-section best, corresponds 

to infinite resistance between the sidewalls. Indeed, as follows from Eqs. (1a,m) and (5), for each 

x the total current through the duct cross-section equals to zero. Then from Eq. (7) follows that  

h = 1, so that the electric field fully compensates induced electromotive force (e.m.f.) in both the 

duct and jet regions, and there is no net electric current in the jet either.  



   8

As E increases from –1 to 0, the current in the jet region becomes non-zero, producing a 

Lorentz force opposing the fluid velocity. This Lorentz force is balanced by inertia. For all cases 

presented in Fig. 2, except for E = 0, inertia acts over a distance of about 2N-1, which is less than 

one value of the characteristic length for all the three values of the magnetic field presented in 

Table 1.   

For E = 0 (sidewalls shortcut) the solution can be obtained in an explicit form: 

 [ ] 11)( −−= Nxxh ,    Nxxu −= 1)( . (8a,b) 

This means that the jet is completely diverted in the ±y-direction at a distance x = N-1. The reason 

for this is that there is no electric field to compensate the e.m.f. This is similar to the result for a 

submerged two-dimensional jet studied in [7]. As N tends to infinity, the flow becomes 

inertialess, while the jet will be diverted in the ±y-direction right at the junction, in the S-layer.  

The physical significance of the flow for E = 0 is the following.  Consider an axisymmetric 

curtain with no dividing walls falling down vertically along the circumference of a tokamak. 

Then the geometry studied here approximates a radial-poloidal cross-section of such a curtain in 

a horizontal, transverse radial/poloidal field.  Since the flow is axisymmetric, the electric field 

vanishes identically, and thus the solution presented above applies. 

For E < -1, the electric field accelerates the jet, which becomes thinner.  

 

4.2 Flow in a nonuniform field for E = -1  

In the following the flow in a nonuniform magnetic field for E = -1 will be discussed. 

Consider first the inertialess flow. As ∞→N  Eqs. (5) and (7) give: 

 )()( xBxh = ,    )()( 1 xBxu −= , (9a,b) 
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i.e. the jet thickness equals B. Therefore, the jet becomes thicker if the magnetic field increases 

along the flow and thinner if the field decreases.  

For a finite N Eq. (7) is solved numerically. The results are presented in Fig. 3 for 

xBB γ−+= ∞ tanh)1(1 , where ∞B  is the induction of the uniform magnetic field as ∞→x , and γ 

is the gradient of the magnetic field equal to 0.2.  The small value of γ has been selected to reflect 

gradual variation of the magnetic field in the divertor area, over a distance of about 10 values of 

the characteristic length [8]. The results show that for both N = 334 and N = 83.5 the jet thickness 

is practically indistinguishable from the inertialess one, given by Eq. (9a). This result is valid for 

N > 10 for all the cases presented in Fig. 3. The difference between the cases N = 3.34 and N = ∝ 

is significant only for the field dropping by a factor of 4 in the downstream region (curves 1, 2 

and 3).  

 

5. Conclusions 

 

 Two-dimensional, steady flow of a liquid metal slender jet pouring from a nozzle in the 

presence of a transverse magnetic field has been studied. The surface tension has been neglected.  

 It has been shown that gravity is negligible, while inertial effects are negligible for N > 10. 

The thickness of the inertialess jet may be approximated by a simple expression h = B. The jet 

becomes thicker if the field increases along the flow and thinner if it decreases.  

 The work on flows of a jet with a finite cross-section, including surface tension and unsteady 

effects is in progress.   
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Table 1. Typical values of parameters for Li divertors for ma 005.0=∗ , smv /100 =∗ . 

Thermophysical data for Li have been taken from [3]. 

 

∗
0B  10T 5T 1T 

Ha 4308 2154 431 

N 334 83.5 3.34 

N/Ha 0.078 0.039 0.0078 

Fr 2039 2039 2039 

δ 61047.1 −⋅  61087.5 −⋅  41047.1 −⋅  
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Figure captions 

 

Fig. 1  Schematic diagram of the jet flow and flow subregions for high Ha. 

Fig. 2 Variation of h with xN for different values of E and for B = 1. 

Fig. 3 Variation of h with x for E = -1 and for various values of N and ∞B : ∞B = 0.25, N = 334 

(1),  ∞B = 0.25, N = 83.5 (2), ∞B = 0.25, N = 3.34 (3), ∞B = 0.5, N = 334 (4), ∞B = 0.5,  

N = 83.5 (5), ∞B = 0.5, N = 3.34 (6), ∞B = 1.25, N = 334 (7), ∞B = 1.25, N = 83.5 (8), 

∞B = 1.25, N = 3.34 (9), ∞B = 2, N = 334 (10), ∞B = 2, N = 83.5 (11), ∞B = 2, N = 3.34 

(12). 
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