
DSDP3: Dual Scaling Algorithm for General Positive

Semide�nite Programming �

Steven J. Benson

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL U.S.A.

Yinyu Ye

Department of Management Sciences

The University of Iowa

Iowa City, IA 52242, U.S.A.

February 12, 2001

Abstract

We implement a dual scaling algorithm for positive semide�nite programming to handle a broader

class of problems than could be solved with previous implementations of the algorithm. With appropriate

representations of constraint matrices, we can solve general semide�nite programs and still exploit the

structure of large-scale combinatorial optimization problems. Computational results show that our pre-

liminary implementation is competitive with primal-dual solvers on many problems requiring moderate

precision in the solution and is superior to primal-dual solvers for several types of problems.

Key words. Semide�nite programming, dual potential reduction algorithm.

�This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the

O�ce of Advanced Scienti�c Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

1



1 Introduction

In the past several years, positive semide�nite programming (SDP) has been one of the most active �elds of

numerical optimization. At least two factors explain this high level of interest. First, applications of SDP

have been found in areas as diverse as structural design, control theory, and combinatorial optimization.

Second, although interior point methods adopted from linear programming have proven reliable on small

and medium-sized problems, the computational and storage demands of these methods have exhausted the

capacity of most computers and limited the size of problems that can be solved.

The positive semide�nite program in standard form is

inf C �X
(SDP)

Subject to Ai �X = bi; i = 1; : : : ; m;

X 2 K;

(1)

where K = K1�K2� � � ��Kr and Kl is the cone of nl�nl symmetric positive semide�nite matrices, and
C;Ai 2 <n�n are given symmetric matrices. The operation C �X = tr CTX =

P
jk CjkXjk and X(�) � 0

means thatX is (semi) positive de�nite. Furthermore, we assume the matrices Ai are linearly independent,

meaning that
Pm

i=1 yiAi = 0 implies y1 = : : : = ym = 0. Matrices X that satisfy the constraints are called

feasible, while the others are called infeasible.

The dual of (SDP) can be written as

sup bTy

(DSP)

Subject to
mX
i=1

yiAi + S = C; S 2 K;
(2)

where b; y 2 <m and yi is the i
th element of the vector y.

Following conventional notations, let

AX = [ A1 �X : : : Am �X ]T and ATy =
mX
i=1

Aiyi;

We have the following well known duality theorem [15]:

Theorem 1 (Strong Duality) Provided there exist feasible points for both (SDP) and (DSP) and an interior
feasible point for at least one of (SDP) and (DSP), the optimal values of these two problems are equal.

Thus, under this relatively mild condition the primal and dual optimal solution pair (X�) and (y�; S�)

exist, and C �X� = bTy�.

Examples of SDP problems arise in control theory, truss topology design, and combinatorial opti-

mization. In many of these problems, the constraints are dense and have full rank. Many combinatorial

2



problems, however, have constraints that have rank one and a very sparse structure. The SDP relaxation

of the maximum-cut problem, analyzed by Goemans and Williamson [11], has n constraints, and each

constraint has exactly one nonzero element. Sparsity and low rank constraints are also present in the

SDP relaxations of graph bisection, Lovasz theta number, graph coloring, and satis�ability problems. Real

applications of these problems can be particularly large.

Various approaches have been tried to solve these problems. These approaches include primal-dual

interior point methods (see Todd [18] for a survey of these methods) and a dual scaling interior point

method of Benson, Ye, and Zhang [3]. Other types of methods that have been developed and applied

to combinatorial problems, such as the maximum-cut problem, include the partial Lagrangian approach

of Helmberg and Rendl [12], which uses a spectral bundle method to solve the nondi�erentiable convex

program, and transformation to a constrained nonlinear program which was �rst proposed by Homer and

Peinado [13] and further developed by Burer and Monteiro [7] and Burer, Monteiro, and Zhang [8][9].

Details concerning the convergence of the feasible start dual scaling algorithm and its advantages over

primal-dual methods can be found in [3] and [21]. The advantages of the algorithm are as follows

1. The cost of each iteration is relatively low. For many problems, the computation of the primal matrix

X requires considerable computational e�ort, which is unnecessary in this algorithm.

