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Abstract

We have studied theoretically and numerically dynamic properties of the vortex magnetic state in

soft submicron ferromagnetic dots with variable thickness and diameter. To describe the vortex

translation  mode eigenfrequencies we applied the equation of motion for the vortex collective

coordinates. We calculated the vortex restoring force with explicit account of magnetostatic

interaction on the bases of the “rigid” vortex and two-vortices “side charges free” models. The

latter model well explains the results of our micromagnetic numerical calculations. The translation

mode eigenfrequency is inversely proportional to the vortex static initial susceptibility and lies in

GHz range for submicron in-plane dot sizes.

                                                



Introduction.  Magnetic solitons and other non-linear magnetization distributions attract

much attention in physics of magnetic materials. The magnetization distribution for small

ferromagnetic particles (magnetic dots) can be essentially non-uniform. In particular, it is well

known that a vortex (soliton-like) state appears for large enough in-plane dot sizes if the dots are

made of soft magnetic material.1 The vortex magnetization distribution leads to considerable

modification of the normal magnon spectrum in comparison with uniform case, in particular, to

appearance of low-frequency modes corresponding to displacement of the vortex as a whole.2, 3

The frequency of this mode was calculated within the exchange model for finite spin lattice in Ref.

3. For proper consideration of the vortex state and vortex dynamic excitations in magnetic dots,

however the magnetostatic interaction cannot be ignored because it determines often their physical

properties.

In this paper theoretical and numerical investigations of the vortex oscillation mode are

presented for magnetically soft (permalloy) disks. We consider sub-micron cylindrical dots with

radius R and thickness L. The dot thickness is assumed to be about the exchange length of

materials, which allows us to neglect the dependence on coordinate along the dot thickness and

consider 2D magnetization distribution. The dot magnetostatic energy is accounted explicitly and

determines the vortex translation eigenfrequency for submicron-sized dots.

Theory of vortex oscillations.  The theoretical description of the vortex oscillations was done

on the ground of the effective equation for vortex coordinates.4 We consider here only the vortex

translation mode. This mode has the lowest frequency in the vortex excitation spectra for small

enough dot thickness L. We assume two-dimensional magnetization distribution

( ) ( ) sMtt /,, ñMñm = , 12 =m  within the dot, which does not depend on z-coordinate along the dot

thickness. We use the angular parameterization for the dot magnetization components Θ= coszm ,



( )ΦΘ=+ iimm yx expsin , 0Φ+=Φ q . Here 2/0 ±=Φ  corresponds to counter-clockwise and

clockwise rotation of vector m in the dot plane, respectively. The spin structure of static vortex

located in the dot center is described by ansatz ( )( ) b/2/tan =Θ , if b<  and ( ) 2/=Θ  if

Rb ≤≤  suggested in Ref. 5. Here b is the vortex core radius. In order to describe the translation

mode of the vortex motion we use collective-variable approach and apply the Thiele’s equation4
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where X =(X,Y) is the vortex center position, ( )XW  is the potential energy of the shifted vortex.

The first term is the gyroforce determined by the vortex non-uniform magnetization distribution

(topological charge).2,3 The gyroforce is proportional to the gyrovector zG ˆG−= , where the

gyroconstant is G = 2πqpLMs ⁄γ, γ is the gyromagnetic ratio, Ms is the saturation magnetization. The

parameter q= ±1, ±2,… is vorticity, it determines the direction of the in-plane magnetization

components (|q| is the vortex topological charge). p=±1 is the vortex polarization (direction of the

mz component in the vortex center). We choose p=1 and q=1 (q= −1 corresponds to anti-vortex

solution), that describes the simplest vortices observed experimentally in remanent state of soft

magnetic cylinders.1,6,7 The non-zero gyrovector being an intrinsic property of the vortex3 is

principally important for vortex dynamics description. The gyrovector can be calculated by

integration over the vortex core as follows 4

( )∫ Θ∇×Φ∇Θ= sin2ñG dL
M s

.                                            (2)

The second term in Eq. (1) describes the restoring force acting on the vortex shifted from the dot



Zeeman and anisotropy contributions to the total vortex magnetic energy ( )XW  in the dot. The

restoring force appears due to finite dot in-plane size and is directed toward the dot center. For the

submicron dot, radii the dot magnetostatic energy (shifted vortex induces magnetic charges) gives

main contribution to ( )XW -dependence of the vortex centered in equilibrium at X=0.

