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ABSTRACT 
 
Most existing computer codes for modeling environmental pathways were developed to satisfy a specific objective 
(e.g., perform analyses to demonstrate regulatory compliance). Over time, the codes have been written in various 
computer languages and software environments that are often not compatible with each other. In recent years, 
largely driven by advances in industrial software, a new concept for software development based on modularization 
has emerged. This approach entails the development of common modules or components that can be shared by and 
used in different applications that have certain common needs. Although modularization promises advantages over 
the traditional approach, a number of issues must be fully addressed and resolved before the approach can be 
accepted as a new paradigm for environmental modeling. This paper discusses these issues, provides demonstrations 
of open integration techniques, and provides recommendations and a course of action for future development. 
 
BACKGROUND AND INTRODUCTION 
 
Most existing computer codes for environmental pathway modeling were developed to satisfy a specific objective 
(e.g., perform analyses to demonstrate regulatory compliance). Over time, the codes have been written in various 
computer languages and software environments that are often not compatible with each other. In recent years, 
largely driven by advances in industrial software development, a new concept for software development based on 
modularization has emerged. This approach entails the development of common modules or components that can be 
shared by and used in different applications that have certain common needs. For instance, an air dispersion model 
could be written into a common component to be shared by several different applications, each with the need to 
model air dispersion of some release. When fully developed, the modeling application would become an exercise of 
selecting, integrating, and applying a consistent combination of appropriate modules for a specific problem. 
Although modularization promises advantages over the traditional approach, a number of issues do exist. These 
issues must be fully addressed and resolved before the approach can be accepted as a new paradigm for 
environmental modeling. This report discusses these issues and provides recommendations and a course of action 
for future development.  
 
Traditionally, model connections have been made by the end user, who would align one model’s output data with 
another model’s input. Often the model assumptions and conceptualizations were stretched to accomplish the 
linkage, resulting in greater uncertainty in the results. Also, the connection usually required the user to invest effort 
in manipulating the data for proper communication (e.g., taking data from the first model’s output and manually 
editing the input for the next level), resulting in inefficient use of resources and introducing another potential source 
of error. It is generally difficult to connect models because of their disparate assumptions about scale, 
conceptualization, aggregation, process, reality, and objectives.  
 
OPPORTUNITIES AND GOALS 
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In the environmental field, modeling plays a critical role in connecting current data and knowledge with predictions 
of future events and environmental states. Environmental problems are quite challenging to solve because of the 
complex relationships among many contributing factors, both natural and man-made (1). Moreover, these problems 
need to be addressed not only by environmental engineers and regulators but also by concerned members of the 
public and nongovernmental organizations. Their demands on environmental modeling often conflict because 
predictions need to be accurate yet easily understood, communicated, and explored. The increasing complexity of 
environmental codes also places a demand on the end user, who must translate the real environmental problem into 
the conceptualization allowed by the model and its options. Information on assumptions and options must be 
conveyed to the user to ensure that the model is applied and interpreted correctly. Open communications about the 
model, interface, and data components would enable software applications to be more easily developed. 
 
Many modeling approaches could be used to realize these goals. For some purposes, the most detailed models and 
data are appropriate to predict a situation. However, the results from these models might not facilitate a good 
understanding of the situation, or they might place an undue burden on the stakeholders as they try to learn how the 
models work and they try to gather sufficiently verified data.  
 
Another approach is to use simplified models with conservative values for data to facilitate an understanding of the 
results and to place bounds on them. This approach enables the end user or interpreter to focus on the important 
issues. Many regulatory processes include this type of analysis to help users explore the issues and decide whether a 
more detailed analysis is justified. 
 
There is a wide gap between these two approaches and between their contributions to understanding and the 
decision-making process. Both can be enhanced with tools that allow sensitivity analysis, uncertainty analysis, and 
visualization and manipulation of the data. 
 
When these considerations are taken into account, it might be reasonable to expect that a range of models and also a 
range of integration strategies are available. On the detailed side of modeling, the emphasis might be placed on 
manipulating large, standardized data sets covering spatial and temporal dimensions. The emphasis on the user 
interface and regulatory requirements could be less, since the end user would be assumed to be more cognizant of 
the assumptions and therefore more responsible for constructing valid model input. Other times it might be 
important for the user to just “scope out” a situation and determine the major exposure and risk pathways. This 
situation might be enhanced by a very flexible system that would allow the end user to easily explore the simplified 
models. Another emphasis might be on the need to develop some components that could be used in detailed and 
mid-level modeling environments that require intermediate modeling sophistication and in guiding the user through 
the regulatory process. These different modeling needs might require some shared models but different integration 
environments. This requirement could be met by developing various user interface components and standards, 
process flow standards, data management and sharing tools, decision support tools, and model linkages so that these 
models could become more flexible, efficient, and effective. 
 