2. The memory requirements of the dual algorithm are signi�cantly lower than the requirement for

primal-dual methods, enabling it to solve larger problems. Other than the data, a good implemen-

tation of the dual algorithm requires only two additional matrices: one for the dual matrix and one

for the reduced linear system.

3. The dual scaling algorithm can exploit sparsity in the data to save computation time when the

Cholesky factorization of the dual matrix is sparse.

The next section summarizes the dual scaling algorithm, which is a modi�cation of the linear programming

algorithm. Convergence of the algorithm has been discussed previously[3]. The purpose of this paper is to

discuss our implementation of the algorithm and its success in solving a broad collection of problems.

2 Dual Scaling Algorithm

Given a dual point (y; S) such that AT y + S � C = R and S � 0, and a barrier parameter �̂ > 0, each

iteration of the dual scaling algorithm takes a step in the Newton direction to maximize the function

�(y) = bTy + �̂ ln detS (3)

subject to ATy + S = C. The dual step direction �y solves the linear system
0
B@

A1S
�1 � S�1A1 � � � A1S

�1 � S�1Am

...
. . .

...

AmS
�1 � S�1A1 � � � AmS

�1 � S�1Am

1
CA�y =

1

�̂
b�A(S�1)�A(S�1RS�1) (4)

and �S = �AT�y � R. For notational convenience, we label the left-hand matrix of (4) M . For any

feasible X , this linear system (4) can also be derived by taking the Schur complement of the equations

A(�X) = 0 AT (�y) + �S = �R �̂S�1�SS�1 ��X = X � �̂Ŝ�1; (5)

3



which are the Newton equations for the nonlinear system

AX = b AT y + S = C �̂S�1 = X: (6)

A third derivation of the method minimizes the dual potential function

 (y) = � ln(�z � bTy)� ln detS

over a trust region [3]. In this dual potential function �z = C �X for a feasible matrix X , � > n+
p
n, and

�̂ = �z�bT y
�

. The relationships between these derivations can be found in [21].

The step direction comprises of three parts:

dy1 =M�1b; (7)

dy2 =M�1A(S�1); (8)

dy3 =M�1A(S�1RS�1); (9)

which represent the a�ne scaling, centering, and feasibility directions, respectively. Together,

�y =
1

�̂
dy1 � dy2 + dy3: (10)

The algorithm then selects a step size �k+1 such that yk+1 = yk + �k+1�y and S
k+1 = Sk + �k+1�S � 0.

Using the dual step direction and (5), we give a primal matrix X satisfying the linear constraints:

X = �̂S�1 + �̂S�1�SS�1: (11)

This X , which also minimizes kS:5XS:5� �̂Ik subject to AX = b, is positive semide�nite if and only if

S + AT (�y) � 0: (12)

Matrix (12) has the same sparsity pattern as S and can be stored in the same data structure as S,

eliminating the need for an additional matrix structure.

Since X is not needed to compute the next step direction, it does not have to be computed during the

algorithm. Creating the primal matrix may be costly, but when (y; S) is a feasible point, the upper bound

given by evaluating the primal objective value C �X(�zk) requires much less work.

C �X = bTy +X � S
= bTy + ��

�
�yTA(S�1) + n

�
:

(13)

Since the vectors A(Sk)�1 and �y were found previously, the cost of computing a primal objective value

is the cost of a dot product of two vectors.

With a feasible dual starting point and appropriate choices for �̂ and �, convergence results in [3] show

that either the new dual point (y; S) or the new primal point X is feasible and reduces the Tanabe-Todd-Ye

primal-dual potential function

	(X;S) = � ln(X � S)� ln detX � ln detS

enough to achieve linear convergence.

It has been previously documented [3] that the dual scaling algorithm can save time and memory

compared to primal-dual method by utilizing sparsity in the problem and not explicitly computing the

matrix X . The next two sections discuss e�ective methods to compute the linear system (4), select the

parameter �̂, and select a step size.

