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          \begin{abstract} 
In this paper a framework for developing a coherent theory of 
mathematics and physics together is described.  The main and 
possibly defining characteristic of such a theory is discussed: 
the theory  must maximally describe its own validity and 
completeness, and must be maximally valid and complete. 
Definitions of validity and completeness are based on those used 
in mathematical logic.  A coherent theory is universally 
applicable, so its domain includes intelligent physical systems 
that test the validity of the theory. Anthropic aspects of a 
coherent theory are discussed. It is suggested that the basic 
properties of the physical universe are entwined with and emerge 
from such a theory. It is even possible that the condition that 
there exists a coherent theory satisfying the maximal validity and 
completeness requirement is so restrictive that there is just one 
theory and one physical universe satisfying the theory. Other 
aspects include the proof that the meaning content of a coherent 
theory (or any axiomatizable theory) is independent of the 
information content of the theory.  The observation that language 
is physical is discussed. All symbols and words of any language 
necessarily have physical representations as states of physical 
systems that are in the domain of a coherent theory. This is an 
important property not enjoyed by any purely mathematical theory. 
An example of a physical representation of language is described 
in the appendix. 
         \end{abstract} 
 
 
\section{Introduction} 
 
It is perhaps obvious that there is a very close relationship 
between physics and mathematics. That theoretical physics is 
essentially mathematical in nature can be seen by a cursory 
examination of most any book on theoretical physics. Also 
theoretical physics is used to generate predictions that can be 
affirmed or refuted by experiment. Often these predictions are 
generated as outcomes of complex computations.  If these outcomes 
are numbers then they are compared with the numerical outcomes of 
relevant experiments.  The validity of a physical theory is based 
on many such comparisons between theory and experiment. Agreement 
constitutes support for the theory.  Disagreement between 
theoretical predictions and experiment erodes support for the 
theory and, for crucial experiments, may result in the theory 
being abandoned. 



 
Yet it  also seems that there is a disconnect between physics 
and mathematics.  One way to see the problem is to note that, from a 
foundational point of view, physics takes mathematics for 
granted.  In many ways theoretical physics treats mathematics much like 
a warehouse of different consistent axiom systems each with their set of 
theorems.  If a system needed by physics has been studied, it is 
taken from the warehouse, existing theorems and results are used, 
and, if needed, new theorems are proved. If theoretical physics 
needs a system which has not been invented, it is created as a 
new system.  Then the needed theorems are proved based on the 
axioms of the new system. 
 
The problem here is that physics and mathematics are considered 
as separate disciplines.  The possibility that they might be part 
of a larger coherent theory of mathematics and physics together 
is not much discussed.  For example basic aspects such as truth, 
validity, consistency, and provability are described in detail in 
mathematical logic which is the study of  axiom systems and their 
models \cite{Shoenfield}. The possibility that how these concepts 
are described or defined may affect their use in physics, and may also even 
influence what is true in physics at a very basic level has not 
been considered. (A very preliminary attempt to see how these 
concepts might be used in quantum mechanics is made in 
\cite{BenDTVQM}.) 
 
The situation in mathematics is different.  Here the problem is 
that most work in mathematics and mathematical logic is purely 
abstract with little attention paid to foundational aspects of 
physics. The facts that mathematical reasoning is carried out by 
physical systems subject to physical laws, and symbols, words, and 
formulas in any language, formal or not, are physical systems in 
different states, is, for the most part, ignored. In some ways 
the various constructivist interpretations of mathematics, 
ranging from extreme intuitionism \cite{Heyting} to more moderate 
views \cite{Bishop,Beeson} (see also \cite{Frankel}) do 
acknowledge this problem. 
 
However  most mathematicians and physicists ignore any 
limitations imposed by constructivist viewpoints.  Their 
activities appear to be based implicitly on the ideal or Platonic 
viewpoint of mathematical existence, i.e. that mathematical 
entities and statements have an ideal existence and truth status 
independent of any physical limitations \cite{Penrose} or an 
observers knowledge of them \cite{Hersh,Kline}. The "luscious 
jungle flora" \cite{Frankel} aspect of this view of mathematical 
existence compared to the more ascetic landscape \cite{Frankel} of 
more constructivist views is hard to resist. 
 
However, this viewpoint has the problem that  one must face the 
existence of two types of objects.  There are the ideal 
mathematical objects that exist outside space-time and the 
physical objects that exist inside of and influence the 
properties of space-time.  The existence of two types of objects 
that appear to be unrelated yet are also closely related is quite 
unsatisfactory. 
 



Another approach to mathematics is that of the formalist school 
\cite{Hersh,Kline}, Here mathematics is  considered to be in 
essence like a game in which symbol strings (statements or 
formulas) are manipulated according to well defined rules.  The 
goal is the rigorous proof of theorems. Mathematical entities 
have no independent reality status or meaning. 
 
In one sense the formalist school is related to physics in that 
provability and computability are closely related.  In work on 
computability and computational complexity 
\cite{Chaitin,Papadimitriou} it is clearly realized that 
computability is related closely to what can be carried out (in an 
ideal sense) on a physical computer. Yet, as has been noted 
\cite{DeutschMLQ}, the exact nature of the relationship between 
computations carried out by real physical computers and abstract 
ideal computers, such as Turing machines, is not clear. 
 
The influence of physics on mathematics is perhaps  most apparent 
in recent work on quantum information theory and quantum 
computing.  Here it has been shown \cite{Shor,Grover} that there 
exist problems that can in principle be solved  more efficiently 
on a quantum computer than by any known classical computational 
algorithm. Also the increased efficiency of simulation of physical quantum 
systems on quantum computers \cite{Feynman,Zalka,Wiesner,Abrams} 
compared to simulation on classical systems is relevant to these considerations. 
 
The problems on the relationship between physics and mathematics 
have been considered by others. In his insistence that 
"Information is Physical" Landauer \cite{LandauerIP} also 
recognizes the importance of this relationship.  His reference to 
the fact that, according to Bridgman, mathematics should be 
confined to what are in essence programmable sequences of 
operations, or that mathematics is empirical \cite{Bridgman}, 
supports this viewpoint. Similar views on the need for an 
operational characterization of physical and set theoretic 
entities has been expressed \cite{Svozil}. 
 
Other attempts to show the importance of physics on the 
foundations of mathematics include work on randomness 
\cite{BenRAN} and on quantum set theory \cite{Finkelstein,Takeuti} 
(see also \cite{Nishimura}).  Recent work on the relationship 
between the Riemann hypothesis and aspects of quantum mechanics 
\cite{Odlyzko,Crandall} and relativity \cite{Okubo}, and efforts 
to connect quantum mechanics and quantum computing with logic 
should be noted \cite{Ozhigov,Buhrman,Schmidhuber} along with 
efforts to connect mathematical logic with physics 
\cite{Tegmark,Spector,Foschini}. 
 
In spite of this progress both the lack of and a need for a 
coherent theory of mathematics and physics together remain.  One 
view of this is expressed by the title of a paper by Wigner 
\cite{Wigner} "On the unreasonable effectiveness of mathematics in 
the natural sciences". One does not know why mathematics is so 
effective and an explanation is needed. Even though the paper was 
published in 1960, it is still relevant today.  A related 
question, "Why is the physical world so comprehensible?" 
\cite{Davies} also needs to be answered. 



 
The purpose of this paper is to examine in more detail some 
aspects of the relationship between physics and mathematics.  The 
goal is to work towards the development of a coherent theory of 
mathematics and physics.  In particular  the main (and possibly 
defining) characteristic of such a theory is proposed and 
discussed. This is that the theory should {\em maximally describe 
its own validity and completeness}, and it should {\em be 
maximally valid and complete}. It is also possible that this 
condition is so restrictive that there is only one theory that 
satisfies this condition. Furthermore, it may also be the case 
that the  uniqueness of the theory implies that there is only one 
physical universe that satisfies the theory. 
 
These ideas will be discussed in the following sections. The approach 
suggested here is to work towards a coherent theory of mathematics 
and physics by combining mathematical logical concepts  with 
quantum mechanics or some suitable generalization such as quantum 
field theory. As such the purpose of this paper is to provide a 
background or framework of ideas which will guide future work on the 
construction of a coherent theory of mathematics and physics. 
 
Since mathematical logic deals with axiomatizable theories based 
on formal languages and their models, theories described here will 
also be considered as formal axiomatic systems. This does {\it 
not} mean that physics and mathematics should adopt formal 
methods in the proofs and derivations of new results and 
theorems. The reason for taking this approach is that semantic 
and syntactic aspects or theories and their interpretations are 
clearly separated. Also the distinction between the domain of 
discourse of the theory and metatheoretical aspects is made clear. 
 