Not only are the demands for environmental modeling changing, but also the means to accomplish this modeling are 
being developed and quickly changing. Many of these means to accomplish modularization and integration are 
based on the supply of new information technologies (ITs) originally developed for businesses. Information 
technologies, such as those for object-oriented code development, network-based distributed processes, database 
storage and manipulation, graphical user interfaces (GUIs), work-flow processing and communication, geographic 
information systems (GISs), and graphical visualization, have become available for integration into environmental 
modeling in recent years. These tools and techniques, which required large investments by commercial vendors, are 
available relatively inexpensively because of the demand from the business community. Software packages for 
environmental modeling should take advantage of these tools and techniques in responding to the field’s unique 
needs and demands. The emphasis should not be on redeveloping industry standards but on meeting environmental 
modeling’s unique needs by leveraging these tools and techniques.  A diagram of some of these goals is shown in 
Figure 1. 
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FIGURE 1  
Goals for 

the Open Environmental Modeling System, OpenLink 
 
TECHNOLOGY ASSESSMENT 
 
Options 
 
Various options are available for implementing a more flexible environmental modeling environment. These include 
(1) continuing with the current status quo approach; (2) adopting a single model-, data-, and user-interface-
integrated framework; and (3) using separate tools to integrate models, data, and interfaces. On the basis of our 
experience and discussions about three types of software architecture, we created a table listing the criteria and 
attributes of each architecture (Table I). 
 
In the current approach, features, tests, and documentation are added in a piecemeal fashion. The interface, data, and 
model are integrated for a specified set of objectives. The end user’s experiences and contexts are considered when 
the model options, interface, and result visualizations are being designed. This process tends to encourage code that 
is unwieldy, as new features are added without the code being redeveloped and modularized. Software breakdown is 
not similar to mechanical breakdown (i.e., initial break-in period, period of stable performance, and then mechanical 
wear), because software does not wear down or change. However, by introducing changes to the software, undesired 
entropy can be easily introduced into the original design. Technologies in the software application environment can 
change, causing more effort to be expended just to maintain operation of the software. This situation does not 
necessarily occur in object-oriented software. Reliance on some commercially developed tools can lead to a need to 
constantly upgrade even well-written software, just to maintain its operation in a changing technological 
environment. 
 
In a single integration framework, development and testing are divided into two levels: (1) development of modules 
and (2) end-user integration and implementation through a single visual programming framework. This framework 
works as long as it is flexible enough to meet various needs. However, it is very difficult to leverage new technology 
within the framework, since the user-interface, data manipulation, and modeling connections are already specified 
and implemented. This system can facilitate the exploration of a specific environmental problem by a single end 
user but can cause difficulties for a user community whose members are trying to follow a regulatory process. Also, 
the burdens of model integration and application are on the end user. (Frames 1.1 and GoldSim [2,3] are examples 
of this type of system.) 
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TABLE I  Criteria for Three System Architectures 

 
 

Criteria 

 
 

Current Approach 

 
 

Open Architecture 

 
Specified Visual 

Programming Framework 
 
Description 

 
Features, tests, and 
documentation are added in 
piecemeal fashion.  
Interface, data, and model 
are integrated for a 
specified set of objectives. 

 
Development and testing are divided 
into three levels: modules, integration, 
and end use.  This approach allows 
module reuse and swapping and 
provides the ability to develop 
flexible end-user interfaces and data 
management. 

 
Development and testing are 
divided into two levels:  (1) 
modules and (2) end-user 
integration and 
implementation through a 
single visual programming 
framework. 

 
Maintainability 

 
Since modular design was 
not the main focus, it is 
sometimes unwieldy to 
integrate and test new 
functions. 

 
Modules are maintained by the 
developers.  Standards are agreed to 
and followed in module and data 
specification.  Integration can be done 
in a number of ways depending on the 
requirements. 

 
The framework must have one 
specified standard.  All codes 
must go through the standard 
to be incorporated. 

 
Dissemination 

 
Downloading and 
installation are done at 
user's initiation 

 
Modules can be distributed with the 
integrated application.  Later modules 
can be maintained on distributed 
servers. 

 
Framework and modules are 
installed separately. 

 
Validation and 
verification 
(V&V) 

 
Verification is done for a 
complete specific version 
and maintained 
incrementally.  Validation 
can be done on limited 
aspects of the model. 