4



2.1 Constraints As a Sum of Rank-One Matrices

Many problems in positive semide�nite programming, especially combinatorial problems, have constraints

with a very low rank. E�cient SDP solvers can o�er signi�cant savings in both memory and computational

power by utilizing this structure. Since matrices can be written as a sum of rank-one matrices, let Ai be

written as

Ai =
RiX
k=1

�ikaika
T
ik ; (14)

where Ri is the number of scalars �ik and vectors aik 2 <n. used to representation of the matrix. The

elements in the matrix M can be computing by using

Mij =
RiX

k=1

RjX

l=1

�ik�jl

�
aikS

�1aTjl

�2
: (15)

The matrix computation requires relatively little work space to store intermediate computations. With

the following algorithm.

Compute M: To compute the lower triangular part of M , initially set M equal to zero, factor S = LLT ,

and do the following:

For i = 1 : m;

For k = 1 : Ri;

Solve Swi = aik; For j = i :m; Mij =Mij +

RjX
l=1

�ik�jl(a
T
jlw)

2; end.

end.

end.

If each constraint has full rank, this technique costs O(n3m2 + n3m) arithmetic operations, which is

higher than other implementations. Computing each element of M with Mij = Ai � (S�1AjS
�1) costs

only O(n2m2 + n3m) operations. Many problems, especially combinatorial problems [6], have constraints

with very low rank. If each constraint has rank one, M can be computed using O(mn2+m2n) operations

excluding the cost of factoring S. When the constraints have a dense rank one structure, the complexity of

this technique is an order of magnitude less than techniques that do not explicitly account for the rank-one

structure.

Any combination of rank-one matrices that sum to Ai can be used to compute the linear system in this

way, but the eigenvalues and eigenvectors provide a particularly e�cient representation. There are e�cient

routines for computing eigenvalues and eigenvectors, and the orthogonality of these vectors reduces the

risk on numerical instabilities that may be associated with the process. Furthermore, the eigenvectors

corresponding to the nonzero eigenvalues comprise the smallest set of vectors that can be used to represent

a matrix in this manner.

In the dual scaling algorithm, this technique can also be used in other computations as well. Each

5



iteration requires the computation of AS�1 and A(S�1RS�1), which can be computed by

Ai � S�1 =
RiX

k=1

�ik

�
aTikS

�1aik

�

and

Ai � S�1RS�1 =
RiX
k=1

�ik

�
aTikS

�1RS�1aik

�
:

These two vectors can be computed in the same routine for the matrixM and require very little additional

e�ort.

For some problems, especially combinatorial problems arising from networks, the dual matrix S has

a sparse Cholesky factorization. In these problems, it is signi�cantly less expensive to use the Cholesky

factorization to solve the linear system Sw = ajl than it would be to multiply ajl by S
�1, which is almost

always dense. Furthermore, use of backward and forward substitutions eliminates the need to calculate

the inverse of the matrix.

2.2 Selection of �̂

The linear algebra used to compute and solve the linear system (4) a�ects the cost of each iteration.

However, the choice of parameters in the algorithm, especially �̂, has an enormous impact upon the

convergence of the algorithm.

The central path is characterized by a parameter � 2 (0;1), which connects the analytic center of the

feasible region to the analytic center of the solution set [21]. For each � > 0, there is a feasible point along

the central path that maximizes (3). At this point, the �rst order conditions state that

bT (
1

�
dy1 � dy2) = 0: (16)

The dual algorithm tries to follow the central path to a solution, where � = 0, by reducing this parameter

at each iteration.

Although the initial dual point rarely lies on the central path, the early iterations of DSDP calculate

an appropriate value for � that satis�es (16). Since M is positive de�nite, bTdy1 > 0. The solutions to

(SDP) and (DSP) lie along the edge of the feasible set, and the barrier function forces the steps away

from the boundary, so usually bTdy2 > 0 and there exists a solution to (16). If not, our implementation

selects � = 1. Primal-dual methods calculate � by using the current primal and dual points, but the dual

algorithm must use another technique, like the one described here, until a positive semide�nite matrix X

can be found.