It should be noted that there are many axiomatizations of physical 
theories in the literature. In particular axiomatizations of 
quantum mechanics and quantum field theory have been much studied. 
These include algebraic approaches \cite{Mackey,Haag}, quantum 
logic approaches \cite{BirkhfVnN,Jauch} and others \cite{Hardy}. 
These axiomatizations which are often quite mathematical and 
rigorous, could be axiomatized in the formal sense discussed here. 
However, in common with most axiomatizations of mathematical and 
physical theories, this is not done as it is not necessary for the 
purposes of the studies. 
 
\section{A Coherent Theory of Mathematics and Physics} 
\label{CTMP}  The basic idea is that a coherent theory of 
mathematics and physics includes a coherent description of both 
the mathematical and physical components of the universe.  The 
theory must also satisfy a basic and possibly defining 
requirement. That is, the coherent theory must be able to 
maximally describe its own validity and completeness and it must 
be maximally valid and complete. 
 
If quantum mechanics, or some suitable generalization such as 
quantum field theory, is taken as the physical component, then a 
coherent theory of mathematics and quantum mechanics must satisfy 
the basic requirement.  It must maximally describe its own 
validity and completeness and it must be maximally valid and 



complete. 
 
\subsection{Validity and Completeness in the Requirement} 
 
It is expected that the definitions of validity and completeness 
for the coherent theory will be similar to those used in 
mathematical logic \cite{Smullyan,Shoenfield}. A formal theory is 
valid if all formulas or expressions in the language of the theory 
that are theorems are true. The theory is complete if for each 
closed formula (an expression with no free variables) either it or 
its negation, but not both, is a theorem. Group theory, the theory 
of real numbers, and nonatomic Boolean algebra are examples of 
complete theories. As shown by G\"{o}del \cite{Godel} there are 
also incomplete theories. Examples include arithmetic, set theory, 
and any other theory that includes arithmetic. 
 
Here the definitions of validity and completeness  must take into 
account that one is dealing with a theory that includes both 
mathematics and physics.  An informal definition of validity is 
that the theory is valid if each property of a physical system in 
the domain of the theory, that is predicted by the theory and is 
capable of experimental verification or refutation, is in fact 
verified by experiment. 
 
The definition of validity says that for each physical property 
of a system, if there is a theorem of the theory stating that the 
system has the property, then it must be true, provided it can be 
experimentally verified.  It follows from this\footnote{This is 
based on the logic of if-then statements which are true if the 
"if" part is false.} that a theory is valid if it makes no 
predictions at all.  Less extreme cases are included in which a 
theory makes very few predictions, which must be true. 
 
These possibilities can be removed by requiring that the theory be 
maximally complete. Here one follows mathematical logic by 
defining a coherent theory to be complete if for each property of 
a physical system in the theory domain, either it or its negation, 
but not both, is predicted by the theory and is capable of 
experimental test. 
 
As is well known, quantum mechanics is not complete in this sense. 
For instance if one assumes that single measurements  of 
observables on quantum systems are properties of physical systems, 
then incompleteness follows from the predictability of expectation 
values only of observables; individual measurement outcomes are 
not predictable. Also there may well be other complex properties, 
including those that are self referential and similar to those 
used by G\"{o}del in his proof of the first incompleteness theorem 
\cite{Godel}, that cannot be predicted or measured.  This is the 
reason for the qualification of {\em maximal} for validity and 
completeness in the requirement for the coherent theory of 
mathematics and physics. 
 
In the definitions of validity and completeness, physical 
procedures enter in two places: the determining of which 
statements are theorems and thus are testable physical properties, 
and validity testing of these predictable properties. For theorems 



physical procedures are important to the extent that theorem 
proving can be implemented on a real physical computer. Methods 
for implementing this are based on the arithmetization of proofs 
by use of G\"{o}del maps and the requirement that arithmetic and 
other operations can be implemented on a physical computer. 
 
For physical theories, and a coherent theory of physics and 
mathematics, physical procedures also enter with the validity 
requirement that there exists an experimental test for any 
predictable property. This creates a problem in that predictability 
of a property for a physical system does not guarantee that there 
exists  a physical procedure for determining whether the system has 
or does not have the property. 
 
The problem here is that there is no way so far to define 
physical implementability for procedures.  This includes 
procedures for preparing systems in different quantum states and 
procedures for measuring observables, represented by self adjoint 
operators in an algebra of operators. It is clear that for many 
states of complex quantum systems and for many observables it is 
very unlikely that there exist efficiently implementable physical procedures for 
preparing the states and measuring the observables. 
 
Examples of these states include complex entangled states of 
multicomponent systems of the type studied by Bennett et al 
\cite{Bennettetal}.  Examples of observables include projection 
operators on these entangled states. A related example is based on 
the observation that efficient physical implementability is not 
preserved under arbitrary unitary transformations of self adoint 
operators \cite{BenEIPSRN}. Thus if the observable $ \check{O}$ is 
efficiently implementable it does not follow that 
$U\check{O}U^{\dagger}$ is implementable for arbitrary unitary 
$U$. It has also been noted that there is a problem in determining 
exactly which logical procedures or algorithms are physically 
implementable \cite{DeutschMLQ}. This problem is especially 
relevant for quantum computer algorithms as it is not at all clear 
which are efficiently physically implementable and which are not. 
 
The requirement that a theory maximally describe its own validity 
and completeness means that there are one or more formulas in the 
language of the coherent theory that can be interpreted to mean 
that the theory is maximally valid and complete.  These formulas 
are likely to be very complex as they must somehow express the 
concepts of truth and provability for the theory.  As such these 
formulas may not be theorems of the theory. 
 
To see why, it is easier to consider an alternate form of the 
requirement. This is that the coherent theory of mathematics and 
quantum mechanics must be maximally self consistent. That is, the 
theory must refer to its own consistency as much as is possible 
and it must be consistent. 
 
The usefulness of this form of the requirement is based on the 
properties of consistency.  An axiom system is defined to be 
consistent if not all formulas are theorems, or, equivalently, if 
it has a model. A model is a universe of objects, relations, and 
functions, etc., in which relations are either true or false and 



the various symbols and formulas of the theory obtain meaning 
through their interpretation as objects or relations in the model. 
 
These definitions show the importance of consistency as 
inconsistent axiom systems are useless in that any formula, as a 
statement in the language on which the axiom system is based, is a 
theorem. Also all formulas based on an inconsistent axiom system 
are meaningless as they have no interpretation in a model. 
 
G\"{o}del's second incompleteness theorem 
\cite{Shoenfield,Smullyan,Godel} is directly applicable to the 
problem at hand because it says that if a theory is consistent and 
is strong enough to express consistency of the theory, then the 
formula expressing consistency is not a theorem of the theory. 
Also the theorem applies to any extension of the theory in which 
the formula expressing the consistence of the original theory is 
provable. 
 
Based on this, any formula in the language of the coherent theory 
of physics and mathematics that expresses the consistency of the 
theory is probably not a theorem of the theory.  It is also likely 
to be the case that any formula expressing the validity and 
completeness of the theory is also not a theorem of the theory. 
However the lack of theoremhood for these formulas are not 
theorems says nothing about whether they are true or false.  This 
is taken care of by the second part of the requirement; namely, 
that a coherent theory be maximally valid and complete. This part 
includes the requirement that the formulas expressing the validity 
and completeness of the coherent theory are true. 
 
So far the requirement has been expressed in two forms, one using 
consistency and the other using validity and completeness.  At 
present it is not clear which form is preferable.  It is 
suspected, based on a very simple model \cite{BenDTVQM,BenUMLCQM}, 
that the form expressed using validity and completeness is 
stronger. For this reason the form of the requirement, as 
originally stated in terms of validity and completeness, will be 
used in the rest of the paper. 
 
 
\subsection{Universal Applicability} \label{UA} 
 
Another property that a coherent theory of mathematics and physics 
should have is that it is universally applicable. This includes 
both the physical and mathematical components of the theory. Since 
quantum mechanics or some generalization is, at present, the 
physical theory assumed to be universally applicable, it is 
expected that a coherent theory of mathematics and physics 
is a coherent theory of mathematics and quantum mechanics that 
maximally describes its own validity and completeness and must be 
maximally valid and complete. 
 
Universal applicability of the mathematical component is taken 
into account by including mathematical logical concepts with 
quantum mechanics.  Since mathematical logic includes the study 
of mathematical systems as axiomatizable systems and their 
interpretations, universal applicability means that all the 



mathematical systems used in quantum mechanics and its extensions 
that are in use or may be used in the future are included. Also 
included are basic properties of physical and mathematical 
theories, such as truth, validity, completeness, consistency, and 
provability, that are treated in mathematical logic. A coherent 
theory would be expected to combine these concepts with quantum 
mechanics. 
 