The vortex static energy dependence on the vortex center position was recently calculated

6,7 on the basis of the “rigid” vortex model, describing the vortex static susceptibility. The similar

calculation was carried out on the “two-vortices” model with no magnetic side surface charges 8,

where the complex function ( ) ( )( ) ( )( )yxiyxw ,exp2/,tan, ΦΘ= , with complex variable

( ) Riyx /+=  was used. The function ( ),w  has the form 9 ( ) ( )fw =,  if ( ) 1<f  (within the

vortex core) and ( ) ( ) ( )ffw /, =  if ( ) 1≥f , where ( )f  is an appropriate analytical function. In

our case ( ) ( )( )scif −= /  corresponds to “rigid” vortex model, 1/ <<= Rs X  is relative vortex

center shift, and ( ) ( )( ))1(/1 2−+= aicf  corresponds to “two-vortices side surface charges free”

model 8 with ( ) 0=⋅ Snm , c=b/R is the relative core radius, ias =  is the relative vortex center

displacement at 1<<a , a is real. The coordinates of the vortex centers are connected by the

inversion transformation. The parameters c, s, and a are determined from the total dot magnetic

energy minimization. The values s = a =0 correspond to the centered vortex.5

For small displacement of the vortex center from its equilibrium position (X=0) one can

write ( ) ( ) 22/10 XWW +=X , where stiffness coefficient  can be determined following Ref. 6 from

the decomposition of the dimensionless vortex energy VMWw s
2/=

     ( ) ( ) ( ) ( )42

02

1
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where S
mì =  is the dot in-plane averaged magnetization with its projection on the field

direction sh =⋅ /hì , where h=H/Ms is the external in-plane field, LRV 2=  is the dot volume,

and the parameter  (~1) describes different models of the vortex magnetization distribution.

The vortex initial susceptibility ( )0  depends on the disk geometrical parameters such as

radius R and thickness L. For the “rigid” vortex model6 =1 and ( ) ( )( )2
0

1 /)/(40 RRRLF −=− ,

where ( ) ∫ −= )()( 2
1

1 tJxtfdttxF  corresponds to the averaged in-plane dot demagnetizing factor,

    
f x( ) = 1− 1− exp(−x)( )/ x , J1(x) is the Bessel’s function, R0 is the exchange length. For the “two-

vortices” model =2/3 and the susceptibility is ( ) ( )( )2//)/(490 2
0

1 RRRLFv −=− , with
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For the vortex in-plane circular motion the vortex velocity dtd /XV =  can be represented

via the angular frequency vector zù ˆ=  as XùV ×=  and thus XVG G=× . The latter

equation by accounting ( ) XXX =∂∂ /W  leads to the vortex oscillation eigenfrequency G/0 = .

This frequency for cylindrical dot according to Eq. (3) has the form

   ( )02

1 2

0 sM=                                                              (4)

The eigenfrequency of the vortex oscillations is inversely proportional to the susceptibility

and gyroconstant G. For typical dot sizes with ( ) 1~0  and Ms=800 G (FeNi dots), the

eigenfrequency )2/(0  lies in the GHz range reflecting the size dependence of the dot initial

susceptibility ( )0 . This frequency, however, goes to zero near the critical line of the vortex

stability ( ) 00 1 =−
.



Micromagnetic simulations and discussion.  The dynamic behavior of  a single magnetic

vor tex trapped in the cir cular  ferr omagnetic dot w as separ ately examined us ing 2D Landau- Lif shitz-

G ilber t (LLG)  micr omagnetic solver developed by Donahue and Porter.10 The computational

mater ial parameter s are typical f or  permalloy such as  the satur ation magnetization  Ms = 8.0 × 105

A/m, and the exchange stiffness constant A = 1.3 × 10-11 J/m. The unit cell element size is 4 nm × 4

nm. The dot diameter and thickness are varied from 0.2 to 0.5 µm, and from 10 to 50 nm,

respectively.