To �nd a feasible matrix X , DSDP uses several values of �̂. These values are generally 0:1�; 0:4�; 0:7�,

and 0:9�. Multiple values of �̂ are used to �nd a feasible X because they provide a good heuristic for

selecting a value �̂ for the dual step. To compute the dual step direction, DSDP selects the smallest value

of �̂ that provides a positive semide�nite X . If no positive semide�nite X is found at this iteration, the

algorithm computes a � that satis�es (16) and sets �̂ = 0:7�.

6



2.3 Trust Region

The step size can be chosen by using either a line search or a trust region. Most solvers use a line search

to determine the longest step that keeps the dual matrix positive de�nite. Since the step direction is a

Newton direction, one simple and e�ective line search procedure has been to initially set �k+1 = 1:0 and

test whether or not Sk + �k+1�S is positive de�nite. If not, the backtracking line search reduces �k+1
until the dual matrix is positive de�nite. Alternative line searches that compute the exact step size to the

boundary of the cone can be used, but these methods require expensive eigenvalue computations whose

cost cannot be amortized over other parts of the algorithm.

In choosing a step size, we can also employ a trust region. As mentioned earlier, the dual step direction

also minimizes
Minimize r T (yk; �zk)(y � yk)
Subject to k(Sk)�:5

�
AT (y � yk)

�
(Sk)�:5k � �; (17)

such that AT y + S = C, �z = C � X for a feasible matrix X , � > n +
p
n, and �̂ = �z�bT y

�
. For feasible

points, the solution to this problem will also be feasible when � < 1:0.

Using this trust region formulation, the step length � can be written [3] as

� =
�q

( 1
�̂
b� A(S�1))T�y

:

Our implementation usually uses a trust region radius of � = 3, although a slightly larger radius is chosen

when
q
(b=�̂�A(S�1))T�y > 15. If this step length does not provide a positive de�nite matrix Sk+1, �

is reduced until the dual matrix is positive de�nite. Experience has shown that limiting the size of the

trust region slows the convergence of the algorithm on some problems but improves the overall robustness

of the algorithm.

Much of the theory of the dual scaling algorithm is based on a feasible starting point. For that reason,

we encourage very large steps to achieve feasibility as quickly as possible. When the iterates are infeasible,

DSDP3 selects a maximum step length using � = n. Never, however, is � > 1. A Cholesky factorization

can test whether the matrix is positive de�nite. Slightly more sophisticated line searches were implemented

in previous versions [2], but this simple backtracking technique is e�cient because the next iterate will

need a Cholesky factorization to compute (4).

To avoid computing �S explicitly, let Rk+1 = (1 � �k+1)R
k, and compute the next point Sk+1 =

C � ATyk+1 + Rk+1. This technique avoids the use of an additional matrix to store �S. Aside from the

data, only three matrices are needed in the algorithm: one to store M , one to store S and its Cholesky

factor, and one to storeR. To take advantage of the sparsity inherent in many large combinatorial problems,

we use a sparse data structure to represent the dual matrix, and a diagonal matrix to represent the dual

infeasibility. In fact, R is usually set to be a multiple of the identity matrix.

3 DSDP 3

The path-following algorithm outlined in the preceding section can be stated as follows.

7



DSDP3 ALGORITHM. Given y0 2 <m, let R0 be a multiple of the identity matrix such that S0 =

C �AT y0 +R0 � 0, set �z =1, �� =1, k = 0, and do the following:

while �z � bTyk > �1 and kRk > �2 do

1. Compute A(Sk)�1, A((Sk)�1R(Sk)�1), and the matrix Mk of (4).

2. Solve (7), (8), and (9) for the step directions dy1, dy2, and dy3, respectively.

3. If �� =1, compute �k using (16).

4. Select one or more values of �̂. For each �̂ compute (12). If (12) is positive de�nite and �̂ < ��, let

�� = �̂ and compute an upper bound �z.