 
Each module maintains its own V&V.  
Applications connecting the modules 
are implemented by integrators who 
ensure that assumptions are 
appropriately compatible for the 
application V&V. 

 
Modules can be V&V'd, but 
V&V of the integration 
process is up to the end user. 

 
Flexibility 

 
Adding new features and 
functionality is difficult, 
requiring changes 
throughout the code and 
careful consideration of 
many of the obscure details 
of the code. 

 
Modules can be added, substituted, 
and modified with flexible 
connections to other modules.  This 
practice allows for flexibility in both 
the module level and the integration 
level. 

 
Modules can be added as long 
as they fit the framework's 
fixed structure.  Modules 
cannot be flexibly integrated 
for other potential integrating 
frameworks. 

 
Use of legacy 
software 

 
It is very difficult to 
integrate two legacy codes 
and maintain the 
assumptions and user 
interface. 

 
Legacy code can be "wrapped" for use 
with other codes.  Some functions can 
be called separately.  A modularized 
version of the model would be more 
flexible. 

 
It is difficult to incorporate 
legacy code without a large 
effort to modularize it to 
conform to the framework's 
fixed structure. 

 
Support for 
cooperation 

 
It is very difficult to 
maintain one code that 
serves two agencies with 
different requirements. 

 
Modules and data can be shared for 
different applications. Different 
applications can be constructed with 
the shared modules to accommodate 
the different requirements of the 
agencies. 

 
All agencies can develop their 
own modules, but they must 
conform to the framework 
structure. It may be difficult to 
construct one structure to 
satisfy the needs of all 
agencies and organizations. 
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TABLE 1  (Cont.) 

 
 

Criteria 

 
 

Current Approach 

 
 

Open Architecture 

 
Specified Visual 

Programming Framework 
 
Development 
costs 

 
Development is inefficient 
because new features must 
be highly customized for 
each application. 

 
Modularization and structural 
flexibility lead to efficient reuse and 
development of modules while 
maintaining an efficient user 
interface. 

 
Modularization leads to more 
efficiency, but effort can be 
expended on conforming the 
modules to a structure that is 
not efficient and effective. 

 
User interface 
support for 
regulatory 
processes 

 
Support is good since the 
user interface can be 
tailored to control the input 
and reporting process. 

 
The flexibility of the connections 
allows process and user interfaces to 
be well defined. 

 
The end user can gain 
understanding through quick 
exploration of models; 
however, to implement 
regulatory processes, the user 
must invest effort to visually 
program the process. 

 
Platform 
independence 

 
Platform is dependent on 
the operating system (OS) 
and developer's tools.  
Development can be 
hindered by uncontrolled 
changes by the supplier of 
the OS and integrated 
development environment 
(IDE). 

 
The modules can be platform 
independent.  The connections 
between them are flexible and can be 
implemented with many technologies. 

 
Platform is very dependent on 
the structure of the 
framework.  Development can 
be hindered by 
incompatibilities of the model 
or process to be used and the 
framework. 

 
 
Quite a large set of tools is being developed to further separate the roles of modelers and integrators and the four 
components (data, models, interface, and connection). Some model integration tools include the Argonne National 
Laboratory (ANL) DIAS system (4) and the U.S. Environmental Protection Agency (EPA) MIMS system. These 
tools offer a system of utilities for model integration and data communication. The DIAS tool is based on the 
concept of using models to provide methods for a higher-level conceptualization of an object. This allows both new 
development and the wrapping of existing models. However, there are many other ways to accomplish this wrapping 
and object integration with commercial tools  (J2EE, ColdFusion [5], Microsoft [MS] .NET [6]) that might not 
supply the same utility support but that do allow a flexible integration with commercial components. 
 
Besides these model integration tools, there are also tools that allow user interface and data management module 
reuse and swapping. The user interface and visualization aspects are crucial and difficult to construct with automated 
tools. The interface usually requires a great deal of customization to ensure that users understand the data, options, 
work flow throughout the process, and model assumptions.  
 
One commercial system that seems to have a good approach is the Environmental Systems Research Institute 
ArcIMS system (7), an Internet-based system for supplying GIS maps and data. The main map-rendering application 
is deployed on a server. The developer works with this service and is supplied with a default set of tools to develop a 
user interface for the manipulation and display of the maps. The interface components are object-oriented but 
written in a client scripting language (JavaScript). This allows the component provider (ESRI) to provide a flexible 
template to the integrator to customize the user interface for the end user. 
 
