
Remote Access to Mathematical Software

Elizabeth Dolan, Paul Hovland, Jorge Mor´e,
Boyana Norris, and Barry Smith

Mathematics and Computer Science Division
Argonne National Laboratory

9700 S. Cass Avenue, Argonne, IL 60439-4844
[dolan,hovland,more,norris,bsmith]@mcs.anl.gov

Abstract

The network-oriented application services paradigm is becoming increasingly common for scientific computing. The
popularity of this approach can be attributed to the numerous advantages to both user and developer provided by network-
enabled mathematical software. The burden of installing and maintaining complex systems is lifted from the user, while
enabling developers to provide frequent updates without disrupting service. Access to software with similar functionality can
be unified under the same interface. Remote servers can utilize potentially more powerful computing resources than may be
available locally. We discuss some of the application services developed by the Mathematics and Computer Science Division
at Argonne National Laboratory, including the Network Enabled Optimization System (NEOS) Server and the Automatic
Differentiation of C (ADIC) Server, as well as preliminary work on Web access to the Portable Extensible Toolkit for Scientific
Computing (PETSc). We also provide a brief survey of related work.

1 Introduction

Network application services for business applications have become very popular in recent years. Systems that enable
Internet access to scientific software have also emerged.

Several principal approaches to making software available over the network exist. One approach is to enable Web-based
remote use of hardware and software resources in a fashion closely resembling local use. Users may need to have accounts
on the remote machines. For example, the Grid Portal Toolkit (GridPort) [13, 19] provides access to a collection of services,
scripts, and tools that allow NPACI users to run codes, access data, and communicate with NPACI’s Globus-ready systems.

Other servers, such as the NEOS Server, may transfer the user’s program or the problem specification and data from the
user’s machine to a remote machine, which then runs the code on the data and transfers back the result. The user does not
necessarily need an account on the remote machine.

Another approach is to download the application from the server to the user’s machine, where it operates on the user’s
data and generates the result locally. Finally, in a remote computing environment, only the user’s data travels to the server,
where programs based on numerical libraries operate on it and then return the result to the user. Some service providers, such
as NetSolve [9], use this approach.

We have identified a number of issues in making our scientific software accessible on the Internet. Each of the three
servers discussed in this paper addresses a subset of these issues.

� User interface and problem representation. A good user interface design is crucial to any network-enabled appli-
cation. The benefit of providing Internet access to mathematical and scientific software would be diminished if the
learning curve for using it remotely is too steep. Making existing software accessible over the network offers an oppor-
tunity for designing an interface which can serve a double purpose—hiding the complexity of scientific software and
providing secure access to remote resources. In general, the user’s input must be transformed to the format accepted by
the mathematical software. If a server provides access to more than one type of software, as in the case of the NEOS

1

Server, providing a standard format for the problem representation makes it possible to extend the functionality of the
server without having to modify its implementation.

� Security. Offering any type of service over the Internet exposes the software and hardware to malicious attacks.
Internet-accessible software can potentially be used to gain access to protected system resources. On machines pro-
viding more than one service, a breach of one application can be used to disrupt the operations of another. We focus
on security issues directly related to the servers discussed in this paper; although Web servers and browsers may be
vulnerable to malicious attacks, we do not offer any general solutions for this type of problem.

One possible general solution is to use an operating system such as Trusted Linux, HP Laboratiories’ implementation
of a secure version of Linux, which contains kernel-enforced controls [11]. In a trusted OS implementation, services
and applications are run within separate compartments, and kernel-level mandatory checks ensure that processes from
one compartment cannot interfere with processes from another compartment. Each compartment has a file system
section associated with it and can access files only within that section. Network access is provided via narrow, kernel-
controlled interfaces governed by compartment-specific rules specified by the system administrator. The idea is similar
to that of Java security via a “sandbox”; however, while a secure kernel implementation controls the execution of all
applications, the Java model relies on the application to determine and enforce its security policy. For example, when
an applet runs inside the HotJava browser, HotJavaTM is the Java application that has determined the security policy
for that applet.

Other OS-based solutions focus on remedies for application-specific security vulnerabilities. One such approach is the
system-call monitoring system (SMS) [8] developed collaboratively at Telcordia and SUNY. SMS augments the ker-
nel’s general-purpose implementation of system calls with an application-specific one, which incorporates exploitation
detection and damage prevention mechanisms. While this approach eliminates reliance on software vendor security
updates, it may cause significant performance degradation in some applications.