5. Select one value for �̂, calculate �y, and compute a step size �k+1 such that yk+1 = yk + ��y,

Rk+1 = (1� �k+1)Rk and Sk+1 = C � AT yk+1 + Rk+1 � 0

6. Set �k+1 = �k+1�̂+ (1� �k+1)�k .

7. k := k + 1.

end

DSDP3 implements this algorithm in the C language for good performance and memory management.

Like CSDP [4], DSDP3 can solve a positive semide�nite program with a set of subroutines, and like SDPT3

[19] and SeDuMi [17], DSDP3 can be used from within the Matlab environment. The Matlab interface

uses arguments that are very similar to the ones used in SDPT3. The DSDP3 package an also contains a

stand-alone version that reads �les in SDPA [10] format.

The DSDP3 solver uses several techniques to improve the e�ciency and robustness of the algorithm.

Like other SDP solvers, DSDP3 takes advantage of the block structure that is present in some problems.

When multiple distinct blocks are present in the problem and identi�ed by the solver, DSDP3 will express

each block as a matrix and write the each block within the constraint matrices as the sum of rank-one

matrices. These blocks are used separately to compute the linear system (7).

To reduce the possibility of numerical error, DSDP3 also scales the primal objective matrix such that

each element in the objective matrix has a maximum magnitude of 1:0. The starting point is generally set

to zero, but for some combinatorial problems such as the maximum cut problem, we use feasible initial

vectors y0 that makes the dual matrix S0 diagonally dominant.

If C � ATy0 is not positive de�nite, DSDP3 adds a multiple of the identity matrix to the dual matrix

to make it positive de�nite. It adds R0 equal to the identity matrix initially and continues to double it

until S = C � AT y0 + R0 � 0 and then multiplies this value of R0 by ten.

The dual infeasibility decreases from one iterate to the next. On some problems, however, the step

sizes become very short. To increase robustness of the software, DSDP doubles R when the step sizes are

particularly short.

DSDP3 includes both a Cholesky factorization and a diagonally preconditioned conjugate residual

method to solve (7). Either method can be chosen, but DSDP3 selects a hybrid strategy by default.

8



As shown by Toh and Kojima [20], the number of iterates required by the conjugate residual method is

small for early iterates of interior point methods. As the matrix becomes more poorly conditioned in

later iterates, the conjugate residual method requires more iterates. By default, DSDP3 switches from the

iterative method to a direct method when the number of conjugate residual iterates on one linear system

exceeds m=5. Within each iterative linear solve, DSDP uses a relative stopping tolerance of 10�8.

4 Computational Results

The speed and robustness of DSDP3.1 has been tested using the SDPLIB [5] test suite, the Seventh

DIMACS Implementation Challenge [16] problems, and several independent test problems.

Table 1 shows the dual solution value and the number of iterates required to achieve it for each of the

SDPLIB problems. In each of these problems, we tried to compute a solution with six digits of accuracy

using the default options and an initial dual vector equal to zero. DSDP3 solved each of the 94 problems

with a level of accuracy in the objective value and dual solution similar to those of primal dual solvers.

In most cases, DSDP3 found six digits of accuracy. In some cases, the number of iterations required to

compute only three digits of accuracy was signi�cantly less than the number shown in Table 1. Problems

thetaG11 and thetaG51 could not be solved using DSDP3 and problems hinf12 { hinf15 could not be

solved with high precision, but primal dual solvers also have di�culties with these problems. On several

other problems, DSDP3 required a starting point di�erent from the default. The constraints that bound

the diagonal of the primal matrix in the combinatorial problem qpG51 have dual variables that we used to

create a feasible initial point with diagonally dominant dual matrix, and the vector with each component

equal to 1:0 was used to create a feasible point in arch8. For problems control6, control8, control10,

and control11, each element of the dual vector was set to the arbitrary value of �1. These initial points
are not particularly special; experimental results showed, however, that DSDP3 converged to an optimal

solution for a wide range of other initial points. Application developers are typically aware of the structure

of a problem and can provide good initial solutions.