Proposed Solution 

 
The proposed solution includes developing strategies and guidelines for separating the software package 
components into a set of layers and identifying roles for model development and use. The strategies can apply to 
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both the modification of existing codes and practices and the development of new models and components.  While 
the traditional method integrates these elements into a single code, the modularization approach instead aims at 
building a code system consisting of components that can be used and reused for various purposes.  
 
Over the last six years, a group of agencies (U.S. Department of Energy [DOE], Nuclear Regulatory Commission 
[NRC], EPA, U.S. Department of Defense [DOD], and others) has been informally discussing the problems in 
linking models for complex simulations of the environment. This group met in March 2000 for the Environmental 
Software Systems Compatibility and Linkage Workshop (2). The group has continued its work, and members 
attended a meeting in June 2001 to discuss understandings, accomplishments, and future paths. One objective was to 
establish categories of attributes for software systems. These included a set somewhat similar to the standard layers 
described above: (1) model connectivity (model layer), (2) information architecture (data layer), (3) framework 
connectivity (presentation layer), (4) web-based access (network layer), and (5) system functionality (application 
layer). 
 
Roles 
 
Three sets of roles are proposed for developing and using the system. First, modelers should develop domain-
specific models and document their assumptions. Second, integrators should create an application from the available 
models and data. The integration environment would be up to the integrator (i.e., there would be no single 
integration framework, so the system could be done in a web environment [e.g., Active Server Pages or 
ColdFusion], as a window standalone, or as a hybrid using web services). Third, end users should then specify the 
data and options through the integrated user interface and communicate the results to the regulators and public. 
 
The models should be available for all to use with technology like an application programming interface (API) for a 
modular class library or like a set of services (data and model) from a server. Use of generic commercial technology 
would allow components developed in different laboratories with different software languages to be integrated. This 
coordination would require the laboratories to work cooperatively in defining appropriate scales, aggregations, and 
assumptions. The effort would include the development of new models and data and the opening of existing codes. 
 
To maintain the most flexibility and cost-effectiveness, the integrators should leverage commercial technologies. 
There are quite a few commercial tools to support these tasks, and the technology is rapidly changing, being mostly 
driven by business software. These tools can be utilized in these systems so that the focus can be on the models and 
data and on facilitating user understanding for effective decision-making. 
 
New and Existing Software Development 
 
In this paradigm, an interagency committee specifies the standards for communicating between codes and 
establishes the minimum validation and verification (V&V) process required for individual components. Code 
developers at specific agencies or institutions maintain control over their own sources but use the specified standards 
for enabling their codes for inclusion in other applications. While this approach would work best with new code 
development, methods for “wrapping” legacy code that allow reuse of existing code are available. This structure 
would make it possible to embed distributed components within everything from simple spreadsheet applications, to 
commercial GIS packages such as ArcViewTM, to a visual programming environment, if that was desired.  
 
Taken one step further, components for modeling, presentation, and data access could be maintained at remote 
locations through the use of MS COM objects or Java servlets. Their integration could be accomplished with 
software tools such as CORBA, DCOM, and RMI. Communication between components could be accomplished 
with APIs using evolving standards such as Interface Definition Language (IDL) and eXtensible Markup Language 
(XML). The use of distributed objects would even make it possible for object components and data to exist on 
different distributed servers, guaranteeing that the user would have access to the most recent, validated version of 
that code and supporting parameter data sets. 

 
TECHNOLOGY DEMONSTRATIONS 
 
Technology options in the various levels (data, models, presentations, applications, and network) were explored, and 
demonstration projects were created to show and evaluate their potential. This effort was not just model integration 
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(e.g., connecting the output from one model to the input of another). It constituted package integration, since each 
applications package usually comes with a data set, a set of models, and an interface to interact with the data and 
model specifications. The process of integrating packages involves model integration (connecting inputs into outputs 
with the appropriate control structure), data integration (determining which subset of data to use and how the 
remaining data get mapped), and presentation integration (determining what inputs are required, how to maintain 
support, and how to view and navigate the output). The connection adds one new aspect: how to integrate the 
components separately and then integrate the levels into a new package. Since the packages might be served from 
different locations, a new aspect of network connection also is involved. 
 
Three demonstration projects were chosen both to address a current need among radiological analysts and to be 
potentially useful in later applications. The projects demonstrate the wide variety of integration techniques and ways 
to use components based on existing software packages, new models, and commercial components.  
 

• Low-level landfill analysis: The NRC’s DUST (8) package and a modified RESRAD-
OFFSITE package (9) were integrated into a desktop application, with DUST providing a 
leaching source term to the groundwater and RESRAD providing the multipathway dose 
assessment from that point. The user-interface and model assumptions were maintained. 

