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ABSTRACT

We develop a continuum description of partially fluidized granular flows. Our
theory is based on the viscoelastic equations for the flow coupled with the order
parameter equation which describes the transition between flowing and static
components of the granular system. This theory applies to many naturally
occurring and technologically important phenomena: avalanches, shear flows,
granular friction. In particular, it captures important phenomenology recently
observed in experiments with granular flows on sticky inclined planes: bistabil-
ity, transition from triangular avalanches propagating downhill at small incli-
nation angles to balloon-shaped avalanches also propagating uphill for larger
angles.

INTRODUCTION

Granular materials exhibit many unexpected phenomena which set them apart from
conventional solids, liquids, and gases[1]. Because of the dissipative nature of the grain
collisions, the dynamics of granular media requires constant supply of energy, making them
essentially non-equilibrium systems. One of the most challenging theoretical tasks in un-
derstanding non-equilibrium granular dynamics is to develop a theory which is applicable
both in solid and liquid phases of granular medium, and can describe phase transition
between them. So far, the existing theoretical approaches included large-scale molecular
dynamics simulations [2, 3] and two-phase models [4, 5, 6, 7]. In the two-phase continuum
description, the granular system is spatially separated into two phases, static and rolling.
The interaction between the phases is implemented through certain conversion rates. This
model described certain features of thin near-surface granular flows including avalanches.
However, due to its intrinsic assumptions, it only works when the granular material is well



separated in a thin surface flow and an immobile bulk. In many practically important
situations, this distinction between “liquid” and “solid” phases is more subtle and itself
is controlled by the dynamics. In this work we propose a unifying description of partially
fluidized granular flows and apply this theory to several problems of granular dynamics.

We separate the shear stresses developing in a granular matter, in two parts: “static”
(or strain-independent) part, and the dynamic part which proportional to the shear strain
rate. The ratio between the dynamic and static parts of the shear stress is proportional
to the order parameter (OP) which varies from 0 in the “liquid” phase to 1 in the “solid”
phase. Unlike ordinary matter, the phase transition in granular matter is controlled not
by the temperature, but the dynamics stresses themselves through a generalization of the
Mohr-Coloumb yield criterion[8]. critical melting temperature of a solid. The OP can
be related to the local entropy (and possibly density) [9] of the granular material. OP
dynamics is then coupled to the hydrodynamic equation for the granular flow.

The most spectacular manifestation of the solid-liquid transition in granular media
occurs during an avalanche. There has been a number of experimental studies of avalanche
flows in large sandpiles[10, 11] as well as in thin layers of grains on sticky inclined surfaces
[12, 13, 14].

We apply this model to study the transition to flow in thin granular layer on inclined
planes with sticky bottom. Our model captures important phenomenology observed by
Pouliquen[14] and Daerr and Douady[12], including the structure of the stability diagram,
triangular shape of downhill avalanches at small inclination angles and balloon shape of
uphill avalanches for larger angles.

GOVERNING EQUATIONS

The granular flow in the continuum limit can be described by the usual momentum

conservation equation
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for three velocity components v;. Here py = const is the material density (we set py = 1),
g is gravity acceleration, and D/Dt = 0, + v;0,, is the material derivative. The velocity
field also obeys the incompressibility condition V - v = 0. As boundary conditions for the
velocity field, we require the no slip v; = 0 on solid walls, and the continuity %ﬁ = v, on
free surfaces (here £ is the displacement of the free surface, and v, is the normal velocity
component).

The crux of our model is that the stress tensor o;; can be expressed as a sum of the
hydrodynamic part proportional to the flow strain rate e;;, and the strain-independent
part, 0}, i.e. 05 = €;; + 0};. We assume that the diagonal elements of the static tensor
o$. coincide with the corresponding components of the “true” static stress tensor oy; for
the immobile grain configuration in the same geometry, whereas the off-diagonal (shear)
components of stress are reduced by the value of the order parameter p characterizing the



“phase state” of granular matter. Thus, we write the stress tensor in the form
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where 7 is the normal viscosity coefficient. In a static state, p = 1, 0;; = a?j, v; = 0,
whereas in a fully fluidized state p = 0, and the shear stresses are simply proportional to
the strain rates as in ordinary fluids.