DSDP3 proved to be most successful on the mcp, gpp, theta, max, equal, qp and qap problems, which

arise from the relaxation of combinatorial optimization problems. DSDP3 solved each of these problems

to the desired accuracy. Furthermore, the iteration counts for these problems are lower than the iteration

count for the other problems.

DSDP3 also correctly identi�ed infeasibility in the four problems with that characteristic. When the

primal problem is infeasible, DSDP3 returns with a high dual value and a code indicating primal infeasi-

bility. DSDP3 does not return a feasible primal solution with a large objective value as some primal-dual

solvers do, but it does correctly detect the dual infeasibility.

The success of DSDP3 on the SDPLIB library indicates the robustness of the dual scaling algorithm

and the DSDP3 software package. We note, however, that the six digits of accuracy that we report hold

only for the dual solution and objective value. The primal solution matrix returned by DSDP3 may have

signi�cantly less precision. Because the dual matrix S get closes to the solution, it contains eigenvalues

that are very close to zero. The primal solution X is computed by using the product of S�1, S�1, and a

third matrix (11), so numerical di�culties often impede the precision of this matrix. We �nd that best

primal solutions that DSDP3 can return are those that are found after solving the problem with only 2 -

3 digits of accuracy.

9



Table 1: Performance on the SDPLIB Problems

Problem its. dobj Problem its. dobj

arch0 66 0.566517 infd2 15 unbounded

arch2 56 0.674882 infp1 56 infeasible

arch4 69 1.072066 infp2 28 infeasible

arch8 69 7.056982 maxG11 36 629.1648

control1 26 17.78463 maxG32 45 1567.640

control2 31 8.300001 maxG51 63 4006.256

control3 38 13.63327 maxG55 62 12869.87

control4 34 19.79423 maxG60 46 15222.27

control5 51 16.88360 mcp100 24 226.1574

control6 73 37.30444 mcp124-1 26 141.9905

control7 69 20.62508 mcp124-2 25 269.8802

control8 69 20.28637 mcp124-3 27 467.7501

control9 67 14.67543 mcp124-4 24 864.4119

control10 89 38.53307 mcp250-1 28 317.2644

control11 59 31.95874 mcp250-2 26 531.9301

equalG11 73 629.1553 mcp250-3 27 981.1726

equalG51 83 4005.601 mcp250-4 26 1681.960

gpp100 39 -44.94354 mcp500-1 44 598.1486

gpp124-1 37 -7.343028 mcp500-2 34 1070.057

gpp124-2 37 -46.86226 mcp500-3 30 1847.970

gpp124-3 36 -153.0139 mcp500-4 31 3566.738

gpp124-4 36 -418.9874 qap5 36 -436.0000

gpp250-1 43 -15.44480 qap6 99 -381.2145

gpp250-2 42 -81.86865 qap7 35 -424.8196

gpp250-3 40 -303.5388 qap8 59 -756.9552

gpp250-4 42 -747.3275 qap9 45 -1409.941

gpp500-1 56 -25.30782 qap10 61 -1092.607

gpp500-2 54 -156.0574 qpG11 26 2448.659

gpp500-3 63 -513.0172 qpG51 59 1181.800

gpp500-4 53 -1567.008 ss30 111 20.23962

hinf1 29 2.032600 theta1 30 23.00000

hinf2 48 10.96706 theta2 30 32.87917

hinf3 31 56.94079 theta3 27 42.16698

hinf4 31 274.7639 theta4 36 50.32123

hinf5 29 362.2140 theta5 33 57.23231

hinf6 28 448.9279 theta6 41 63.47710

hinf7 45 390.8124 thetaG11 100 f

hinf8 31 116.1460 thetaG51 100 f

hinf9 50 236.2493 truss1 23 -8.999994

hinf10 39 108.7119 truss2 28 -123.3804

hinf11 40 65.86209 truss3 28 -9.109992

hinf12 100 0.000001 truss4 30 -9.009993

hinf13 39 44.34282 truss5 67 -132.6356

hinf14 44 13.00275 truss6 63 -901.0010

hinf15 100 23.95561 truss7 34 -900.0013

infd1 15 unbounded truss8 99 -133.1145

10



Table 2: Performance on the DIMACS Implementation Challenge Problems

Problem CSDP SDPA SDPT3 SeDuMi DSDP3

toruspm3-8 99 435 276 955 42

toruspm3-15 15857 m m m 16450

torusg3-8 114 106 267 1311 43

torusg3-15 16006 m m m 17897

truss5 4 4 22 4 17

truss8 23 23 178 27 222

hinf12 f 1 7 1 1

hinf13 f 1 5 1 1

copo14 54 234 368 30 1132

copo23 3607 38894 5651 f

ham-7-5-6 89 485 423 365 115

ham-9-8 328 f 1876 1482 999

bm1 f 6532 5289 30661 1282

Tables 2 compares the performance of the DSDP3 with the performance of the four primal dual solvers