At this point it is not clear how to exactly define universal 
applicability for the physical component of the theory, or whether 
one should even separate the theory into mathematical and physical 
components.  In the case of quantum mechanics, one view 
\cite{Tegmark1} is that defining universal applicability to 
include all physical systems means that one must accept the 
Everett interpretation \cite{Everett,Wheeler1} of quantum 
mechanics. This interpretation assumes that the whole universe is 
described by a quantum state evolving according to quantum 
dynamical laws. 
 
One way to avoid this may be to assume that universal 
applicability means that the theory is applicable only to systems 
that are subsystems or part of other larger systems that are in 
turn subsystems of other still larger systems.\footnote{A more 
precise statement of this might be: (1) If the theory is 
applicable to subsystem $A$, then there exist many subsystems $B$ 
that contain $A$ and to which the theory is applicable. (2) There 
are many subsystems $A$ to which the theory is applicable. 
Furthermore the definition of "many subsystems" must be 
sufficiently broad to include all subsystems accessible to state 
preparation and experiment.} This includes both open and closed 
subsystems including those that may be isolated for a period of 
time. 
 
The exact definition is probably best left to further development 
of a coherent theory. However the definition should be such to 
include subsystems described by a finite number of degrees of 
freedom and many systems, such as quantum fields, that are 
described by an infinite number of degrees of freedom. 
 
Based on this condition, universal applicability supports the 
requirement that the coherent theory maximally describe its own 
validity and completeness.  To see this one notes that validation 
of a physical theory includes the comparison of theoretical 
predictions with the results of experiment.  In general the 
theoretical calculations and predictions are made by computers 
and experiments are carried out by robots or intelligent systems 
using different pieces of equipment.  The validation process is 
carried out by intelligent systems. If the coherent theory is 
universally applicable then the dynamics of the computers, 
robots, experimental equipment, and intelligent systems carrying 
out the validation must be described by the physical dynamical 
laws of the theory. 
 
The importance of the requirement of universal applicability is 
that the properties and dynamics of the systems implementing the 
validation of the theory are included in the domain of 
applicability of the theory to the maximum extent possible. In the 



case of quantum mechanics or some suitable generalization this 
means that computers and robots are quantum mechanical systems 
with dynamics described by quantum dynamical laws.  This holds for 
both microscopic systems, such as quantum computers and quantum 
robots \cite{BenQR} and macroscopic systems such as classical 
computers and robots which are in very wide use at present. 
 
It also follows that intelligent systems are quantum mechanical 
systems.  The observation that the only known examples (including 
the readers of this paper) of intelligent systems are macroscopic, 
with about $10^{25}$ degrees of freedom, does not contradict the 
quantum mechanical nature of these systems. This may be a 
reflection of the possibility that a necessary requirement for a 
quantum system to be intelligent is that it is macroscopic. 
However, whether this is or is not the case, is not known at 
present. 
 
That intelligent observers are  both conscious self aware systems 
and quantum systems has been the basis for much discussion on 
consciousness in quantum mechanics 
\cite{Penrose,Stapp,Squires,Page}. Included are discussions on 
interactions between two quantum observers \cite{Wigner1,Albert}. 
These avenues will not be pursued here as they do not seem to be 
the best way to progress towards developing a coherent theory of 
mathematics and physics. 
 
 
It follows that the dynamics of the quantum systems carrying out 
the validation of quantum mechanics must be described by quantum 
dynamical laws.  Thus quantum mechanics must be able to describe 
the dynamics of its own validation process. However validation of 
a theory involves more than just describing the dynamics of the 
systems carrying out the validation.  Validation includes the 
association of meaning to the results of theoretical derivations 
and computations carried out by quantum systems (as computers). 
Meaning must also be associated to the results of carrying out 
experiments by quantum systems (as robots or intelligent systems). 
 
This association of meaning to the results of quantum processes 
is essential.  It is basic to determining which processes 
constitute valid procedures, either computational or 
experimental.  These processes are a very small fraction of the 
totality of all processes that can be carried out, most of which 
have no meaning at all.  They are neither computations or 
experiments. 
 
This association of meaning includes such essentials as the 
(nontrivial) assignment of numbers to the results of both 
computational and experimental process. A computation process or 
an experiment that halts  produces a complex physical system in a 
particular physical state.  What numbers, if any that are 
associated to the states depend on the meaning and validity of 
the process \cite{BenRNQM,BenRNQMALG}.  That is the process must 
be a valid computational or experimental procedure.  If it is 
valid then one must know the property to which it refers. This is 
needed to know the association between theoretical computations 
and experimental procedures. 



 
For example in quantum mechanics for some observable $O$ and 
state $\Psi$  one must be able to determine which of the valid 
computation procedures is a computation of the expectation value 
$\langle \Psi|O|\Psi\rangle$. One must also know which of the 
valid experimental procedures corresponds to a measurement of 
this expectation value.  As is well known the experiment must in 
general be repeated may times to generate the expectation value 
as a limit as $n\rightarrow \infty$ of the average of the first 
$n$ repetitions of the experiment. Association of meaning to 
these procedures also includes all the components involved in 
determining that appropriate limits exist for both the 
computation procedures  and experimental procedures. 
 
A coherent theory of mathematics and quantum mechanics must be 
able to express as much of this meaning as is possible.  Thus not 
only must it be able to express the dynamics of its own 
validation, but it must be able to express the meaning 
associations described above to the maximum extent possible. Thus 
it must be able to maximally describe its own validation. 
 
A similar argument applies to maximal completeness.  That is, 
there must be a sense in which a coherent theory includes all 
properties that are predictable and capable of experimental test. 
Of course the problem here lies in the exact meaning of "all 
properties that $\cdots$". One may hope and expect that a coherent 
theory would be able to express to the maximum extent possible the 
meaning of "all properties that $\cdots$". And it should also be 
able to express the condition that it is also maximally complete. 
 
The possibility that there may be no single theory that is 
maximally complete should also be considered.  Instead there may 
be a nonterminating sequence of theories of increasing 
completeness. This possibility will be discussed more later on. 
 
These arguments form the basis for the requirement that the 
coherent theory maximally describe its own validation and 
completeness.  However, being able to generate such a description 
does not guarantee that the coherent theory {\it is} valid and 
complete. A theory may be interpreted to express that it has some 
property, but it does not follow that it actually has that 
property. This possibility is excluded for the coherent theory by 
also requiring that it is maximally valid and complete. 
 
\subsection{The Coherent Theory and the Strong Anthropic Principle} 
 
The conditions that a coherent theory include both physics and 
mathematics and that it satisfy the requirement of maximal 
description of its validity and completeness and be maximally 
valid and complete, suggest that there may be a very close 
relation between the theory and the basic properties of the 
physical universe.  It may be the case that at a very basic level 
the basic properties of the physical universe are entwined with 
and may even be determined by a coherent theory that satisfies the 
requirements. 
 
Examples of such basic properties  that may emerge from or be 



determined by the coherent theory include such aspects as the 
reason for three space and one time dimension (See Tegmark 
\cite{Tegmark} for another viewpoint), the strengths and reason 
for existence of the four basic forces, why quantum mechanics is 
the valid physical theory, etc.. Even if few or none of these 
properties are determined, one may hope that the theory will shed 
new light on already explained basic properties. 
 
These possibilities suggest that a coherent theory with the 
requirement is related to the strong anthropic principle 
\cite{BarTip,Hogan,Greenstein}. This principle can be stated in 
different ways. One statement is that "The basic properties of the 
universe must be such that [intelligent]life can develop" 
\cite{BarTip}. Wheeler's interpretation as quoted by Barrow and 
Tipler \cite{BarTip} is that "Observers are necessary to bring the 
universe into being".  A stronger statement is the final anthropic 
principle \cite{BarTip} "Intelligent information processing must 
occur and never die out". 
 
The relation between this principle and a coherent theory can be 
seen by recasting the statement of the maximal validity and 
completeness requirement into an existence statement or condition: 
{\em There exists a coherent theory of physics and mathematics 
that maximally describes its own validity and completeness and is 
maximally valid and complete}. In this case the basic properties 
of the physical universe emerge from or are a consequence of the 
existence statement. That is, the basic properties of the physical 
universe must be such that the existence statement is true. 
 