• MARSSIM analysis with RESRAD: The RESRAD model was wrapped with a preprocessor 
and postprocessor for web execution. The pre- and postprocessors allowed simple connections 
to a customized, simplified, web-based user interface and commercial visualization graphing 
and GIS packages. 

 
• Nuclide web service: A nuclide data component was developed to allow common access to 

applications of data structures. The nuclide data were obtained from a distributed server and 
used by a local application that could then manipulate the nuclide structure in a common 
technique. 

 
 
Low-Level Landfill Analysis with DUST and RESRAD 
 
The integration of RESRAD-OFFSITE and the DUST computer code allows users to perform risk analyses of 
potential releases from low-level radionuclide landfills. The integration was made possible because the RESRAD-
OFFSITE model has a feature that allows intermediate contaminant fluxes to be output or serve as input for the 
remainder of the calculation. In this case, the DUST code was used to generate a modeled release flux at the bottom 
of the landfill (Figure 2). This flux was then used by RESRAD-OFFSITE for dose risk analysis through the 
groundwater pathways, including the drinking water pathway and pathways associated with the use of contaminated 
irrigation water.  
 
To accomplish this integration, the user interface, model interface, and data components had to be separated for each 
model. Then each component was integrated and packaged in a new application. This practice maintained the data 
integrity, model assumptions, and ease of use. 
 
The DUST data, model, and interface were separated into three components by designing a database to maintain the 
metadata of the input parameters. This table included names, units, values, and bounds and could potentially include 
the grouping and distribution of the data for uncertainty analysis. From these data, RESRAD-OFFSITE was 
wrapped to allow the user to specify specific configurations of input/output flux planes and the remainder of the 
input parameters. The output files could be parsed for specific information to be passed to the next software 
component. The database formed a simple common connection for managing and storing data. 
 
User interface components were developed in both MS Visual Basic and Allaire’s ColdFusion. In Visual Basic, the 
developer could place one of the controls on a form and then associate it with a record in the parameters database 
table. The appropriate data type and functionality were then automatically packaged in the control. In ColdFusion, 
the database was likewise used to form data input screens on the basis of a generic database table. Since the user 
interface is important in communicating model assumptions and facilitating the user’s understanding of the model, 
its development is usually costly. (Sometimes more than half the development time is devoted to custom-developed 
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user interfaces that use standard components. The use of the custom controls and a custom database should enhance 
the development of user interfaces and reduce the cost of integrating them.) 
 

 

FIGURE 2  Integrating RESRAD-OFFSITE and DUST  (The RESRAD-OFFSITE model was 
modified to accept and output fluxes at certain points in the transport process, including at the 
groundwater table interface.  The DUST results of the fluxes at this location were passed to 
RESRAD-OFFSITE for further transport and radiological data and risk estimates.) 

 
The user interface can quickly gather data from a user and display them in the database. To wrap the code, the input 
data must be extracted from the database and passed to the model. Unfortunately, many existing models use a set of 
formatted input files to pass data to the calculations. This practice makes the conversion from the database to the 
model difficult, although ideally it only has to be done once to wrap the component. The conversion from the 
database to the DUST input file was tedious because of the formatting, data array structures, and exceptions. Some 
other codes like the RESRAD family of codes use the FORTRAN NAMELIST format, which allows flexibly 
formatted input files somewhat similar to simple XML files (i.e., the parameter name and values are passed without 
a highly specific format). A full wrapping of the RESRAD or RESRAD-OFFSITE code was not performed; 
however, in the second project, this technique was used to pass a subset of the RESRAD data through a similar 
database and onto the wrapped code, which used the database to modify a template NAMELIST input file. 
 
 
MARSSIM Analysis with RESRAD 
 
MARSSIM is a recent multiagency procedure for finding statistical determinations for radiological cleanup 
standards. These standards are based on the statistical level of the detector and dose estimates from finite 
contaminated areas. RESRAD was developed to address cleanup guideline limits for a set contaminated area. As the 
contaminated area increases, the dose from the contamination reaches a limit. For smaller areas, the doses are 
smaller as a result of various scaling factors for the different pathways, such as direct external exposure, food 
growing activities, dust inhalation, and ingestion. To support MARSSIM activities, RESRAD could be used to 
generate the dose (or guideline limit) as a function of area. These guidelines could be displayed on a graph and then 
interpreted on a GIS display of the site with overlain measurements. 
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While there is a current technique for performing this type of analysis, it is not explained in the RESRAD manual, 
nor is it a function that the RESRAD interface was designed for. Also, the data visualization of RESRAD was not 
prepared for easy incorporation into graphs and GIS systems. The purpose of this project is to demonstrate the 
simple reuse of an existing software application (RESRAD) by wrapping it into an object with a database-driven 
interface to allow use of custom interface controls. The database interface also allows for easy integration of the 
model into commercial visualization packages for plotting and GIS. Furthermore, the results can be made accessible 
on the Internet through a simple web browser interface, giving users easy access to the model, data, and 
visualizations. 
 