entered in the Seventh DIMACS Implementation Challenge. The thirteen problems shown on this table

contain positive semide�nite matrix variables but no second order cone variables. Large problems that

could not be solved by most of the interior point solvers were not included in table. These results were

compiled by Hans Mittelmann[14] on a Pentium II (512 MB RAM, 450 MHz) processor running Linux-

2.4.0t8 and MATLAB6.0b. Each test used the default starting point and parameters. The table show

the number of seconds required to solve the problem. An \i" indicates the problem was declared to be

infeasible, an \m" indicates that the solver required an excessive amount of memory, and an \f" indicates

that the solver fails to produce a solution with one degree of accuracy.

DSDP3 performed very well on the maximum cut problems toruspm3-8, toruspm3-15, torusg3-8,

torusg3-8, minimum bisection problem bm1, and Lovasz theta number problems ham-7-5-6 and ham-9-8.

In these combinatorial problems, DSDP3 matched or outperformed the primal dual solvers. In toruspm3-8,

for instance, DSDP3 was more that twice as fast as the fastest primal dual solver and more that twenty

times faster than another primal dual solver.

The dual algorithm is well suited for these problems because the factorization of the dual matrix

is usually sparse and the number of constraints is relatively small compared with the dimension of the

variable matrices. Primal dual algorithms typically spend a lot of time on these problems performing

O(n3) operations such as matrix-matrix multiplications and matrix factorizations required to compute the

primal matrix X at each iteration. DSDP3 saves a signi�cant amount of time because it does not require

the primal matrix X for convergence. The lower memory requirements of the dual algorithm allow it

to solve larger problems. In some of the larger maximum cut problems, the primal dual methods failed

because of excessive memory requirements.

Primal dual solvers performed signi�cantly better on copo problems and large truss design problems. In

these cases, the number of constraints in these problems signi�cantly exceeds the dimension of the variable

matrices and the constraint matrices have high ranks. On these problems the cost of one dual iteration is

at least as large as one primal dual iteration. Since the number of dual iterations is generally higher, it

cannot compete well with primal dual methods with stronger convergence properties. Nonetheless, DSDP

11



matched the performance of the best primal dual solvers in the two small matrix inequality problems

hinf12 and hinf13.

5 Concluding Remarks

Our preliminary implementation of the dual scaling algorithm for positive semide�nite programming ef-

�ciently solves the standard test problems. The algorithm can be applied to all semide�nite programs,

but its features are particularly well suited for applications from combinatorial optimization where the

constraint matrices have low ranks. The DSDP3 implementation of the algorithm emphasizes these ad-

vantages with its choice of data structures for the variable and data matrices. On classes of problems such

as maximum cut, theta, and minimum bisection problems, it returns solutions in signi�cantly less time

than do the primal dual solvers. Furthermore, because the computer memory requirements of dual scaling

algorithm are less than those of primal dual algorithms, it can solve larger problems than some primal dual

solvers. The dual scaling algorithm typically requires more iterations than do primal dual algorithms, and

the implementation choices magnify the disadvantages of the dual scaling algorithm. Nonetheless, when

only moderate precision in the solution is required, the DSDP3 package solves many other problems in a

time that is similar to the times needed by primal dual solvers. The DSDP3 package is available to the

public and contains several interfaces that make it easy to use for application developers [1].