Another way to state this is that the basic properties of the 
physical universe must be such that a coherent theory is 
creatable. Since intelligent beings are necessary to create such a 
theory, it follows that the basic properties of the physical 
universe must be such as to make it possible for intelligent 
beings to exist. Since the intelligent beings, as physical 
systems, are part of the physical universe, the theory must, in 
some sense, also refer to its own creatability. 
 
None of this implies that intelligent beings must exist, only 
that it must be possible for them to exist. Of course existence 
of intelligent beings is a necessary condition for the actual 
creation of such a coherent theory. 
 
\subsection{On the Possible Uniqueness of the Coherent Theory} 
The requirement that a coherent theory of mathematics and physics 
maximally describe its own validity and completeness and be 
maximally valid and complete would seem to be quite restrictive. 
Indeed one may speculate that the condition is so restrictive that 
there is just one such theory. 
 
One reason this might be the case is that if there were several 
different coherent theories each satisfying the requirement, then 
there would be several different physical universes, with the 
basic physical properties of each universe determined by one of 
the theories.  Yet we are aware of just one physical universe, the 
one we inhabit, with the basic properties determined by both 
physical theory and experiment. It follows that if the basic 



properties of the physical universe are determined by a coherent 
theory satisfying the requirement, then the existence of just one 
physical universe implies that there is just one coherent theory 
satisfying the requirement.  (Here coherent theories that may 
differ in some manner but determine the same physical properties 
of a universe are identified as one theory.) 
 
Another aspect that may restrict the number of acceptable 
coherent theories is the emphasis that the theory {\em maximally} 
describe its own validity and completeness and that it is {\em 
maximally} valid and complete.  There may well be many coherent 
theories that partly describe their own validity and completeness 
and are partly valid and complete.  If such theories exist, they 
would be eliminated by the requirements of maximal description of 
their own validity and completeness and that they are maximally 
valid and complete. 
 
Viewed from this uniqueness perspective, the basic statement that 
there exists just one coherent theory of physics and mathematics 
that maximally describes its own validity and completeness and is 
maximally valid and complete becomes a quite powerful axiom.  The 
reason is that it can be used with the arguments given above to 
obtain the result that there is just one physical universe with 
basic properties determined by the unique theory.  And this 
should be our universe. 
 
If this line of reasoning is indeed valid, then it would be very 
satisfying as it answers the question, "Why does our physical 
universe have the properties it does?". Answer:  The physical 
universe could not be otherwise as it is the only one whose 
properties emerge from or are determined by the coherent theory. 
No other universe is possible because there is just one coherent 
theory satisfying the maximality requirement and each such theory 
is associated with just one physical universe. 
 
At present this argument, although appealing, must be regarded as 
speculation. Whether it is true or not must await development of 
a coherent theory of physics and mathematics, if such is even 
possible. 
 
\subsection{Emergence of the Basic Properties of the Physical 
Universe} At present the main approach to physics seems to be that 
one assumes implicitly a physical universe whose basic properties 
exist independent of and a priori to a theoretical description, 
supported by experiment, of the universe.  This is implied by 
reference to experiments as "discovering properties of nature". A 
priori, independent existence of the physical universe is also 
implied in the expression used above "theoretical description, 
supported by experiment, of the universe". 
 
The approach to mathematics is much more variable as there are 
many different interpretations of the meaning of existence in 
mathematics \cite{Hersh,Kline,MarMyc}.  However, the Platonic 
viewpoint that is widely accepted, at least implicitly, is that 
mathematical objects exist a priori to and independent of a 
theoretical description of them with their properties to be 
discovered by mathematical research. 



 
Here it is suggested that one should regard the basic properties 
of the physical and mathematical universes as very much entwined 
with a coherent theory of mathematics and physics.  Neither the 
mathematical universe, physical universe, nor the coherent theory 
should be considered to be a priori and independent of the other 
two components.  The basic properties of all three components 
should be considered to be emergent together and mutually 
determined. 
 
This means that, for the relation between the 
physical universe and the coherent theory, the 
basic physical aspects of the physical universe should be 
considered to emerge from and be determined by the basic 
properties of a coherent theory of physics and mathematics. Also 
the basic properties of a coherent theory should, in turn, emerge 
from and be determined by the basic properties of the physical 
universe. 
 
It must be strongly emphasized that the emergence noted above does 
{\em not} mean that there is any arbitrariness to the basic 
physical properties and that an observer can choose them as he 
pleases. Rather the viewpoint taken here suggests that a coherent 
theory that maximally describes its own validity and completeness 
and is maximally valid and complete, is also maximally objective. 
The reason is that a maximally self referential theory refers to 
as much of its own consistency, validity, and completeness  as is 
possible, and the role of an observer or intelligent being is 
thereby minimized in determining the basic properties of the 
theory.  In this case the basic properties of the universe as 
described by a coherent theory must appear to any observer to be 
objective and real and maximally independent of the existence and 
activities of an observer. That is what one means by objectivity. 
 
In one sense the idea of the emergence of basic physical 
properties of the universe is already in use. This is based on the 
condition that the more fundamental properties of the physical 
universe require many layers of theory supported by experiment to 
give them meaning. Their reality status is more indirect as it 
depends on many layers of theory supported by experiment. 
 
For example the existence and properties of  atoms is indirect in 
that it is based on all the experimental support for the many 
theoretical predictions based on the assumed existence and 
properties of atoms.  One does not directly observe individual 
atoms.  Pictures of individual atoms taken with an electron 
microscope depend on many layers of theory and experiment to 
determine that a complex physical system is an electron microscope 
and that the output patterns of light and dark  shown on film or a 
screen  are not meaningless but have meaning as pictures of 
individual atoms. 
 
The physical reality and properties of more fundamental systems, 
such as quarks and gluons, are even more indirect than for atoms 
and depend on more intervening layers of theory and experiment. 
The same holds for neutrinos as fundamental systems whose reality 
status and properties are quite indirect. Experimental support for 



the existence of these particles depends on the layers of theory, 
which may include quantum electrodynamics, and all the supporting 
experiments needed to describe the proper functioning of large 
particle detectors and assigning meaning to the output of the 
detectors. 
 
A similar situation exists for large, far away objects such as 
quasars. The reality status and physical properties of these 
systems are based on the theories of relativity and interactions 
of electromagnetic fields, etc.. These are needed to interpret the 
observations made using telescopes and to describe the proper 
functioning of telescopes and other equipment used. 
 
On the other hand the reality status and some properties of other 
physical systems require little or no theoretical or experimental 
support.  For example, the existence and hardness of rocks or the 
existence of the sun and the facts that it is hot, bright and 
round, are directly observed properties. Little theory with 
supporting experiment is needed to make these observations. Other 
properties of these objects are more indirect. An example is the 
description of the sun as a gravitating body generating energy by 
thermonuclear fusion of hydrogen. 
 
It should be emphasized that none of the above implies that 
systems such as quarks, atoms, and quasars are any less real and 
objective than  are rocks and the sun.  Rather the point is that the reality of 
their existence  and their properties are more indirect and depends on more 
intervening 
layers of theory and experiment than is the case for rocks and 
the sun. Also the reality of all the properties of quarks, atoms 
and quasars, is indirect in its dependence on layers of theory 
and supporting experiment.  For nearby moderate sized objects 
some of the properties are quite direct and some are more 
indirect.  For example, as noted above, direct properties of the 
sun are that it is hot bright and round.  Indirect properties 
include the source of its energy. 
 
It is necessary to emphasize the importance of the intervening 
layers of theory and experiment needed to support the proper 
functioning and interpretation of complex equipment. Since most 
equipment involves the electromagnetic interactions between 
systems or between fields and systems, the theory of these 
interactions must be well understood to ensure that a given 
physical system is a properly functioning  piece of equipment. 
This is needed to to ensure that certain properties of the system 
represent output and that the output has meaning. 
 
\section{Basic Mathematical Properties and a Coherent Theory} 
 
So far relatively little has been said about basic mathematical 
properties and how they might be entwined with basic physical 
properties and a coherent theory of mathematics and physics. Here 
by basic mathematical properties  is meant those properties common 
to all theories, mathematical and physical, that are discussed in 
mathematical logic.  This includes the properties of truth, 
validity, consistency, completeness, and provability and the 
condition that all theories are considered to be axiomatizable 



systems where the axioms are designated expressions in some 
language suitable for expressing the various statements of the 
theory. 
 
Another basic property, discussed explicitly in mathematical 
logic, is the distinction between syntactical and semantic aspects 
of a theory \cite{Shoenfield}. Syntactic aspects are the purely 
formal aspects of a language and its expressions. Included are 
definitions of different symbols as variables, constants, function 
and relation symbols  of a language,  and definitions of symbol 
strings as terms and formulas or statements in the language. Also 
provability, completeness, and consistency have syntactical 
definitions. 
 