In all three servers described in this paper, the issue of security is addressed by providing a narrow interface to the
underlying software, without significantly reducing the functionality of the remote service. Each server implements
additional measures, some of which are described in more detail in subsequent sections. While some security issues
are common to most Internet application services, often there are unique challenges to providing secure access to
mathematical software. In this paper we forego discussion on generic security issues and focus more on the application-
specific details.

� Distributed resource management. While the Automatic Differentiation of C (ADIC) Server and Network-Enabled
Optimization System (NEOS) Server provide access to software that usually runs on a single processor, the network-
enabled servers themselves are distributed. The Portable, Extensible Toolkit for Scientific Computing (PETSc) is a
parallel toolkit whose corresponding application server provides access to a distributed set of resources for each user
request. A shared goal of all three servers is to provide good response times for user requests. Thus, some distributed
resource management strategy is needed. We describe the approaches used in our server implementations in subsequent
sections.

In the remainder of this paper we discuss the individual requirements, challenges, and implementation highlights of the
ADIC, PETSc, and NEOS Servers.

2 The ADIC Server

The ADIC Server makes automatic differentiation (AD) available via the Web. Derivatives play an important role in a
variety of scientific computing applications, including optimization, solution of nonlinear equations, sensitivity analysis, and
nonlinear inverse problems. AD technology provides a mechanism for augmenting computer programs with statements for
computing derivatives [15, 16]. In general, given a codeC that computes a functionf � x � Rn

�� y � Rm with n inputs
andm outputs, an AD tool produces codeC � that computesf �

� �y��x, or the derivatives of some of the outputsy with
respect to some of the inputsx. In order to produce derivative computations automatically, AD tools systematically apply the
chain rule of differential calculus at the elementary operator level.

ADIC is a source transformation tool for the automatic differentiation of ANSI C code [7, 17]. Source transformation
AD tools extend the notion of a compiler by altering the functionality of the original program, augmenting it with derivative
computations. Given a set of C source files, ADIC produces a new set of source code files augmented with derivative

2

computations. Limited C++ support is also available. The ADIC design allows easy expansion of its functionality through
plug-in modules. A module specified at runtime interacts with the rest of the system via machine- and language-independent
file interfaces. Language independence is achieved through the use of an intermediate representation, known as the AIF
(Automatic differentiation Interface Form) [1, 18], which abstracts AD-relevant information from the more general language
features. Although most modules target derivative computation by exploiting the chain rule, modules can be written to
perform any language-independent transformation. Each module usually has a set of associated runtime libraries, which
must be linked with the differentiated code.

The ADIC Server aims to provide an easy-to-use, highly accessible interface to ADIC and, potentially, other AD tools.
Our goals include developing and implementing mechanisms for remote file management, fast response to user requests,
scheduling of requests in a distributed environment, and assistance with tasks the user must perform after downloading
differentiated files from the server. The URL for the ADIC Server is www.mcs.anl.gov/autodiff/adicserver.

We discuss the requirements of source transformation application server, including account and file management, user
interface and server implementation. Users of the ADIC Server can upload source code written in ANSI-C, manage remote
files, differentiate selected functions, and download code augmented with derivative computations. Using a simple driver and
linking to the appropriate libraries, the user can then compile and run the differentiated code locally.

 Server Daemon

 Server Daemon

 Server Daemon

Scheduler Daemon

Command Line Client

 CGI Client

Figure 1: ADIC Server components.

Figure 1 illustrates the organization of the ADIC application server. The ADIC Server is the abstract entity that corre-
sponds to a set of processes executing on different hosts, including one scheduler daemon, multiple server daemons, and
multiple clients. All processes communicate using TCP/IP sockets. The main ADIC Server components are

� Clients, including a CGI-based Web client and a prototype command line version. The client handles user requests by
first contacting the scheduler to obtain a server host name and port number. Then the client connects directly to the
assigned server daemon and submits the request using a custom intermediate representation. Once the server begins
fulfilling the request by applying ADIC to the files selected by the user, the client dynamically displays the server’s
output.

� Scheduler daemon, responsible for accepting job requests and selecting the (possibly) remote host on which to execute
ADIC. The scheduler receives periodic updates from the server daemons, based on which the host with the smallest
load (adjusted for the number of processors) is selected to service the client’s request.

� Server daemons, responsible for receiving the user’s request, parsing it, invoking ADIC, and transmitting the resulting
code back to the client.

2.1 User Interface

The ADIC Server’s Web interface is designed to enable a user to obtain derivative-enhanced versions of functions without
being familiar with the AD process and the command-line interfaces of the tools. The main page contains virtually all

3

the options needed for uploading files, differentiating them, and downloading the resulting code. More advanced, or less
frequently needed, functionality is included on separate Web pages.