Next an input and output interface must be developed for the system. The interface can be quickly developed 
through the interface components for ColdFusion. The ColdFusion template file contains setups for all enabled 
parameters from the specific database table. The data are collected and validated from a generated HTML page. The 
user sends the specified input data through the Submit button. On the server, the data are placed in the database, the 
RESRAD component is executed, and the results are stored in the database. 

 
There are many alternatives for viewing the results. ColdFusion and similar technologies (such as Active Server 
Pages) have suites of tools for customizing a drilldown report in HTML or in a reporting tool like Crystal Reports. 
Other commercial tools can generate a more visual display. For this project, the PopCharts Internet graphing 
package (10) and the ArcIMS Internet GIS package were connected to the results database (Figure 3). PopCharts 
allows results data to be quickly incorporated into a graphing template to show the area factor versus area. The 
ArcIMS GIS package similarly allows measurement data to be displayed with symbols (type, sizes, colors) on the 
basis of the measurement level compared to the critical cleanup criteria identified in the analysis. Both of these tools 
were implemented to generate standard HTML pages. The ArcIMS tool uses extensive JavaScript to enable the user 
to interact with the map that communicates the data via XML to the mapping server. The measurement data are 
placed in an acetate layer on top of the map, while the user is still able to interact with the measurements and find 
out more about them by clicking on them. 
 
This simple demonstration showed how to wrap an existing code, simplify the interface and its construction, and use 
commercial visualization tools to view all the data integrated on a server. Many extensions could enhance this 
project: the component could be optimized for performance on a web server; input options could be made available 
to the user; and the user could be allowed to manage the GIS data more. As is the case for most software 
development projects, many options are available, but the choice depends on the tradeoffs among data access, 
complexity, and security involved with a specific project. 
 

 

FIGURE 3  Connecting Graphics Packages to Results Database (Input and output web pages for 
the MARSSIM project show the simplified RESRAD input interface and the results visualization.) 
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Nuclide Web Service 
 
The previous two projects demonstrated integration on a desktop and integration on a server with web access. Some 
research modeling environments use components on a set of widely distributed computers. These distributed 
computing environments allow standard components to be maintained on a few servers that are optimized for 
performance and maintained with the current versions. Data and models from various sources can be easily 
connected, and the data can be communicated across the network. 
 
It would be useful to have a set of data sources for contaminant standards or specific data sources from sites that 
could be integrated and analyzed by means of model and visualization techniques. Tools are currently being 
developed to facilitate these connections while still maintaining system performance and security. Early connections 
were difficult to develop and maintain. Even after the connections were constructed, there were frequent disruptions 
in them that resulted from new security techniques such as firewalls (which block communication for standard 
connection techniques such as DCOM, CORBA, and Java RMI). One example of a new type of tool is the MS .NET 
web service that was scheduled for release in late 2001. This technique utilizes a standard SOAP protocol to connect 
components on distributed computers. The communication between the computers is accomplished by using other 
standards: XML for the data structure and HTTP for the transmission protocol.  

 
Not only do these services facilitate the use of distributed components, but they also enable simple integration of 
components. For example, a web service developer can generate a .NET web service by simply constructing an 
object in the standard MS Visual Studio Integrated Development Environment (VS IDE) by placing a 
<webMethod> tag in the method to be made available for the service. A test page and site are automatically 
generated to ensure proper testing and availability of the component.  
 
To use or “consume” this web service, an application integrator can use the same VS IDE on a local development 
machine. To find out what services are available from a particular server, the VS IDE can simply request that 
information from the server and present the results, which are integrated into local components available to the 
integrator. In other words, the web service looks similar to local components. From then on, the development of the 
integrated package is transparent. Calls are written to the remote object, and the developer no longer has to be too 
concerned about the computer “handshaking” and passing of data via XML to the server. 
 