Semantic aspects of a theory are those associated with the 
meaning given to the symbols and expressions of a language 
through interpretations or maps of the symbols and expressions to 
informal or intuitive model universes. Truth is taken to be an 
informal intuitive concept, and validity is defined relative to 
this concept. 
 
These two aspects must be connected, and part of mathematical 
logic is concerned with theorems that relate syntactic and 
semantic aspects of an axiomatizable theory 
\cite{Shoenfield,MarMyc}. Included is G\"{o}dels completeness 
theorem for first order logic.  This theorem says that a formula 
is a theorem of the theory if and only if it is valid (i.e. true 
in all models of the theory)\footnote{A model of a theory is a 
universe of objects in which the axioms of the theory are true.}. 
Another theorem states that an axiom system is consistent if and 
only if it has a model. 
 
Entwining of these properties with those of a coherent theory of 
mathematics and physics results from the assumption that, in 
common with other theories, the statements of a coherent theory 
are expressible in some language with some of the statements 
corresponding to axioms of the theory.  If the theory is only 
partially axiomatizable or is not axiomatizable, then this should 
be discovered in future work towards developing such a theory. 
 
A coherent theory is different from purely mathematical theories 
in that models include physical universes.  Since it is assumed 
here that the theory is axiomatizable in first order logic, the 
various theorems relating syntactic and semantic properties would 
be expected to hold.  In particular G\"{o}del's completeness 
theorem relates the notion of provability  or theoremhood to 
physical truth. That is, a coherent theory is valid if all 
predictable properties of physical systems, as theorems of the 
coherent theory, are true, at least in the universe we inhabit and 
in any others, if they exist \cite{Deutsch,Tegmark}. 
 
Another property  that is important for a coherent theory, and for 
other mathematical and physical theories is the condition that it 
must be physically possible to make theoretical predictions. The 
truth of this property, which is taken for granted, is supported 
by the wide use of computers in mathematics and physics to make 
computations whose results (numerical and otherwise) are used as 



predictions of physical or mathematical properties. 
 
Yet this fact is quite nontrivial and involves many assumptions. 
Included is the requirement that there exist physical states of 
systems that represent numbers.  As discussed elsewhere in detail 
\cite{BenRNQM,BenRNQMALG,BenEIPSRN}, the meaning of this for 
natural numbers is that there exist physical systems with states 
on which the basic arithmetic operations, with properties 
determined by the axioms or arithmetic or number theory, are 
efficiently physically implementable.  Similar conditions were 
described for the other types of numbers, the integers and 
rational numbers. Although the emphasis of the discussion was for 
microscopic or quantum systems, the discussion holds also for 
macroscopic systems. 
 
The importance of this is that if it were not possible to 
represent numbers by states of physical systems, then computers 
would not exist and it would be impossible to carry out 
computations.  Predictions of properties, other than the most 
elementary and direct, would not be possible as there would exist 
no means to calculate or determine the property. Physics would not 
exist and it is doubtful that intelligent systems would exist as 
they can also carry out computations and make predictions. 
 
These arguments show explicitly the interrelationship between 
basic mathematical properties and physical systems.  Axioms of 
basic theories of different types of numbers are used as part of 
the conditions that must be satisfied so that physical systems 
admit states representing numbers. Also since a coherent theory of 
physics and mathematics is assumed to be axiomatizable, the well 
developed mathematical logical theorems and properties of this 
type of theory should apply. 
 
\section{Language is Physical} 
 
Another important aspect is based on the observation that the 
coherent theory, or any theory, must be expressed in some 
language.  All languages in existence, formal or informal, such as 
English, have the property that  they are based on the combination 
of symbols into strings of symbols or expressions.  For the 
discussion here it is immaterial whether a symbol string is or is 
not also a string of words. 
 
The point to note is that all symbols of a language are 
necessarily represented by physical systems in different states 
where the different states correspond to different symbols. This 
is the case for printed text, or for modulated waves moving 
through some medium as is the case for spoken language, or for 
language transmitted optically by use of photons. 
 
As an example of this representation, consider the text of this 
paper. Each letter, word, paragraph, etc. is represented by 
physical systems in different physical states. This is the case 
whether the paper appears as printed material on pages of paper, 
patterns of light and dark regions on a computer screen, or as 
time variations in phase and amplitude of sound waves as when one 
speaks or delivers a lecture. It also applies if the paper is 



represented as a large tensor product state of quantum systems 
where each letter of the language is represented by a state of a 
component quantum system in the tensor product. 
 
Additional details of a representation of language text in terms 
of the arrangements of ink molecules located on a 3 dimensional 
lattice of potential wells are described in the Appendix. This 
representation is just one of many possible. Others could be based 
on spin projection states of systems.  More generally, one can use 
any physical observable with a discrete spectrum  and eigenstates 
that can be associated with the language symbols. Also it must be 
possible to actually physically prepare systems in these 
eigenstates and to measure the properties of these systems 
corresponding to different properties of the language text. 
 
This is similar to the $k-ary$ representation of numbers in 
quantum computation as tensor products of individual qukit states. 
In many physical models these tensor product states are 
represented by corresponding tensor product states of composite 
quantum systems. Each component state in the tensor product may 
also correspond to an entangled state of several quantum 
systems.\footnote{One can also construct representations of 
numbers in which there is no correspondence between the tensor 
product representation of qukits and the states representing 
numbers. An example of this using complex entangled states for 
$k=2$ was shown in \cite{BenEIPSRN} for numbers $ < 2^{n}$ with 
$n$ arbitrary. A physical representation of numbers with entangled 
state structure representing that in the example is very unlikely 
to exist.  The reason is that a necessary 
condition that states of quantum systems represent numbers is that 
the basic arithmetic operations be efficiently physically 
implementable \cite{BenRNQM,BenRNQMALG,BenEIPSRN}.}  Examples of 
this are shown by various quantum error correcting codes 
\cite{QEC}. 
 
The importance of this aspect is emphasized by the observation 
that, if it were not possible to represent language by states of 
physical systems, it would not be possible to communicate or 
acquire knowledge, or even think. It is an essential part of the 
existence of intelligent observers, as language is an essential 
part of the communication of information. 
 
The basic requirement that language is physical is a different way 
to express Landauer's point that information is physical 
\cite{LandauerIP}.  It has the advantage that for formal languages 
one can relate the various mathematical logical properties of 
these languages and their interpretations to their physical 
representations. It also clearly separates the concept of meaning 
of the language from the information content of the language. That 
is, the representation of language or information by states of 
physical systems is quite independent of whether the language or 
information has any meaning and, if so, what the meaning is. 
 
One way to prove this independence is to note that for any 
axiomatizable theory there exists a computer program of finite 
length that can generate all the axioms of the theory.  This is 
based on the decidability for any formula whether it is or is not 



an axiom of the theory. It follows from this that there exists a 
computer program of finite length that can enumerate all the 
theorems of the theory even though as is well known it is not 
decidable if a formula is or is not a theorem.  Based on this the 
information content of an axiomatizable theory is defined to be 
the length of the shortest computer program that can enumerate the 
theorems of the theory \cite{Chaitin}. 
 
Assume the theory is consistent.  Then the formulas of the theory 
have meaning in that there exists a model of the theory in which 
the formulas have meaning and are true or false, based on their 
interpretation in the model. In particular the theorems are true. 
 
Now create a new theory by adding a new axiom which is the 
negation of one of the original axioms. The information content 
(in the sense of the shortest program required to generate the 
theorems) of the new theory is only slightly increased over that 
of the original theory as the new axiom is a copy of one of the 
original axioms with a negation symbol added. However the 
extended set of axioms is inconsistent so the new theory has no 
meaning  in that it has no model that satisfies the axioms. As a 
result all the formulas and theorems of the extended theory are 
meaningless. 
 
It follows that two theories  exist that have essentially the same 
information content but are radically different regarding their 
meaning.  One has meaning and the other does not. 
 
Another interesting aspect of a coherent theory of mathematics and 
physics that relates to the condition that language is physical, 
depends in part on the significance of G\"{o}del maps. These maps 
play an essential role in the proofs of the G\"{o}del 
incompleteness theorems for arithmetic and for any theory 
containing arithmetic \cite{Godel,Smullyan}. 
 
The proof of G\"{o}del's first incompleteness theorem is based on 
the construction of an arithmetic sentence (a formula with no 
free variables) that can be interpreted to express its own 
unprovability. If the formula is false, then, since arithmetic is 
consistent, the formula cannot be a theorem as no false formula is 
a theorem in consistent theories. So it must be true. But then it 
is unprovable and is not a theorem. The negation of the formula is 
also not a theorem as it is false. 
 