We assume that the order parameter dynamics is described by the variational equa-
tion p = —0F/dp. The “free-energy” functional F has the standard Landau form F ~
[dr(D|Vp|* + f(p)), so the order parameter equation reads

p=DV?p—F(p) (3)

where F'(p) = df (p)/dp. The potential energy f(p) should have extrema at p =0 and p =1
corresponding to uniform solid and liquid phases. According to the Mohr-Coulomb yield
criterion for non-cohesive grains[8] or its generalization [15], the transition to flow occurs
when the non-dimensional ratio ¢ = max|o>, /o0 | exceeds a certain threshold value. In
this expression, the maximum is sought over all possible orthogonal directions n and m
in the bulk of the granular material. We use this ratio as a control parameter in the free
energy density f(p, ). Further, according to observations there is a range of stresses in
which both static and dynamics phases co-exist (Bagnold hysteresis[10]). Correspondingly,
the in the range ¢y < ¢ < ¢ free energy should have two minima at p = 0, 1. The
simplest form of F'(p,#) which satisfies this condition, is F'(p,¢) = ap(l — p)(—p + 9),
where § = (¢ — ¢o)/(¢1 — ¢o). Setting D =1 and @ = 1 we arrive at

p=Vp+p(l—p)p—19). (4)

For ¢y < ¢ < ¢1 both static (p = 1) and dynamic (p = 0) phases are linearly stable, and
Eq.(4) possesses a moving front solution which “connects” these phases. The speed of the
front in the direction of p = 0 is given by V = (1 — 248)/V/2.

CHUTE FLOW

In this section we analyze the stability properties of the granular flow in a shallow chute
within the model (1),(2),(4). Consider a layer of dry cohesionless grains on an inclined
sticky surface (see Fig.1) with slope tan ¢. According to Eq.(1), in the static equilibrium
the following conditions should be satisfied:
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where the subscripts after commas mean partial derivatives. The solution to Egs. (5) in
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the absence of lateral stresses o, = 0,, = 0,, = 0, is given by
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Figure 1: Schematic representation of a chute geometry

In a static equilibrium there is a simple relation between shear and normal stresses,
0%, = —tan po?,. According to our model, this relation between the static components of
the stress is maintained in the flowing regime as well. For the chute flow geometry, the
most “unstable” yield direction is parallel to the inclined plane, so ¢ = |02_/o? |.

Stationary solutions of Eq. (4) for the vertically confined chute geometry Fig. 1 are
subject to the no-flux condition p, = 0 at the free surface z = 0, and condition p = 1 at the
bottom of the chute z = —h (a granular medium is assumed to be in a solid phase near the
sticky surface). There always exists a stationary solution to Eq. (4) p = 1 corresponding
to a static equilibrium. For § > 1 it is stable at small A, but loses stability at a certain
threshold A, > 1. The most “dangerous” mode of instability satisfying the above boundary
conditions, is a cos(mz/2h). The eigenvalue of this mode is A\(h) = § — 1 — 72/4h?, hence
the neutral curve A = 0 for the linear stability of the solution p =1 is given by

T
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For h > h.(d) grains spontaneously start to roll, and a granular flow ensues. In addition to
the trivial state p = 1, for h > hy(0) there exists a unique non-trivial stationary solution
satisfying the above boundary conditions. The value of hg can be found as a minimum of
the following integral as a function of py, the value of p at the surface z = 0,

hy = min [ dp
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where c(pg) = p3/2 — 2(0 + 1)p3/3 + 6p2. This integral can be calculated analytically for
§ — oo and § — 1/2. Tt is easy to show that for large d, the critical solution of Eq.(4) has
a form p = 1+ acos(kz) with a < 1 and k = (6 — 1)'/2, and therefore, h,(5) — h(5). For
d — 1/2, the critical phase trajectory comes close to two saddle points p = 0 and p = 1,
and an asymptotic evaluation of (8) gives h, = —v/2log(6 — 1/2) + const. This expression
agrees with the empirical formula ¢ — ¢¢ ~ exp[—h,/ho] proposed in Ref. [12].

The neutral stability curve h.(d) and the critical line hg4(0) limiting the region of exis-
tence of non-trivial granular flow solutions are shown in Fig.2 as solid and long-dashed line,



respectively. They divide the parameter plane (J,h) in three regions. At h < hg(d), the
trivial static equilibrium p = 1 is the only stationary solution of Eq.(4) for chosen BC. For
hs(0) < h < h(0), there is a bistable regime, the static equilibrium state co-exists with the
stationary flow. For h > h.(d), the static regime is linearly unstable, and the only stable
regime corresponds to the granular flow. This qualitative picture completely agrees with
the recent experimental findings[12, 14]. Moreover, if we rescale the experimental phase
diagram obtained by Daerr and Dauady[12] using their asymptotic values ¢y for deep lay-
ers, and choose the characteristic length scale [ to be equal to the particle size, we obtain
and excellent agreement with our theoretical phase diagram (see Fig.2).
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Figure 2: Stability diagram. Dashed line shows the neutral curve (7), solid line shows the
existence limit of fluidized state (8), dotted line shows the transition from triangular to
up-hill avalanches for § = 3.15 and a = 0.025. Symbols show experimental data from Ref.
[12].