Nuclide databases might be a good candidate for a web service. In radiological assessment software, the handling of 
nuclide data is difficult because of the decay chains and different assumptions about secular equilibrium. Some data 
are quite standard, like the EPA’s Federal Guidance Reports (FGRs 11, 12, and 13). It would be useful to have a 
web service supply the data in a common form with common functions. Local components could then be generated 
and shared to handle the nuclides in a common fashion, so that radiological codes could better interact with similar 
assumptions and handling mechanisms. 
 
A simple web service was set up with a limited set of nuclide data to demonstrate their workings (Figure 4). A 
method that would take input on a radionuclide and deliver decay chain information was developed. The data were 
recursively extracted from two database tables. One had the nuclide information (e.g., mass, half-life, dose 
conversion factors, and distribution coefficients for various media). The second detailed the decay relationship, with 
primary key fields for the parent nuclide and the progeny nuclide and also a field for the yield (or fraction of the 
decay that followed that decay path).  
 
These data were automatically inserted into an XML package to be sent back to the requesting computer. Once 
received, the computer would automatically unpack the XML package, and the data would be ready for use in the 
local machine. In this project, the data were organized into a linked list of nuclide structures for easy handling in 
codes. For example, in many radiological codes, the decay process is now handled through many indices that are 
very difficult to maintain and update. The linked list is simpler to handle and less error-prone, and it facilitates 
simpler code because indices have been removed and because it can be manipulated with recursive techniques. 
 
These codes were implemented with the Public Beta 1 version of MS .NET. Figure 4 shows the web service method, 
the testing page from the server, the consumer software, and the consumer interface. Again, not much is shown, 
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because much of the infrastructure that is needed to implement this web service is within the .NET environment, a 
commercially available integration package. MS is not the only package available; there are also Java-based 
packages. It is hoped that through the use and deployment of standards such as SOAP and XML, these web services 
will be able to interconnect and operate on a variety of servers.  
 
   

 

FIGURE 4  Developing and Using a .NET Nuclide Web Service (The object and methods are placed 
on the server.  A web page allows manual checking of the function and demonstrates that XML is 
used to deliver the results.  In the MS VS IDE, the reference to the distributed components can be 
easily found and inserted.  These components are used in the code in a manner similar to that in 
which the local components are used.  The resulting application allows access to distributed data that 
are used to construct an easily handled linked-list nuclide structure.) 

 
CONCLUSIONS 
 
Demonstration Assessment Versus Criteria 
 
The above projects demonstrated a small part of the potential for component-based environmental modeling with 
open integration. Components were developed for the user interface, data handling, model wrapping, connection via 
desktop, web server, and distributed computing environments. An assessment of this system with regard to the 
issues mentioned in Section 1 follows here. 
 

• Flexibility and maintenance: The system’s flexibility was demonstrated when a similar 
component (RESRAD) was both incorporated in a desktop model integration package and 
integrated on the web with commercial visualization tools for a different purpose. This 
integration allows a wide variety of models and end users to be supported. As new 
components are developed, it is anticipated they will interact so that the applications can be 
modified to incorporate new model options, data input options, result viewing options, 
regulatory changes, and tools quickly and efficiently. The open integration environment 
allows commercial tools to be incorporated rapidly and new Internet options, such as web 
services, to take advantage of software and hardware (e.g., bandwidth) technologies. 

 
• Software dissemination:  Barriers to the dissemination and installation of the code package 

(data, software, and documentation) vary. For desktop systems, some installation packages are 
initially large but can be reduced for upgrades. Web-based systems require little or no 
software to be installed other than a standard web browser. Again, web services also require 
little or no software to be installed and also allow local specialized maintenance of the 
components and data at the distributed sites, so they can be updated without requiring users to 
download patches. The web-based nature of the download and software package allows web-
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based user communities to grow, which can generate a critical mass for the use of the 
component systems. 

 
• Quality assurance (QA): The quality of individual model and data components can be assured 

by the developers. The integrity of the model and data assumptions in the integrated package 
can be checked by the integrators. Thus, data validity and scenario applicability are left to be 
determined by the end user. This distributed QA can be more effective, but procedures should 
be in place to properly document the models so that QA remains intact throughout the 
process. Development of a large user community would allow discussions and testing of 
various features and application contexts. 

 
• Life-cycle development and maintenance costs:  There are always tradeoffs in determining 

how general a component should be. The flexible system of component integration allows 
trials to determine the granularity level to which the components should be specified. For 
example, some models, such as an external exposure model, might require a generally 
inefficient model and methods that use preprocessing to make the model more efficient for a 
more constrained problem. Long-term cost savings might be anticipated from this approach 
over the traditional development approach. However, the total life-cycle development and 
maintenance costs will depend on future needs and have yet to be evaluated and assessed.  