In arithmetic G\"{o}del maps are used to construct an arithmetic 
sentence referring to its own unprovability.  In essence a 
G\"{o}del map is a map from the symbols, words, and expressions of 
the language of a theory to the elements of a model universe or domain of 
applicability of the theory. It enables any observer who knows the 
map to interpret formulas of the theory as referring to their 
metatheoretical properties. These are properties that are outside 
the domain of applicability of the theory. Typically they 
characterize the different types of expressions, such as whether 
or not expressions are variables, terms, formulas, sentences, 
axioms, proofs, etc.. But any metaproperty that can be described 
by a formula of the language by means of a G\"{o}del map is 
included. 



 
For arithmetic there are many examples of different G\"{o}del maps 
in the literature.  An especially transparent one was suggested by 
Quine \cite{Quine}. (See \cite{Smullyan} for a description.) To 
generate the map add one extra symbol to the alphabet to stand for 
a spacer. Then all expressions in the language consist of words 
and word sequences separated by one or more spacer symbols. If the 
extended alphabet  has $n+1$ symbols, then the map assigns the 
numbers $0,1,\cdots ,n$ to the symbols.\footnote{These numbers are 
represented by $n+1$ numerals or digits.} The map is extended to 
all expressions by letting each expression correspond to a number 
in the base $n+1$, that uses the assignment of numbers to symbols. 
 
A specific example in the literature uses $12$ alphabet symbols 
and a spacer for arithmetic \cite{Smullyan}. Then each expression 
corresponds to a $13-ary$ representation of a number. For ordinary 
English, including the ten numerals and a spacer symbol but 
excluding punctuation marks, each expression as a string of words 
would correspond to a $37-ary$ representation of a number. 
 
These maps can be used in arithmetic to show that there are 
arithmetic or number theoretic formulas that can be interpreted to 
express all the metatheoretic properties used in the definition of 
provability or theoremhood for a formula.  These formulas can be 
used to construct an arithmetic formula, which is just a statement 
of some property of numbers, that can be interpreted to say that 
the $nth$ formula in the G\"{o}del numbering is not a theorem. 
This formula is used along with some additional steps to construct 
an arithmetic formula that expresses its own unprovability, which 
is needed for the proof. 
 
The reason for this somewhat detailed diversion into G\"{o}del 
maps is to emphasize the fact that for mathematical theories, 
such as arithmetic, the formulas are about numbers, or other 
suitable mathematical objects in the universe of discourse of the 
theory. Since the formulas themselves are not numbers or 
mathematical objects, none of their properties can be expressed 
by the formulas of the theory. It is the purpose of the G\"{o}del 
map to bridge this gap so that formulas can be interpreted as 
numbers. However the choice of the G\"{o}del map, limited only by 
some weak conditions that must be satisfied \cite{Smullyan}, is 
arbitrary and is up to the observer. It is also completely 
external to and is not a part of the theory to which it is being 
applied. 
 
For theories such as a coherent theory of mathematics and physics, 
that is universally applicable (see Section \ref{UA} for a 
discussion), the situation is different and rather interesting. In 
essence the point is that any physical representation of a 
language with its symbols, words, and expressions is necessarily 
in the domain of applicability of a coherent theory of mathematics 
and physics, or of any theory that is applicable to all physical 
systems. Since a physical representation is an essential component 
of a language, it follows that a coherent theory must describe the 
physics of any systems whose states represent the language and 
formulas of the theory. 
 



It is to be emphasized that the formulas of a coherent theory that 
is universally applicable, or of any physical theory, describe the 
physics of systems in their domain of applicability.  They make no 
mention of which states of which physical systems in the domain 
represent symbols and formulas in the language of the theory. 
 
However, each representation of symbols and formulas of the 
language by states of some physical systems corresponds to a 
G\"{o}del map. This includes the representation described in the 
Appendix. This is the case because any $1-1$ map from the symbols 
and formulas of the theory language to states of physical systems 
in the theory domain enables anyone who knows the map to interpret 
some formulas of the language as describing properties of the 
language and theory even though the formulas describe physical 
properties of physical systems.  Since there are many 
representations possible, and each representation corresponds to a 
G\"{o}del map, there are many possible G\"{o}del maps. But one 
must know which map is being used to interpret specific states of 
physical systems as symbols and formulas in the language of the 
theory. 
 
This mirrors the usual situation of the well known use of 
G\"{o}del maps in arithmetic.  Formulas of the language of 
arithmetic describe properties of numbers, which are the 
mathematical systems in their domain of applicability.  They make 
no mention of properties of formulas or formula sequences of the 
language. G\"{o}del maps enable anyone who knows the map to 
interpret arithmetic formulas that describe properties of numbers 
as describing properties of formulas and formula sequences and 
other properties of the language and theory of numbers. Since 
there are many G\"{o}del maps, there are many interpretations 
possible. 
 
The situation discussed here is different from the well known use 
of classical or quantum computers to represent numbers. In this 
case a representation is a map from the natural numbers, integers, 
or rational numbers, as elements of model universes for the 
corresponding theories of these number types, to classical or 
quantum states of physical systems 
\cite{BenRNQM,BenRNQMALG,BenEIPSRN}. Functions correspond to 
operations represented as operators on the physical states of the 
systems. If the functions are one-one the corresponding operators 
are unitary for quantum system states. 
 
The map does not correspond to a G\"{o}del map that maps all expressions 
of the language, including numeral strings and others interpreted as 
functions and relations, to physical states of physical 
systems.  This latter situation is the focus of this work, but for 
theories encompassing both mathematics and physics. 
 
The importance of these G\"{o}del maps for a coherent theory of 
mathematics and physics that is universally applicable should be 
noted. For mathematical theories, the condition that language is 
physical implies the existence of physical representations of the 
symbols, expressions, and sequences of expressions of the 
language. However these representations do not correspond to 
G\"{o}del maps because they are outside the domain of 



applicability of the theory. These representations are not maps 
from expressions in the language of the theory to elements of a 
model of the theory. 
 
The situation is different for physical theories whose domains are 
specific types of physical systems or are part of the physical 
universe. In this case, depending on the physical systems 
described by the theory, there may be representations or G\"{o}del 
maps of the expressions of the theory language as states of 
physical systems that are described by the theory.  However there 
are also in general other G\"{o}del maps of the language 
expressions to states of physical systems not in the domain of the 
theory. 
 
An example of this would be a physical theory describing the 
dynamics of ink molecules as particles with many closely spaced 
internal states of excitation, moving on a two dimensional space 
lattice of potential wells. The dynamics would be described by a 
specific model Hamiltonian.  As is seen in the Appendix, there exist 
G\"{o}del maps of formulas and sequences of formulas in the 
language of the theory to states of ink molecules on the lattice. 
 
However there also exist other G\"{o}del maps of the formulas to 
states of other physical systems not described by the theory. An 
example would be maps of the language symbols onto spin projection 
eigenstates of systems also on a two dimensional space lattice 
where the systems and their dynamics are not described by the 
theory in question. In this case the physics of these systems 
would be described by another theory having different axioms than 
the theory of ink molecules. 
 
This option is not available for a coherent theory that is 
universally applicable.  In this case all G\"{o}del maps as 
physical representations of properties of the language of the 
theory to states of physical systems are in the domain of the 
theory. For any such map there must be formulas of the language 
expressing properties of physical systems that can be interpreted 
by anyone knowing the map as statements about properties of the 
formulas and of the theory itself. 
 
This condition that all G\"{o}del maps or physical representations 
are necessarily in the theory domain might be expected to have 
some powerful consequences for a coherent theory of mathematics 
and physics that is universally applicable.  This is especially 
the case if the theory satisfies the maximal validity and 
completeness requirement.  That is it maximally describes its own 
validity and completeness and is maximally valid and complete. 
What these consequences are, if any, are not known at present. 
 
 
\section{Discussion}\label{D} 
At this point it is not known how to construct a coherent theory 
of mathematics and physics.  However the material presented here 
may help in that it should be regarded as a general framework for 
constructing such a theory. The details and many aspects of a 
coherent theory remain to be worked out. Also some or many of the 
points and aspects described may need modification.  However some 



of the points are expected to remain. 
 
First and foremost among the remaining points is the requirement 
that the coherent theory maximally describe its own validity and 
completeness and that it be maximally valid and complete.  This 
requirement is expected to greatly restrict the range of allowed 
theories.  It may even be so restrictive that just one theory 
satisfies it. 
 