References

[1] S. J. Benson and Y. Ye. DSDP3.2 User Guide. http://www-unix.mcs.anl.gov/� benson, November

2000.

[2] S. J. Benson, Y. Ye, and X. Zhang. Mixed linear and semide�nite programming for combinatorial

optimization. Optimization Methods and Software, 10:515{544, 1999.

[3] S. J. Benson, Y. Ye, and X. Zhang. Solving large scale sparse semide�nite programs for combinatorial

optimization. SIAM Journal of Optimization, 10:443{461, 2000.

[4] B. Borchers. CSDP, a C library for semide�nite programming. Optimization Software and Methods,
11:613{623, 1999.

[5] B. Borchers. SDPLIB 1.0 : A collection of semide�nite programming test problems. Technical report,

Faculty of Mathematics, Institute of Mining and Technology, New Mexico Tech, Socorro, NM, USA,

July 1998.

[6] B. Borchers. Presentation at the Seventh DIMACS Implementation Challenge Piscataway, NJ, Novem-

ber 2, 2000.

[7] S. Burer and R. D. C. Monteiro. An e�cient algorithm for solving the MAXCUT SDP relaxation.

Manuscript, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,

GA USA, December 1998.

[8] S. Burer, R. D. C. Monteiro, and Y. Zhang. Solving semide�nite programs via nonlinear program-

ming. part I: Transformations and derivatives. Technical report, School of Industrial and Systems

Engineering, Georgia Tech, Atlanta, GA, September 1999.

12



[9] S. Burer, R. D. C. Monteiro, and Y. Zhang. Solving semide�nite programs via nonlinear programming.

part II: Interior point methods for a subclass of SDPs. Technical report, School of ISyE, Georgia Tech,

Atlanta, GA, October 1999.

[10] K. Fujisawa, M. Fukuda, M. Kojima, and K. Nakata. Numerical Evaluation of SDPA (SemiDe�nite

Programming Algorithm). In High Performance Optimization. Kluwer Academic Press, 1999, pp.

267{301.

[11] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and

satis�ability problems using semide�nite programming. Journal of ACM, 42:1115{1145, 1995.

[12] C. Helmberg and F. Rendl. A spectral bundle method for semide�nite programming. ZIB Preprint

SC 97-37, Konrad-Zuse-Zentrum fuer Informationstechnik Berlin, Germany, August 1997.

[13] S. Homer and M. Peinado. On the performance of polynomial-time CLIQUE algorithms on very large

graphs. Technical report, Boston University, Boston, MA, 1994.

[14] Hans D. Mittelmann. Independent Benchmark Results http://plato.la.asu.edu/, November 2000.

[15] Yu. E. Nesterov and A. S. Nemirovskii. Interior Point Polynomial Methods in Convex Programming:
Theory and Algorithms. SIAM Publications, Philadelphia, 1993.

[16] Gabor Pataki and Stefan H. Schmieta. The Seventh DIMACS Implementation Challenge: 1999-2000.

http://dimacs.rutgers.edu/Challenges/Seventh/, 1999.

[17] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones". Opti-
mization Software and Methods, 11:625-653, 1999.

[18] M. J. Todd. On search directions in interior-point methods for semide�nite programming. Technical

Report 1205, School of Operations Research and Industrial Engineering, Cornell University, Ithaca,

NY, October 1997.

[19] K. C. Toh, M. J. Todd, and R. H. T�ut�unc�u. SDPT3 { A MATLAB software package for semide�nite

programming, version 1.3 Optimization Software and Methods, 11:545-581, 1999.

[20] K. C. Toh and M. Kojima. Solving some large scale semide�nite programs via the conjugate residual

method. Working paper, August 2000.

[21] Y. Ye. Interior Point Algorithms : Theory and Analysis. Wiley-Interscience Series in Discrete Math-

ematics and Optimization. John Wiley & Sons, New York, 1997.

13