The velocity profile corresponding to a stationary profile of p(z), can be easily found

from Eq. (2),
Oy : :
nai = gsin pz — po°, = gsin (1 — p)=z. (9)
2

The flux of grains in the stationary flow .J is given by

J = /Oh vy (2)dz = gsinngo /Oh /Zh(l — p(2")7'd7dz (10)



Pouliquen [14] proposed a scaling for the mean velocity v = J/h vs thickness of the
layer h in the stationary flow regime, v oc h*/?/h,, which works for angles ¢ as well as
for different grain sizes. Eq. (10) yields v oc (b — hy)'/? for small h — h, and v o h? for
large h. It is plausible that the experimentally found scaling exponent 3/2 is the result of
the crossover between two different regimes. However, renormalization ©/+/gh, h/h, as in
Ref.[14] does not collapse our results onto a single curve, perhaps due to the assumption of
a simple Newtonian relation between the strain v, and the hydrodynamic part of the shear
stress o, with a fixed viscosity 7 (see Eq.(2)). In fact, n itself may depends on p and z in
some fashion.

For a deep chute (h > 1), the stationary solution of Eq.(4) can be found analytically
(cf. Ref.[16]). However, in this case the slope of the free surface may not be equal to
the slope of the inclined plane, but is itself determined by the amount of sand which is
poured on the surface up-stream. Thus, the closure of the problem will be provided by the
constraint .JJ = const.

AVALANCHES IN A SHALLOW CHUTE

In this section we consider non-stationary solutions of the shallow chute model which
describe the onset of an avalanche. For a shallow chute, we can use Galerkin expansion in
the direction transversal to the inclined plane, and in the first order look for solution in
the form
T
%z
where A < 1 is a slowly varying function of ¢, z, and y. Substituting ansatz (11) into Eq.
(3) and applying orthogonality conditions, we obtain

p=1— Acos ( ) + h.o.t., (11)
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where V3 = 07 +97, A(h) =0 —1— 2 . Deriving this equations we assumed that (2 —§)A?
and A? are of the same order, i.e. § ~ 2, however qualitatively similar equation with a
different nonlinearity can be obtained for any ¢ and h. Eq. (12) must be coupled to the
mass conservation equations which reads as (here we neglect contribution from the flux
along y-axis .J, ~ d,h < J):
oh  90J  0h*A
ot ~ oz " ox
where J was calculated from Eq. (10) and o = 2(n% — 8)gsin ¢/nr3. Taking into account
that variations in h also change local surface slope, we adopt 6 = 0y — Sh, with § =
1/(61 — 6)-
We solved Egs. (12),(13) numerically using finite difference method. The calcula-
tions were performed for large rectangular systems, typically 400 dimensionless units in -
direction (downhill), and 200 units in y-direction, with the number of grid points 1200 x 600

correspondingly. At ¢ < 0, the layer was assumed static ad uniform in thickness, A =

(13)



0,h = hy. Avalanche is triggered by a localized perturbation introduced near the point
(y,2) = (Ly/4,L,/2) at t = 0. Close to the solid line in Fig. (2) we observed avalanches
propagating only downhill, with the shape very similar to the experimental one. The
avalanche leaves triangular trace with the opening angle ¢ in which the layer thickness A
is decreased with respect to original value hy. At the front of the avalanche the layer depth
is increased with respect to h, as in experiment. At any given point, the order parameter
eventually returns to the “solid” value p = 1 which indicates the convective character of

this avalanche.

/

Figure 3: Development of triangular avalanche for ¢ = 50 (a), ¢ = 200 (b) and 250 (c).
White shade correspond to maximum height of the layer, and black to minimum height.
Parameters of Eqs. (12,13) are: a = 0.15,5=0.25,§ = 1.2 and hy = 3, point A in Fig. 2.

For larger values of 0 or layers thickness (close to dashed line in Fig. 2), the avalanche
propagates also uphill, and contrary to the previous case, the avalanche zone is always
in motion, as new rolling particles are constantly arrive from the upper boundary of the
avalanche zone. Sometimes we observed small secondary avalanches in the wake of large
primary avalanche, see Fig. 4c. This regime is analogous to the case of absolute instability.

CONCLUSIONS

In conclusion, we developed a continuum theory applicable to modeling of partially
fluidized granular flows. We demonstrated that this theory captures important aspects of
the phenomenology of chute flows observed in recent experiments [12, 13, 14], including
the structure of the stability diagram, triangular shape of downhill avalanches at small
inclination angles and balloon shape of uphill avalanches for larger angles.

We have also applied our model to the description flow in 2D rotating drum and of shear
granular flows in Couette geometry, and found the experimentally observed features such



Figure 4: Development of up-hill avalanche for ¢ = 40 (a), ¢ = 100 (b) and 180 (c).

Parameters of Eqs. (12,13) are: o = 0.05, 5 = 0.25,0 = 1.07 and hg = 5.5, point B in Fig.
2. A small secondary avalanche is seen on the image (c).

as periodic oscillations of the shear stress and flow velocity at low rotation rates (stick-slip)
and transition to steady flow at higher rates. For shear cell experiment our model gives rise
to the exponential velocity profile in two dimension and also deviation from exponential
behavior in three dimensions. We believe that our modeling approach can be applicable to
other granular flows and can be generalized on binary mixtures of granular materials.
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