The requirement also has the advantage that it automatically 
ensures that any theory satisfying it agrees with experiment. This 
follows from the definition of validity, that any physical 
property that is predictable by the theory and is testable by 
experiment, is true.  Maximal completeness ensures that the theory 
is maximally universally applicable as far as its predictive power 
is concerned. In other words the predictive power of the theory 
must be as strong or powerful as is possible. 
 
This raises the problem that if the requirement that the theory 
agree with experiment is built into the structure of the theory 
itself, then one might think that the theory is not falsifiable or 
even testable. This is not the case.  Even if the maximal validity 
and completeness requirement is built into the theory it still 
must be tested.  In particular the theory may be interpreted to 
state, by complicated expressions, that it satisfies the 
requirement. This would include a statement of  maximal agreement 
with experiment. But it this in fact the case? Is the theory 
statement of this true or false? One still has to carry out 
experiments to find out. 
 
One should also keep separate the requirement that the theory 
maximally agree with experiment from what the actual results are 
of carrying out the experiments.  For instance, incorporation of 
the maximal validity and completeness requirement into the theory 
may mean that the theory describe the existence of a map between 
a set of theoretical predictions and a set of experimental 
procedures, which are both described by the theory.  The theory 
would also describe general properties of the map that correspond 
to agreement between theory and experiment. 
 
However existence and general description of such a map in a 
coherent theory does not mean that a coherent theory is any 
different than present day physics regarding the need to carry 
out experiments to test the validity of theoretical predictions 
and determine detailed properties of the map. A coherent theory 
that satisfies the maximal validity and completeness requirement 
may deepen the understanding between physics and mathematics, and 
may even suggest new experiments, but it should not change the 
status or need to carry out experiments. 
 
It also may be the case that the most basic aspects of the 
physical universe are a direct consequence of the basic 
requirement that there exist a coherent theory that maximally 
describes its own validity and completeness and is maximally 
valid and complete. Included are the reasons why space-time is 
$3+1$ dimensional, why quantum mechanics is the correct physical 
theory, and predictions of the existence and strengths of the 



four basic forces.  However other aspects of the universe, which 
are also predictable by the theory, are not in this category and 
are subject to experimental test. This includes essentially all of 
the experimental and theoretical work done in  physics. 
 
There are also other possibilities to consider. For instance it 
may be the case that there is no single coherent theory.  Instead 
there may be a nonterminating sequence of  coherent theories, with 
each theory  more inclusive than those preceding it.  If this is 
the case then the $n+1st$ theory may include in its domain the 
requirement that the preceding $n$ theories all maximally agree 
with experiment.  But there may be other theoretical predictions 
in the $n+1st$ theory that are not present in the first $n$ 
theories whose experimental status is outside the domain of the 
$n+1st$ theory. 
 
This is one reason why the caveat of \emph{maximal} is present. 
Each theory in the sequence would describe its own validity and 
completeness to the maximum extent possible and would be valid 
and complete (this includes agreeing with experiment) to the 
maximum extent possible. But the amount of maximality, if such a 
concept is meaningful, would be different for the different 
theories. 
 
The possibility of a nonterminating sequence of theories is 
similar to the situation in the proof of G\"{o}del's second 
incompleteness theorem \cite{Shoenfield,Smullyan}.  There it is 
proved that, in any theory strong enough to express its own 
consistency, the formula expressing the consistency of the theory 
is not a theorem of the theory.  Also the theory can be extended 
to a more comprehensive theory in which the consistency of the 
original theory can be proved.  But then the formula expressing 
the consistency of the extended theory is not a theorem of the 
extended theory. 
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\appendix 
 
\section{Appendix} 
 
Many physical representations are possible for the symbols and 
expressions of a language.  Here a representation will be 
described that is based on the presence or absence of systems in 
small potential wells located on a two dimensional lattice of 
points on a solid state matrix. The description here will be 
quite simple and will be limited to the representation only. No 
dynamics corresponding to the generation of sequences of 
expressions, such as those that correspond to proofs, will be 
discussed. 
 
A physical representation considered here is a model for text on 
printed pages in that the systems in the potential wells are ink 
molecules.  Each symbol corresponds to a specific pattern of 



occupied wells surrounded by unoccupied wells. Expressions 
correspond to paths of symbols on the lattice.   A solid state 
matrix with all potential wells unoccupied corresponds to a blank 
page. Locations of the wells on the page are given by $X,Y$ 
coordinates $x,y$. Multiple pages can be considered by extending 
the lattice into three dimensions where $X-Y$ planes for 
different values of $Z$ correspond to different pages. 
 
Each potential well may or may not be occupied by ink molecules. 
Here an ink molecule is a complex system with many closely spaced 
internal states of excitation. The molecules are easily excited 
by absorption of ambient light of all visible wavelengths, and 
the excited states quickly decay by emitting cascades of infrared 
photons as heat or by transfer of phonons to the solid state 
matrix. 
 
The state of an ink molecule in the ground state of the potential 
well at $x,y$ in thermal equilibrium with an environment at 
temperature $T$ is given by 
\begin{equation} 
\rho_{x,y} = \sum_{E}\frac{e^{-E/kT}}{Z}|E,0\rangle_{x,y}\langle 
0,E|. \label{rhoxy} \end{equation}  Here $|E,0\rangle_{x,y}$ 
denotes the ink molecule in a state with excitation energy $E$ 
and in the ground state of the well located at lattice site 
$x,y$. $Z$ is the partition function that normalizes the state. 
It is also assumed that the combination of the shape and height 
of each potential well and separation of the lattice points are 
such that the states $|E,0\rangle_{x,y}$ and 
$|E,0\rangle_{x^{\prime},y^{\prime}}$ are essentially orthogonal 
whenever $x\neq x^{\prime}$ or $y\neq y^{\prime}$. 
 
To keep things simple the assumption is made that the energy 
spacing of the potential well states is large compared to $kT$ 
where $k$ is Boltzman's constant. Based on this Eq. \ref{rhoxy} 
is a good approximation to the state of the ink molecule in a 
well at $x,y$ as the probability of being in a state above the 
ground state of the well is very small. It is also assumed that 
the internal excitation state of an ink molecule is essentially 
independent of whether the environment is visibly dark or well 
illuminated with visible light, provided only that both 
environments are at the same temperature. 
 
The environmental bath also plays an important role in 
stabilizing the position states of the individual ink molecules 
to eigenstates of the individual potential wells.  For example 
ink molecule states of the form 
$$\sum_{E}\frac{e^{-E/kT}}{Z}\sum_{x,y,x^{\prime},y^{\prime}} 
c_{x,y}c^{*}_{x^{\prime},y^{\prime}}|E,0\rangle_{x,y}\langle 
0,E|_{x^{\prime},y^{\prime}}$$ would immediately decohere and 
stabilize \cite{Zurek,Zeh} to the diagonal form 
$\sum_{x,y}|c_{x,y}|^{2}\rho_{x,y}$ with $\rho_{x,y}$ given by Eq. 
\ref{rhoxy}. 
 
Let $\alpha$ be an arbitrary finite set of points on a lattice. 
The quantum state corresponding to one ink molecule in each well 
at all locations in $\alpha$ and all other wells unoccupied is 
given by 



\begin{align}\rho_{\alpha} & =  \bigotimes_{x,y\epsilon 
\alpha}\rho_{x,y} \nonumber \\ 
\mbox{} & =  \bigotimes_{x,y\epsilon 
\alpha}\sum_{E_{x,y}}\frac{e^{-E_{x,y}/kT}}{Z}|E_{x,y},0\rangle_{x,y}\langle 
0,E_{x,y}|. \label{rhoal} \end{align} 
 
Here symbols of a language correspond to sets of different 
patterns of closely spaced occupied wells. To this end let 
$\alpha_{S}$ be the set of occupied locations corresponding to 
the symbol $S$. A potentially useful characterization of the set 
$\alpha_{S}$ is in terms of a location $x,y$ that serves as a 
standard fiducial mark or location parameter for the symbol, and 
a set $b$ of scaling and other parameters needed to uniquely 
characterize the symbol $S$. Using this notation, which replaces 
$\alpha_{S}$ by $S_{x,y,b}$, Eq. \ref{rhoal} becomes 
\begin{equation} \rho_{S_{x,y,b}}=\bigotimes_{x,y\epsilon 
S_{x,y,b}}\rho_{x,y}. \label{rhoSxyb} \end{equation} 
 
Some examples will serve to clarify this. The straight vertical 
line extending for $n$ lattice sites in the $Y$ direction from 
$x,y$ to $x,y+n-1$ corresponds to the symbol $"|"$ located at 
$x,y$. The point $x,y$ locating one end of the symbol serves as a 
fiducial location convention for this symbol. For each $x,y$ the 
physical state of $"|"$ is given by $\rho_{|_{x,y,n}}= 
\otimes_{x^\prime =x}^{x+n-1}\rho_{x^{\prime},y}$  Other examples 
are the symbol $"/"$, a diagonal line of length $n$ whose state is 
$\rho_{/_{x,y,n}}= \rho_{\alpha}$ with $\alpha 
=\{x,y;x+1,y+1;\cdots ;x+n-1,y+n-1\}$, and the $"\top "$ symbol 
with horizontal arm of length $2m+1$ and state description 
$\rho_{\top_{x,y,n,m}}= \rho_{\alpha}$ where $\alpha = 
\{x,y;\cdots ;x,y+n-1;x-m,y+n-1;\cdots ;x+m,y+n-1\}$. The values 
of $n,m$ serve as scale factors for the symbols.  For example if 
"$_{\top}$" is described by $n,m$, then "$\top$", which is the 
same symbol but is twice as large, would be described by $2n,2m$. 
 