 
• Platform reliance: As the projects demonstrate, there are many ways to construct, integrate, 

and execute components. The technologies being developed are becoming more and more 
open, which means there is less dependence on any one technology. However, as previous 
component development suggests, there are pitfalls, especially when components are not 
upgraded and integrated with commercial technologies. 

 
• Transparency: Tools can be integrated both for exploring data and for facilitating 

understanding (e.g., sensitivity analysis, uncertainty analysis, and visualization [graphing and 
GIS]). By incorporating a middle-layer integrator role, the system will present the end user 
with an integrated package that can preserve the model’s assumptions, level of data, and 
conservatism while still implementing changes in the regulatory process. This type of package 
will enhance public acceptance and confidence if the model needs to be publicly used or 
defended. 

 
• Ease of use: The flexible integration technique, coupled with the development of interface 

components and a standard metadata database structure for input parameters, means that user 
interfaces can be effective (i.e., customized for the needs of the user by being facilitated 
through the components). Work on the user interface will still be one of the main efforts in 
model package development, but the use of the components and commercial packages will 
allow interfaces that will convey an understanding of the model and its results to the variety 
of stakeholders who are using the environmental modeling system. 

 
Technology Uncertainties and Risks 
 
Many technology uncertainties and risks surfaced earlier. Many of these issues are addressed by an open system 
where (1) there is separation of the modeler and the integrator and (2) the modeling and integration tasks can be 
done with different tools. Such a system also allows a transition pathway that utilizes existing code while 
concurrently developing new module code. It also allows the integrator to focus on the user’s specific need, whether 
it is for a detailed analysis without a “big picture” understanding or the ability to navigate around issues while 
applying regulatory requirements to analyze a specific site. 
 
Incorporating many integration techniques also reduces the possibility that maintaining environmental models will 
require a large effort. The example of wrapping old FORTRAN codes into objects demonstrates that these 
techniques allow codes to be used over a wide range of technologies. Using commercial tools and standards allows 
much of the work to be done by others.  
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There are some drawbacks, however. Sometimes the technology can be under such rapid development that an 
integration system might depend on a commercial tool that is supported for only a short amount of time. It is hoped 
that the components could be developed to be flexible enough so they could be easily incorporated into the new 
system. A couple of examples of this situation are found in running the FORTRAN code within the RESRAD 
system. Originally a way was found to run the calculations in the background and still maintain communication with 
the user interface, which allowed for integrated feedback on the status of the calculations. As the MS operating 
systems changed from Windows 3.1 to the current Windows version, in almost all upgrades, this code for 
accomplishing the integration of the model and interface had to be revisited to ensure proper operation. This effort 
was complicated by the fact that the wide user base meant that many Windows operating systems were being used at 
the same time, so a way of operating the integration system in not just the new environment, but in all the prior 
operating systems, had to be found. 
 
Another example was a Java applet written for Internet mapping applications that depended on the server providing 
the connection to the database. The language rapidly changed, and substantial effort was required to upgrade the 
original code. In time, the data connection utility was supported and sold only for the new versions of the language 
(and then dropped, as it was no longer needed in the newer versions). The original applet code was thus somewhat 
inflexible, depending on the obsolete commercial component, unless effort was made to upgrade the versions of the 
language. 
 
Also, as technology progresses, changes in application requirements occur not only in response to changes in 
environmental applications or regulations but also in response to technology changes. Just recently, many 
requirements have been imposed on government web sites with regard to security, privacy, and accessibility to those 
with disabilities. However, not all the requirements were imposed with the impending increase in the bandwidth of 
the Internet in mind. New technologies and techniques based on the connection speeds of the networks will become 
available. 
 
RECOMMENDATIONS 
 
Component-based environmental modeling offers many advantages as long as the hazards in developing the system 
are dealt with. An open system of components and integration techniques offers the hope of addressing issues in an 
open and shared environment to leverage existing codes in multiple integrations. An open system allows the sharing 
of models, data, and interface components for many integration techniques.  
 
One application of this open system would be to integrate the models and data into a flexible system that would be 
able to deliver information and facilitate understanding over a long period of time. The models and data could be 
integrated into the decision-making process and field measurements to elicit dynamic feedback on the environmental 
state of the system, the model, and the supporting data.  
 
On the basis of the above discussion, the following four recommendations are made: 

 
1. Develop an interagency consensus on future modeling needs.  
2. Maximize the use of technologies developed by the software industry.  
3. Maintain the integrity of legacy codes.  
4. Minimize dependence on a particular system.  
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