Figure 1 shows a time evolution of the in-plane magnetization components obtained with

micromagnetic calculation for circular ferromagnetic dot, 0.2 µm in diameter and 20 nm in

thickness. First, a magnetic field of 10 mT is applied to the remanent vortex spin distribution,

leading to the vortex core precession. The averaged magnetization component x, parallel to the

field, oscillates around its equilibrium value of 0.1, whereas y oscillates around zero. This

precessional behavior can be described in terms of free damped oscillations of vortex core given by

Eq. (1). The amplitude of the oscillations with damping decreases with time, and finally the vortex

core is stabilized into the new stable position in accordance with the balance among magnetostatic,

Zeeman and exchange energies. After removing magnetic field, the vortex core oscillates back to

its remanent state.

Figure 2 compares the trajectories of vortex core precession around the remanent state (X=0)

for different damping factors α = 0.2 (left) and 0.05 (right). With decrease the micromagnetic

damping parameter α, the total time of oscillations increase, whereas the period (or frequency)

remains unchanged. At the limit case of α=0, the center of the vortex will oscillate along circular

trajectory with the eigenfrequency given by Eq. (4). Note, that direction of the vortex core rotation

(counter-clockwise or clockwise) is defined by the combination of the signs of 2/0 ±=Φ , and

polarization p as it can be clearly seen in Figs. 1 and 2. The corresponding frequency  is positive

for p=1 and negative for p= -1 ( 2/0 =Φ ) keeping its absolute value unchanged.



Figure 3 summarizes the frequencies ω0 of the vortex translation mode determined using the

micromagnetic calculations (open symbols) and analytical models (solid lines) given by Eq. (4) as

a function of the dot aspect ratio  = L/R. The analytical results based on the “two-vortices” model

with  =2/3 agree well with the micro-magnetic LLG calculations for all the values of . The

“rigid” vortex model was successfully applied to explain the experimental data of the static initial

susceptibility χ(0) in circular dot arrays,6 but it fails to describe the dynamic behavior of the vortex

magnetization state. For the submicron dots the eigenfrequency of translation mode depends

mainly on the dot aspect ratio =L/R. We have approximately ( ) ( )( )2/1/8ln201 −=−  for the

“rigid” vortex model and ( ) 98.901 =−  for the “two-vortices” model at <<1. Therefore, the

vortex translation eigenfrequency is approximately proportional to . The susceptibilities are

almost equivalent for both the vortex models, thus the translation mode eigenfrequency is mainly

determined by value of . Strictly speaking, there is total topological charge q=2 for the “two-

vortices” model but in linear approximation on the vortex shift and c<<1 we have qef=1 in Eq. (1).

This means that the second, image vortex located outside the dot contributes to the dot magnetic

energy ( )XW , but does not contribute to the gyroforce VG × . For large enough L, the situation for

the vortex eigenfrequencies is quite different: the lowest frequency should correspond to radial

oscillation of the dot magnetization (oscillations of the vortex core radius c) and can not be

discussed in terms of the vortex core position.

Conclusions.  We have studied dynamic properties of the vortex magnetic state in soft

submicron ferromagnetic dots with variable thickness and diameter. The “rigid” vortex and “two-

vortices side charges free” models were used to define the eigenfrequency of translation  mode of

the vortex state excitations. The vortex center trajectory for this mode is circular (no damping) or

spiral with accounting of damping. The “two-vortices” analytical description is in good qualitative

and quantitative agreements with micromagnetic calculations. The eigenfrequency of the vortex

translation mode is determined for sub-micron dots by the dot aspect ratio  and increases linearly



with increasing . The angle 0Φ  and vortex polarization p influence on the direction of the vortex

oscillations only.
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Figure captions

Fig. 1

Time-evolution of µx and µy magnetization components in applied in-plane field of 10 mT and in

remanence. Solid and dashed lines correspond to the vortex magnetic state with polarization p = 1

and –1, respectively. The vorticity q=1, the dot radius R = 0.1 µm, and the thickness L = 20 nm.

Fig. 2

The trajectories of vortex core precession around the remanent equilibrium position for different

damping factors α = 0.1 (left) and 0.05 (right). The dot geometry is the same as in Fig. 1.

Fig. 3.

Micromagnetic (markers) and analytical (solid lines) calculations by Eq. (4) of the

eigenfrequencies of vortex translation mode vs. the dot aspect-ratio =L/R.  a) the “rigid” vortex

model, b) the “two-vortices” model.
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