These examples and Eq. \ref{rhoSxyb} show the physical state 
representation for any printed symbol in a language for the 
printing model used here.  However languages are composed of 
ordered sets or strings of symbols, as words. In many cases the 
language expressions may be further organized into strings of 
words. The printed text of this paper is an example of a long 
string of words. 
 
For the representation considered here each word $W$ corresponds 
to an unordered set $\alpha_{W}$ of occupied locations that 
corresponds to a set of disconnected sets $\alpha_{S}$ for each 
symbol $S$ in $W$ and an ordering of the symbol sets. The (unoccupied) spacing 
between the sets $\alpha_{S}$ should be larger that the spacing, 
if any between the individual ink molecule locations within each 
$\alpha_{S}$. For reasons which will become clear soon, the 
ordering of the symbols $S$ in $W$ is separated from which symbols 
are in W. Note that the same symbol can appear more than once in 
a word. 
 
Let $B_{W}$ be the unordered set of symbols $S$ in the word $W$. 
The state $\rho_{B_{W}}$ is given by $\rho_{B_{W}} 
=\otimes_{S\epsilon W}\rho_{\alpha_{S}}$ with $\rho_{\alpha_{S}}$ 



given by Eq. \ref{rhoal} with $\alpha_{S}$ replacing $\alpha$. in 
terms of fiducial marks and scale factors 
\begin{equation}\rho_{B_{W\underline{x},\underline{y},\underline{b}}} 
=\bigotimes_{S \epsilon B_{W}}\rho_{S,\underline{x}_{S} 
,\underline{y}_{S},\underline{b}_{S}} \label{rhowd}\end{equation} 
with $\rho_{S,\underline{x}_{S}, 
\underline{y}_{S},\underline{b}_{S}}$ given by Eq. \ref{rhoSxyb}. 
The product is over all symbols  $S$ in  the set $B_{W}$ of 
symbols in $W$ at fiducial locations 
$\underline{x}_{S},\underline{y}_{S}$ and scale factors 
$\underline{b}_{S}$. Also $ \underline{x},\underline{y}, 
\underline{b}$ denote functions from the symbols in $B_{W}$ to 
$x$ and $y$ lattice positions and to a set of scale factors for 
the symbols. 
 
Since the lattice locations $\underline{x}_{S}, 
\underline{y}_{S}$  of the symbols in $\rho_{B_{W},\underline{x}, 
\underline{y},\underline{b}}$ are arbitrary, it is clear that 
this state does not represent a word state. In order for this 
state to represent a word $W$, the lattice locations of the 
symbols must be ordered according to the rule by which the word 
is read. 
 
For many languages, texts are often organized into lines of 
symbols in one space direction  with successive lines ordered in 
an orthogonal direction. Successive pages are then ordered in the 
third space direction. Here spatial distances between symbols, 
lines, and pages are used for the ordering. A specific example of 
this has symbols in a line of text on a page with locations 
corresponding to different values of $x$ and a fixed value of 
$y$. The symbols in the line are ordered according to their 
positions in the $X$ direction. Lines are ordered according to 
their positions in the $Y$ direction. Then if the values of 
$\underline{x}_{S},\underline{y}_{S}$ in the definition of 
$\rho_{B_{W}}$ are such that the $\underline{y}_{S}$ values are 
all equal ($\underline{y}_{S}=y$ for all $S$) then the state 
$\rho_{B_{W},\underline{x},\underline{y},\underline{b}}$ can be 
identified as a state for a word $W$, or 
$\rho_{B_{W},\underline{x},\underline{y},\underline{b}}=\rho_{W,\underline{x}, 
\underline{y},\underline{b}}$ where the letters in $W$ are 
ordered according to the ordering of their $x$ positions. 
 
For example let $B_{W}$ consist of the letters $\{l,a,h,t\}$. If 
the state $\rho_{B_{W}}$ is such that the $y$ values for  the 
four symbols are equal and 
$\underline{x}_{h}<\underline{x}_{a}<\underline{x}_{l}<\underline{x}_{t}$ 
then by Eq. \ref{rhowd} 
$\rho_{B_{W},\underline{x},\underline{y},\underline{b}}$ is the 
state for the word "halt" or 
$\rho_{B_{W},\underline{x},\underline{y},\underline{b}}=\rho_{halt,\underline{x}
, 
\underline{y},\underline{b}}$. 
 
The point of this rather pedantic exercise is to emphasize that, 
in this model, multisymbol states depend on the locations of the 
component symbols and on the scaling  or size of each symbol. In 
addition  the organization of these states into word states 



depends on the rules used to read the words. These rules are given 
by the dynamics of the reading process. In addition the dynamics 
of this process are not completely arbitrary.  They are subject to 
the requirement of efficient physical implementation. This 
requirement, which was discussed elsewhere in the context of 
representing numbers by states in quantum mechanics 
\cite{BenRNQM,BenRNQMALG,BenEIPSRN}, means that there must be a 
physical process which can read the text and that the space time 
and thermodynamic resources expended to implement the reading must 
be minimized. In particular the resources expended must not be 
exponential in the number of symbols read. 
 
It is worth discussing this in a bit more detail.   Consider for 
example symbols scattered about on an infinite $X-Y$ lattice in 
some state $\rho_{B_{W}}$.  Any reading rule in which the 
determination of the  location for reading the $n+1st$ symbol is 
based on what the first $n$ symbols were requires an exponential 
amount of resources.   This is based on the observation that if 
there are $m$ symbols in the language, then for each $n$ the rule 
must distinguish among $m^{n}$ alternatives to make the 
determination. 
 
Reading rules in use do not have this property in that 
determination of the location of the $n+1st$ symbol from the value 
of $n$ does not depend on the state of the first $n$ symbols.  As such 
the rules are efficient in that the resources expended are polynomial in the 
number of 
symbols read. Since the requirement of polynomial efficiency is 
quite weak, there are many rules that satisfy this condition, so 
one would want to pick rules that more or less minimize the free 
energy resources expended. For example a rule in which the 
resources expended are independent of the number of symbols read 
(the polynomial exponent is $0$) is quite efficient. The rule 
described for reading this text in English on the  printed 
journal page is an example in that the resources expended to read the $nth$ 
symbol are independent of $n$ (except for carriage return locations).  Other 
rules with the same or similar efficiency are possible, and some are in use. 
 
The model described is clearly robust in the sense that reading 
the text does not change the individual symbol states or move them 
about on the lattice.  Physically this is a consequence of the 
fact that photons in the visible light range excite the ink 
molecules to internal excited states.  The potential wells and 
interactions with the component atoms in the molecules are such 
that the amplitudes for exciting an ink molecule to an excited 
well state, or to move it from one lattice location to another, 
are very small. It follows from this that sufficiently many 
repeated readings can move ink molecules around and make 
significant changes in the quantum state of the text. 
 
Models that are much more sensitive to the reading interactions 
and other environmental influences can also be described. 
Examples would be spin models with spin systems replacing the ink 
molecules on the lattice. The projections of the spins along some 
direction such as that provided by a magnetic field would 
correspond to the different symbol states.  Thus if the language 
contained $m$ symbols, the spin $ \underline{S}$ of each of the 



systems must be such that $2\underline{S}+1\geq m$.  The ordering 
of the symbol states of many systems into words and word 
sequences would depend on a path chosen on the lattice. 
 
This model will not be pursued further here. Suffice it to say it 
is similar in some aspects to models of quantum NMR computing 
\cite{Gershenfeld,Favel,Chuang} which have been studied. 
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